
138 Declarative Programming Techniques

Since Ys is reduced by one element at each call, we eventually arrive at the final
state Sfinal = (i, nil), and the function returns i. Since length(nil) = 0, from
P (Sfinal) it follows that i = length(Xs).

The difficult step in this proof is to choose the property P . It has to satisfy two
constraints. First, it has to combine the arguments of the iterative computation
such that the result does not change as the computation progresses. Second, it
has to be strong enough that the correctness follows from P (Sfinal). A rule of
thumb for finding a good P is to execute the program by hand in a few small
cases, and from them to picture what the general intermediate case is.

Constructing programs by following the type

The above examples of list functions all have a curious property. They all have a
list argument, 〈List T〉, which is defined as:

〈List T〉 ::= nil

| T ´ | ´ 〈List T〉

and they all use a case statement which has the form:

case Xs
of nil then 〈expr〉 % Base case
[] X|Xr then 〈expr〉 % Recursive call
end

What is going on here? The recursive structure of the list functions exactly
follows the recursive structure of the type definition. We find that this property
is almost always true of list functions.

We can use this property to help us write list functions. This can be a tremen-
dous help when type definitions become complicated. For example, let us write a
function that counts the elements of a nested list. A nested list is a list in which
each element can itself be a list, e.g., [[1 2] 4 nil [[5] 10]] . We define the
type 〈NestedList T〉 as follows:

〈NestedList T〉 ::= nil

| 〈NestedList T〉 ´ | ´ 〈NestedList T〉
| T ´ | ´ 〈NestedList T〉

To avoid ambiguity, we have to add a condition on T, namely that T is neither nil

nor a cons. Now let us write the function {LengthL 〈NestedList T〉}: 〈Int〉 which
counts the number of elements in a nested list. Following the type definition gives
this skeleton:

fun {LengthL Xs}
case Xs
of nil then 〈expr〉
[] X|Xr andthen {IsList X} then
〈expr〉 % Recursive calls for X and Xr

[] X|Xr then

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 139

〈expr〉 % Recursive call for Xr
end

end

(The third case does not have to mention {Not {IsList X}} since it follows
from the negation of the second case.) Here {IsList X} is a function that
checks whether X is nil or a cons:

fun {IsCons X} case X of _|_ then true else false end end
fun {IsList X} X==nil orelse {IsCons X} end

Fleshing out the skeleton gives the following function:

fun {LengthL Xs}
case Xs
of nil then 0
[] X|Xr andthen {IsList X} then

{LengthL X}+{LengthL Xr}
[] X|Xr then

1+{LengthL Xr}
end

end

Here are two example calls:

X=[[1 2] 4 nil [[5] 10]]
{Browse {LengthL X}}
{Browse {LengthL [X X]}}

What do these calls display?
Using a different type definition for nested lists gives a different length func-

tion. For example, let us define the type 〈NestedList2 T〉 as follows:

〈NestedList2 T〉 ::= nil

| 〈NestedList2 T〉 ´ | ´ 〈NestedList2 T〉
| T

Again, we have to add the condition that T is neither nil nor a cons. Note
the subtle difference between 〈NestedList T〉 and 〈NestedList2 T〉! Following the
definition of 〈NestedList2 T〉 gives a different and simpler function LengthL2 :

fun {LengthL2 Xs}
case Xs
of nil then 0
[] X|Xr then

{LengthL2 X}+{LengthL2 Xr}
else 1 end

end

What is the difference between LengthL and LengthL2 ? We can deduce it by
comparing the types 〈NestedList T〉 and 〈NestedList2 T〉. A 〈NestedList T〉 always
has to be a list, whereas a 〈NestedList2 T〉 can also be of type T. Therefore the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

140 Declarative Programming Techniques

L

L1

L2

S1

S2

S

L11

L12

L21

L22 S22

S21

S12

S11

Split

Split Merge

Merge

Split Merge

Input
list list

Sorted

Figure 3.9: Sorting with mergesort

call {LengthL2 foo} is legal (it returns 1), wherease {LengthL foo} is illegal
(it raises an exception). It is reasonable to consider this as an error in LengthL2 .

There is an important lesson to be learned here. It is important to define a
recursive type before writing the recursive function that uses it. Otherwise it is
easy to be misled by an apparently simple function that is incorrect. This is true
even in functional languages that do type inference, such as Standard ML and
Haskell. Type inference can verify that a recursive type is used correctly, but the
design of a recursive type remains the programmer’s responsibility.

Sorting with mergesort

We define a function that takes a list of numbers or atoms and returns a new list
sorted in ascending order. It uses the comparison operator <, so all elements have
to be of the same type (all integers, all floats, or all atoms). We use the mergesort
algorithm, which is efficient and can be programmed easily in a declarative model.
The mergesort algorithm is based on a simple strategy called divide-and-conquer:

• Split the list into two smaller lists of approximately equal length.

• Use mergesort recursively to sort the two smaller lists.

• Merge the two sorted lists together to get the final result.

Figure 3.9 shows the recursive structure. Mergesort is efficient because the split
and merge operations are both linear-time iterative computations. We first define
the merge and split operations and then mergesort itself:

fun {Merge Xs Ys}
case Xs # Ys
of nil # Ys then Ys
[] Xs # nil then Xs
[] (X|Xr) # (Y|Yr) then

if X<Y then X|{Merge Xr Ys}
else Y|{Merge Xs Yr}
end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 141

S1 S2 S3 Sn
P1 P2 P3

S1

P

if
SnBase case

Recursive case

Figure 3.10: Control flow with threaded state

end
end

The type is 〈fun {$ 〈List T〉 〈List T〉}: 〈List T〉〉, where T is either 〈Int〉, 〈Float〉,
or 〈Atom〉. We define split as a procedure because it has two outputs. It could
also be defined as a function returning a pair as a single output.

proc {Split Xs ?Ys ?Zs}
case Xs
of nil then Ys=nil Zs=nil
[] [X] then Ys=[X] Zs=nil
[] X1|X2|Xr then Yr Zr in

Ys=X1|Yr
Zs=X2|Zr
{Split Xr Yr Zr}

end
end

The type is 〈proc {$ 〈List T〉 〈List T〉 〈List T〉} 〉. Here is the definition of merge-
sort itself:

fun {MergeSort Xs}
case Xs
of nil then nil
[] [X] then [X]
else Ys Zs in

{Split Xs Ys Zs}
{Merge {MergeSort Ys} {MergeSort Zs}}

end
end

Its type is 〈fun {$ 〈List T〉}: 〈List T〉〉 with the same restriction on T as in
Merge . The splitting up of the input list bottoms out at lists of length zero and
one, which can be sorted immediately.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

142 Declarative Programming Techniques

3.4.3 Accumulators

We have seen how to program simple list functions and how to make them itera-
tive. Realistic declarative programming is usually done in a different way, namely
by writing functions that are iterative from the start. The idea is to carry state
forward at all times and never do a return calculation. A state S is represented
by adding a pair of arguments, S1 and Sn, to each procedure. This pair is called
an accumulator. S1 represents the input state and Sn represents the output state.
Each procedure definition is then written in a style that looks like this:

proc {P X S1 ?Sn}
if {BaseCase X} then Sn=S1
else

{P1 S1 S2}
{P2 S2 S3}
{P3 S3 Sn}

end
end

The base case does no calculation, so the output state is the same as the input
state (Sn=S1). The recursive case threads the state through each recursive call
(P1, P2, and P3) and eventually returns it to P. Figure 3.10 gives an illustration.
Each arrow represents one state variable. The state value is given at the arrow’s
tail and passed to the arrow’s head. By state threading we mean that each proce-
dure’s output is the next procedure’s input. The technique of threading a state
through nested procedure calls is called accumulator programming.

Accumulator programming is used in the IterLength and IterReverse

functions we saw before. In these functions the accumulator structure is not so
clear, because they are functions. What is happening is that the input state is
passed to the function and the output state is what the function returns.

Multiple accumulators

Consider the following procedure, which takes an expression containing identifiers,
integers, and addition operations (using label plus). It calculates two results:
it translates the expression into machine code for a simple stack machine and it
calculates the number of instructions in the resulting code.

proc {ExprCode E C1 ?Cn S1 ?Sn}
case E
of plus(A B) then C2 C3 S2 S3 in

C2=plus|C1
S2=S1+1
{ExprCode B C2 C3 S2 S3}
{ExprCode A C3 Cn S3 Sn}

[] I then
Cn=push(I)|C1
Sn=S1+1

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 143

end
end

This procedure has two accumulators: one to build the list of machine instructions
and another to hold the number of instructions. Here is a sample execution:

declare Code Size in
{ExprCode plus(plus(a 3) b) nil Code 0 Size}
{Browse Size#Code}

This displays:

5#[push(a) push(3) plus push(b) plus]

More complicated programs usually need more accumulators. When writing large
declarative programs, we have typically used around half a dozen accumulators
simultaneously. The Aquarius Prolog compiler was written in this style [198,
194]. Some of its procedures have as many as 12 accumulators. This means 24
additional arguments! This is difficult to do without mechanical aid. We used an
extended DCG preprocessor6 that takes declarations of accumulators and adds
the arguments automatically [96].

We no longer program in this style; we find that programming with explicit
state is simpler and more efficient (see Chapter 6). It is reasonable to use a few
accumulators in a declarative program; it is actually quite rare that a declarative
program does not need a few. On the other hand, using many is a sign that some
of them would probably be better written with explicit state.

Mergesort with an accumulator

In the previous definition of mergesort, we first called the function Split to
divide the input list into two halves. There is a simpler way to do the mergesort,
by using an accumulator. The parameter represents “the part of the list still to
be sorted”. The specification of MergeSortAcc is:

• S#L2={MergeSortAcc L1 N} takes an input list L1 and an integer N. It
returns two results: S, the sorted list of the first N elements of L1 , and L2 ,
the remaining elements of L1 . The two results are paired together with the
tupling constructor.

The accumulator is defined by L1 and L2 . This gives the following definition:

fun {MergeSort Xs}
fun {MergeSortAcc L1 N}

if N==0 then
nil # L1

elseif N==1 then
[L1.1] # L1.2

elseif N>1 then

6DCG (Definite Clause Grammar) is a grammar notation that is used to hide the explicit
threading of accumulators.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

144 Declarative Programming Techniques

NL=N div 2
NR=N-NL
Ys # L2 = {MergeSortAcc L1 NL}
Zs # L3 = {MergeSortAcc L2 NR}

in
{Merge Ys Zs} # L3

end
end

in
{MergeSortAcc Xs {Length Xs}}.1

end

The Merge function is unchanged. Remark that this mergesort does a different
split than the previous one. In this version, the split separates the first half of
the input list from the second half. In the previous version, split separates the
odd-numbered list elements from the even-numbered elements.

This version has the same time complexity as the previous version. It uses less
memory because it does not create the two split lists. They are defined implicitly
by the combination of the accumulating parameter and the number of elements.

3.4.4 Difference lists

A difference list is a pair of two lists, each of which might have an unbound tail.
The two lists have a special relationship: it must be possible to get the second
list from the first by removing zero or more elements from the front. Here are
some examples:

X#X % Represents the empty list
nil#nil % idem
[a]#[a] % idem
(a|b|c|X)#X % Represents [a b c]
(a|b|c|d|X)#(d|X) % idem
[a b c d]#[d] % idem

A difference list is a representation of a standard list. We will talk of the difference
list sometimes as a data structure by itself, and sometimes as representing a
standard list. Be careful not to confuse these two viewpoints. The difference list
[a b c d]#[d] might contain the lists [a b c d] and [d] , but it represents
neither of these. It represents the list [a b c] .

Difference lists are a special case of difference structures. A difference struc-
ture is a pair of two partial values where the second value is embedded in the first.
The difference structure represents a value that is the first structure minus the
second structure. Using difference structures makes it easy to construct iterative
computations on many recursive datatypes, e.g., lists or trees. Difference lists
and difference structures are special cases of accumulators in which one of the
accumulator arguments can be an unbound variable.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 145

The advantage of using difference lists is that when the second list is an
unbound variable, another difference list can be appended to it in constant time.
To append (a|b|c|X)#X and (d|e|f|Y)#Y , just bind X to (d|e|f|Y) . This
creates the difference list (a|b|c|d|e|f|Y)#Y . We have just appended the lists
[a b c] and [d e f] with a single binding. Here is a function that appends
any two difference lists:

fun {AppendD D1 D2}
S1#E1=D1
S2#E2=D2

in
E1=S2
S1#E2

end

It can be used like a list append:

local X Y in {Browse {AppendD (1|2|3|X)#X (4|5|Y)#Y}} end

This displays (1|2|3|4|5|Y)#Y . The standard list append function, defined as
follows:

fun {Append L1 L2}
case L1
of X|T then X|{Append T L2}
[] nil then L2
end

end

iterates on its first argument, and therefore takes time proportional to the length
of the first argument. The difference list append is much more efficient: it takes
constant time.

The limitation of using difference lists is that they can be appended only once.
This property means that difference lists can only be used in special circum-
stances. For example, they are a natural way to write programs that construct
big lists in terms of lots of little lists that must be appended together.

Difference lists as defined here originated from Prolog and logic program-
ming [182]. They are the basis of many advanced Prolog programming tech-
niques. As a concept, a difference list lives somewhere between the concept of
value and the concept of state. It has the good properties of a value (programs
using them are declarative), but it also has some of the power of state because it
can be appended once in constant time.

Flattening a nested list

Consider the problem of flattening a nested list, i.e., calculating a list that has
all the elements of the nested list but is no longer nested. We first give a solution
using lists and then we show that a much better solution is possible with difference
lists. For the list solution, let us reason with mathematical induction based on the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

146 Declarative Programming Techniques

type 〈NestedList〉 we defined earlier, in the same way we did with the LengthL

function:

• Flatten of nil is nil .

• Flatten of X|Xr where X is a nested list, is Z where
flatten of X is Y,
flatten of Xr is Yr , and
append Y and Yr to get Z.

• Flatten of X|Xr where X is not a list, is Z where
flatten of Xr is Yr , and
Z is X|Yr .

Following this reasoning, we get the following definition:

fun {Flatten Xs}
case Xs
of nil then nil
[] X|Xr andthen {IsList X} then

{Append {Flatten X} {Flatten Xr}}
[] X|Xr then

X|{Flatten Xr}
end

end

Calling:

{Browse {Flatten [[a b] [[c] [d]] nil [e [f]]]}}

displays [a b c d e f] . This program is very inefficient because it needs to do
many append operations (see Exercises). Now let us reason again in the same
way, but with difference lists instead of standard lists:

• Flatten of nil is X#X (empty difference list).

• Flatten of X|Xr where X is a nested list, is Y1#Y4 where
flatten of X is Y1#Y2,
flatten of Xr is Y3#Y4, and
equate Y2 and Y3 to append the difference lists.

• Flatten of X|Xr where X is not a list, is (X|Y1)#Y2 where
flatten of Xr is Y1#Y2.

We can write the second case as follows:

• Flatten of X|Xr where X is a nested list, is Y1#Y4 where
flatten of X is Y1#Y2 and
flatten of Xr is Y2#Y4.

This gives the following program:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 147

fun {Flatten Xs}
proc {FlattenD Xs ?Ds}

case Xs
of nil then Y in Ds=Y#Y
[] X|Xr andthen {IsList X} then Y1 Y2 Y4 in

Ds=Y1#Y4
{FlattenD X Y1#Y2}
{FlattenD Xr Y2#Y4}

[] X|Xr then Y1 Y2 in
Ds=(X|Y1)#Y2
{FlattenD Xr Y1#Y2}

end
end Ys

in
{FlattenD Xs Ys#nil} Ys

end

This program is efficient: it does a single cons operation for each non-list in the
input. We convert the difference list returned by FlattenD into a regular list by
binding its second argument to nil . We write FlattenD as a procedure because
its output is part of its last argument, not the whole argument (see Section 2.5.2).
It is common style to write a difference list in two arguments:

fun {Flatten Xs}
proc {FlattenD Xs ?S E}

case Xs
of nil then S=E
[] X|Xr andthen {IsList X} then Y2 in

{FlattenD X S Y2}
{FlattenD Xr Y2 E}

[] X|Xr then Y1 in
S=X|Y1
{FlattenD Xr Y1 E}

end
end Ys

in
{FlattenD Xs Ys nil} Ys

end

As a further simplification, we can write FlattenD as a function. To do this, we
use the fact that S is the output:

fun {Flatten Xs}
fun {FlattenD Xs E}

case Xs
of nil then E
[] X|Xr andthen {IsList X} then

{FlattenD X {FlattenD Xr E}}
[] X|Xr then

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

148 Declarative Programming Techniques

X|{FlattenD Xr E}
end

end
in

{FlattenD Xs nil}
end

What is the role of E? It gives the “rest” of the output, i.e., when the FlattenD

call exhausts its own contribution to the output.

Reversing a list

Let us look again at the naive list reverse of the last section. The problem with
naive reverse is that it uses a costly append function. Perhaps it will be more
efficient with the constant-time append of difference lists? Let us do the naive
reverse with difference lists:

• Reverse of nil is X#X (empty difference list).

• Reverse of X|Xs is Z, where
reverse of Xs is Y1#Y2 and
append Y1#Y2 and (X|Y)#Y together to get Z.

Rewrite the last case as follows, by doing the append:

• Reverse of X|Xs is Y1#Y, where
reverse of Xs is Y1#Y2 and
equate Y2 and X|Y .

It is perfectly allowable to move the equate before the reverse (why?). This gives:

• Reverse of X|Xs is Y1#Y, where
reverse of Xs is Y1#(X|Y) .

Here is the final definition:

fun {Reverse Xs}
proc {ReverseD Xs ?Y1 Y}

case Xs
of nil then Y1=Y
[] X|Xr then

{ReverseD Xr Y1 X|Y}
end

end Y1
in

{ReverseD Xs Y1 nil} Y1
end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 149

Look carefully and you will see that this is almost exactly the same iterative
solution as in the last section. The only difference between IterReverse and
ReverseD is the argument order: the output of IterReverse is the second
argument of ReverseD . So what’s the advantage of using difference lists? With
them, we derived ReverseD without thinking, whereas to derive IterReverse

we had to guess an intermediate state that could be updated.

3.4.5 Queues

An important basic data structure is the queue. A queue is a sequence of elements
with an insert and a delete operation. The insert operation adds an element to
one end of the queue and the delete operation removes an element from the other
end. We say the queue has FIFO (First-In-First-Out) behavior. Let us investigate
how to program queues in the declarative model.

A naive queue

An obvious way to implement queues is by using lists. If L represents the queue
content, then inserting X gives the new queue X|L and deleting X is done by
calling {ButLast L X L1} , which binds X to the deleted element and returns
the new queue in L1 . ButLast returns the last element of L in X and all elements
but the last in L1 . It can be defined as:

proc {ButLast L ?X ?L1}
case L
of [Y] then X=Y L1=nil
[] Y|L2 then L3 in

L1=Y|L3
{ButLast L2 X L3}

end
end

The problem with this implementation is that ButLast is slow: it takes time
proportional to the number of elements in the queue. On the contrary, we would
like both the insert and delete operations to be constant-time. That is, doing an
operation on a given implementation and machine always takes time less than
some constant number of seconds. The value of the constant depends on the
implementation and machine. Whether or not we can achieve the constant-time
goal depends on the expressiveness of the computation model:

• In a strict functional programming language, i.e., the declarative model
without dataflow variables (see Section 2.7.1), we cannot achieve it. The
best we can do is to get amortized constant-time operations [138]. That
is, any sequence of n insert and delete operations takes a total time that
is proportional to some constant times n. Any individual operation might
not be constant-time, however.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

150 Declarative Programming Techniques

• In the declarative model, which extends the strict functional model with
dataflow variables, we can achieve the constant-time goal.

We will show how to define both solutions. In both definitions, each operation
takes a queue as input and returns a new queue as output. As soon as a queue
is used by the program as input to an operation, then it can no longer be used
as input to another operation. In other words, there can be only one version of
the queue in use at any time. We say that the queue is ephemeral.7 Each version
exists from the moment it is created to the moment it can no longer be used.

Amortized constant-time ephemeral queue

Here is the definition of a queue whose insert and delete operations have constant
amortized time bounds. The definition is taken from Okasaki [138]:

fun {NewQueue} q(nil nil) end

fun {Check Q}
case Q of q(nil R) then q({Reverse R} nil) else Q end

end

fun {Insert Q X}
case Q of q(F R) then {Check q(F X|R)} end

end

fun {Delete Q X}
case Q of q(F R) then F1 in F=X|F1 {Check q(F1 R)} end

end

fun {IsEmpty Q}
case Q of q(F R) then F==nil end

end

This uses the pair q(F R) to represent the queue. F and R are lists. F represents
the front of the queue and R represents the back of the queue in reversed form.
At any instant, the queue content is given by {Append F {Reverse R}} . An
element can be inserted by adding it to the front of R and deleted by removing it
from the front of F. For example, say that F=[a b] and R=[d c] . Deleting the
first element returns a and makes F=[b] . Inserting the element e makes R=[e d

c] . Both operations are constant-time.
To make this representation work, each element in R has to be moved to F

sooner or later. When should the move be done? Doing it element by element is
inefficient, since it means replacing F by {Append F {Reverse R}} each time,
which takes time at least proportional to the length of F. The trick is to do it only
occasionally. We do it when F becomes empty, so that F is non-nil if and only

7Queues implemented with explicit state (see Chapters 6 and 7) are also usually ephemeral.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 151

if the queue is non-empty. This invariant is maintained by the Check function,
which moves the content of R to F whenever F is nil.

The Check function does a list reverse operation on R. The reverse takes time
proportional to the length of R, i.e., to the number of elements it reverses. Each
element that goes through the queue is passed exactly once from R to F. Allocating
the reverse’s execution time to each element therefore gives a constant time per
element. This is why the queue is amortized.

Worst-case constant-time ephemeral queue

We can use difference lists to implement queues whose insert and delete operations
have constant worst-case execution times. We use a difference list that ends in
an unbound dataflow variable. This lets us insert elements in constant time by
binding the dataflow variable. Here is the definition:

fun {NewQueue} X in q(0 X X) end

fun {Insert Q X}
case Q of q(N S E) then E1 in E=X|E1 q(N+1 S E1) end

end

fun {Delete Q X}
case Q of q(N S E) then S1 in S=X|S1 q(N-1 S1 E) end

end

fun {IsEmpty Q}
case Q of q(N S E) then N==0 end

end

This uses the triple q(N S E) to represent the queue. At any instant, the queue
content is given by the difference list S#E. N is the number of elements in the
queue. Why is N needed? Without it, we would not know how many elements
were in the queue.

Example use

The following example works with either of the above definitions:

declare Q1 Q2 Q3 Q4 Q5 Q6 Q7in
Q1={NewQueue}
Q2={Insert Q1 peter}
Q3={Insert Q2 paul}
local X in Q4={Delete Q3 X} {Browse X} end
Q5={Insert Q4 mary}
local X in Q6={Delete Q5 X} {Browse X} end
local X in Q7={Delete Q6 X} {Browse X} end

This inserts three elements and deletes them. Each element is inserted before it
is deleted. Now let us see what each definition can do that the other cannot.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

152 Declarative Programming Techniques

With the second definition, we can delete an element before it is inserted.
Doing such a delete returns an unbound variable that will be bound to the cor-
responding inserted element. So the last four calls in the above example can be
changed as follows:

local X in Q4={Delete Q3 X} {Browse X} end
local X in Q5={Delete Q4 X} {Browse X} end
local X in Q6={Delete Q5 X} {Browse X} end
Q7={Insert Q6 mary}

This works because the bind operation of dataflow variables, which is used both
to insert and delete elements, is symmetric.

With the first definition, maintaining multiple versions of the queue simul-
taneously gives correct results, although the amortized time bounds no longer
hold.8 Here is an example with two versions:

declare Q1 Q2 Q3 Q4 Q5 Q6in
Q1={NewQueue}
Q2={Insert Q1 peter}
Q3={Insert Q2 paul}
Q4={Insert Q2 mary}
local X in Q5={Delete Q3 X} {Browse X} end
local X in Q6={Delete Q4 X} {Browse X} end

Both Q3 and Q4 are calculated from their common ancestor Q2. Q3 contains
peter and paul . Q4 contains peter and mary . What do the two Browse calls
display?

Persistent queues

Both definitions given above are ephemeral. What can we do if we need to
use multiple versions and still require constant-time execution? A queue that
supports multiple simultaneous versions is called persistent.9 Some applications
need persistent queues. For example, if during a calculation we pass a queue
value to another routine:

...
{SomeProc Qa}
Qb={Insert Qa x}
Qc={Insert Qb y}
...

8To see why not, consider any sequence of n queue operations. For the amortized constant-
time bound to hold, the total time for all operations in the sequence must be proportional to
n. But what happens if the sequence repeats an “expensive” operation in many versions? This
is possible, since we are talking of any sequence. Since the time for an expensive operation and
the number of versions can both be proportional to n, the total time bound grows as n2.

9This meaning of persistence should not be confused with persistence as used in transactions
and databases (Sections 8.5 and 9.6), which is a completely different concept.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 153

We assume that SomeProc can do queue operations but that the caller does not
want to see their effects. It follows that we may have two versions of the queue.
Can we write queues that keep the time bounds for this case? It can be done if
we extend the declarative model with lazy execution. Then both the amortized
and worst-case queues can be made persistent. We defer this solution until we
present lazy execution in Section 4.5.

For now, let us propose a simple workaround that is often sufficient to make the
worst-case queue persistent. It depends on there not being too many simultaneous
versions. We define an operation ForkQ that takes a queue Q and creates two
identical versions Q1 and Q2. As a preliminary, we first define a procedure ForkD

that creates two versions of a difference list:

proc {ForkD D ?E ?F}
D1#nil=D
E1#E0=E {Append D1 E0 E1}
F1#F0=F {Append D1 F0 F1}

in skip end

The call {ForkD D E F} takes a difference list D and returns two fresh copies
of it, E and F. Append is used to convert a list into a fresh difference list. Note
that ForkD consumes D, i.e., D can no longer be used afterwards since its tail is
bound. Now we can define ForkQ , which uses ForkD to make two versions of a
queue:

proc {ForkQ Q ?Q1 ?Q2}
q(N S E)=Q
q(N S1 E1)=Q1
q(N S2 E2)=Q2

in
{ForkD S#E S1#E1 S2#E2}

end

ForkQ consumes Q and takes time proportional to the size of the queue. We can
rewrite the example as follows using ForkQ :

...
{ForkQ Qa Qa1 Qa2}
{SomeProc Qa1}
Qb={Insert Qa2 x}
Qc={Insert Qb y}
...

This works well if it is acceptable for ForkQ to be an expensive operation.

3.4.6 Trees

Next to linear data structures such as lists and queues, trees are the most im-
portant recursive data structure in a programmer’s repertory. A tree is either a

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

154 Declarative Programming Techniques

leaf node or a node that contains one or more trees. Nodes can carry additional
information. Here is one possible definition:

〈Tree〉 ::= leaf(〈Value〉)
| tree(〈Value〉 〈Tree〉1 ... 〈Tree〉n)

The basic difference between a list and a tree is that a list always has a linear
structure whereas a tree can have a branching structure. A list always has an
element followed by exactly one smaller list. A tree has an element followed by
some number of smaller trees. This number can be any natural number, i.e., zero
for leaf nodes and any positive number for non-leaf nodes.

There exist an enormous number of different kinds of trees, with different
conditions imposed on their structure. For example, a list is a tree in which
non-leaf nodes always have exactly one subtree. In a binary tree the non-leaf
nodes always have exactly two subtrees. In a ternary tree they have exactly three
subtrees. In a balanced tree, all subtrees of the same node have the same size
(i.e., the same number of nodes) or approximately the same size.

Each kind of tree has its own class of algorithms to construct trees, traverse
trees, and look up information in trees. This chapter uses several different kinds
of trees. We give an algorithm for drawing binary trees in a pleasing way, we show
how to use higher-order techniques for calculating with trees, and we implement
dictionaries with ordered binary trees.

This section sets the stage for these developments. We will give the basic
algorithms that underlie many of these more sophisticated variations. We define
ordered binary trees and show how to insert information, look up information,
and delete information from them.

Ordered binary tree

An ordered binary tree 〈OBTree〉 is a binary tree in which each node includes a
pair of values:

〈OBTree〉 ::= leaf

| tree(〈OValue〉 〈Value〉 〈OBTree〉1 〈OBTree〉2)

Each non-leaf node includes the values 〈OValue〉 and 〈Value〉. The first value
〈OValue〉 is any subtype of 〈Value〉 that is totally ordered, i.e., it has boolean
comparison functions. For example, 〈Int〉 (the integer type) is one possibility.
The second value 〈Value〉 is carried along for the ride. No particular condition is
imposed on it.

Let us call the ordered value the key and the second value the information.
Then a binary tree is ordered if for each non-leaf node, all the keys in the first
subtree are less than the node key, and all the keys in the second subtree are
greater than the node key.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 155

Storing information in trees

An ordered binary tree can be used as a repository of information, if we define
three operations: looking up, inserting, and deleting entries.

To look up information in an ordered binary tree means to search whether a
given key is present in one of the tree nodes, and if so, to return the information
present at that node. With the orderedness condition, the search algorithm can
eliminate half the remaining nodes at each step. This is called binary search. The
number of operations it needs is proportional to the depth of the tree, i.e., the
length of the longest path from the root to a leaf. The look up can be programmed
as follows:

fun {Lookup X T}
case T
of leaf then notfound
[] tree(Y V T1 T2) then

if X<Y then {Lookup X T1}
elseif X>Y then {Lookup X T2}
else found(V) end

end
end

Calling {Lookup X T} returns found(V) if a node with X is found, and notfound

otherwise. Another way to write Lookup is by using andthen in the case state-
ment:

fun {Lookup X T}
case T
of leaf then notfound
[] tree(Y V T1 T2) andthen X==Y then found(V)
[] tree(Y V T1 T2) andthen X<Y then {Lookup X T1}
[] tree(Y V T1 T2) andthen X>Y then {Lookup X T2}
end

end

Many developers find the second way more readable because it is more visual, i.e.,
it gives patterns that show what the tree looks like instead of giving instructions
to decompose the tree. In a word, it is more declarative. This makes it easier to
verify that it is correct, i.e., to make sure that no cases have been overlooked. In
more complicated tree algorithms, pattern matching with andthen is a definite
advantage over explicit if statements.

To insert or delete information in an ordered binary tree, we construct a new
tree that is identical to the original except that it has more or less information.
Here is the insertion operation:

fun {Insert X V T}
case T
of leaf then tree(X V leaf leaf)
[] tree(Y W T1 T2) andthen X==Y then

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

156 Declarative Programming Techniques

T1

T1

Y

leaf

Figure 3.11: Deleting node Y when one subtree is a leaf (easy case)

tree(X V T1 T2)
[] tree(Y W T1 T2) andthen X<Y then

tree(Y W {Insert X V T1} T2)
[] tree(Y W T1 T2) andthen X>Y then

tree(Y W T1 {Insert X V T2})
end

end

Calling {Insert X V T} returns a new tree that has the pair (X V) inserted
in the right place. If T already contains X, then the new tree replaces the old
information with V.

Deletion and tree reorganizing

The deletion operation holds a surprise in store. Here is a first try at it:

fun {Delete X T}
case T
of leaf then leaf
[] tree(Y W T1 T2) andthen X==Y then leaf
[] tree(Y W T1 T2) andthen X<Y then

tree(Y W {Delete X T1} T2)
[] tree(Y W T1 T2) andthen X>Y then

tree(Y W T1 {Delete X T2})
end

end

Calling {Delete X T} should return a new tree that has no node with key X.
If T does not contain X, then T is returned unchanged. Deletion seems simple
enough, but the above definition is incorrect. Can you see why?

It turns out that Delete is not as simple as Lookup or Insert . The error in
the above definition is that when X==Y, the whole subtree is removed instead of
just a single node. This is only correct if the subtree is degenerate, i.e., if both
T1 and T2 are leaf nodes. The fix is not completely obvious: when X==Y, we have
to reorganize the subtree so that it no longer has the key Y but is still an ordered
binary tree. There are two cases, illustrated in Figures 3.11 and 3.12.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 157

Remove Y Move up Yp

T1

Y

T2 T1
Yp

T2

?

T1

Yp
key of T2
Smallest

Tp
T2 minus Yp

Figure 3.12: Deleting node Y when neither subtree is a leaf (hard case)

Figure 3.11 is the easy case, when one subtree is a leaf. The reorganized tree
is simply the other subtree. Figure 3.12 is the hard case, when both subtrees are
not leaves. How do we fill the gap after removing Y? Another key has to take the
place of Y, “percolating up” from inside one of the subtrees. The idea is to pick
the smallest key of T2, call it Yp, and make it the root of the reorganized tree.
The remaining nodes of T2 make a smaller subtree, call it Tp, which is put in the
reorganized tree. This ensures that the reorganized tree is still ordered, since by
construction all keys of T1 are less than Yp, which is less than all keys of Tp.

It is interesting to see what happens when we repeatedly delete a tree’s roots.
This will “hollow out” the tree from the inside, removing more and more of the
left-hand part of T2. Eventually, T2’s left subtree is removed completely and the
right subtree takes its place. Continuing in this way, T2 shrinks more and more,
passing through intermediate stages in which it is a complete, but smaller ordered
binary tree. Finally, it disappears completely.

To implement the fix, we use a function {RemoveSmallest T2} that returns
the smallest key of T2, its associated value, and a new tree that lacks this key.
With this function, we can write a correct version of Delete as follows:

fun {Delete X T}
case T
of leaf then leaf
[] tree(Y W T1 T2) andthen X==Y then

case {RemoveSmallest T2}
of none then T1
[] Yp#Vp#Tp then tree(Yp Vp T1 Tp)
end

[] tree(Y W T1 T2) andthen X<Y then
tree(Y W {Delete X T1} T2)

[] tree(Y W T1 T2) andthen X>Y then
tree(Y W T1 {Delete X T2})

end
end

The function RemoveSmallest returns either a triple Yp#Vp#Tp or the atom
none . We define it recursively as follows:

fun {RemoveSmallest T}
case T

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

158 Declarative Programming Techniques

of leaf then none
[] tree(Y V T1 T2) then

case {RemoveSmallest T1}
of none then Y#V#T2
[] Yp#Vp#Tp then Yp#Vp#tree(Y V Tp T2)
end

end
end

One could also pick the largest element of T1 instead of the smallest element of
T2. This gives much the same result.

The extra difficulty of Delete compared to Insert or Lookup occurs fre-
quently with tree algorithms. The difficulty occurs because an ordered tree sat-
isfies a global condition, namely being ordered. Many kinds of trees are defined
by global conditions. Algorithms for these trees are complex because they have
to maintain the global condition. In addition, tree algorithms are harder to write
than list algorithms because the recursion has to combine results from several
smaller problems, not just one.

Tree traversal

Traversing a tree means to perform an operation on its nodes in some well-defined
order. There are many ways to traverse a tree. Many of these are derived from
one of two basic traversals, called depth-first and breadth-first traversal. Let us
look at these traversals.

Depth-first is the simplest traversal. For each node, it visits first the left-most
subtree, then the node itself, and then the right-most subtree. This makes it easy
to program since it closely follows how nested procedure calls execute. Here is a
traversal that displays each node’s key and information:

proc {DFS T}
case T
of leaf then skip
[] tree(Key Val L R) then

{DFS L}
{Browse Key#Val}
{DFS R}

end
end

The astute reader will realize that this depth-first traversal does not make much
sense in the declarative model, because it does not calculate any result.10 We can
fix this by adding an accumulator. Here is a traversal that calculates a list of all
key/value pairs:

proc {DFSAcc T S1 Sn}
case T

10Browse cannot be defined in the declarative model.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 159

proc {BFS T}
fun {TreeInsert Q T}

if T\=leaf then {Insert Q T} else Q end
end

proc {BFSQueue Q1}
if {IsEmpty Q1} then skip
else

X Q2={Delete Q1 X}
tree(Key Val L R)=X

in
{Browse Key#Val}
{BFSQueue {TreeInsert {TreeInsert Q2 L} R}}

end
end

in
{BFSQueue {TreeInsert {NewQueue} T}}

end

Figure 3.13: Breadth-first traversal

of leaf then Sn=S1
[] tree(Key Val L R) then S2 S3 in

{DFSAcc L S1 S2}
S3=Key#Val|S2
{DFSAcc R S3 Sn}

end
end

Breadth-first is a second basic traversal. It first traverses all nodes at depth 0,
then all nodes at depth 1, and so forth, going one level deeper at a time. At each
level, it traverses the nodes from left to right. The depth of a node is the length
of the path from the root to the current node, not including the current node. To
implement breadth-first traversal, we need a queue to keep track of all the nodes
at a given depth. Figure 3.13 shows how it is done. It uses the queue data type
we defined in the previous section. The next node to visit comes from the head
of the queue. The node’s two subtrees are added to the tail of the queue. The
traversal will get around to visiting them when all the other nodes of the queue
have been visited, i.e., all the nodes at the current depth.

Just like for the depth-first traversal, breadth-first traversal is only useful in
the declarative model if supplemented by an accumulator. Figure 3.14 gives an
example that calculates a list of all key/value pairs in a tree.

Depth-first traveral can be implemented in a similar way as breadth-first
traversal, by using an explicit data structure to keep track of the nodes to vis-
it. To make the traversal depth-first, we simply use a stack instead of a queue.
Figure 3.15 defines the traversal, using a list to implement the stack.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

160 Declarative Programming Techniques

proc {BFSAcc T S1 ?Sn}
fun {TreeInsert Q T}

if T\=leaf then {Insert Q T} else Q end
end

proc {BFSQueue Q1 S1 ?Sn}
if {IsEmpty Q1} then Sn=S1
else

X Q2={Delete Q1 X}
tree(Key Val L R)=X
S2=Key#Val|S1

in
{BFSQueue {TreeInsert {TreeInsert Q2 R} L} S2 Sn}

end
end

in
{BFSQueue {TreeInsert {NewQueue} T} S1 Sn}

end

Figure 3.14: Breadth-first traversal with accumulator

proc {DFS T}
fun {TreeInsert S T}

if T\=leaf then T|S else S end
end

proc {DFSStack S1}
case S1
of nil then skip
[] X|S2 then

tree(Key Val L R)=X
in

{Browse Key#Val}
{DFSStack {TreeInsert {TreeInsert S2 R} L}}

end
end

in
{DFSStack {TreeInsert nil T}}

end

Figure 3.15: Depth-first traversal with explicit stack

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 161

How does the new version of DFS compare with the original? Both versions
use a stack to remember the subtrees to be visited. In the original, the stack is
hidden: it is the semantic stack. There are two recursive calls. When the first call
is taken, the second one is waiting on the semantic stack. In the new version, the
stack is explicit. The new version is tail recursive, just like BFS, so the semantic
stack does not grow. The new version simply trades space on the semantic stack
for space on the store.

Let us see how much memory the DFS and BFS algorithms use. Assume we
have a tree of depth n with 2n leaf nodes and 2n − 1 non-leaf nodes. How big do
the stack and queue arguments get? We can prove that the stack has at most n
elements and the queue has at most 2(n−1) elements. Therefore, DFSis much more
economical: it uses memory proportional to the tree depth. BFS uses memory
proportional to the size of the tree.

3.4.7 Drawing trees

Now that we have introduced trees and programming with them, let us write
a more significant program. We will write a program to draw a binary tree in
an aesthetically pleasing way. The program calculates the coordinates of each
node. This program is interesting because it traverses the tree for two reasons:
to calculate the coordinates and to add the coordinates to the tree itself.

The tree drawing constraints

We first define the tree’s type:

〈Tree〉 ::= tree(key: 〈Literal〉 val: 〈Value〉 left: 〈Tree〉 right: 〈Tree〉)
| leaf

Each node is either a leaf or has two children. In contrast to Section 3.4.6, this
uses a record to define the tree instead of a tuple. There is a very good reason for
this which will become clear when we talk about the principle of independence.
Assume that we have the following constraints on how the tree is drawn:

1. There is a minimum horizontal spacing between both subtrees of every
node. To be precise, the rightmost node of the left subtree is at a minimal
horizontal distance from the leftmost node of the right subtree.

2. If a node has two child nodes, then its horizontal position is the arithmetic
average of their horizontal positions.

3. If a node has only one child node, then the child is directly underneath it.

4. The vertical position of a node is proportional to its level in the tree.

In addition, to avoid clutter the drawing shows only the nodes of type tree .
Figure 3.16 shows these constraints graphically in terms of the coordinates of
each node. The example tree of Figure 3.17 is drawn as shown in Figure 3.19.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

162 Declarative Programming Techniques

(c,y’)

(a,y)

(b,y’)

d

(a,y)

1. Distance d between subtrees has minimum value

2. If two children exist, a is average of b and c(a,y’)

4. Vertical position y is proportional to level in the tree

3. If only one child exists, it is directly below parent

Figure 3.16: The tree drawing constraints

tree(key:a val:111
left:tree(key:b val:55

left:tree(key:x val:100
left:tree(key:z val:56 left:leaf right:leaf)
right:tree(key:w val:23 left:leaf right:leaf))

right:tree(key:y val:105 left:leaf
right:tree(key:r val:77 left:leaf right:leaf)))

right:tree(key:c val:123
left:tree(key:d val:119

left:tree(key:g val:44 left:leaf right:leaf)
right:tree(key:h val:50

left:tree(key:i val:5 left:leaf right:leaf)
right:tree(key:j val:6 left:leaf right:leaf)))

right:tree(key:e val:133 left:leaf right:leaf)))

Figure 3.17: An example tree

Calculating the node positions

The tree drawing algorithm calculates node positions by traversing the tree, pass-
ing information between nodes, and calculating values at each node. The traversal
has to be done carefully so that all the information is available at the right time.
Exactly what traversal is the right one depends on what the constraints are. For
the above four constraints, it is sufficient to traverse the tree in a depth-first order.
In this order, each left subtree of a node is visited before the right subtree. A
basic depth-first traversal looks like this:

proc {DepthFirst Tree}
case Tree
of tree(left:L right:R ...) then

{DepthFirst L}
{DepthFirst R}

[] leaf then
skip

end
end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 163

The tree drawing algorithm does a depth-first traversal and calculates the (x,y)
coordinates of each node during the traversal. As a preliminary to running the
algorithm, we extend the tree nodes with the fields x and y at each node:

fun {AddXY Tree}
case Tree
of tree(left:L right:R ...) then

{Adjoin Tree
tree(x:_ y:_ left:{AddXY L} right:{AddXY R})}

[] leaf then
leaf

end
end

The function AddXY returns a new tree with the two fields x and y added to
all nodes. It uses the Adjoin function which can add new fields to records
and override old ones. This is explained in Appendix B.3.2. The tree drawing
algorithm will fill in these two fields with the coordinates of each node. If the two
fields exist nowhere else in the record, then there is no conflict with any other
information in the record.

To implement the tree drawing algorithm, we extend the depth-first traversal
by passing two arguments down (namely, level in the tree and limit on leftmost
position of subtree) and two arguments up (namely, horizontal position of the
subtree’s root and rightmost position of subtree). Downward-passed arguments
are sometimes called inherited arguments. Upward-passed arguments are some-
times called synthesized arguments. With these extra arguments, we have enough
information to calculate the positions of all nodes. Figure 3.18 gives the com-
plete tree drawing algorithm. The Scale parameter gives the basic size unit of
the drawn tree, i.e., the minimum distance between nodes. The initial arguments
are Level =1 and LeftLim =Scale . There are four cases, depending on whether
a node has two subtrees, one subtree (left or right), or zero subtrees. Pattern
matching in the case statement picks the right case. This takes advantage of the
fact that the tests are done in sequential order.

3.4.8 Parsing

As a second case study of declarative programming, let us write a parser for a
small imperative language with syntax similar to Pascal. This uses many of the
techniques we have seen, in particular, it uses an accumulator and builds a tree.

What is a parser

A parser is part of a compiler. A compiler is a program that translates a sequence
of characters, which represents a program, into a sequence of low-level instructions
that can be executed on a machine. In its most basic form, a compiler consists
of three parts:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

164 Declarative Programming Techniques

Scale=30

proc {DepthFirst Tree Level LeftLim ?RootX ?RightLim}
case Tree
of tree(x:X y:Y left:leaf right:leaf ...) then

X=RootX=RightLim=LeftLim
Y=Scale*Level

[] tree(x:X y:Y left:L right:leaf ...) then
X=RootX
Y=Scale*Level
{DepthFirst L Level+1 LeftLim RootX RightLim}

[] tree(x:X y:Y left:leaf right:R ...) then
X=RootX
Y=Scale*Level
{DepthFirst R Level+1 LeftLim RootX RightLim}

[] tree(x:X y:Y left:L right:R ...) then
LRootX LRightLim RRootX RLeftLim

in
Y=Scale*Level
{DepthFirst L Level+1 LeftLim LRootX LRightLim}
RLeftLim=LRightLim+Scale
{DepthFirst R Level+1 RLeftLim RRootX RightLim}
X=RootX=(LRootX+RRootX) div 2

end
end

Figure 3.18: Tree drawing algorithm

• Tokenizer. The tokenizer reads a sequence of characters and outputs a
sequence of tokens.

• Parser. The parser reads a sequence of tokens and outputs an abstract
syntax tree. This is sometimes called a parse tree.

• Code generator. The code generator traverses the syntax tree and gen-
erates low-level instructions for a real machine or an abstract machine.

Usually this structure is extended by optimizers to improve the generated code.
In this section, we will just write the parser. We first define the input and output
formats of the parser.

The parser’s input and output languages

The parser accepts a sequence of tokens according to the grammar given in Ta-
ble 3.2 and outputs an abstract syntax tree. The grammar is carefully designed
to be right recursive and deterministic. This means that the choice of grammar

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 165

Figure 3.19: The example tree displayed with the tree drawing algorithm

rule is completely determined by the next token. This makes it possible to write
a top down, left to right parser with only one token lookahead.

For example, say we want to parse a 〈Term〉. It consists of a non-empty series
of 〈Fact〉 separated by 〈TOP〉 tokens. To parse it, we first parse a 〈Fact〉. Then we
examine the next token. If it is a 〈TOP〉, then we know the series continues. If it
is not a 〈TOP〉, then we know the series has ended, i.e., the 〈Term〉 has ended. For
this parsing strategy to work, there must be no overlap between 〈TOP〉 tokens and
the other possible tokens that come after a 〈Fact〉. By inspecting the grammar
rules, we see that the other tokens must be taken from {〈EOP〉, 〈COP〉, ;, end,
then, do, else,)}. We confirm that all the tokens defined by this set are different
from the tokens defined by 〈TOP〉.

There are two kinds of symbols in Table 3.2: nonterminals and terminals.
A nonterminal symbol is one that is further expanded according to a grammar
rule. A terminal symbol corresponds directly to a token in the input. It is
not expanded. The nonterminal symbols are 〈Prog〉 (complete program), 〈Stat〉
(statement), 〈Comp〉 (comparison), 〈Expr〉 (expression), 〈Term〉 (term), 〈Fact〉
(factor), 〈COP〉 (comparison operator), 〈EOP〉 (expression operator), and 〈TOP〉
(term operator). To parse a program, start with 〈Prog〉 and expand until finding
a sequence of tokens that matches the input.

The parser output is a tree (i.e., a nested record) with syntax given in Ta-
ble 3.3. Superficially, Tables 3.2 and 3.3 have very similar content, but they are
actually quite different: the first defines a sequence of tokens and the second
defines a tree. The first does not show the structure of the input program–we
say it is flat. The second exposes this structure–we say it is nested. Because
it exposes the program’s structure, we call the nested record an abstract syntax

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

166 Declarative Programming Techniques

〈Prog〉 ::= program 〈Id〉 ; 〈Stat〉 end
〈Stat〉 ::= begin { 〈Stat〉 ; } 〈Stat〉 end

| 〈Id〉 := 〈Expr〉
| if 〈Comp〉 then 〈Stat〉 else 〈Stat〉
| while 〈Comp〉 do 〈Stat〉
| read 〈Id〉
| write 〈Expr〉

〈Comp〉 ::= { 〈Expr〉 〈COP〉 } 〈Expr〉
〈Expr〉 ::= { 〈Term〉 〈EOP〉 } 〈Term〉
〈Term〉 ::= { 〈Fact〉 〈TOP〉 } 〈Fact〉
〈Fact〉 ::= 〈Integer〉 | 〈Id〉 | (〈Expr〉)
〈COP〉 ::= ´ ==´ | ´ != ´ | ´ >´ | ´ <´ | ´ =<´ | ´ >=´

〈EOP〉 ::= ´ +´ | ´ - ´

〈TOP〉 ::= ´ * ´ | ´ / ´

〈Integer〉 ::= (integer)
〈Id〉 ::= (atom)

Table 3.2: The parser’s input language (which is a token sequence)

tree. It is abstract because it is encoded as a data structure in the language, and
no longer in terms of tokens. The parser’s role is to extract the structure from
the flat input. Without this structure, it is extremely difficult to write the code
generator and code optimizers.

The parser program

The main parser call is the function {Prog S1 Sn} , where S1 is an input list of
tokens and Sn is the rest of the list after parsing. This call returns the parsed
output. For example:

declare A Sn in
A={Prog

[program foo ´ ; ´ while a ´ +´ 3 ´ <´ b ´ do´ b ´ := ´ b ´ +´ 1 ´ end ´]
Sn}

{Browse A}

displays:

prog(foo while(´ <´ (´ +´ (a 3) b) assign(b ´ +´ (b 1))))

We give commented program code for the complete parser. Prog is written as
follows:

fun {Prog S1 Sn}
Y Z S2 S3 S4 S5

in
S1=program|S2

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 167

〈Prog〉 ::= prog(〈Id〉 〈Stat〉)

〈Stat〉 ::= ´ ; ´ (〈Stat〉 〈Stat〉)

| assign(〈Id〉 〈Expr〉)

| ´ if ´ (〈Comp〉 〈Stat〉 〈Stat〉)

| while(〈Comp〉 〈Stat〉)

| read(〈Id〉)

| write(〈Expr〉)

〈Comp〉 ::= 〈COP〉(〈Expr〉 〈Expr〉)

〈Expr〉 ::= 〈Id〉 | 〈Integer〉 | 〈OP〉(〈Expr〉 〈Expr〉)

〈COP〉 ::= ´ ==´ | ´ != ´ | ´ >´ | ´ <´ | ´ =<´ | ´ >=´

〈OP〉 ::= ´ +´ | ´ - ´ | ´ * ´ | ´ / ´

〈Integer〉 ::= (integer)
〈Id〉 ::= (atom)

Table 3.3: The parser’s output language (which is a tree)

Y={Id S2 S3}
S3=´ ; ´ |S4
Z={Stat S4 S5}
S5=´ end ´ |Sn
prog(Y Z)

end

The accumulator is threaded through all terminal and nonterminal symbols. Each
nonterminal symbol has a procedure to parse it. Statements are parsed with Stat ,
which is written as follows:

fun {Stat S1 Sn}
T|S2=S1

in
case T
of begin then

{Sequence Stat fun {$ X} X== ´ ; ´ end S2 ´ end ´ |Sn}
[] ´ if ´ then C X1 X2 S3 S4 S5 S6 in

{Comp C S2 S3}
S3=´ then ´ |S4
X1={Stat S4 S5}
S5=´ else ´ |S6
X2={Stat S6 Sn}
´ if ´ (C X1 X2)

[] while then C X S3 S4 in
C={Comp S2 S3}
S3=´ do´ |S4
X={Stat S4 Sn}
while(C X)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

