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3.7.1 A declarative stack

To start this section, let us give a simple example of an abstract data type, a stack
〈Stack T〉 whose elements are of type T. Assume the stack has four operations,
with the following types:

〈fun {NewStack}: 〈Stack T〉〉
〈fun {Push 〈Stack T〉 T}: 〈Stack T〉〉
〈fun {Pop 〈Stack T〉 T}: 〈Stack T〉〉
〈fun {IsEmpty 〈Stack T〉}: 〈Bool〉〉

This set of operations and their types defines the interface of the abstract data
type. These operations satisfy certain laws:

• {IsEmpty {NewStack}} =true . A new stack is always empty.

• For any E and S0, S1={Push S0 E} and S0={Pop S1 E} hold. Pushing
an element and then popping gives the same element back.

• {Pop {EmptyStack}} raises an error. No elements can be popped off an
empty stack.

These laws are independent of any particular implementation, or said differently,
all implementations have to satisfy these laws. Here is an implementation of the
stack that satisfies the laws:

fun {NewStack} nil end
fun {Push S E} E|S end
fun {Pop S E} case S of X|S1 then E=X S1 end end
fun {IsEmpty S} S==nil end

Here is another implementation that satisfies the laws:

fun {NewStack} stackEmpty end
fun {Push S E} stack(E S) end
fun {Pop S E} case S of stack(X S1) then E=X S1 end end
fun {IsEmpty S} S==stackEmpty end

A program that uses the stack will work with either implementation. This is
what we mean by saying that stack is an abstract data type.

A functional programming look

Attentive readers will notice an unusual aspect of these two definitions: Pop is
written using a functional syntax, but one of its arguments is an output! We
could have written Pop as follows:

fun {Pop S} case S of X|S1 then X#S1 end end

which returns the two outputs as a pair, but we chose not to. Writing {Pop S E}

is an example of programming with a functional look, which uses functional syntax
for operations that are not necessarily mathematical functions. We consider that
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fun {NewDictionary} nil end
fun {Put Ds Key Value}

case Ds
of nil then [Key#Value]
[] (K#V)|Dr andthen Key==K then

(Key#Value) | Dr
[] (K#V)|Dr andthen K>Key then

(Key#Value)|(K#V)|Dr
[] (K#V)|Dr andthen K<Key then

(K#V)|{Put Dr Key Value}
end

end
fun {CondGet Ds Key Default}

case Ds
of nil then Default
[] (K#V)|Dr andthen Key==K then

V
[] (K#V)|Dr andthen K>Key then

Default
[] (K#V)|Dr andthen K<Key then

{CondGet Dr Key Default}
end

end
fun {Domain Ds}

{Map Ds fun {$ K#_} K end }
end

Figure 3.27: Declarative dictionary (with linear list)

this is justified for programs that have a clear directionality in the flow of data.
It can be interesting to highlight this directionality even if the program is not
functional. In some cases this can make the program more concise and more
readable. The functional look should be used sparingly, though, and only in
cases where it is clear that the operation is not a mathematical function. We
will use the functional look occasionally throughout the book, when we judge it
appropriate.

For the stack, the functional look lets us highlight the symmetry between
Push and Pop. It makes it clear syntactically that both operations take a stack
and return a stack. Then, for example, the output of Pop can be immediately
passed as input to a Push , without needing an intermediate case statement.

3.7.2 A declarative dictionary

Let us give another example, an extremely useful abstract data type called a
dictionary. A dictionary is a finite mapping from a set of simple constants to
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a set of language entities. Each constant maps to one language entity. The
constants are called keys because they unlock the path to the entity, in some
intuitive sense. We will use atoms or integers as constants. We would like to
be able to create the mapping dynamically, i.e., by adding new keys during the
execution. This gives the following set of basic functions on the new type 〈Dict〉:

• 〈fun {NewDictionary}: 〈Dict〉〉 returns a new empty dictionary.

• 〈fun {Put 〈Dict〉 〈Feature〉 〈Value〉}: 〈Dict〉〉 takes a dictionary and returns
a new dictionary that adds the mapping 〈Feature〉→〈Value〉. If 〈Feature〉 al-
ready exists, then the new dictionary replaces it with 〈Value〉.

• 〈fun {Get 〈Dict〉 〈Feature〉}: 〈Value〉〉 returns the value corresponding to
〈Feature〉. If there is none, an exception is raised.

• 〈fun {Domain 〈Dict〉}: 〈List 〈Feature〉〉〉 returns a list of the keys in 〈Dict〉.

For this example we define the 〈Feature〉 type as 〈Atom〉 | 〈Int〉.

List-based implementation

Figure 3.27 shows an implementation in which the dictionary is represented as a
list of pairs Key#Value that are sorted on the key. Instead of Get , we define a
slightly more general access operation, CondGet :

• 〈fun {CondGet 〈Dict〉 〈Feature〉 〈Value〉1}: 〈Value〉2〉 returns the value cor-
responding to 〈Feature〉. If 〈Feature〉 is not present, then it returns 〈Value〉1.

CondGet is almost as easy to implement as Get and is very useful, as we will see
in the next example.

This implementation is extremely slow for large dictionaries. Given a uniform
distribution of keys, Put needs on average to look at half the list. CondGet needs
on average to look at half the list, whether the element is present or not. We see
that the number of operations is O(n) for dictionaries with n keys. We say that
the implementation does a linear search.

Tree-based implementation

A more efficient implementation of dictionaries is possible by using an ordered
binary tree, as defined in Section 3.4.6. Put is simply Insert and CondGet

is very similar to Lookup . This gives the definitions of Figure 3.28. In this
implementation, the Put and CondGet operations take O(log n) time and space
for a tree with n nodes, given that the tree is “reasonably balanced”. That is, for
each node, the sizes of the left and right subtrees should not be “too different”.
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fun {NewDictionary} leaf end
fun {Put Ds Key Value}

% ... similar to Insert
end
fun {CondGet Ds Key Default}

% ... similar to Lookup
end
fun {Domain Ds}

proc {DomainD Ds ?S1 Sn}
case Ds
of leaf then

S1=Sn
[] tree(K _ L R) then S2 S3 in

{DomainD L S1 S2}
S2=K|S3
{DomainD R S3 Sn}

end
end D

in
{DomainD Ds D nil} D

end

Figure 3.28: Declarative dictionary (with ordered binary tree)

State-based implementation

We can do even better than the tree-based implementation by leaving the declara-
tive model behind and using explicit state (see Section 6.5.1). This gives a stateful
dictionary, which is a slightly different type than the declarative dictionary. But
it gives the same functionality. Using state is an advantage because it reduces
the execution time of Put and CondGet operations to amortized constant time.

3.7.3 A word frequency application

To compare our four dictionary implementations, let us use them in a simple
application. Let us write a program to count word frequencies in a string. Later
on, we will see how to use this to count words in a file. Figure 3.29 defines the
function WordFreq , which is given a list of characters Cs and returns a list of
pairs W#N, where Wis a word (a maximal sequence of letters and digits) and N is
the number of times the word occurs in Cs. The function WordFreq is defined in
terms of the following functions:

• {WordChar C} returns true iff C is a letter or digit.

• {WordToAtom PW} converts a reversed list of word characters into an atom
containing those characters. The function StringToAtom is used to create
the atom.
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fun {WordChar C}
(&a=<C andthen C=<&z) orelse
(&A=<C andthen C=<&Z) orelse (&0=<C andthen C=<&9)

end

fun {WordToAtom PW}
{StringToAtom {Reverse PW}}

end

fun {IncWord D W}
{Put D W {CondGet D W 0}+1}

end

fun {CharsToWords PW Cs}
case Cs
of nil andthen PW==nil then

nil
[] nil then

[{WordToAtom PW}]
[] C|Cr andthen {WordChar C} then

{CharsToWords {Char.toLower C}|PW Cr}
[] C|Cr andthen PW==nil then

{CharsToWords nil Cr}
[] C|Cr then

{WordToAtom PW}|{CharsToWords nil Cr}
end

end

fun {CountWords D Ws}
case Ws
of W|Wr then {CountWords {IncWord D W} Wr}
[] nil then D
end

end

fun {WordFreq Cs}
{CountWords {NewDictionary} {CharsToWords nil Cs}}

end

Figure 3.29: Word frequencies (with declarative dictionary)
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Figure 3.30: Internal structure of binary tree dictionary in WordFreq (in part)

• {IncWord D W} takes a dictionary D and an atom W. Returns a new dic-
tionary in which the Wfield is incremented by 1. Remark how easy this is
to write with CondGet , which takes care of the case when Wis not yet in
the dictionary.

• {CharsToWords nil Cs} takes a list of characters Cs and returns a list
of atoms, where the characters in each atom’s print name form a word in
Cs. The function Char.toLower is used to convert uppercase letters to
lowercase, so that “The” and “the” are considered the same word.

• {CountWords D Ws} takes an empty dictionary and the output of CharsToWords .
It returns a dictionary in which each key maps to the number of times the
word occurs.

Here is a sample execution. The following input:

declare
T="Oh my darling, oh my darling, oh my darling Clementine.

She is lost and gone forever, oh my darling Clementine."
{Browse {WordFreq T}}

displays this word frequency count:

[she#1 is#1 clementine#2 lost#1 my#4 darling#4 gone#1 and#1
oh#4 forever#1]

We have run WordFreq on a more substantial text, namely an early draft of
this book. The text contains 712626 characters, giving a total of 110457 words
of which 5561 are different. We have run WordFreq with three implementa-
tions of dictionaries: using lists (see previous example), using binary trees (see
Section 3.7.2), and using state (the built-in implementation of dictionaries; see
Section 6.8.2). Figure 3.30 shows part of the internal structure of the binary tree
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dictionary, drawn with the algorithm of Section 3.4.7. The code we measured is
in Section 3.8.1. Running it gives the following times (accurate to 10%):16

Dictionary implementation Execution time Time complexity
Using lists 620 seconds O(n)
Using ordered binary trees 8 seconds O(log n)
Using state 2 seconds O(1)

The time is the wall-clock time to do everything, i.e., read the text file, run
WordFreq , and write a file containing the word counts. The difference between
the three times is due completely to the different dictionary implementations.
Comparing the times gives a good example of the practical effect of using different
implementations of an important data type. The complexity shows how the time
to insert or look up one item depends on the size of the dictionary.

3.7.4 Secure abstract data types

In both the stack and dictionary data types, the internal representation of values
is visible to users of the type. If the users are disciplined programmers then this
might not be a problem. But this is not always the case. A user can be tempted
to look at a representation or even to construct new values of the representation.

For example, a user of the stack type can use Length to see how many ele-
ments are on the stack, if the stack is implemented as a list. The temptation to
do this can be very strong if there is no other way to find out what the size of the
stack is. Another temptation is to fiddle with the stack contents. Since any list
is also a legal stack value, the user can build new stack values, e.g., by removing
or adding elements.

In short, any user can add new stack operations anywhere in the program.
This means that the stack’s implementation is potentially spread out over the
whole program instead of being limited to a small part. This is a disastrous state
of affairs, for two reasons:

• The program is much harder to maintain. For example, say we want to
improve the efficiency of a dictionary by replacing the list-based implemen-
tation by a tree-based implementation. We would have to scour the whole
program to find out which parts depend on the list-based implementation.
There is also a problem of error confinement: if the program has bugs in
one part then this can spill over into the abstract data types, making them
buggy as well, which then contaminates other parts of the program.

• The program is susceptible to malicious interference. This is a more subtle
problem that has to do with security. It does not occur with programs writ-
ten by people who trust each other. It occurs rather with open programs.

16Using Mozart 1.1.0 under Red Hat Linux release 6.1 on a Dell Latitude CPx notebook
computer with Pentium III processor at 500 MHz.
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An open program is one that can interact with other programs that are only
known at run-time. What if the other program is malicious and wants to
disrupt the execution of the open program? Because of the evolution of the
Internet, the proportion of open programs is increasing.

How do we solve these problems? The basic idea is to protect the internal repre-
sentation of the abstract datatype’s values, e.g., the stack values, from unautho-
rized interference. The value to be protected is put inside a protection boundary.
There are two ways to use this boundary:

• Stationary value. The value never leaves the boundary. A well-defined set
of operations can enter the boundary to calculate with the value. The result
of the calculation stays inside the boundary.

• Mobile value. The value can leave and reenter the boundary. When it is
outside, operations can be done on it. Operations with proper authorization
can take the value out of the boundary and calculate with it. The result is
put back inside the boundary.

With either of these solutions, reasoning about the type’s implementation is much
simplified. Instead of looking at the whole program, we need only look at how
the type’s operations are implemented.

The first solution is like computerized banking. Each client has an account
with some amount of money. A client can do a transaction that transfers money
from his or her account to another account. But since clients never actually go
to the bank, the money never actually leaves the bank. The second solution is
like a safe. It stores money and can be opened by clients who have the key. Each
client can take money out of the safe or put money in. Once out, the client can
give the money to another client. But when the money is in the safe, it is safe.

In the next section we build a secure ADT using the second solution. This
way is the easiest to understand for the declarative model. The authorization we
need to enter the protection boundary is a kind of “key”. We add it as a new
concept to the declarative model, called name. Section 3.7.7 then explains that a
key is an example of a very general security idea, called a capability. In Chapter 6,
Section 6.4 completes the story on secure ADTs by showing how to implement
the first solution and by explaining the effect of explicit state on security.

3.7.5 The declarative model with secure types

The declarative model defined so far does not let us construct a protection bound-
ary. To do it, we need to extend the model. We need two extensions, one to
protect values and one to protect unbound variables. Table 3.6 shows the re-
sulting kernel language with its two new operations. We now explain these two
operations.
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〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| try 〈s〉1 catch 〈x〉 then 〈s〉2 end Exception context
| raise 〈x〉 end Raise exception
| {NewName〈x〉} Name creation
| 〈y〉=!! 〈x〉 Read-only view

Table 3.6: The declarative kernel language with secure types

Protecting values

One way to make values secure is by adding a “wrapping” operation with a
“key”. That is, the internal representation is put inside a data structure that is
inaccessible except to those that know a special value, the key. Knowing the key
allows to create new wrappings and to look inside existing wrappings made with
the same key.

We implement this with a new basic type called a name. A name is a constant
like an atom except that it has a much more restricted set of operations. In
particular, names do not have a textual representation: they cannot be printed
or typed in at the keyboard. Unlike for atoms, it is not possible to convert
between names and strings. The only way to know a name is by being passed a
reference to it within a program. The name type comes with just two operations:

Operation Description
{NewName} Return a fresh name
N1==N2 Compare names N1 and N2

A fresh name is one that is guaranteed to be different from all other names in the
system. Alert readers will notice that NewNameis not declarative because calling
it twice returns different results. In fact, the creation of fresh names is a stateful
operation. The guarantee of uniqueness means that NewNamehas some internal
memory. However, if we use NewNamejust for making declarative ADTs secure
then this is not a problem. The resulting secure ADT is still declarative.

To make a data type secure, it suffices to put it inside a function that has an
external reference to the name. For example, take the value S:

S=[a b c]
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This value is an internal state of the stack type we defined before. We can make
it secure as follows:

Key={NewName}
SS=fun {$ K} if K==Key then S end end

This first creates a new name in Key. Then it makes a function that can return
S, but only if the correct argument is given. We say that this “wraps” the value
S inside SS. If one knows Key, then accessing S from SS is easy:

S={SS Key}

We say this “unwraps” the value S from SS. If one does not know Key, unwrapping
is impossible. There is no way to know Key except for being passed it explicitly in
the program. Calling SS with a wrong argument will simply raise an exception.

A wrapper

We can define an abstract data type to do the wrapping and unwrapping. The
type defines two operations, Wrap and Unwrap . Wrap takes any value and returns
a protected value. Unwrap takes any protected value and returns the original
value. The Wrap and Unwrap operations come in pairs. The only way to unwrap
a wrapped value is by using the corresponding unwrap operation. With names
we can define a procedure NewWrapper that returns new Wrap/Unwrap pairs:

proc {NewWrapper ?Wrap ?Unwrap}
Key={NewName}

in
fun {Wrap X}

fun {$ K} if K==Key then X end end
end
fun {Unwrap W}

{W Key}
end

end

For maximum protection, each abstract data type can use its own Wrap/Unwrap

pair. Then they are protected from each other as well as from the main program.
Given the value S as before:

S=[a b c]

we protect it as follows:

SS={Wrap S}

We can get the original value back as follows:

S={Unwrap SS}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



208 Declarative Programming Techniques

[a b c]

[a b c]

[b c]

Pop X=a

Secure stack implementation
S

S1

Wrap with

Unwrap with

[b c]

Protected value

Figure 3.31: Doing S1={Pop S X} with a secure stack

A secure stack

Now we can make the stack secure. The idea is to unwrap incoming values
and wrap outgoing values. To perform a legal operation on a secure type value,
the routine unwraps the secure value, performs the intended operation to get a
new value, and then wraps the new value to guarantee security. This gives the
following implementation:

local Wrap Unwrap in
{NewWrapper Wrap Unwrap}
fun {NewStack} {Wrap nil} end
fun {Push S E} {Wrap E|{Unwrap S}} end
fun {Pop S E}

case {Unwrap S} of X|S1 then E=X {Wrap S1} end
end
fun {IsEmpty S} {Unwrap S}==nil end

end

Figure 3.31 illustrates the Pop operation. The box with keyhole represents a
protected value. The key represents the name, which is used internally by Wrap

and Unwrap to lock and unlock a box. Lexical scoping guarantees that wrapping
and unwrapping are only possible inside the stack implementation. Namely, the
identifiers Wrap and Unwrap are only visible inside the local statement. Outside
this scope, they are hidden. Because Unwrap is hidden, there is absolutely no
way to see inside a stack value. Because Wrap is hidden, there is absolutely no
way to “forge” stack values.
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Protecting unbound variables

Sometimes it is useful for a data type to output an unbound variable. For exam-
ple, a stream is a list with an unbound tail. We would like anyone to be able to
read the stream but only the data type implementation to be able to extend it.
Using standard unbound variables this does not work, for example:

S=a|b|c|X

The variable X is not secure since anyone who knows S can bind X.
The problem is that anyone who has a reference to an unbound variable can

bind the variable. One solution is to have a restricted version of the variable that
can only be read, not bound. We call this a read-only view of a variable. We
extend the declarative model with one function:

Operation Description
!!X Return a read-only view of X

Any attempt to bind a read-only view will block. Any binding of X will be
transferred to the read-only view. To protect a stream, its tail should be a read-
only view.

In the abstract machine, read-only views sit in a new store called the read-
only store. We modify the bind operation so that before binding a variable to
a determined value, it checks whether the variable is in the read-only store. If
so, the bind suspends. When the variable becomes determined, then the bind
operation can continue.

Creating fresh names

To conclude this section, let us see how to create fresh names in the implemen-
tation of the declarative model. How can we guarantee that a name is globally
unique? This is easy for programs running in one process: names can be im-
plemented as successive integers. But this approach fails miserably for open
programs. For them, globally potentially means among all running programs in
all the world’s computers. There are basically two approaches to create names
that are globally unique:

• The centralized approach. There is a name factory somewhere in the world.
To get a fresh name, you need to send a message to this factory and the reply
contains a fresh name. The name factory does not have to be physically
in one place; it can be spread out over many computers. For example,
the IP protocol supposes a unique IP address for every computer in the
world that is connected to the Internet. IP addresses can change over time,
though, e.g., if network address translation is done or dynamic allocation of
IP addresses is done using the DHCP protocol. We therefore complement
the IP address with a high-resolution timestamp giving the creation time
of NewName. This gives a unique constant that can be used to implement a
local name factory on each computer.
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• The decentralized approach. A fresh name is just a vector of random bits.
The random bits are generated by an algorithm that depends on enough
external information so that different computers will not generate the same
vector. If the vector is long enough, then the that names are not unique
will be arbitrarily small. Theoretically, the probability is always nonzero,
but in practice this technique works well.

Now that we have a unique name, how do we make sure that it is unforge-
able? This requires cryptographic techniques that are beyond the scope of this
book [166].

3.7.6 A secure declarative dictionary

Now let us see how to make the declarative dictionary secure. It is quite easy.
We can use the same technique as for the stack, namely by using a wrapper and
an unwrapper. Here is the new definition:

local
Wrap Unwrap
{NewWrapper Wrap Unwrap}
% Previous definitions:
fun {NewDictionary2} ... end
fun {Put2 Ds K Value} ... end
fun {CondGet2 Ds K Default} ... end
fun {Domain2 Ds} ... end

in
fun {NewDictionary}

{Wrap {NewDictionary2}}
end
fun {Put Ds K Value}

{Wrap {Put2 {Unwrap Ds} K Value}}
end
fun {CondGet Ds K Default}

{CondGet2 {Unwrap Ds} K Default}
end
fun {Domain Ds}

{Domain2 {Unwrap Ds}}
end

end

Because Wrap and Unwrap are only known inside the scope of the local , the
wrapped dictionary cannot be unwrapped by anyone outside of this scope. This
technique works for both the list and tree implementations of dictionaries.

3.7.7 Capabilities and security

We say a computation is secure if it has well-defined and controllable proper-
ties, independent of the existence of other (possibly malicious) entities (either
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computations or humans) in the system [4]. We call these entities “adversaries”.
Security allows to protect both from malicious computations and innocent (but
buggy) computations. The property of being secure is global; “cracks” in a system
can occur at any level, from the hardware to software to the human organiza-
tion housing the system. Making a computer system secure involves not only
computer science but also many aspects of human society [5].

A short, precise, and concrete description of how the system will ensure its
security is called its security policy. Designing, implementing, and verifying se-
curity policies is crucial for building secure systems, but is outside the scope of
this book.

In this section, we consider only a small part of the vast discipline of security,
namely the programming language viewpoint. To implement a security policy, a
system uses security mechanisms. Throughout this book, we will discuss security
mechanisms that are part of a programming language, such as lexical scoping
and names. We will ask ourselves what properties a language must possess in
order to build secure programs, that is, programs that can resist attacks by
adversaries that stay within the language.17 We call such a language a secure
language. Having a secure language is an important requirement for building
secure computer programs. Designing and implementing a secure language is an
important topic in programming language research. It involves both semantic
properties and properties of the implementation.

Capabilities

The protection techniques we have introduced to make secure abstract data types
are special cases of a security concept called a capability. Capabilities are at the
heart of modern research on secure languages. For example the secure language
E hardens references to language entities so that they behave as capabilities [123,
183]. The Wrap/Unwrap pairs we introduced previously are called sealer/unsealer
pairs in E. Instead of using external references to protect values, sealer/unsealer
pairs encrypt and decrypt the values. In this view, the name is used as an
encryption and decryption key.

The capability concept was invented in the 1960’s, in the context of operating
system design. Operating systems have always had to protect users from each
other while still allowing them do their work. Since this early work, it has become
clear that the concept belongs in the programming language and is generally use-
ful for building secure programs [124]. Capabilities can be defined in many ways,
but the following definition is reasonable for a programming language. A capa-
bility is an unforgeable language entity that gives its owner the right to perform
a given set of actions. The set of actions is defined inside the capability and
may change over time. By unforgeable we mean that it is not possible for any
implementation, even one that is intimately connected to the hardware architec-

17Staying withing the language can be guaranteed by always running programs within a
virtual machine that accepts only binaries of legal programs.
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ture such as one in assembly language, to create a capability. In the E literature
this property is summarized by the phrase “connectivity begets connectivity”:
the only way to get a new capability is by being passed it explicitly through an
existing capability [125].

All values of data types are capabilities in this sense, since they give their
owners the ability to do all operations of that type, but no more. An owner
of a language entity is any program fragment that references that entity. For
example, a record R gives its owner the ability to do many operations including
field selection R.F and arity {Arity R} . A procedure P gives its owner the
ability to call P. A name gives its owner the ability to compare its value with
other values. An unbound variable gives its owner the ability to bind it and to
read its value. A read-only variable gives its owner the ability to read its value,
but not to bind it.

New capabilities can be defined during a program’s execution as instances of
ADTs. For the models of this book, the simplest way is to use procedure values.
A reference to a procedure value gives its owner the right to call the procedure,
i.e., to do whatever action the procedure was designed to do. Furthermore, a
procedure reference cannot be forged. In a program, the only way to know the
reference is if it is passed explicitly. The procedure can hide all its sensitive infor-
mation in its external references. For this to work, the language must guarantee
that knowing a procedure does not automatically give one the right to examine
the procedure’s external references!

Principle of least privilege

An important design principle for secure systems is the principle of least privilege:
each entity should be given the least authority (or “privilege”) that is necessary
for it to get its job done. This is also called the principle of least authority (POLA)
or the “need to know” principle. Determining exactly what the least authority is
in all cases is an undecidable problem: there cannot exist an algorithm to solve
it in all cases. This is because the authority depends on what the entity does
during its execution. If we would have an algorithm, it would be powerful enough
to solve the Halting Problem, which has been proved not to have a solution.

In practice, we do not need to know the exact least authority. Sufficient
security can be achieved with approximations to it. The programming language
should make it easy to do these approximations. Capabilities, as we defined
them above, have this ability. With them, it is easy to make the approximation
as precise as is needed. For example, an entity can be given the authority to
create a file with a given name and maximum size in a given directory. For files,
coarser granularities are usually enough, such as the authority to create a file in
a given directory. Capabilities can handle both the fine and coarse-grained cases
easily.
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Capabilities and explicit state

Declarative capabilities, i.e., capabilities written in a declarative computation
model, lack one crucial property to make them useful in practice. The set of
actions they authorize cannot be changed over time. In particular, none of their
actions can be revoked. To make a capability revocable, the computation model
needs an additional concept, namely explicit state. This is explained in Sec-
tion 6.4.3.

3.8 Nondeclarative needs

Declarative programming, because of its “pure functional” view of programming,
is somewhat detached from the real world, in which entities have memories (state)
and can evolve independently and proactively (concurrency). To connect a declar-
ative program to the real world, some nondeclarative operations are needed. This
section talks about two classes of such operations: file I/O (input/output) and
graphical user interfaces. A third class of operations, standalone compilation, is
given in Section 3.9.

Later on we will see that the nondeclarative operations of this section fit into
more general computation models than the declarative one, in particular stateful
and concurrent models. In a general sense, this section ties in with the discussion
on the limits of declarative programming in Section 4.7. Some of the operations
manipulate state that is external to the program; this is just a special case of the
system decomposition principle explained in Section 6.7.2.

The new operations introduced by this section are collected in modules. A
module is simply a record that groups together related operations. For exam-
ple, the module List groups many list operations, such as List.append and
List.member (which can also be referenced as Append and Member). This sec-
tion introduces the three modules File (for file I/O of text), QTk (for graphical
user interfaces), and Pickle (for file I/O of any values). Some of these modules
(like Pickle ) are immediately known by Mozart when it starts up. The other
modules can be loaded by calling Module.link . In what follows, we show how
to do this for File and QTk. More information about modules and how to use
them is given later, in Section 3.9.

3.8.1 Text input/output with a file

A simple way to interface declarative programming with the real world is by
using files. A file is a sequence of values that is stored external to the program
on a permanent storage medium such as a hard disk. A text file is a sequence
of characters. In this section, we show how to read and write text files. This is
enough for using declarative programs in a practical way. The basic pattern of
access is simple:
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Input file
read−→ compute function

write−→ output file

We use the module File , which can be found on the book’s Web site. Later on
we will do more sophisticated file operations, but this is enough for now.

Loading the module File

The first step is to load the module File into the system, as explained in Ap-
pendix A.1.2. We assume that you have a compiled version of the module File ,
in the file File.ozf. Then execute the following:

declare [File]={Module.link [ ´ File.ozf ´ ]}

This calls Module.link with a list of paths to compiled modules. Here there is
just one. The module is loaded, linked it into the system, initialized, and bound
to File .18 Now we are ready to do file operations.

Reading a file

The operation File.readList reads the whole content of the file into a string:

L={File.readList "foo.txt"}

This example reads the file foo.txt into L. We can also write this as:

L={File.readList ´ foo.txt ´ }

Remember that "foo.txt" is a string (a list of character codes) and ´ foo.txt ´

is an atom (a constant with a print representation). The file name can be rep-
resented in both ways. There is a third way to represent file names: as virtual
strings. A virtual string is a tuple with label ´ #´ that represents a string. We
could therefore just as well have entered the following:

L={File.readList foo# ´ . ´ #txt}

The tuple foo# ´ . ´ #txt , which we can also write as ´ #´ (foo ´ . ´ txt) , repre-
sents the string "foo.txt" . Using virtual strings avoids the need to do explicit
string concatenations. All Mozart built-in operations that expect strings will
work also with virtual strings. All three ways of loading foo.txt have the same
effect. They bind L to a list of the character codes in the file foo.txt.

Files can also be referred to by URL. A URL gives a convenient global address
for files since it is widely supported through the World-Wide Web infrastructure.
It is just as easy to read a file through its URL as through its file name:

L={File.readList ´ http://www.mozart-oz.org/features.html ´ }

That’s all there is to it. URLs can only be used to read files, but not to write
files. This is because URLs are handled by Web servers, which are usually set up
to allow only reading.

18To be precise, the module is loaded lazily: it will only actually be loaded the first time that
we use it.
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Mozart has other operations that allow to read a file either incrementally or
lazily, instead of all at once. This is important for very large files that do not fit
into the memory space of the Mozart process. To keep things simple for now, we
recommend that you read files all at once. Later on we will see how to read a file
incrementally.

Writing a file

Writing a file is usually done incrementally, by appending one string at a time
to the file. The module File provides three operations: File.writeOpen to
open the file, which must be done first, File.write to append a string to the
file, and File.writeClose to close the file, which must be done last. Here is an
example:

{File.writeOpen ´ foo.txt ´ }
{File.write ´ This comes in the file.\n ´ }
{File.write ´ The result of 43*43 is ´ #43*43# ´ .\n ´ }
{File.write "Strings are ok too.\n"}
{File.writeClose}

After these operations, the file ’foo.txt’ has three lines of text, as follows:

This comes in the file.

The result of 43*43 is 1849.

Strings are ok too.

Example execution

In Section 3.7.3 we defined the function WordFreq that calculates the word fre-
quencies in a string. We can use this function to calculate word frequencies and
store them in a file:

% 1. Read input file
L={File.readList ´ book.raw ´ }
% 2. Compute function
D={WordFreq L}
% 3. Write output file
{File.writeOpen ´ word.freq ´ }
for X in {Domain D} do

{File.write {Get D X}# ´ occurrences of word ´ #X#´ \n ´ }
end
{File.writeClose}

Section 3.7.3 gives some timing figures of this code using different dictionary
implementations.
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3.8.2 Text input/output with a graphical user interface

The most direct way to interface programs with a human user is through a graph-
ical user interface. This section shows a simple yet powerful way to define graphi-
cal user interfaces, namely by means of concise, mostly declarative specifications.
This is an excellent example of a descriptive declarative language, as explained
in Section 3.1. The descriptive language is recognized by the QTk module of the
Mozart system. The user interface is specified as a nested record, supplemented
with objects and procedures. (Objects are introduced in Chapter 7. For now,
you can consider them as procedures with internal state, like the examples of
Chapter 1.)

This section shows how to build user interfaces to input and output textual
data to a window. This is enough for many declarative programs. We give a brief
overview of the QTk module, just enough to build these user interfaces. Later
on we will build more sophisticated graphical user interfaces. Chapter 10 gives a
fuller discussion of declarative user interface programming in general and of its
realization in QTk.

Declarative specification of widgets

A window on the screen consists of a set of widgets. A widget is a rectangular
area in the window that has a particular interactive behavior. For example, some
widgets can display text or graphic information, and other widgets can accept
user interaction such as keyboard input and mouse clicks. We specify each widget
declaratively with a record whose label and features define the widget type and
initial state. We specify the window declaratively as a nested record (i.e., a tree)
that defines the logical structure of the widgets in the window. Here are the five
widgets we will use for now:

• The label widget can display a text. The widget is specified by the record:

label(text:VS)

where VS is a virtual string.

• The text widget is used to display and enter large quantities of text. It can
use scrollbars to display more text than can fit on screen. With a vertical
(i.e., top-down) scrollbar, the widget is specified by the record:

text(handle:H tdscrollbar: true )

When the window is created, the variable H will be bound to an object used
to control the widget. We call such an object a handler. You can consider
the object as a one-argument procedure: {H set(VS)} displays a text and
{H get(VS)} reads the text.

• The button widget specifies a button and an action to execute when the
button is pressed. The widget is specified by the record:
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Figure 3.32: A simple graphical I/O interface for text

button(text:VS action:P)

where VS is a virtual string and P is a zero-argument procedure. {P} is
called whenever the button is pressed.19 For each window, all its actions
are executed sequentially.

• The td (top-down) and lr (left-right) widgets specify an arrangement of
other widgets in top-down or left-right order:

lr(W1 W2 ... Wn)
td(W1 W2 ... Wn)

where W1, W2, ..., Wnare other widget specifications.

Declarative specification of resize behavior

When a window is resized, the widgets inside should behave properly, i.e., either
changing size or staying the same size, depending on what the interface should do.
We specify each widget’s resize behavior declaratively, by means of an optional
glue feature in the widget’s record. The glue feature indicates whether the
widget’s borders should or should not be “glued” to its enclosing widget. The
glue feature’s argument is an atom consisting of any combination of the four
characters n (north), s (south), w (west), e (east), indicating for each direction
whether the border should be glued or not. Here are some examples:

• No glue. The widget keeps its natural size and is centered in the space
allotted to it, both horizontally and vertically.

• glue:nswe glues to all four borders, stretching to fit both horizontally and
vertically.

• glue:we glues horizontally left and right, stretching to fit. Vertically, the
widget is not stretched but centered in the space allotted to it.

19To be precise, whenever the left mouse button is both clicked and released while the mouse
is over the button. This allows the user to correct any mistaken click on the button.
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• glue:w glues to the left edge and does not stretch.

• glue:wns glues vertically top and bottom, stretching to fit vertically, and
glues to the left edge, not stretching horizontally.

Loading the module QTk

The first step is to load the QTk module into the system. Since QTk is part of the
Mozart Standard Library, it suffices to give the right path name:

declare [QTk]={Module.link [ ´ x-oz://system/wp/QTk.ozf ´ ]}

Now that QTk is loaded, we can use it to build interfaces according to the speci-
fications of the previous section.

Building the interface

The QTk module has a function QTk.build that takes an interface specification,
which is just a nested record of widgets, and builds a window containing these
widgets. Let us build a simple interface with one button that displays ouch in
the browser whenever the button is clicked:

D=td(button(text:"Press me"
action: proc {$} {Browse ouch} end ))

W={QTk.build D}
{W show}

The record D always has to start with td or lr , even if the window has just one
widget. QTk.build returns an object Wthat represents the window. The window
starts out being hidden. It can be displayed or hidden again by calling {W show}

or {W hide} . Here is a bigger example that implements a complete text I/O
interface:

declare
In Out
A1=proc {$} X in {In get(X)} {Out set(X)} end
A2=proc {$} {W close} end
D=td(title:"Simple text I/O interface"

lr(label(text:"Input:")
text(handle:In tdscrollbar: true glue:nswe)
glue:nswe)

lr(label(text:"Output:")
text(handle:Out tdscrollbar: true glue:nswe)
glue:nswe)

lr(button(text:"Do It" action:A1 glue:nswe)
button(text:"Quit" action:A2 glue:nswe)
glue:we))

W={QTk.build D}
{W show}
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At first glance, this may seem complicated, but look again: there are six widgets
(two label , two text , two button ) arranged with td and lr widgets. The
QTk.build function takes the description D. It builds the window of Figure 3.32
and creates the handler objects In and Out . Compare the record D with Fig-
ure 3.32 to see how they correspond.

There are two action procedures, A1 and A2, one for each button. The action
A1 is attached to the “Do It” button. Clicking on the button calls A1, which
transfers text from the first text widget to the second text widget. This works as
follows. The call {In get(X)} gets the text of the first text widget and binds
it to X. Then {Out set(X)} sets the text in the second text widget to X. The
action A2 is attached to the “Quit” button. It calls {W close} , which closes the
window permanently.

Putting nswe glue almost everywhere allows the window to behavior properly
when resized. The lr widget with the two buttons has we glue only, so that the
buttons do not expand vertically. The label widgets have no glue, so they have
fixed sizes. The td widget at the top level needs no glue since we assume it is
always glued to its window.

3.8.3 Stateless data I/O with files

Input/output of a string is simple, since a string consists of characters that can
be stored directly in a file. What about other values? It would be a great help to
the programmer if it would be possible to save any value to a file and to load it
back later. The System module Pickle provides exactly this ability. It can save
and load any complete value:

{Pickle.save X FN} % Save X in file FN
{Pickle.load FNURL ?X} % Load X from file (or URL) FNURL

All data structures used in declarative programming can be saved and loaded ex-
cept for those containing unbound variables. For example, consider this program
fragment:

declare
fun {Fact N}

if N==0 then 1 else N*{Fact N-1} end
end
F100={Fact 100}
F100Gen1= fun {$} F100 end
F100Gen2= fun {$} {Fact 100} end
FNGen1=fun {$ N} F={Fact N} in fun {$} F end end
FNGen2=fun {$ N} fun {$} {Fact N} end end

F100 is a (rather big) integer; the four other entities are functions. The following
operation saves the four functions to a file:

{Pickle.save [F100Gen1 F100Gen2 FNGen1 FNGen2] ´ factfile ´ }
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To be precise, this saves a value consisting of list of four elements in the file
factfile. In this example, all elements are functions. The functions have been
chosen to illustrate various degrees of delayed calculation. The first two return
the result of calculating 100!. The first, F100Gen1, knows the integer and returns
it directly, and the second, F100Gen2, calculates the value each time it is called.
The third and fourth, when called with an integer argument n, return a function
that when itself called, returns n!. The third, FNGen1, calculates n! when called,
so the returned function just returns a known integer. The fourth, FNGen2, does
no calculation but lets the returned function calculate n! when called.

To use the contents of factfile, it must first be loaded:

declare
[F1 F2 F3 F4]={Pickle.load ´ factfile ´ }

in
{Browse {F1}}
{Browse {F2}}
{Browse {{F3 100}}}
{Browse {{F4 100}}}

This displays 100! four times. Of course, the following is also possible:

declare F1 F2 F3 F4 in
{Browse {F1}}
{Browse {F2}}
{Browse {{F3 100}}}
{Browse {{F4 100}}}
[F1 F2 F3 F4]={Pickle.load ´ factfile ´ }

After the file is loaded, this displays exactly the same as before. This illustrates
yet again how dataflow makes it possible to use a variable before binding it.

We emphasize that the loaded value is exactly the same as the one that was
saved. There is no difference at all between them. This is true for all possible
values: numbers, records, procedures, names, atoms, lists, and so on, including
other values that we will see later on in the book. Executing this on one process:

... % First statement (defines X)
{Pickle.save X ´ myfile ´ }

and then this on a second process:

X={Pickle.load ´ myfile ´ }
... % Second statement (uses X)

is rigorously identical to executing the following on a third process:

... % First statement (defines X)
{Pickle.save X ´ myfile ´ }
_={Pickle.load ´ myfile ´ }
... % Second statement (uses X)

If the calls to Pickle are removed, like this:
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... % First statement (defines X)

... % Second statement (uses X)

then there are two minor differences:

• The first case creates and reads the file ´ myfile ´ . The second case does
not.

• The first case raises an exception if there was a problem in creating or
reading the file.

3.9 Program design in the small

Now that we have seen many programming techniques, the next logical step is
to use them to solve problems. This step is called program design. It starts
from a problem we want to solve (usually explained in words, sometimes not very
precisely) gives the high-level structure of the program, i.e., what programming
techniques we need to use and how they are connected together, and ends up
with a complete program that solves the problem.

For program design, there is an important distinction between “programming
in the small” and “programming in the large”. We will call the resulting pro-
grams “small programs” and “large programs”. The distinction has nothing to
do with the program’s size, but rather with how many people were involved in its
development. Small programs are written by one person over a short period of
time. Large programs are written by more than one person or over a long period
of time. The same person now and one year from now should be considered as
two people, since the person will forget many details over a year. This section
gives an introduction to programming in the small; we leave programming in the
large to Section 6.7.

3.9.1 Design methodology

Assume we have a problem that can be solved by writing a small program. Let us
see how to design the program. We recommend the following design methodology,
which is a mixture of creativity and rigorous thinking:

• Informal specification. We start by writing down as precisely as we can
what the program should do: what it’s inputs and outputs are and how
the outputs relate to the inputs. This description is called an informal
specification. Even though it is precise, we call it “informal” because it is
written in English. “Formal” specifications are written in a mathematical
notation.

• Examples. To make the specification perfectly clear, it is always a good
idea to imagine examples of what the program does in particular cases. The

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



222 Declarative Programming Techniques

examples should “stress” the program: use it in boundary conditions and
in the most unexpected ways we can imagine.

• Exploration. To find out what programming techniques we will need, a
good way is to use the interactive interface to experiment with program
fragments. The idea is to write small operations that we think might be
needed for the program. We use the operations that the system already
provides as a basis. This step gives us a clearer view of what the program’s
structure should be.

• Structure and coding. Now we can lay out the program’s structure. We
make a rough outline of the operations needed to calculate the outputs from
the inputs and how they fit together. We then fill in the blanks by writing
the actual program code. The operations should be simple: each operation
should do just one thing. To improve the structure we can group related
operations in modules.

• Testing and reasoning. Finally, we have to verify that our program
does the right thing. We try it on a series of test cases, including the
examples we came up with before. We correct errors until the program
works well. We can also reason about the program and its complexity, using
the formal semantics for parts that are not clear. Testing and reasoning are
complementary: it is important to do both to get a high-quality program.

These steps are not meant to be obligatory, but rather to serve as inspiration.
Feel free to adapt them to your own circumstances. For example, when imagining
examples it can be clear that the specification has to be changed. However, take
care never to forget the most important step, which is testing.

3.9.2 Example of program design

To illustrate these steps, let us retrace the development of the word frequency
application of Section 3.7.3. Here is a first attempt at an informal specification:

Given a file name, the application opens a window and displays a list
of pairs, where each pair consists of a word and an integer giving the
number of times the word occurs in the file.

Is this specification precise enough? What about a file containing a word that is
not valid English or a file containing non-Ascii characters? Our specification is
not precise enough: it does not define what a “word” is. To make it more precise
we have to know the purpose of the application. Say that we just want to get a
general idea of word frequencies, independent of any particular language. Then
we can define a word simply as:

A “word” is a maximal contiguous sequence of letters and digits.
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This means that words are separated by at least one character that is not a letter
or a digit. This accepts a word that is not valid English but does not accept words
containing non-Ascii characters. Is this good enough? What about words with a
hyphen (such as “true-blue”) or idiomatic expressions that act as units (such as
“trial and error”)? In the interest of simplicity, let us reject these for now. But
we may have to change the specification later to accept them, depending on how
we use the word frequency application.

Now we have arrived at our specification. Note the essential role played by
examples. They are important signposts on the way to a precise specification.
The examples were expressly designed to test the limits of the specification.

The next step is to design the program’s structure. The appropriate struc-
ture seems to be a pipeline: first read the file into a list of characters and then
convert the list of characters into a list of words, where a word is represented as
a character string. To count the words we need a data structure that is indexed
by words. The declarative dictionary of Section 3.7.2 would be ideal, but it is
indexed by atoms. Luckily, there is an operation to convert character strings to
atoms: StringToAtom (see Appendix B). With this we can write our program.
Figure 3.29 gives the heart: a function WordFreq that takes a list of characters
and returns a dictionary. We can test this code on various examples, and espe-
cially on the examples we used to write the specification. To this we will add the
code to read the file and display the output in a window; for this we use the file
operations and graphical user interface operations of Section 3.8. It is important
to package the application cleanly, as a software component. This is explained in
the next two sections.

3.9.3 Software components

What is a good way to organize a program? One could write the program as
one big monolithic whole, but this can be confusing. A better way is to partition
the program into logical units, each of which implements a set of operations that
are related in some way. Each logical unit has two parts, an interface and an
implementation. Only the interface is visible from outside the logical unit. A
logical unit may use others as part of its implementation.

A program is then simply a directed graph of logical units, where an edge
between two logical units means that the first needs the second for its imple-
mentation. Popular usage calls these logical units “modules” or “components”,
without defining precisely what these words mean. This section introduces the
basic concepts, defines them precisely, and shows how they can be used to help
design small declarative programs. Section 6.7 explains how these ideas can be
used to help design large programs.
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〈statement〉 ::= functor 〈variable〉
[ import { 〈variable〉 [ at 〈atom〉 ]

| 〈variable〉 ´ ( ´ { (〈atom〉 | 〈int〉) [ ´ : ´ 〈variable〉 ] }+ ´ ) ´

}+ ]
[ export { [ (〈atom〉 | 〈int〉) ´ : ´ ] 〈variable〉 }+ ]
define { 〈declarationPart〉 }+ [ in 〈statement〉 ] end

| ...

Table 3.7: Functor syntax

Modules and functors

We call module a part of a program that groups together related operations into
an entity that has an interface and an implementation. In this book, we will
implement modules in a simple way:

• The module’s interface is a record that groups together related language en-
tities (usually procedures, but anything is allowed including classes, objects,
etc.).

• The module’s implementation is a set of language entities that are accessible
by the interface operations but hidden from the outside. The implementa-
tion is hidden using lexical scoping.

We will consider module specifications as entities separate from modules. A
module specification is a kind of template that creates a module each time it is
instantiated. A module specification is sometimes called a software component.
Unfortunately, the term “software component” is widely used with many different
meanings [187]. To avoid any confusion in this book, we will call our module
specifications functors. A functor is a function whose arguments are the modules
it needs and whose result is a new module. (To be precise, the functor takes
module interfaces as arguments, creates a new module, and returns that module’s
interface!) Because of the functor’s role in structuring programs, we provide it
as a linguistic abstraction. A functor has three parts: an import part, which
specifies what other modules it needs, an export part, which specifies the module
interface, and a define parts, which gives the module implementation including
its initialization code. The syntax for functor declarations allows to use them as
either statements or expressions, like the syntax for procedures. Table 3.7 gives
the syntax of functor declarations as statements.

In the terminology of software engineering, a software component is a unit of
independent deployment, a unit of third-party development, and has no persistent
state (following the definition given in [187]). Functors satisfy this definition and
are therefore a kind of software component. With this terminology, a module is a
component instance; it is the result of installing a functor in a particular module
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environment. The module environment consists of a set of modules, each of which
may have an execution state.

Functors in the Mozart system are compilation units. That is, the system has
support for handling functors in files, both as source code (i.e., human-readable
text) and object code (i.e., compiled form). Source code can be compiled, or
translated, into object code. This makes it easy to use functors to exchange
software between developers. For example, the Mozart system has a library, called
MOGUL (for Mozart Global User Library), in which third-party developers can
put any kind of information. Usually, they put in functors and applications.

An application is standalone if it can be run without the interactive interface.
It consists of a main functor, which is evaluated when the program starts. It
imports the modules it needs, which causes other functors to be evaluated. The
main functor is used for its effect of starting the application and not for its
resulting module, which is silently ignored. Evaluating, or “installing”, a functor
creates a new module in three steps. First, the modules it needs are identified.
Second, the initialization code is executed. Third, the module is loaded the first
time it is needed during execution. This technique is called dynamic linking,
as opposed to static linking, in which the modules are loaded when execution
starts. At any time, the set of currently installed modules is called the module
environment.

Implementing modules and functors

Let us see how to construct software components in steps. First we give an
example module. Then we show how to convert this module into a software
component. Finally, we turn it into a linguistic abstraction.

Example module In general a module is a record, and its interface is accessed
through the record’s fields. We construct a module called MyList that provides
interface procedures for appending, sorting, and testing membership of lists. This
can be written as follows:

declare MyList in
local

proc {Append ... } ... end
proc {MergeSort ...} ... end
proc {Sort ... } ... {MergeSort ...} ... end
proc {Member ...} ... end

in
MyList= ´ export ´ (append: Append

sort: Sort
member: Member
...)

end
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The procedure MergeSort is inaccessible outside of the local statement. The
other procedures cannot be accessed directly, but only through the fields of
the MyList module, which is a record. For example, Append is accessible as
MyList.append . Most of the library modules of Mozart, i.e., the Base and
System modules, follow this structure.

A software component Using procedural abstraction, we can turn this mod-
ule into a software component. The software component is a function that returns
a module:

fun {MyListFunctor}
proc {Append ... } ... end
proc {MergeSort ...} ... end
proc {Sort ... } ... {MergeSort ...} ... end
proc {Member ...} ... end

in
´ export ´ (append: Append

sort: Sort
member: Member
...)

end

Each time MyListFunctor is called, it creates and returns another MyList mod-
ule. In general, MyListFunctor could have arguments, which are the other
modules needed for MyList .

From this definition, it is clear that functors are just values in the language.
They share the following properties with procedure values:

• A functor definition can be evaluated at run time, giving a functor.

• A functor can have external references to other language entities. For ex-
ample, it is easy to make a functor that contains data calculated at run
time. This is useful, for example, to include large tables or image data in
source form.

• A functor can be stored in a file by using the Pickle module. This file can
be read by any Mozart process. This makes it easy to create libraries of
third-party functors, such as MOGUL.

• A functor is lightweight; it can be used to encapsulate a single entity such
as one object or class, in order to make explicit the modules needed by the
entity.

Because functors are values, it is possible to manipulate them in sophisticated
ways within the language. For example, a software component can be built
that implements component-based programming, in which components determine
at run time which components they need and when to link them. Even more
flexibility is possible when dynamic typing is used. A component can link an
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arbitrary component at run time, by installing any functors and calling them
according to their needs.

Linguistic support This software component abstraction is a reasonable one
to organize large programs. To make it easier to use, to ensure that it is not
used incorrectly, and to make clear the intention of the programmer (avoiding
confusion with other higher-order programming techniques), we turn it into a
linguistic abstraction. The function MyListFunctor corresponds to the following
functor syntax:

functor
export

append:Append
sort:Sort
member:Member
...

define
proc {Append ... } ... end
proc {MergeSort ...} ... end
proc {Sort ... } ... {MergeSort ...} ... end
proc {Member ...} ... end

end

Note that the statement between define and end does implicit variable decla-
ration, exactly like the statement between local and in .

Assume that this functor has been compiled and stored in the file MyList.ozf

(we will see below how to compile a functor). Then the module can be created
as follows in the interactive interface:

declare [MyList]={Module.link [ ´ MyList.ozf ´ ]}

The function Module.link is defined in the System module Module . It takes
a list of functors, loads them from the file system, links them together (i.e.,
evaluates them together, so that each module sees its imported modules), and
returns a corresponding list of modules. The Module module allows doing many
other operations on functors and modules.

Importing modules Software components can depend on other software com-
ponents. To be precise, instantiating a software component creates a module.
The instantiation might need other modules. In the new syntax, we declare this
with import declarations. To import a library module it is enough to give the
name of its functor. On the other hand, to import a user-defined module requires
stating the file name or URL of the file where the functor is stored.20 This is
reasonable, since the system knows where the library modules are stored, but

20Other naming schemes are possible, in which functors have some logical name in a compo-
nent management system.
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