
4.5 Line Digraphs 183

1 2

3

5

4

23

12

H Q

25

34

45

54

Figure 4.4 A digraph H and its line digraph Q = L(H).

[419] by Beineke and Hemminger. The proof presented here is adapted from
[419]. For an n × n-matrix M = [mik], a row i is orthogonal to a row j if∑n

k=1 mikmjk = 0. One can give a similar definition of orthogonal columns.

Theorem 4.5.1 Let D be a directed pseudograph with vertex set {1, 2, . . . , n}
and with no parallel arcs and let M = [mij ] be its adjacency matrix (i.e., the
n×n-matrix such that mij = 1, if ij ∈ A(D), and mij = 0, otherwise). Then
the following assertions are equivalent:

(i) D is a line digraph;
(ii) there exist two partitions {Ai}i∈I and {Bi}i∈I of V (D) such that A(D) =

∪i∈IAi ×Bi
4;

(iii) if vw, uw and ux are arcs of D, then so is vx;
(iv) any two rows of M are either identical or orthogonal;
(v) any two columns of M are either identical or orthogonal.

Proof: We show the following implications and equivalences: (i) ⇔ (ii), (ii)
⇒ (iii), (iii) ⇒ (iv), (iv) ⇔ (v), (iv) ⇒ (ii).

(i) ⇒ (ii). Let D = L(H). For each vi ∈ V (H), let Ai and Bi be the sets
of in-coming and out-going arcs at vi, respectively. Then the arc set of the
subdigraph of D induced by Ai ∪Bi equals Ai×Bi. If ab ∈ A(D), then there
is an i such that a = vjvi and b = vivk. Hence, ab ∈ Ai × Bi. The result
follows.

(ii) ⇒ (i). Let Q be the directed pseudograph with ordered pairs (Ai, Bi)
as vertices, and with |Aj ∩ Bi| arcs from (Ai, Bi) to (Aj , Bj) for each i and
j (including i = j). Let σij be a bijection from Aj ∩ Bi to this set of arcs
(from (Ai, Bi) to (Aj , Bj)) of Q. Then the function σ defined on V (D) by
taking σ to be σij on Aj∩Bi is a well-defined function of V (D) into V (L(Q)),
since {Aj ∩ Bi}i,j∈I is a partition of V (D). Moreover, σ is a bijection since
every σij is a bijection. Furthermore, it is not difficult to see that σ is an
isomorphism from D to L(Q) (this is left as Exercise 4.4).

4 Recall that X × Y = {(x, y) : x ∈ X, y ∈ Y }.
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(ii) ⇒ (iii). If vw, uw and ux are arcs of D, then there exist i, j such that
{u, v} ⊆ Ai and {w, x} ⊆ Bj . Hence, (v, x) ∈ Ai ×Bj and vx ∈ D.

(iii) ⇒ (iv). Assume that (iv) does no hold. This means that some rows,
say i and j, are neither identical nor orthogonal. Then there exist k, h such
that mik = mjk = 1 and mih = 1,mjh = 0 (or vice versa). Hence, ik, jk, ih
are in A(D) but jh is not. This contradicts (iii).

(iv) ⇔ (v). Both (iv) and (v) are equivalent to the statement:

for all i, j, h, k, if mih = mik = mjk = 1, then mjh = 1.

(iv) ⇒ (ii). For each i and j with mij = 1, let Aij = {h : mhj = 1} and
Bij = {k : mik = 1}. Then, by (iv), Aij is the set of vertices in D whose
row vectors in M are identical to the ith row vector, whereas Bij is the set
of vertices in D whose column vectors in M are identical to the jth column
vector (we use the previously proved fact that (iv) and (v) are equivalent).
Thus, Aij ×Bij ⊆ A(D), and moreover A(D) = ∪{Aij ×Bij : mij = 1}. By
the orthogonality condition, Aij and Ahk are either equal or disjoint, as are
Bij and Bhk. For zero row vector i in M , let Aij be the set of vertices whose
row vector in M is the zero vector, and let Bij = ∅. Doing the same with the
zero column vectors of M completes the partition as in (ii). ut

The characterizations (ii)-(v) all imply polynomial algorithms to verify
whether a given directed pseudograph is a line digraph. This fact is obvious
regarding (iii)-(v); it is slightly more difficult to see that (ii) can be used to
construct a very effective polynomial algorithm. We actually design such an
algorithm for acyclic digraphs (as a pair of procedures illustrated by an exam-
ple) just after Proposition 4.5.3. The criterion (iii) also provides the following
characterization of line digraphs in terms of forbidden induced subdigraphs.
Its proof is left as Exercise 4.5.

Corollary 4.5.2 A directed pseudograph D is a line digraph if and only if
D does not contain, as an induced subdigraph, any directed pseudograph that
can be obtained from one of the directed pseudographs in Figure 4.5 (dotted
arcs are missing) by adding zero or more arcs (other than the dotted ones).

Observe that the digraph of order 4 in Figure 4.5 corresponds to the
case of distinct vertices in Part (iii) of Theorem 4.5.1, and the two directed
pseudographs of order 2 correspond to the cases x = u 6= v = w and u = w 6=
v = x, respectively.

Clearly, Theorem 4.5.1 implies a set of characterizations of the line di-
graphs of digraphs (without parallel arcs and loops). This can be found in
[419]. Several characterizations of special classes of line digraphs and iterated
line digraphs can be found in surveys by Hemminger and Beineke [419] and
Prisner [614].

Many applications of line digraphs deal with the line digraphs of special
families of digraphs, for example regular digraphs, in general, and complete
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Figure 4.5 Forbidden directed pseudographs.

digraphs, in particular, see e.g., the papers [207] by Du, Lyuu and Hsu and
[236] by Fiol, Yebra and Alegre. In Section 4.7, we need the following charac-
terization, due to Harary and Norman, of the line digraphs of acyclic directed
multigraphs. It is a specialization of Parts (i) and (ii) of Theorem 4.5.1. The
proof is left as (an easy) Exercise 4.6.

Proposition 4.5.3 [403] A digraph D is the line digraph of an acyclic di-
rected multigraph if and only if D is acyclic and there exist two partitions
{Ai}i∈I and {Bi}i∈I of V (D) such that A(D) = ∪i∈IAi ×Bi. ut

We will now show how Proposition 4.5.3 can be used to recognize very
effectively whether a given acyclic digraph R is the line digraph of another
acyclic directed multigraph H, i.e., R = L(H). The two procedures, which
we construct and illustrate by Figure 4.8 can actually be used to recognize
and represent (that is, to construct H such that R = L(H)) arbitrary line
digraphs (see Theorem 4.5.1(i) and (ii)).

We first use Proposition 4.5.3 to check whether H above exists. The follow-
ing procedure Check-H can be applied. Initially, all arcs and vertices of R are
not marked. At every iteration, we choose an arc uv in R, which is not marked
yet, and mark all vertices in N+(u) by ‘B’, all vertices in N−(v) by ‘A’ and all
arcs in (N−(v), N+(u))R by ‘C’. If (N−(v), N+(u))R 6= N−(v)×N+(u) or if
we mark a certain vertex or arc twice (starting from another arc u′v′) by the
same symbol, then this procedure stops as there is no H such that L(H) = R.
(We call these conditions obstructions.) If this procedure is performed to
the end (i.e. every vertex and arc received a mark), then such H exists. It is
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not difficult to see, using Proposition 4.5.3, that Check-H correctly verifies
whether H exists or not.

To illustrate Check-H, consider the digraph R0 of Figure 4.8(a). Suppose
that we choose the arc ab first. Then ab is marked, at the first iteration,
together with the arcs af and ag. The vertex a receives ‘A’, the vertices
b, f, g get ‘B’. Suppose that fi is chosen at the second iteration. Then the
arcs fh, fi, gh, gi are all marked at this iteration. The vertices f, g receive
‘A’, the vertices h, i ‘B’. Suppose that bc is chosen at the third iteration.
We see that this arc is the only arc marked at this iteration. The vertex b
receives ‘A’, the vertex c ‘B’. Finally, say, ce is chosen. Then both cd and ce
are marked. The vertex c gets ‘A’, the vertices d, e receive ‘B’. Thus, all arcs
became marked with no obstruction happened. This means that there exists
a digraph H0 such that H0 = L(R0).

Suppose now that H does exist. The following procedure Build-H con-
structs such a directed multigraph H. By Proposition 4.5.3, if H exists,
then all arcs of R can be partitioned into arc sets of bipartite tournaments
with partite sets Ai and Bi and arc sets Ai × Bi. Let us denote these di-
graphs by T1, . . . , Tk. (They can be computed by Check-H if we mark every
(N−(v), N+(u))R not only by ‘C’ but also by a second mark ‘i’ starting from
1 and increasing by 1 at each iteration of the procedure.) We construct H
as follows. The vertex set of H is {t0, t1, . . . , tk, tk+1}. The arcs of H are
obtained by the following procedure. For each vertex v of R, we append one
arc av to H according to the rules below:

(a) If dR(v) = 0, then av := (t0, tk+1);
(b) If d+

R(v) > 0, d−R(v) = 0, then av := (t0, ti), where i is the index of Ti

such that v ∈ Ai;
(c) If d+

R(v) = 0, d−R(v) > 0, then av := (tj , tk+1), where j is the index of Tj

such that v ∈ Bj ;
(d) If d+

R(v) > 0, d−R(v) > 0, then av := (ti, tj), where i and j are the indices
of Ti and Tj such that v ∈ Aj ∩Bi.

It is straightforward to verify that R = L(H). Note that Build-H always
constructs H with only one vertex of in-degree zero and only one vertex of
out-degree zero.

To illustrate Build-H, consider R0 of Figure 4.8 once again. Earlier we
showed that there exists H0 such that R0 = L(H0). Now we will con-
struct H0. The previous procedure applied to verify the existence of H0

has implicitly constructed the digraphs T1 = ({a, b, f, g}, {ab, af, ag}), T2 =
({f, g, h, i}, {fh, fi, gh, gi}), T3 = ({b, c}, {bc}), T4 = ({c, d, e}, {cd, ce}).
Thus, H0 has vertices t0, . . . , t5. Considering the vertices of R0 in the lex-
icographic order, we obtain the following arcs of H0 (in this order):

t0t1, t1t3, t3t4, t4t5, t4t5, t1t2, t1t2, t2t5, t2t5.
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The directed multigraph H0 is depicted in Figure 4.8(c). It is easy to check
that R0 = L(H0).

The iterated line digraphs are defined recursively: L1(D) = L(D),
Lk+1(D) = L(Lk(D)), k ≥ 1. It is not difficult to prove by induction (Ex-
ercise 4.8) that Lk(D) is isomorphic to the digraph H, whose vertex set
consists of walks of D of length k and a vertex v0v1 . . . vk (which is a walk
in D) dominates the vertex v1v2 . . . vkvk+1 for every vk+1 ∈ V (D) such that
vkvk+1 ∈ A(D). New characterizations of line digraphs and iterated line di-
graphs are given by Liu and West [518].

The following proposition can be proved by induction on k ≥ 1 (Exercise
4.10).

Proposition 4.5.4 Let D be a strong d-regular digraph (d > 1) of order n
and diameter t. Then Lk(D) is of order dkn and diameter t + k. ut

4.6 The de Bruijn and Kautz Digraphs and their
Generalizations

The following problem is of importance in network design. Given positive in-
tegers n and d, construct a digraph D of order n and maximum out-degree at
most d such that diam(D) is as small as possible and the vertex-strong con-
nectivity κ(D) is as large as possible. So we have a 2-objective optimization
problem. For such a problem, in general, no solution can maximize/minimize
both objective functions. However, for this specific problem, there are solu-
tions, which (almost) maximize/minimize both objective functions. The aim
of this section is to introduce these solutions, the de Bruijn and Kautz di-
graphs, as well as some of their generalizations. For more information on the
above classes of digraphs, the reader may consult the survey [204] by Du, Cao
and Hsu. For applications of these digraphs in design of parallel architectures
and large packet radio networks, see e.g. the papers [113] by Bermond and
Hell, [114] by Bermond and Peyrat and [649] by Samatan and Pradhan.

Let V be the set of vectors with t coordinates, t ≥ 2, each taken
from {0, 1, . . . , d − 1}, d ≥ 2. The de Bruijn digraph DB(d, t) is the di-
rected pseudograph with vertex set V such that (x1, x2, . . . , xt) dominates
(y1, y2, . . . , yt) if and only if x2 = y1, x3 = y2, . . . , xt = yt−1. See Figure
4.6 (a). Let DB(d, 1) be the complete digraph of order d with loop at every
vertex.

These directed pseudographs are named after de Bruijn who was the
first to consider them in [185]. Clearly, DB(d, t) has dt vertices and the
out-pseudodegree and in-pseudodegree of every vertex of DB(d, t) equal d.
This directed pseudograph has no parallel arcs and contains a loop at every
vertex for which all coordinates are the same. It is natural to call DB(d, t)
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Figure 4.6 (a) The de Bruijn digraph DB(2, 2); (b) The Kautz digraph DK(2, 2).

d-pseudoregular (recall that in the definition of semi-degrees we do not
count loops).

Since DB(d, t) has loops at some vertices, the vertex-strong connectivity
of DB(d, t) is at most d − 1 (indeed, the loops can be deleted without the
vertex-strong connectivity being changed). Imase, Soneoka and Okada [444]
proved that DB(d, t) is (d − 1)-strong, and moreover, for every pair x 6= y
of vertices there exist d− 1 internally disjoint (x, y)-paths of length at most
t + 1. To prove this result we will use the following two lemmas. The proof
of the first lemma, due to Fiol, Yebra and Alegre, is left as Exercise 4.11.

Lemma 4.6.1 [236] For t ≥ 2, DB(d, t) is the line digraph of DB(d, t− 1).
ut

Lemma 4.6.2 Let x, y be distinct vertices of DB(d, t) such that x→y. Then,
there are d−2 internally disjoint (x, y)-paths different from xy, each of length
at most t + 1.

Proof: Let x = (x1, x2, . . . , xt) and y = (x2, . . . , xt, yt). Consider the
walk Wk given by Wk = (x1, x2, . . . , xt), (x2, . . . , xt, k), (x3, . . . , xt, k, x2), . . . ,
(k, x2, . . . , xt), (x2, . . . , xt, yt), where k 6= x1, yt. For each k, every internal ver-
tex of Wk has coordinates forming the same multiset Mk = {x2, . . . , xt, k}.
Since for different k, the multisets Mk are different, the walks Wk are inter-
nally disjoint. Each of these walks is of length t + 1. Therefore, by Propo-
sition 1.4.1, DB(d, t) contains d − 2 internally disjoint (x, y)-paths Pk with
A(Pk) ⊆ A(Wk). Since k 6= x1, yt, we may form the paths Pk such that none
of them coincides with xy. ut

Theorem 4.6.3 [444] For every pair x, y of distinct vertices of DB(d, t),
there exist d − 1 internally disjoint (x, y)-paths, one of length at most t and
the others of length at most t + 1.
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Proof: By induction on t ≥ 1. Clearly, the claim holds for t = 1 since
DB(d, 1) contains, as spanning subdigraph,

↔
Kd. For t ≥ 2, by Lemma 4.6.1,

we have that
DB(d, t) = L(DB(d, t− 1)). (4.5)

Let x, y be a pair of distinct vertices in DB(d, t) and let ex, ey be the arcs
of DB(d, t− 1) corresponding to vertices x, y due to (4.5). Let u be the head
of ex and let v be the tail of ey.

If u 6= v, by the induction hypothesis, DB(d, t − 1) has d − 1 internally
disjoint (u, v)-paths, one of length at most t− 1 and the others of length at
most t. The arcs of these paths together with arcs ex and ey correspond to
d− 1 internally disjoint (x, y)-paths in DB(d, t), one of length at most t and
the others of length at most t + 1.

If u = v, we have x→y in DB(d, t − 1). It suffices to apply Lemma 4.6.2
to see that there are d− 1 internally disjoint (x, y)-paths in DB(d, t), one of
length one and the others of length at most t + 1. ut

By this theorem and Corollary 7.3.2, we conclude that κ(DB(d, t)) =
d− 1. From Theorem 4.6.3 and Proposition 2.4.3, we obtain immediately the
following simple, yet important property.

Proposition 4.6.4 The de Bruijn digraph DB(d, t) achieves the minimum
value t of diameter for directed pseudographs of order dt and maximum out-
degree at most d. ut

For t ≥ 2, the Kautz digraph DK(d, t) is obtained from DB(d + 1, t)
by deletion of all vertices of the form (x1, x2, . . . , xt) such that xi = xi+1

for some i. See Figure 4.6 (b). Define DK(d, 1) :=
↔
Kd+1. Clearly, DK(d, t)

has no loops and is a d-regular digraph. Since we have d + 1 choices for the
first coordinate of a vertex in DK(d, t) and d choices for each of the other
coordinates, the order of DK(d, t) is (d + 1)dt−1 = dt + dt−1. It is easy to see
that Proposition 4.6.4 holds for the Kautz digraphs as well.

The following lemmas are analogous to Lemmas 4.6.1 and 4.6.2. Their
proofs are left as Exercises 4.12 and 4.13.

Lemma 4.6.5 For t ≥ 2, the Kautz digraph DK(d, t) is the line digraph of
DK(d, t− 1). ut
Lemma 4.6.6 Let xy be an arc in DK(d, t). There are d− 1 internally dis-
joint (x, y)-paths different from xy, one of length at most t+2 and the others
of length at most t + 1. ut

The following result due to Du, Cao and Hsu [204] shows that the Kautz
digraphs are better, in a sense, than de Bruijn digraphs from the local vertex-
strong connectivity point of view. This theorem can be proved similarly to
Theorem 4.6.3 and is left as Exercise 4.14.
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Theorem 4.6.7 [204] Let x, y be distinct vertices of DK(d, t). Then there
are d internally disjoint (x, y)-paths in DK(d, t), one of length at most t, one
of length at most t + 2 and the others of length at most t + 1. ut

This theorem implies that DK(d, t) is d-strong.

The de Bruijn digraphs were generalized independently by Imase and
Itoh [441] and Reddy, Pradhan and Kuhl [624] in the following way. We
can transform every vector (x1, x2, . . . , xt) with coordinates from Zd =
{0, 1, . . . , d− 1} into an integer from Zdt = {0, 1, . . . , dt − 1} using the poly-
nomial P (x1, x2, . . . , xt) = x1d

t−1 + x2d
t−2 + . . . + xt. It is easy to see that

this polynomial provides a bijection from Zt
d to Zdt . Moreover, for i, j ∈ Zdt ,

i→j in DB(d, t) if and only if j ≡ di + k (mod dt) for some k ∈ Zd.
Let d, n be two natural numbers such that d < n. The generalized de

Bruijn digraph DG(d, n) is a directed pseudograph with vertex set Zn and
arc set

{(i, di + k (mod n) ) : i, k ∈ Zd}.
For example, V (DG(2, 5)) = {0, 1, 2, 3, 4} and A(DG(2, 5)) = {(0, 0), (0, 1),
(1, 2), (1, 3), (2, 4), (2, 0), (3, 1), (3, 2), (4, 3), (4, 4)}.

Clearly, DG(d, n) is d-pseudoregular. It is not difficult to show that
diam(DG(d, n)) ≤ dlogd ne. By Proposition 2.4.3, a digraph of maximum out-
degree at most d ≥ 2 and order n has a diameter at least blogd n(d− 1) + 1c.
Thus, the generalized de Bruijn digraphs are of optimal or almost optimal
diameter. It was proved, by Imase, Soneoka and Okada [443], that DG(d, n)
is (d− 1)-strong. It follows from these results that the generalized de Bruijn
digraphs have almost minimum diameter and almost maximum vertex-strong
connectivity.

The Kautz digraphs were generalized by Imase and Itoh [442]. Let n, d be
two natural numbers such that d < n. The Imase-Itoh digraph DI(d, n) is the
digraph with vertex set Zn such that i→j if and only if j ≡ −d(i+1)+k (mod
n) for some k ∈ Zd. It has been shown (for a brief account, see the paper
[204]) by Du, Cao and Hsu, that DI(d, n) are of (almost) optimal diameter
and vertex-strong connectivity.

Du, Hsu and Hwang [206] suggested a concept of digraphs extending both
generalized the de Bruijn digraphs and the Imase-Ito digraphs. Let d, n be
two natural numbers such that d < n. Given q ∈ Zn − {0} and r ∈ Zn,
consecutive-d digraph D(d, n, q, r) is the directed pseudograph with vertex
set Zn such that i→j if and only if j ≡ qi + r + k (mod n) for some k ∈ Zd.
Several results on diameter, vertex- and arc-strong connectivity and other
properties of consecutive-d digraphs are given in [204]. In Section 5.11, we
provide results on hamiltonicity of consecutive-d digraphs.
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4.7 Series-Parallel Digraphs

In this section we study vertex series-parallel digraphs and arc series-parallel
directed multigraphs. Vertex series-parallel digraphs were introduced by
Lawler [510], and Monma and Sidney [568] as a model for scheduling prob-
lems. While vertex series-parallel digraphs continue to play an important role
for the design of efficient algorithms in scheduling and sequencing problems,
they have been extensively studied in their own right as well as in relations
to other optimization problems (cf. the papers [36] by Baffi and Petreschi,
[116] by Bertolazzi, Cohen, Di Battista, Tamassia and Tollis, [633] by Rendl
and [682] by Steiner). Arc series-parallel directed multigraphs were intro-
duced even earlier (than vertex series-parallel digraphs) by Duffin [209] as a
mathematical model of electrical networks.

For an acyclic digraph D, let FD (ID) be the set of vertices of D of
out-degree (in-degree) zero. To define vertex series-parallel digraphs, we first
introduce minimal vertex series-parallel (MVSP) digraphs recursively.

The digraph of order one with no arc is an MVSP digraph. If D = (V, A),
H = (U,B) is a pair of MVSP digraphs (U ∩ V = ∅), so are the acyclic
digraphs constructed by each of the following operations (see Figure 4.7):

(a) Parallel composition: P = (V ∪ U,A ∪B);
(b) Series composition: S = (V ∪ U,A ∪B ∪ (FD × IH)).

It is interesting to note that we can embed every MVSP digraph D into
the Cartesian plane such that if vertices u, v have coordinates (xu, yu) and
(xv, yv), respectively, then there is a (u, v)-path in D if and only if xu ≤ xv

and yu ≤ yv. The proof of this non-difficult fact is given in the paper [726]
by Valdes, Tarjan, and Lawler; see Exercise 4.15. See also Figure 4.9.

An acyclic digraph D is a vertex series-parallel (VSP) digraph if the
transitive reduction of D is an MVSP digraph (see Subsection 4.3 for the
definition of the transitive reduction). See Figure 4.8.

The following class of acyclic directed multigraphs, arc series-parallel
(ASP) directed multigraphs, is related to VSP digraphs. The digraph ~P2

is an ASP directed multigraph. If D1, D2 is a pair of ASP directed multi-
graphs with V (D1) ∩ V (D2) = ∅, then so are acyclic directed multigraphs
constructed by each of the following operations (see Figure 4.10):

(a) Two-terminal parallel composition: Choose a vertex ui of out-degree
zero in Di and a vertex vi of in-degree zero in Di for i = 1, 2. Identify u1

with u2 and v1 with v2;
(b) Two-terminal series composition: Choose u ∈ FD1 and v ∈ ID2 and

identify u with v.
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Figure 4.7 (De)construction of an MVSP digraph R0 by series and parallel
(de)compositions.

We refer the reader to the book [97] by Battista, Eades, Tamassia and
Tollis for several algorithms for drawing graphs nicely, in particular drawing
of ASP digraphs.

The next result shows a relation between the classes of digraphs intro-
duced above.
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Figure 4.8 Series-parallel directed multigraphs: (a) an MVSP digraph R0, (b) a
VSP digraph R1, (c) an AVSP directed multigraph H0.
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Figure 4.9 The MVSP digraph R0 of Figure 4.7 embedded into the Cartesian
plane such that for every (u, v)-path in R0 we have xu ≤ xv and yu ≤ yv (and vice
versa).

Theorem 4.7.1 An acyclic directed multigraph D with a unique vertex of
out-degree zero and a unique vertex of in-degree zero is ASP if and only if
L(D) is an MVSP digraph.

Proof: This can be proved easily by induction on |A(D)| using the following
two facts:

(i) L(~P2) = ~P1, which is an MVSP digraph;
(ii) The line digraph of the two-terminal series (parallel) composition of D1

and D2 is the series (parallel) composition of L(D1) and L(D2). ut
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Figure 4.10 (De)construction of an ASP directed multigraph H0 by two-terminal
series and parallel (de)compositions.

It is easy to check that L(H0) = R0 for directed multigraphs H0 and R0

depicted in Figure 4.8. The following operations in a directed multigraph D
are called reductions:

(a) Series reduction: Replace a path uvw, where d+
D(v) = d−D(v) = 1 by

the arc uw;
(b) Parallel reduction: Replace a pair of parallel arcs from u to v by just

one arc from u to v.

The following proposition due to Duffin (see also the paper [726] by
Valdes, Lawler and Tarjan) gives a characterization of ASP directed multi-
graphs. Its proof is left as Exercise 4.16.

Proposition 4.7.2 [209] A directed multigraph is ASP if and only if it can
be reduced to ~P2 by a sequence of series and parallel reductions. ut

The reader is advised to apply a sequence of series and parallel reductions
to the directed multigraph H0 of Figure 4.8 to obtain a digraph isomorphic to
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~P2. ¿From the algorithmic point of view, it is important that every sequence
of series and parallel reductions transforms a directed multigraph to the same
digraph. Indeed, this implies an obvious polynomial algorithm to verify if a
given directed multigraph is ASP. The proof of the following result, due to
Harary, Krarup and Schwenk, is left as Exercise 4.17.

Proposition 4.7.3 [401] For every acyclic directed multigraph D, the result
of application of series and parallel reductions until one can apply such re-
ductions is a unique digraph H. ut

In [726], Valdes, Tarjan and Lawler showed how to construct a linear-
time algorithm to recognize ASP directed multigraphs, which is based on
Propositions 4.7.2 and 4.7.3. They also presented a more complicated linear-
time algorithm to recognize VSP digraphs. Since we are limited in space,
we will not discuss the details of the linear-time algorithms. Instead, we
will consider the following simplified polynomial algorithm to recognize VSP
digraphs.

VSP recognition algorithm:
Input: An acyclic digraph D.
Output: YES if D is VSP and NO, otherwise.

1. Compute the transitive reduction R of D.
2. Try to compute an acyclic directed multigraph H with |IH | = |FH | = 1

such that L(H) = R. If there is no such H, then output NO.
3. Verify whether H is an ASP directed multigraph. If it is so, then YES,

otherwise, NO.

We prove first the correctness of this algorithm. If the output is YES,
then, by Theorem 4.7.1, R is MVSP and thus D is VSP. If H is Step 2 is not
found, then, by Theorem 4.7.1, R is not MVSP implying that D is not VSP.
If H is not ASP, then R is not MVSP by the same theorem.

Now we prove that the algorithm is polynomial. Step 1 can be performed
in polynomial time by Proposition 4.3.5. Step 2 can be implemented using
Procedure Build-H described in the end of Section 4.5. This procedure implies
that if there is an H such that L(H) = R, then there is such an H with
additional property that |IH | = |FH | = 1. The procedure is polynomial.
Finally, Step 3 is polynomial by the remark after Proposition 4.7.2.

4.8 Quasi-Transitive Digraphs

Quasi-transitive digraphs were introduced in Section 1.8. The aim of this
section is to derive a recursive characterization of quasi-transitive digraphs
which allows one to show that a number of problems for quasi-transitive
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digraphs including the longest path and cycle problems are polynomial time
solvable (see Theorem 5.10.2). The characterization implies that every quasi-
transitive digraph is totally Ψ -decomposable, where Ψ is the union of all
transitive digraphs and all extended semicomplete digraphs. Our presentation
is based on [79].

Proposition 4.8.1 Let D be a quasi-transitive digraph. Suppose that P =
x1x2 . . . xk is a minimal (x1, xk)-path. Then the subdigraph induced by V (P )
is a semicomplete digraph and xj→xi for every 2 ≤ i + 1 < j ≤ k, unless
k = 4, in which case the arc between x1 and xk may be absent.

Proof: The cases k = 2, 3, 4, 5 are easily verified. As an example, let us
consider the case k = 5. If xi and xj are adjacent and 2 ≤ i + 1 < j ≤ 5,
then xj→xi since P is minimal. Since D is quasi-transitive, xi and xi+2

are adjacent for i = 1, 2, 3. This and the minimality of P imply that
x3→x1, x4→x2 and x5→x3. From these arcs and the minimality of P we
conclude that x5→x1. Now the arcs x4x5 and x5x1 imply that x4→x1. Sim-
ilarly, x5→x1→x2 implies x5→x2.

The proof for the case k ≥ 6 is by induction on k with the case k = 5 as the
basis. By induction, each of D〈{x1, x2, . . . , xk−1}〉 and D〈{x2, x3, . . . , xk}〉 is
a semicomplete digraph and xj→xi for any 1 < j − i ≤ k − 2. Hence x3

dominates x1 and xk dominates x3 and the minimality of P implies that xk

dominates x1. ut
Corollary 4.8.2 If a quasi-transitive digraph D has an (x, y)-path but x does
not dominate y, then either y→x, or there exist vertices u, v ∈ V (D)−{x, y}
such that x→u→v→y and y→u→v→x.

Proof: This is easy to deduce by considering a minimal (x, y)-path and
applying Proposition 4.8.1. ut
Lemma 4.8.3 Suppose that A and B are distinct strong components of a
quasi-transitive digraph D with at least one arc from A to B. Then A7→B.

Proof: Suppose A and B are distinct strong components such that there
exists an arc from A to B. Then for every choice of x ∈ A and y ∈ B there
exists a path from x to y in D. Since A and B are distinct strong components,
none of the alternatives in Corollary 4.8.2 can hold and hence x→y. ut
Lemma 4.8.4 [79] Let D be a strong quasi-transitive digraph on at least two
vertices. Then the following holds:

(a) UG(D) is disconnected;
(b) If S and S′ are two subdigraphs of D such that UG(S) and UG(S′) are

distinct connected components of UG(D), then either S 7→S′ or S′ 7→S,
or both S→S′ and S′→S in which case |V (S)| = |V (S′)| = 1.
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Proof: The statement (b) can be easily verified from the definition of a
quasi-transitive digraph and the fact that S and S′ are completely adjacent
in D (Exercise 4.18). We prove (a) by induction on |V (D)|. Statement (a) is
trivially true when |V (D)| = 2 or 3. Assume that it holds when |V (D)| < n
where n > 3.

Suppose that there is a vertex z such that D−z is not strong. Then there
is an arc from (to) every terminal (initial) component of D − z to (from)
z. Since D is quasi-transitive, the last fact and Lemma 4.8.3 imply that
X→Y for every initial (terminal) strong component X (Y ) of D− z. Similar
arguments show that each strong component of D− z either dominates some
terminal component or is dominated by some initial component of D − z
(intermediate strong components satisfy both). These facts imply that z is
adjacent to every vertex in D − z. Therefore, UG(D) contains a component
consisting of the vertex z, implying that UG(D) is disconnected and (a)
follows.

Assume that there is a vertex v such that D − v is strong. Since D is
strong, D contains an arc vw from v to D − v. By induction, UG(D − v) is
not connected. Let connected components S and S′ of UG(D − v) be chosen
such that w ∈ S, S 7→S′ in D (here we use (b) and the fact that D − v is
strong). Then v is completely adjacent to S′ in D (as v→w). Hence UG(S′)
is a connected component of UG(D) and the proof is complete. ut

The following theorem completely characterizes quasi-transitive digraphs
in recursive sense (see also Figure 4.11).

Theorem 4.8.5 (Bang-Jensen and Huang) [79] Let D be a digraph
which is quasi-transitive.

(a) If D is not strong, then there exist a transitive oriented graph T with ver-
tices {u1, u2, . . . , ut} and strong quasi-transitive digraphs H1,H2, . . . , Ht

such that D = T [H1,H2, . . . ,Ht], where Hi is substituted for ui, i =
1, 2, . . . , t.

(b) If D is strong, then there exists a strong semicomplete digraph S with
vertices {v1, v2, . . . , vs} and quasi-transitive digraphs Q1, Q2, . . . , Qs such
that Qi is either a vertex or is non-strong and D = S[Q1, Q2, . . . , Qs],
where Qi is substituted for vi, i = 1, 2, . . . , s.

Proof: Suppose that D is not strong and let H1,H2, . . . ,Ht be the strong
components of D. According to Lemma 4.8.3, if there is an arc between
Hi and Hj , then either Hi 7→Hj or Hj 7→Hi. Now if Hi 7→Hj 7→Hk then, by
quasi-transitivity, Hi 7→Hk. So by contracting each Hi to a vertex hi, we get
a transitive oriented graph T with vertices h1, h2, . . . , ht. This shows that
D = T [H1,H2, . . . , Ht].

Suppose now that D is strong. Let Q1, Q2, . . . , Qs be the subdigraphs of
D such that each UG(Qi) is a connected component of UG(D). According
to Lemma 4.8.4(a), each Qi is either non-strong or just a single vertex. By
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Figure 4.11 A decomposition of a non-strong quasi-transitive digraph. Big arcs
between different boxed sets indicate that there is a complete domination in the
direction shown.

Lemma 4.8.4(b) we obtain a strong semicomplete digraph S if each Qi is
contracted to a vertex. This shows that D = S[Q1, Q2, . . . , Qs]. ut

4.9 The Path-Merging Property and Path-Mergeable
Digraphs

A digraph D is path-mergeable, if for any choice of vertices x, y ∈ V (D)
and any pair of internally disjoint (x, y)-paths P, Q, there exists an (x, y)-path
R in D, such that V (R) = V (P )∪V (Q). We will see, in several places of this
book, that the notion of a path-mergeable digraph is very useful for design
of algorithms and proofs of theorems. This makes it worth while studying
path-mergeable digraphs. The results presented in this section are adapted
from [50], where the study of path-mergeable digraphs was initiated by Bang-
Jensen.

We prove a characterization of path-mergeable digraphs, which implies
that path-mergeable digraphs can be recognized efficiently.

Theorem 4.9.1 A digraph D is path-mergeable if and only if for every
pair of distinct vertices x, y ∈ V (D) and every pair P = xx1 . . . xry,
P ′ = xy1 . . . ysy, r, s ≥ 1 of internally disjoint (x, y)-paths in D, either there
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x y

u1 u2 u3 u5 u6

v1 v2

u4

v3 v4 v5 v6

Figure 4.12 A digraph which is path-mergeable. The fat arcs indicate the path
xu1u2v1v2v3u3u4u5v4v5v6u6y from x to y which is obtained by merging the two
(x, y)-paths xu1u2u3u4u5u6y and xv1v2v3v4v5v6y.

exists an i ∈ {1, . . . , r}, such that xi→y1, or there exists a j ∈ {1, . . . , s},
such that yj→x1.

Proof: We prove ‘only if’ by induction on r + s. It is obvious for r = s =
1, so suppose that r + s ≥ 3. If there is no arc between {x1, . . . , xr} and
{y1, . . . , ys}, then clearly P, P ′ cannot be merged into one path. Hence we
may assume without loss of generality that there is an arc xiyj for some
i, j, 1 ≤ i ≤ r, 1 ≤ j ≤ s. If j = 1 then the claim follows. Otherwise apply
induction to the paths P [x, xi]yj , xP ′[y1, yj ].

The proof of ‘if’ is left to the reader. It is similar to the proof of Proposition
4.9.3 below. ut

The proof of the following result is left as Exercise 4.23.

Corollary 4.9.2 Path-mergeable digraphs can be recognized in polynomial
time. ut

The next result shows that, if a digraph is path-mergeable, then the merg-
ing of paths can always be done in a particularly nice way.

Proposition 4.9.3 Let D be a digraph which is path-mergeable and let P =
xx1 . . . xry, P ′ = xy1 . . . ysy, r, s ≥ 0 be internally disjoint (x, y)-paths in
D. The paths P and P ′ can be merged into one (x, y)-path P ∗ such that
vertices from P (respectively, P ′) remain in the same order as on that path.
Furthermore the merging can be done in at most 2(r + s) steps.

Proof: We prove the result by induction on r + s. It is obvious if r = 0 or
s = 0, so suppose that r, s ≥ 1. By Theorem 4.9.1 there exists an i such that
either xi→y1 or yi→x1. By scanning both paths forward one arc at a time, we
can find i in at most 2i steps; suppose without loss of generality xi→y1. By
applying the induction hypothesis to the paths P [xi, xr]y and xiP

′[y1, ys]y,
we see that we can merge them into a single path Q in the required order-
preserving way in at most 2(r+s−i) steps. The required path P ∗ is obtained
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by concatenating the paths xP [x1, xi] and Q, and we have found it in at most
2(r + s) steps, as required. ut

4.10 Locally In-Semicomplete and Locally
Out-Semicomplete Digraphs

A digraph D is locally in-semicomplete (locally out-semicomplete) if,
for every vertex x of D, the in-neighbours (out-neighbours) of x induce a semi-
complete digraph. Clearly, the converse of a locally in-semicomplete digraph
is a locally out-semicomplete digraph and vice versa. A digraph D is locally
semicomplete if it is both locally in- and locally out-semicomplete. See
Figure 4.13. Clearly every semicomplete digraph is locally semicomplete. A
locally in-semicomplete digraph with no 2-cycle is a locally in-tournament
digraph. Similarly, one can define locally out-tournament digraphs and
locally tournament digraphs. For convenience, we will sometimes re-
fer to locally tournament digraphs as local tournaments and to locally
in-tournament (out-tournament) digraphs as local in-tournaments (local
out-tournaments).

(a) (b)

Figure 4.13 (a) A locally out-semicomplete digraph which is not locally in-
semicomplete; (b) A locally semicomplete digraph.

Proposition 4.10.1 by Bang-Jensen shows that locally in-semicomplete
and locally out-semicomplete digraphs form subclasses of the class of path-
mergeable digraphs. In particular, this means that every tournament is path-
mergeable. In many theorems and algorithms on tournaments this property
is of essential use. In some other cases, the very use of this property allows
one to simplify proofs of results on tournaments and their generalizations or
speed up algorithms on those digraphs.

Proposition 4.10.1 [50] Every locally in-semicomplete (out-semicomplete)
digraph is path-mergeable.

Proof: Let D be a locally out-semicomplete digraph and let P = y1y2 . . . yk,
Q = z1z2 . . . zt be a pair of internally disjoint (x, y)-paths (i.e., y1 = z1 = x
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and yk = zt = y). We show that there exists an (x, y)-path R in D, such that
V (R) = V (P ) ∪ V (Q). Our claim is trivially true when |A(P )|+ |A(Q)| = 3.
Assume now that |A(P )| + |A(Q)| ≥ 4. Since D is out-semicomplete, either
y2→z2 or z2→y2 (or both) and the claim follows from Theorem 4.9.1.

The proposition holds for locally in-semicomplete digraphs as they are
the converses of locally out-semicomplete digraphs. ut

The path-mergeability can be generalized in a natural way as follows. A di-
graph D is in-path-mergeable if, for every vertex y ∈ V (D) and every pair
P, Q of internally disjoint paths with common terminal vertex y, there is a
path R such that V (R) = V (P )∪V (Q), the path R terminates at y and starts
at a vertex which is the initial vertex of either P or Q (or, possibly, both).
Observe that, in this definition, the initial vertices of paths P and Q may coin-
cide. Therefore, every in-path-mergeable digraph is path-mergeable. However,
it is easy to see that not every path-mergeable digraph is in-path-mergeable
(see Exercise 4.19). A digraph D is out-path-mergeable if the converse of D
is in-path-mergeable. Clearly, every in-path-mergeable (out-path-mergeable)
digraph is locally in-semicomplete (locally out-semicomplete). The converse is
also true (hence this is another way of characterizing locally in-semicomplete
digraphs). The proof of Proposition 4.10.2 is left as Exercise 4.20.

Proposition 4.10.2 Every locally in-semicomplete (out-semicomplete, re-
spectively) digraph is in-path-mergeable (out-path-mergeable, respectively).

ut
Some simple, yet very useful, properties of locally in-semicomplete di-

graphs are described in the following results (in [81], by Bang-Jensen, Huang
and Prisner, these results were proved for locally tournament digraphs only,
so the statements below are their slight generalizations first stated by Bang-
Jensen and Gutin [65]). Observe that a locally out-semicomplete digraph,
being the converse of a locally in-semicomplete digraph, has similar proper-
ties (see Exercise 4.26). The claim of Theorem 4.10.4 is illustrated in Figure
4.14.

Lemma 4.10.3 Every connected locally in-semicomplete digraph D has an
out-branching.

Proof: By Proposition 1.6.1, it suffices to prove that D has only one ini-
tial strong component. Assume that D has a pair D1, D2 of initial strong
components (i.e. no arc enters D1 or D2). Let yi ∈ V (Di), i = 1, 2, and let
P = x1x2 . . . xs be a shortest path between V (D1) and V (D2) in the underly-
ing graph G of D. Since no arc enters D1 or D2, there is an index k ≤ s such
that x1x2 . . . xk−1 is a path in D, but xk→xk−1. Since D is in-semicomplete,
the vertices xk−2 and xk are adjacent. However, this contradicts the fact that
P is a shortest path between V (D1) and V (D2) in G. ut
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Theorem 4.10.4 Let D be a locally in-semicomplete digraph.

(i) Let A and B be distinct strong components of D. If a vertex a ∈ A
dominates some vertex in B, then a 7→B.

(ii) If D is connected, then SC(D) has an out-branching.

Proof: Let A and B be strong components of D for which there is an arc
(a, b) from A to B. Since B is strong, there is a (b′, b)-path in B for every
b′ ∈ V (B). By the definition of locally in-semicomplete digraphs and the fact
that there is no arc from B to A, we can conclude that a→b′. This proves (i).

Part (ii) follows from the fact that SC(D) is itself a locally in-tournament
digraph and Lemma 4.10.3. ut

Figure 4.14 The strong decomposition of a non-strong locally in-semicomplete
digraph. The big circles indicate strong components and a fat arc from a component
A to a component B between two components indicates that there is at least one
vertex a ∈ A such that a 7→B.

4.11 Locally Semicomplete Digraphs

Locally semicomplete digraphs were introduced in 1990 by Bang-Jensen [44].
As shown in several places in our book, this class of digraphs has many nice
properties in common with its proper subclass, semicomplete digraphs. The
main aim of this section is to obtain a classification of locally semicomplete


