

Figure 4.4 A digraph H and its line digraph $Q=L(H)$.
[419] by Beineke and Hemminger. The proof presented here is adapted from [419]. For an $n \times n$-matrix $M=\left[m_{i k}\right]$, a row i is orthogonal to a row j if $\sum_{k=1}^{n} m_{i k} m_{j k}=0$. One can give a similar definition of orthogonal columns.

Theorem 4.5.1 Let D be a directed pseudograph with vertex set $\{1,2, \ldots, n\}$ and with no parallel arcs and let $M=\left[m_{i j}\right]$ be its adjacency matrix (i.e., the $n \times n$-matrix such that $m_{i j}=1$, if $i j \in A(D)$, and $m_{i j}=0$, otherwise). Then the following assertions are equivalent:
(i) D is a line digraph;
(ii) there exist two partitions $\left\{A_{i}\right\}_{i \in I}$ and $\left\{B_{i}\right\}_{i \in I}$ of $V(D)$ such that $A(D)=$ $\cup_{i \in I} A_{i} \times B_{i}{ }^{4}$;
(iii) if $v w, u w$ and $u x$ are arcs of D, then so is $v x$;
(iv) any two rows of M are either identical or orthogonal;
(v) any two columns of M are either identical or orthogonal.

Proof: We show the following implications and equivalences: (i) \Leftrightarrow (ii), (ii) \Rightarrow (iii), (iii) \Rightarrow (iv), (iv) \Leftrightarrow (v), (iv) \Rightarrow (ii).
(i) \Rightarrow (ii). Let $D=L(H)$. For each $v_{i} \in V(H)$, let A_{i} and B_{i} be the sets of in-coming and out-going arcs at v_{i}, respectively. Then the arc set of the subdigraph of D induced by $A_{i} \cup B_{i}$ equals $A_{i} \times B_{i}$. If $a b \in A(D)$, then there is an i such that $a=v_{j} v_{i}$ and $b=v_{i} v_{k}$. Hence, $a b \in A_{i} \times B_{i}$. The result follows.
(ii) \Rightarrow (i). Let Q be the directed pseudograph with ordered pairs $\left(A_{i}, B_{i}\right)$ as vertices, and with $\left|A_{j} \cap B_{i}\right|$ arcs from $\left(A_{i}, B_{i}\right)$ to $\left(A_{j}, B_{j}\right)$ for each i and j (including $i=j$). Let $\sigma_{i j}$ be a bijection from $A_{j} \cap B_{i}$ to this set of arcs (from $\left(A_{i}, B_{i}\right)$ to $\left.\left(A_{j}, B_{j}\right)\right)$ of Q. Then the function σ defined on $V(D)$ by taking σ to be $\sigma_{i j}$ on $A_{j} \cap B_{i}$ is a well-defined function of $V(D)$ into $V(L(Q))$, since $\left\{A_{j} \cap B_{i}\right\}_{i, j \in I}$ is a partition of $V(D)$. Moreover, σ is a bijection since every $\sigma_{i j}$ is a bijection. Furthermore, it is not difficult to see that σ is an isomorphism from D to $L(Q)$ (this is left as Exercise 4.4).

[^0](ii) \Rightarrow (iii). If $v w, u w$ and $u x$ are arcs of D, then there exist i, j such that $\{u, v\} \subseteq A_{i}$ and $\{w, x\} \subseteq B_{j}$. Hence, $(v, x) \in A_{i} \times B_{j}$ and $v x \in D$.
(iii) \Rightarrow (iv). Assume that (iv) does no hold. This means that some rows, say i and j, are neither identical nor orthogonal. Then there exist k, h such that $m_{i k}=m_{j k}=1$ and $m_{i h}=1, m_{j h}=0$ (or vice versa). Hence, $i k, j k, i h$ are in $A(D)$ but $j h$ is not. This contradicts (iii).
(iv) $\Leftrightarrow(\mathrm{v})$. Both (iv) and (v) are equivalent to the statement:
$$
\text { for all } i, j, h, k \text {, if } m_{i h}=m_{i k}=m_{j k}=1, \text { then } m_{j h}=1
$$
(iv) \Rightarrow (ii). For each i and j with $m_{i j}=1$, let $A_{i j}=\left\{h: m_{h j}=1\right\}$ and $B_{i j}=\left\{k: m_{i k}=1\right\}$. Then, by (iv), $A_{i j}$ is the set of vertices in D whose row vectors in M are identical to the i th row vector, whereas $B_{i j}$ is the set of vertices in D whose column vectors in M are identical to the j th column vector (we use the previously proved fact that (iv) and (v) are equivalent). Thus, $A_{i j} \times B_{i j} \subseteq A(D)$, and moreover $A(D)=\cup\left\{A_{i j} \times B_{i j}: m_{i j}=1\right\}$. By the orthogonality condition, $A_{i j}$ and $A_{h k}$ are either equal or disjoint, as are $B_{i j}$ and $B_{h k}$. For zero row vector i in M, let $A_{i j}$ be the set of vertices whose row vector in M is the zero vector, and let $B_{i j}=\emptyset$. Doing the same with the zero column vectors of M completes the partition as in (ii).

The characterizations (ii)-(v) all imply polynomial algorithms to verify whether a given directed pseudograph is a line digraph. This fact is obvious regarding (iii)-(v); it is slightly more difficult to see that (ii) can be used to construct a very effective polynomial algorithm. We actually design such an algorithm for acyclic digraphs (as a pair of procedures illustrated by an example) just after Proposition 4.5.3. The criterion (iii) also provides the following characterization of line digraphs in terms of forbidden induced subdigraphs. Its proof is left as Exercise 4.5.

Corollary 4.5.2 A directed pseudograph D is a line digraph if and only if D does not contain, as an induced subdigraph, any directed pseudograph that can be obtained from one of the directed pseudographs in Figure 4.5 (dotted arcs are missing) by adding zero or more arcs (other than the dotted ones).

Observe that the digraph of order 4 in Figure 4.5 corresponds to the case of distinct vertices in Part (iii) of Theorem 4.5.1, and the two directed pseudographs of order 2 correspond to the cases $x=u \neq v=w$ and $u=w \neq$ $v=x$, respectively.

Clearly, Theorem 4.5 .1 implies a set of characterizations of the line digraphs of digraphs (without parallel arcs and loops). This can be found in [419]. Several characterizations of special classes of line digraphs and iterated line digraphs can be found in surveys by Hemminger and Beineke [419] and Prisner [614].

Many applications of line digraphs deal with the line digraphs of special families of digraphs, for example regular digraphs, in general, and complete

Figure 4.5 Forbidden directed pseudographs.
digraphs, in particular, see e.g., the papers [207] by Du, Lyuu and Hsu and [236] by Fiol, Yebra and Alegre. In Section 4.7, we need the following characterization, due to Harary and Norman, of the line digraphs of acyclic directed multigraphs. It is a specialization of Parts (i) and (ii) of Theorem 4.5.1. The proof is left as (an easy) Exercise 4.6.

Proposition 4.5.3 [403] A digraph D is the line digraph of an acyclic directed multigraph if and only if D is acyclic and there exist two partitions $\left\{A_{i}\right\}_{i \in I}$ and $\left\{B_{i}\right\}_{i \in I}$ of $V(D)$ such that $A(D)=\cup_{i \in I} A_{i} \times B_{i}$.

We will now show how Proposition 4.5 .3 can be used to recognize very effectively whether a given acyclic digraph R is the line digraph of another acyclic directed multigraph H, i.e., $R=L(H)$. The two procedures, which we construct and illustrate by Figure 4.8 can actually be used to recognize and represent (that is, to construct H such that $R=L(H)$) arbitrary line digraphs (see Theorem 4.5.1(i) and (ii)).

We first use Proposition 4.5.3 to check whether H above exists. The following procedure Check-H can be applied. Initially, all arcs and vertices of R are not marked. At every iteration, we choose an arc $u v$ in R, which is not marked yet, and mark all vertices in $N^{+}(u)$ by ' B^{\prime}, all vertices in $N^{-}(v)$ by 'A' and all arcs in $\left(N^{-}(v), N^{+}(u)\right)_{R}$ by 'C'. If $\left(N^{-}(v), N^{+}(u)\right)_{R} \neq N^{-}(v) \times N^{+}(u)$ or if we mark a certain vertex or arc twice (starting from another arc $u^{\prime} v^{\prime}$) by the same symbol, then this procedure stops as there is no H such that $L(H)=R$. (We call these conditions obstructions.) If this procedure is performed to the end (i.e. every vertex and arc received a mark), then such H exists. It is
not difficult to see, using Proposition 4.5.3, that Check-H correctly verifies whether H exists or not.

To illustrate Check-H, consider the digraph R_{0} of Figure 4.8(a). Suppose that we choose the arc $a b$ first. Then $a b$ is marked, at the first iteration, together with the arcs $a f$ and $a g$. The vertex a receives 'A', the vertices b, f, g get 'B'. Suppose that $f i$ is chosen at the second iteration. Then the $\operatorname{arcs} f h, f i, g h, g i$ are all marked at this iteration. The vertices f, g receive 'A', the vertices h, i ' B '. Suppose that $b c$ is chosen at the third iteration. We see that this arc is the only arc marked at this iteration. The vertex b receives 'A', the vertex c ' B '. Finally, say, $c e$ is chosen. Then both $c d$ and $c e$ are marked. The vertex c gets 'A', the vertices d, e receive ' B '. Thus, all arcs became marked with no obstruction happened. This means that there exists a digraph H_{0} such that $H_{0}=L\left(R_{0}\right)$.

Suppose now that H does exist. The following procedure Build-H constructs such a directed multigraph H. By Proposition 4.5.3, if H exists, then all arcs of R can be partitioned into arc sets of bipartite tournaments with partite sets A_{i} and B_{i} and arc sets $A_{i} \times B_{i}$. Let us denote these digraphs by T_{1}, \ldots, T_{k}. (They can be computed by Check-H if we mark every $\left(N^{-}(v), N^{+}(u)\right)_{R}$ not only by ' C ' but also by a second mark ' i ' starting from 1 and increasing by 1 at each iteration of the procedure.) We construct H as follows. The vertex set of H is $\left\{t_{0}, t_{1}, \ldots, t_{k}, t_{k+1}\right\}$. The arcs of H are obtained by the following procedure. For each vertex v of R, we append one $\operatorname{arc} a_{v}$ to H according to the rules below:
(a) If $d_{R}(v)=0$, then $a_{v}:=\left(t_{0}, t_{k+1}\right)$;
(b) If $d_{R}^{+}(v)>0, d_{R}^{-}(v)=0$, then $a_{v}:=\left(t_{0}, t_{i}\right)$, where i is the index of T_{i} such that $v \in A_{i}$;
(c) If $d_{R}^{+}(v)=0, d_{R}^{-}(v)>0$, then $a_{v}:=\left(t_{j}, t_{k+1}\right)$, where j is the index of T_{j} such that $v \in B_{j}$;
(d) If $d_{R}^{+}(v)>0, d_{R}^{-}(v)>0$, then $a_{v}:=\left(t_{i}, t_{j}\right)$, where i and j are the indices of T_{i} and T_{j} such that $v \in A_{j} \cap B_{i}$.

It is straightforward to verify that $R=L(H)$. Note that Build-H always constructs H with only one vertex of in-degree zero and only one vertex of out-degree zero.

To illustrate Build-H, consider R_{0} of Figure 4.8 once again. Earlier we showed that there exists H_{0} such that $R_{0}=L\left(H_{0}\right)$. Now we will construct H_{0}. The previous procedure applied to verify the existence of H_{0} has implicitly constructed the digraphs $T_{1}=(\{a, b, f, g\},\{a b, a f, a g\}), T_{2}=$ $(\{f, g, h, i\},\{f h, f i, g h, g i\}), T_{3}=(\{b, c\},\{b c\}), T_{4}=(\{c, d, e\},\{c d, c e\})$. Thus, H_{0} has vertices t_{0}, \ldots, t_{5}. Considering the vertices of R_{0} in the lexicographic order, we obtain the following arcs of H_{0} (in this order):

$$
t_{0} t_{1}, t_{1} t_{3}, t_{3} t_{4}, t_{4} t_{5}, t_{4} t_{5}, t_{1} t_{2}, t_{1} t_{2}, t_{2} t_{5}, t_{2} t_{5}
$$

The directed multigraph H_{0} is depicted in Figure 4.8(c). It is easy to check that $R_{0}=L\left(H_{0}\right)$.

The iterated line digraphs are defined recursively: $L^{1}(D)=L(D)$, $L^{k+1}(D)=L\left(L^{k}(D)\right), k \geq 1$. It is not difficult to prove by induction (Exercise 4.8) that $L^{k}(D)$ is isomorphic to the digraph H, whose vertex set consists of walks of D of length k and a vertex $v_{0} v_{1} \ldots v_{k}$ (which is a walk in D) dominates the vertex $v_{1} v_{2} \ldots v_{k} v_{k+1}$ for every $v_{k+1} \in V(D)$ such that $v_{k} v_{k+1} \in A(D)$. New characterizations of line digraphs and iterated line digraphs are given by Liu and West [518].

The following proposition can be proved by induction on $k \geq 1$ (Exercise 4.10).

Proposition 4.5.4 Let D be a strong d-regular digraph ($d>1$) of order n and diameter t. Then $L^{k}(D)$ is of order $d^{k} n$ and diameter $t+k$.

4.6 The de Bruijn and Kautz Digraphs and their Generalizations

The following problem is of importance in network design. Given positive integers n and d, construct a digraph D of order n and maximum out-degree at most d such that $\operatorname{diam}(D)$ is as small as possible and the vertex-strong connectivity $\kappa(D)$ is as large as possible. So we have a 2-objective optimization problem. For such a problem, in general, no solution can maximize/minimize both objective functions. However, for this specific problem, there are solutions, which (almost) maximize/minimize both objective functions. The aim of this section is to introduce these solutions, the de Bruijn and Kautz digraphs, as well as some of their generalizations. For more information on the above classes of digraphs, the reader may consult the survey [204] by Du, Cao and Hsu. For applications of these digraphs in design of parallel architectures and large packet radio networks, see e.g. the papers [113] by Bermond and Hell, [114] by Bermond and Peyrat and [649] by Samatan and Pradhan.

Let V be the set of vectors with t coordinates, $t \geq 2$, each taken from $\{0,1, \ldots, d-1\}, d \geq 2$. The de Bruijn digraph $\overline{D_{B}}(d, t)$ is the directed pseudograph with vertex set V such that $\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ dominates $\left(y_{1}, y_{2}, \ldots, y_{t}\right)$ if and only if $x_{2}=y_{1}, x_{3}=y_{2}, \ldots, x_{t}=y_{t-1}$. See Figure 4.6 (a). Let $D_{B}(d, 1)$ be the complete digraph of order d with loop at every vertex.

These directed pseudographs are named after de Bruijn who was the first to consider them in [185]. Clearly, $D_{B}(d, t)$ has d^{t} vertices and the out-pseudodegree and in-pseudodegree of every vertex of $D_{B}(d, t)$ equal d. This directed pseudograph has no parallel arcs and contains a loop at every vertex for which all coordinates are the same. It is natural to call $D_{B}(d, t)$

(a)

(b)

Figure 4.6 (a) The de Bruijn digraph $D_{B}(2,2)$; (b) The Kautz digraph $D_{K}(2,2)$.
\boldsymbol{d}-pseudoregular (recall that in the definition of semi-degrees we do not count loops).

Since $D_{B}(d, t)$ has loops at some vertices, the vertex-strong connectivity of $D_{B}(d, t)$ is at most $d-1$ (indeed, the loops can be deleted without the vertex-strong connectivity being changed). Imase, Soneoka and Okada [444] proved that $D_{B}(d, t)$ is $(d-1)$-strong, and moreover, for every pair $x \neq y$ of vertices there exist $d-1$ internally disjoint (x, y)-paths of length at most $t+1$. To prove this result we will use the following two lemmas. The proof of the first lemma, due to Fiol, Yebra and Alegre, is left as Exercise 4.11.

Lemma 4.6.1 [236] For $t \geq 2, D_{B}(d, t)$ is the line digraph of $D_{B}(d, t-1)$.

Lemma 4.6.2 Let x, y be distinct vertices of $D_{B}(d, t)$ such that $x \rightarrow y$. Then, there are $d-2$ internally disjoint (x, y)-paths different from $x y$, each of length at most $t+1$.

Proof: Let $x=\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ and $y=\left(x_{2}, \ldots, x_{t}, y_{t}\right)$. Consider the walk W_{k} given by $W_{k}=\left(x_{1}, x_{2}, \ldots, x_{t}\right),\left(x_{2}, \ldots, x_{t}, k\right),\left(x_{3}, \ldots, x_{t}, k, x_{2}\right), \ldots$, $\left(k, x_{2}, \ldots, x_{t}\right),\left(x_{2}, \ldots, x_{t}, y_{t}\right)$, where $k \neq x_{1}, y_{t}$. For each k, every internal vertex of W_{k} has coordinates forming the same multiset $M_{k}=\left\{x_{2}, \ldots, x_{t}, k\right\}$. Since for different k, the multisets M_{k} are different, the walks W_{k} are internally disjoint. Each of these walks is of length $t+1$. Therefore, by Proposition 1.4.1, $D_{B}(d, t)$ contains $d-2$ internally disjoint (x, y)-paths P_{k} with $A\left(P_{k}\right) \subseteq A\left(W_{k}\right)$. Since $k \neq x_{1}, y_{t}$, we may form the paths P_{k} such that none of them coincides with $x y$.

Theorem 4.6.3 [444] For every pair x, y of distinct vertices of $D_{B}(d, t)$, there exist $d-1$ internally disjoint (x, y)-paths, one of length at most t and the others of length at most $t+1$.

Proof: By induction on $t \geq 1$. Clearly, the claim holds for $t=1$ since $D_{B}(d, 1)$ contains, as spanning subdigraph, $\overleftrightarrow{K}_{d}$. For $t \geq 2$, by Lemma 4.6.1, we have that

$$
\begin{equation*}
D_{B}(d, t)=L\left(D_{B}(d, t-1)\right) . \tag{4.5}
\end{equation*}
$$

Let x, y be a pair of distinct vertices in $D_{B}(d, t)$ and let e_{x}, e_{y} be the arcs of $D_{B}(d, t-1)$ corresponding to vertices x, y due to (4.5). Let u be the head of e_{x} and let v be the tail of e_{y}.

If $u \neq v$, by the induction hypothesis, $D_{B}(d, t-1)$ has $d-1$ internally disjoint (u, v)-paths, one of length at most $t-1$ and the others of length at most t. The arcs of these paths together with arcs e_{x} and e_{y} correspond to $d-1$ internally disjoint (x, y)-paths in $D_{B}(d, t)$, one of length at most t and the others of length at most $t+1$.

If $u=v$, we have $x \rightarrow y$ in $D_{B}(d, t-1)$. It suffices to apply Lemma 4.6.2 to see that there are $d-1$ internally disjoint (x, y)-paths in $D_{B}(d, t)$, one of length one and the others of length at most $t+1$.

By this theorem and Corollary 7.3.2, we conclude that $\kappa\left(D_{B}(d, t)\right)=$ $d-1$. From Theorem 4.6.3 and Proposition 2.4.3, we obtain immediately the following simple, yet important property.

Proposition 4.6.4 The de Bruijn digraph $D_{B}(d, t)$ achieves the minimum value t of diameter for directed pseudographs of order d^{t} and maximum outdegree at most d.

For $t \geq 2$, the Kautz digraph $D_{K}(d, t)$ is obtained from $D_{B}(d+1, t)$ by deletion of all vertices of the form $\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ such that $x_{i}=x_{i+1}$ for some i. See Figure 4.6 (b). Define $D_{K}(d, 1):=\overleftrightarrow{K}_{d+1}$. Clearly, $D_{K}(d, t)$ has no loops and is a d-regular digraph. Since we have $d+1$ choices for the first coordinate of a vertex in $D_{K}(d, t)$ and d choices for each of the other coordinates, the order of $D_{K}(d, t)$ is $(d+1) d^{t-1}=d^{t}+d^{t-1}$. It is easy to see that Proposition 4.6.4 holds for the Kautz digraphs as well.

The following lemmas are analogous to Lemmas 4.6.1 and 4.6.2. Their proofs are left as Exercises 4.12 and 4.13.

Lemma 4.6.5 For $t \geq 2$, the Kautz digraph $D_{K}(d, t)$ is the line digraph of $D_{K}(d, t-1)$.

Lemma 4.6.6 Let $x y$ be an arc in $D_{K}(d, t)$. There are $d-1$ internally disjoint (x, y)-paths different from $x y$, one of length at most $t+2$ and the others of length at most $t+1$.

The following result due to Du , Cao and Hsu [204] shows that the Kautz digraphs are better, in a sense, than de Bruijn digraphs from the local vertexstrong connectivity point of view. This theorem can be proved similarly to Theorem 4.6.3 and is left as Exercise 4.14.

Theorem 4.6.7 [204] Let x, y be distinct vertices of $D_{K}(d, t)$. Then there are d internally disjoint (x, y)-paths in $D_{K}(d, t)$, one of length at most t, one of length at most $t+2$ and the others of length at most $t+1$.

This theorem implies that $D_{K}(d, t)$ is d-strong.
The de Bruijn digraphs were generalized independently by Imase and Itoh [441] and Reddy, Pradhan and Kuhl [624] in the following way. We can transform every vector $\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ with coordinates from $Z_{d}=$ $\{0,1, \ldots, d-1\}$ into an integer from $Z_{d^{t}}=\left\{0,1, \ldots, d^{t}-1\right\}$ using the polynomial $P\left(x_{1}, x_{2}, \ldots, x_{t}\right)=x_{1} d^{t-1}+x_{2} d^{t-2}+\ldots+x_{t}$. It is easy to see that this polynomial provides a bijection from Z_{d}^{t} to $Z_{d^{t}}$. Moreover, for $i, j \in Z_{d^{t}}$, $i \rightarrow j$ in $D_{B}(d, t)$ if and only if $j \equiv d i+k\left(\bmod d^{t}\right)$ for some $k \in Z_{d}$.

Let d, n be two natural numbers such that $d<n$. The generalized de Bruijn digraph $D_{G}(d, n)$ is a directed pseudograph with vertex set Z_{n} and arc set

$$
\left\{(i, d i+k(\bmod n)): i, k \in Z_{d}\right\} .
$$

For example, $V\left(D_{G}(2,5)\right)=\{0,1,2,3,4\}$ and $A\left(D_{G}(2,5)\right)=\{(0,0),(0,1)$, $(1,2),(1,3),(2,4),(2,0),(3,1),(3,2),(4,3),(4,4)\}$.

Clearly, $D_{G}(d, n)$ is d-pseudoregular. It is not difficult to show that $\operatorname{diam}\left(D_{G}(d, n)\right) \leq\left\lceil\log _{d} n\right\rceil$. By Proposition 2.4.3, a digraph of maximum outdegree at most $d \geq 2$ and order n has a diameter at least $\left\lfloor\log _{d} n(d-1)+1\right\rfloor$. Thus, the generalized de Bruijn digraphs are of optimal or almost optimal diameter. It was proved, by Imase, Soneoka and Okada [443], that $D_{G}(d, n)$ is $(d-1)$-strong. It follows from these results that the generalized de Bruijn digraphs have almost minimum diameter and almost maximum vertex-strong connectivity.

The Kautz digraphs were generalized by Imase and Itoh [442]. Let n, d be two natural numbers such that $d<n$. The Imase-Itoh digraph $D_{I}(d, n)$ is the digraph with vertex set Z_{n} such that $i \rightarrow j$ if and only if $j \equiv-d(i+1)+k(\bmod$ n) for some $k \in Z_{d}$. It has been shown (for a brief account, see the paper [204]) by Du, Cao and Hsu, that $D_{I}(d, n)$ are of (almost) optimal diameter and vertex-strong connectivity.

Du, Hsu and Hwang [206] suggested a concept of digraphs extending both generalized the de Bruijn digraphs and the Imase-Ito digraphs. Let d, n be two natural numbers such that $d<n$. Given $q \in Z_{n}-\{0\}$ and $r \in Z_{n}$, consecutive- \boldsymbol{d} digraph $D(d, n, q, r)$ is the directed pseudograph with vertex set Z_{n} such that $i \rightarrow j$ if and only if $j \equiv q i+r+k(\bmod n)$ for some $k \in Z_{d}$. Several results on diameter, vertex- and arc-strong connectivity and other properties of consecutive- d digraphs are given in [204]. In Section 5.11, we provide results on hamiltonicity of consecutive- d digraphs.

4.7 Series-Parallel Digraphs

In this section we study vertex series-parallel digraphs and arc series-parallel directed multigraphs. Vertex series-parallel digraphs were introduced by Lawler [510], and Monma and Sidney [568] as a model for scheduling problems. While vertex series-parallel digraphs continue to play an important role for the design of efficient algorithms in scheduling and sequencing problems, they have been extensively studied in their own right as well as in relations to other optimization problems (cf. the papers [36] by Baffi and Petreschi, [116] by Bertolazzi, Cohen, Di Battista, Tamassia and Tollis, [633] by Rendl and [682] by Steiner). Arc series-parallel directed multigraphs were introduced even earlier (than vertex series-parallel digraphs) by Duffin [209] as a mathematical model of electrical networks.

For an acyclic digraph D, let $F_{D}\left(I_{D}\right)$ be the set of vertices of D of out-degree (in-degree) zero. To define vertex series-parallel digraphs, we first introduce minimal vertex series-parallel (MVSP) digraphs recursively.

The digraph of order one with no arc is an MVSP digraph. If $D=(V, A)$, $H=(U, B)$ is a pair of MVSP digraphs $(U \cap V=\emptyset)$, so are the acyclic digraphs constructed by each of the following operations (see Figure 4.7):
(a) Parallel composition: $P=(V \cup U, A \cup B)$;
(b) Series composition: $S=\left(V \cup U, A \cup B \cup\left(F_{D} \times I_{H}\right)\right)$.

It is interesting to note that we can embed every MVSP digraph D into the Cartesian plane such that if vertices u, v have coordinates $\left(x_{u}, y_{u}\right)$ and $\left(x_{v}, y_{v}\right)$, respectively, then there is a (u, v)-path in D if and only if $x_{u} \leq x_{v}$ and $y_{u} \leq y_{v}$. The proof of this non-difficult fact is given in the paper [726] by Valdes, Tarjan, and Lawler; see Exercise 4.15. See also Figure 4.9.

An acyclic digraph D is a vertex series-parallel (VSP) digraph if the transitive reduction of D is an MVSP digraph (see Subsection 4.3 for the definition of the transitive reduction). See Figure 4.8.

The following class of acyclic directed multigraphs, arc series-parallel (ASP) directed multigraphs, is related to VSP digraphs. The digraph \vec{P}_{2} is an ASP directed multigraph. If D_{1}, D_{2} is a pair of ASP directed multigraphs with $V\left(D_{1}\right) \cap V\left(D_{2}\right)=\emptyset$, then so are acyclic directed multigraphs constructed by each of the following operations (see Figure 4.10):
(a) Two-terminal parallel composition: Choose a vertex u_{i} of out-degree zero in D_{i} and a vertex v_{i} of in-degree zero in D_{i} for $i=1,2$. Identify u_{1} with u_{2} and v_{1} with v_{2};
(b) Two-terminal series composition: Choose $u \in F_{D_{1}}$ and $v \in I_{D_{2}}$ and identify u with v.

Figure 4.7 (De)construction of an MVSP digraph R_{0} by series and parallel (de)compositions.

We refer the reader to the book [97] by Battista, Eades, Tamassia and Tollis for several algorithms for drawing graphs nicely, in particular drawing of ASP digraphs.

The next result shows a relation between the classes of digraphs introduced above.

Figure 4.8 Series-parallel directed multigraphs: (a) an MVSP digraph R_{0}, (b) a VSP digraph R_{1}, (c) an AVSP directed multigraph H_{0}.

Figure 4.9 The MVSP digraph R_{0} of Figure 4.7 embedded into the Cartesian plane such that for every (u, v)-path in R_{0} we have $x_{u} \leq x_{v}$ and $y_{u} \leq y_{v}$ (and vice versa).

Theorem 4.7.1 An acyclic directed multigraph D with a unique vertex of out-degree zero and a unique vertex of in-degree zero is ASP if and only if $L(D)$ is an MVSP digraph.

Proof: This can be proved easily by induction on $|A(D)|$ using the following two facts:
(i) $L\left(\vec{P}_{2}\right)=\vec{P}_{1}$, which is an MVSP digraph;
(ii) The line digraph of the two-terminal series (parallel) composition of D_{1} and D_{2} is the series (parallel) composition of $L\left(D_{1}\right)$ and $L\left(D_{2}\right)$.

Figure 4.10 (De)construction of an ASP directed multigraph H_{0} by two-terminal series and parallel (de)compositions.

It is easy to check that $L\left(H_{0}\right)=R_{0}$ for directed multigraphs H_{0} and R_{0} depicted in Figure 4.8. The following operations in a directed multigraph D are called reductions:
(a) Series reduction: Replace a path $u v w$, where $d_{D}^{+}(v)=d_{D}^{-}(v)=1$ by the arc $u w$;
(b) Parallel reduction: Replace a pair of parallel arcs from u to v by just one arc from u to v.

The following proposition due to Duffin (see also the paper [726] by Valdes, Lawler and Tarjan) gives a characterization of ASP directed multigraphs. Its proof is left as Exercise 4.16.
Proposition 4.7.2 [209] A directed multigraph is ASP if and only if it can be reduced to \vec{P}_{2} by a sequence of series and parallel reductions.

The reader is advised to apply a sequence of series and parallel reductions to the directed multigraph H_{0} of Figure 4.8 to obtain a digraph isomorphic to
\vec{P}_{2}. ¿From the algorithmic point of view, it is important that every sequence of series and parallel reductions transforms a directed multigraph to the same digraph. Indeed, this implies an obvious polynomial algorithm to verify if a given directed multigraph is ASP. The proof of the following result, due to Harary, Krarup and Schwenk, is left as Exercise 4.17.

Proposition 4.7.3 [401] For every acyclic directed multigraph D, the result of application of series and parallel reductions until one can apply such reductions is a unique digraph H.

In [726], Valdes, Tarjan and Lawler showed how to construct a lineartime algorithm to recognize ASP directed multigraphs, which is based on Propositions 4.7.2 and 4.7.3. They also presented a more complicated lineartime algorithm to recognize VSP digraphs. Since we are limited in space, we will not discuss the details of the linear-time algorithms. Instead, we will consider the following simplified polynomial algorithm to recognize VSP digraphs.

VSP recognition algorithm:

Input: An acyclic digraph D.
Output: YES if D is VSP and NO, otherwise.

1. Compute the transitive reduction R of D.
2. Try to compute an acyclic directed multigraph H with $\left|I_{H}\right|=\left|F_{H}\right|=1$ such that $L(H)=R$. If there is no such H, then output NO.
3. Verify whether H is an ASP directed multigraph. If it is so, then YES, otherwise, NO.

We prove first the correctness of this algorithm. If the output is YES, then, by Theorem 4.7.1, R is MVSP and thus D is VSP. If H is Step 2 is not found, then, by Theorem 4.7.1, R is not MVSP implying that D is not VSP. If H is not ASP, then R is not MVSP by the same theorem.

Now we prove that the algorithm is polynomial. Step 1 can be performed in polynomial time by Proposition 4.3.5. Step 2 can be implemented using Procedure Build-H described in the end of Section 4.5. This procedure implies that if there is an H such that $L(H)=R$, then there is such an H with additional property that $\left|I_{H}\right|=\left|F_{H}\right|=1$. The procedure is polynomial. Finally, Step 3 is polynomial by the remark after Proposition 4.7.2.

4.8 Quasi-Transitive Digraphs

Quasi-transitive digraphs were introduced in Section 1.8. The aim of this section is to derive a recursive characterization of quasi-transitive digraphs which allows one to show that a number of problems for quasi-transitive
digraphs including the longest path and cycle problems are polynomial time solvable (see Theorem 5.10.2). The characterization implies that every quasitransitive digraph is totally Ψ-decomposable, where Ψ is the union of all transitive digraphs and all extended semicomplete digraphs. Our presentation is based on [79].

Proposition 4.8.1 Let D be a quasi-transitive digraph. Suppose that $P=$ $x_{1} x_{2} \ldots x_{k}$ is a minimal $\left(x_{1}, x_{k}\right)$-path. Then the subdigraph induced by $V(P)$ is a semicomplete digraph and $x_{j} \rightarrow x_{i}$ for every $2 \leq i+1<j \leq k$, unless $k=4$, in which case the arc between x_{1} and x_{k} may be absent.

Proof: The cases $k=2,3,4,5$ are easily verified. As an example, let us consider the case $k=5$. If x_{i} and x_{j} are adjacent and $2 \leq i+1<j \leq 5$, then $x_{j} \rightarrow x_{i}$ since P is minimal. Since D is quasi-transitive, x_{i} and x_{i+2} are adjacent for $i=1,2,3$. This and the minimality of P imply that $x_{3} \rightarrow x_{1}, x_{4} \rightarrow x_{2}$ and $x_{5} \rightarrow x_{3}$. From these arcs and the minimality of P we conclude that $x_{5} \rightarrow x_{1}$. Now the $\operatorname{arcs} x_{4} x_{5}$ and $x_{5} x_{1}$ imply that $x_{4} \rightarrow x_{1}$. Similarly, $x_{5} \rightarrow x_{1} \rightarrow x_{2}$ implies $x_{5} \rightarrow x_{2}$.

The proof for the case $k \geq 6$ is by induction on k with the case $k=5$ as the basis. By induction, each of $D\left\langle\left\{x_{1}, x_{2}, \ldots, x_{k-1}\right\}\right\rangle$ and $D\left\langle\left\{x_{2}, x_{3}, \ldots, x_{k}\right\}\right\rangle$ is a semicomplete digraph and $x_{j} \rightarrow x_{i}$ for any $1<j-i \leq k-2$. Hence x_{3} dominates x_{1} and x_{k} dominates x_{3} and the minimality of P implies that x_{k} dominates x_{1}.

Corollary 4.8.2 If a quasi-transitive digraph D has an (x, y)-path but x does not dominate y, then either $y \rightarrow x$, or there exist vertices $u, v \in V(D)-\{x, y\}$ such that $x \rightarrow u \rightarrow v \rightarrow y$ and $y \rightarrow u \rightarrow v \rightarrow x$.

Proof: This is easy to deduce by considering a minimal (x, y)-path and applying Proposition 4.8.1.

Lemma 4.8.3 Suppose that A and B are distinct strong components of a quasi-transitive digraph D with at least one arc from A to B. Then $A \mapsto B$.

Proof: Suppose A and B are distinct strong components such that there exists an arc from A to B. Then for every choice of $x \in A$ and $y \in B$ there exists a path from x to y in D. Since A and B are distinct strong components, none of the alternatives in Corollary 4.8.2 can hold and hence $x \rightarrow y$.

Lemma 4.8.4 [79] Let D be a strong quasi-transitive digraph on at least two vertices. Then the following holds:
(a) $\overline{U G(D)}$ is disconnected;
(b) If S and S^{\prime} are two subdigraphs of D such that $\overline{U G(S)}$ and $\overline{U G\left(S^{\prime}\right)}$ are distinct connected components of $\overline{U G(D)}$, then either $S \mapsto S^{\prime}$ or $S^{\prime} \mapsto S$, or both $S \rightarrow S^{\prime}$ and $S^{\prime} \rightarrow S$ in which case $|V(S)|=\left|V\left(S^{\prime}\right)\right|=1$.

Proof: The statement (b) can be easily verified from the definition of a quasi-transitive digraph and the fact that S and S^{\prime} are completely adjacent in D (Exercise 4.18). We prove (a) by induction on $|V(D)|$. Statement (a) is trivially true when $|V(D)|=2$ or 3 . Assume that it holds when $|V(D)|<n$ where $n>3$.

Suppose that there is a vertex z such that $D-z$ is not strong. Then there is an arc from (to) every terminal (initial) component of $D-z$ to (from) z. Since D is quasi-transitive, the last fact and Lemma 4.8.3 imply that $X \rightarrow Y$ for every initial (terminal) strong component $X(Y)$ of $D-z$. Similar arguments show that each strong component of $D-z$ either dominates some terminal component or is dominated by some initial component of $D-z$ (intermediate strong components satisfy both). These facts imply that z is adjacent to every vertex in $D-z$. Therefore, $\overline{U G(D)}$ contains a component consisting of the vertex z, implying that $\overline{U G(D)}$ is disconnected and (a) follows.

Assume that there is a vertex v such that $D-v$ is strong. Since D is strong, D contains an arc $v w$ from v to $D-v$. By induction, $\overline{U G(D-v)}$ is not connected. Let connected components S and S^{\prime} of $\overline{U G(D-v)}$ be chosen such that $w \in S, S \mapsto S^{\prime}$ in D (here we use (b) and the fact that $D-v$ is strong). Then v is completely adjacent to S^{\prime} in D (as $v \rightarrow w$). Hence $\overline{U G\left(S^{\prime}\right)}$ is a connected component of $\overline{U G(D)}$ and the proof is complete.

The following theorem completely characterizes quasi-transitive digraphs in recursive sense (see also Figure 4.11).

Theorem 4.8.5 (Bang-Jensen and Huang) [79] Let D be a digraph which is quasi-transitive.
(a) If D is not strong, then there exist a transitive oriented graph T with vertices $\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ and strong quasi-transitive digraphs $H_{1}, H_{2}, \ldots, H_{t}$ such that $D=T\left[H_{1}, H_{2}, \ldots, H_{t}\right]$, where H_{i} is substituted for $u_{i}, i=$ $1,2, \ldots, t$.
(b) If D is strong, then there exists a strong semicomplete digraph S with vertices $\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$ and quasi-transitive digraphs $Q_{1}, Q_{2}, \ldots, Q_{s}$ such that Q_{i} is either a vertex or is non-strong and $D=S\left[Q_{1}, Q_{2}, \ldots, Q_{s}\right]$, where Q_{i} is substituted for $v_{i}, i=1,2, \ldots, s$.

Proof: Suppose that D is not strong and let $H_{1}, H_{2}, \ldots, H_{t}$ be the strong components of D. According to Lemma 4.8.3, if there is an arc between H_{i} and H_{j}, then either $H_{i} \mapsto H_{j}$ or $H_{j} \mapsto H_{i}$. Now if $H_{i} \mapsto H_{j} \mapsto H_{k}$ then, by quasi-transitivity, $H_{i} \mapsto H_{k}$. So by contracting each H_{i} to a vertex h_{i}, we get a transitive oriented graph T with vertices $h_{1}, h_{2}, \ldots, h_{t}$. This shows that $D=T\left[H_{1}, H_{2}, \ldots, H_{t}\right]$.

Suppose now that D is strong. Let $Q_{1}, Q_{2}, \ldots, Q_{s}$ be the subdigraphs of D such that each $\overline{U G\left(Q_{i}\right)}$ is a connected component of $\overline{U G(D)}$. According to Lemma 4.8.4(a), each Q_{i} is either non-strong or just a single vertex. By

Figure 4.11 A decomposition of a non-strong quasi-transitive digraph. Big arcs between different boxed sets indicate that there is a complete domination in the direction shown.

Lemma 4.8.4(b) we obtain a strong semicomplete digraph S if each Q_{i} is contracted to a vertex. This shows that $D=S\left[Q_{1}, Q_{2}, \ldots, Q_{s}\right]$.

4.9 The Path-Merging Property and Path-Mergeable Digraphs

A digraph D is path-mergeable, if for any choice of vertices $x, y \in V(D)$ and any pair of internally disjoint (x, y)-paths P, Q, there exists an (x, y)-path R in D, such that $V(R)=V(P) \cup V(Q)$. We will see, in several places of this book, that the notion of a path-mergeable digraph is very useful for design of algorithms and proofs of theorems. This makes it worth while studying path-mergeable digraphs. The results presented in this section are adapted from [50], where the study of path-mergeable digraphs was initiated by BangJensen.

We prove a characterization of path-mergeable digraphs, which implies that path-mergeable digraphs can be recognized efficiently.

Theorem 4.9.1 A digraph D is path-mergeable if and only if for every pair of distinct vertices $x, y \in V(D)$ and every pair $P=x x_{1} \ldots x_{r} y$, $P^{\prime}=x y_{1} \ldots y_{s} y, r, s \geq 1$ of internally disjoint (x, y)-paths in D, either there

Figure 4.12 A digraph which is path-mergeable. The fat arcs indicate the path $x u_{1} u_{2} v_{1} v_{2} v_{3} u_{3} u_{4} u_{5} v_{4} v_{5} v_{6} u_{6} y$ from x to y which is obtained by merging the two (x, y)-paths $x u_{1} u_{2} u_{3} u_{4} u_{5} u_{6} y$ and $x v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} y$.
exists an $i \in\{1, \ldots, r\}$, such that $x_{i} \rightarrow y_{1}$, or there exists a $j \in\{1, \ldots, s\}$, such that $y_{j} \rightarrow x_{1}$.

Proof: We prove 'only if' by induction on $r+s$. It is obvious for $r=s=$ 1 , so suppose that $r+s \geq 3$. If there is no arc between $\left\{x_{1}, \ldots, x_{r}\right\}$ and $\left\{y_{1}, \ldots, y_{s}\right\}$, then clearly P, P^{\prime} cannot be merged into one path. Hence we may assume without loss of generality that there is an arc $x_{i} y_{j}$ for some $i, j, 1 \leq i \leq r, 1 \leq j \leq s$. If $j=1$ then the claim follows. Otherwise apply induction to the paths $P\left[x, x_{i}\right] y_{j}, x P^{\prime}\left[y_{1}, y_{j}\right]$.

The proof of 'if' is left to the reader. It is similar to the proof of Proposition 4.9.3 below.

The proof of the following result is left as Exercise 4.23.
Corollary 4.9.2 Path-mergeable digraphs can be recognized in polynomial time.

The next result shows that, if a digraph is path-mergeable, then the merging of paths can always be done in a particularly nice way.

Proposition 4.9.3 Let D be a digraph which is path-mergeable and let $P=$ $x x_{1} \ldots x_{r} y, P^{\prime}=x y_{1} \ldots y_{s} y, r, s \geq 0$ be internally disjoint (x, y)-paths in D. The paths P and P^{\prime} can be merged into one (x, y)-path P^{*} such that vertices from P (respectively, P^{\prime}) remain in the same order as on that path. Furthermore the merging can be done in at most $2(r+s)$ steps.

Proof: We prove the result by induction on $r+s$. It is obvious if $r=0$ or $s=0$, so suppose that $r, s \geq 1$. By Theorem 4.9.1 there exists an i such that either $x_{i} \rightarrow y_{1}$ or $y_{i} \rightarrow x_{1}$. By scanning both paths forward one arc at a time, we can find i in at most $2 i$ steps; suppose without loss of generality $x_{i} \rightarrow y_{1}$. By applying the induction hypothesis to the paths $P\left[x_{i}, x_{r}\right] y$ and $x_{i} P^{\prime}\left[y_{1}, y_{s}\right] y$, we see that we can merge them into a single path Q in the required orderpreserving way in at most $2(r+s-i)$ steps. The required path P^{*} is obtained
by concatenating the paths $x P\left[x_{1}, x_{i}\right]$ and Q, and we have found it in at most $2(r+s)$ steps, as required.

4.10 Locally In-Semicomplete and Locally Out-Semicomplete Digraphs

A digraph D is locally in-semicomplete (locally out-semicomplete) if, for every vertex x of D, the in-neighbours (out-neighbours) of x induce a semicomplete digraph. Clearly, the converse of a locally in-semicomplete digraph is a locally out-semicomplete digraph and vice versa. A digraph D is locally semicomplete if it is both locally in- and locally out-semicomplete. See Figure 4.13. Clearly every semicomplete digraph is locally semicomplete. A locally in-semicomplete digraph with no 2-cycle is a locally in-tournament digraph. Similarly, one can define locally out-tournament digraphs and locally tournament digraphs. For convenience, we will sometimes refer to locally tournament digraphs as local tournaments and to locally in-tournament (out-tournament) digraphs as local in-tournaments (local out-tournaments).

Figure 4.13 (a) A locally out-semicomplete digraph which is not locally insemicomplete; (b) A locally semicomplete digraph.

Proposition 4.10 .1 by Bang-Jensen shows that locally in-semicomplete and locally out-semicomplete digraphs form subclasses of the class of pathmergeable digraphs. In particular, this means that every tournament is pathmergeable. In many theorems and algorithms on tournaments this property is of essential use. In some other cases, the very use of this property allows one to simplify proofs of results on tournaments and their generalizations or speed up algorithms on those digraphs.

Proposition 4.10.1 [50] Every locally in-semicomplete (out-semicomplete) digraph is path-mergeable.

Proof: Let D be a locally out-semicomplete digraph and let $P=y_{1} y_{2} \ldots y_{k}$, $Q=z_{1} z_{2} \ldots z_{t}$ be a pair of internally disjoint (x, y)-paths (i.e., $y_{1}=z_{1}=x$
and $\left.y_{k}=z_{t}=y\right)$. We show that there exists an (x, y)-path R in D, such that $V(R)=V(P) \cup V(Q)$. Our claim is trivially true when $|A(P)|+|A(Q)|=3$. Assume now that $|A(P)|+|A(Q)| \geq 4$. Since D is out-semicomplete, either $y_{2} \rightarrow z_{2}$ or $z_{2} \rightarrow y_{2}$ (or both) and the claim follows from Theorem 4.9.1.

The proposition holds for locally in-semicomplete digraphs as they are the converses of locally out-semicomplete digraphs.

The path-mergeability can be generalized in a natural way as follows. A digraph D is in-path-mergeable if, for every vertex $y \in V(D)$ and every pair P, Q of internally disjoint paths with common terminal vertex y, there is a path R such that $V(R)=V(P) \cup V(Q)$, the path R terminates at y and starts at a vertex which is the initial vertex of either P or Q (or, possibly, both). Observe that, in this definition, the initial vertices of paths P and Q may coincide. Therefore, every in-path-mergeable digraph is path-mergeable. However, it is easy to see that not every path-mergeable digraph is in-path-mergeable (see Exercise 4.19). A digraph D is out-path-mergeable if the converse of D is in-path-mergeable. Clearly, every in-path-mergeable (out-path-mergeable) digraph is locally in-semicomplete (locally out-semicomplete). The converse is also true (hence this is another way of characterizing locally in-semicomplete digraphs). The proof of Proposition 4.10.2 is left as Exercise 4.20.

Proposition 4.10.2 Every locally in-semicomplete (out-semicomplete, respectively) digraph is in-path-mergeable (out-path-mergeable, respectively).

Some simple, yet very useful, properties of locally in-semicomplete digraphs are described in the following results (in [81], by Bang-Jensen, Huang and Prisner, these results were proved for locally tournament digraphs only, so the statements below are their slight generalizations first stated by BangJensen and Gutin [65]). Observe that a locally out-semicomplete digraph, being the converse of a locally in-semicomplete digraph, has similar properties (see Exercise 4.26). The claim of Theorem 4.10.4 is illustrated in Figure 4.14.

Lemma 4.10.3 Every connected locally in-semicomplete digraph D has an out-branching.

Proof: By Proposition 1.6.1, it suffices to prove that D has only one initial strong component. Assume that D has a pair D_{1}, D_{2} of initial strong components (i.e. no arc enters D_{1} or $\left.D_{2}\right)$. Let $y_{i} \in V\left(D_{i}\right), i=1,2$, and let $P=x_{1} x_{2} \ldots x_{s}$ be a shortest path between $V\left(D_{1}\right)$ and $V\left(D_{2}\right)$ in the underlying graph G of D. Since no arc enters D_{1} or D_{2}, there is an index $k \leq s$ such that $x_{1} x_{2} \ldots x_{k-1}$ is a path in D, but $x_{k} \rightarrow x_{k-1}$. Since D is in-semicomplete, the vertices x_{k-2} and x_{k} are adjacent. However, this contradicts the fact that P is a shortest path between $V\left(D_{1}\right)$ and $V\left(D_{2}\right)$ in G.

Theorem 4.10.4 Let D be a locally in-semicomplete digraph.
(i) Let A and B be distinct strong components of D. If a vertex $a \in A$ dominates some vertex in B, then $a \mapsto B$.
(ii) If D is connected, then $S C(D)$ has an out-branching.

Proof: Let A and B be strong components of D for which there is an arc (a, b) from A to B. Since B is strong, there is a $\left(b^{\prime}, b\right)$-path in B for every $b^{\prime} \in V(B)$. By the definition of locally in-semicomplete digraphs and the fact that there is no arc from B to A, we can conclude that $a \rightarrow b^{\prime}$. This proves (i).

Part (ii) follows from the fact that $S C(D)$ is itself a locally in-tournament digraph and Lemma 4.10.3.

Figure 4.14 The strong decomposition of a non-strong locally in-semicomplete digraph. The big circles indicate strong components and a fat arc from a component A to a component B between two components indicates that there is at least one vertex $a \in A$ such that $a \mapsto B$.

4.11 Locally Semicomplete Digraphs

Locally semicomplete digraphs were introduced in 1990 by Bang-Jensen [44]. As shown in several places in our book, this class of digraphs has many nice properties in common with its proper subclass, semicomplete digraphs. The main aim of this section is to obtain a classification of locally semicomplete

[^0]: ${ }^{4}$ Recall that $X \times Y=\{(x, y): x \in X, y \in Y\}$.

