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Theorem 6.1.2 [66] Let D = (V, A) be a digraph which is either semicom-
plete bipartite or extended locally out-semicomplete and let x ∈ V . Then D
has a hamiltonian path starting at x if and only if D contains a 1-path-cycle
factor F of D such that the path of F starts at x, and, for every vertex y of
V −{x}, there is an (x, y)-path1 in D. Moreover, if D has a hamiltonian path
starting at x, then, given a 1-path-cycle factor F of D such that the path of
F starts at x, the desired hamiltonian path can be found in time O(n2).

Proof: As the necessity is clear, we will only prove the sufficiency. Suppose
that F = P ∪C1∪ ...∪Ct is a 1-path-cycle factor of D that consists of a path
P starting at x and cycles Ci, i = 1, ..., t. Suppose also that every vertex
of D is reachable from x. Then, without loss of generality, there is a vertex
of P that dominates a vertex of C1. Let P = x1x2 . . . xp, C1 = y1y2 . . . yqy1,
where x = x1 and xk→ys for some k ∈ {1, 2, . . . , p}, s ∈ {1, 2, . . . , q}. We
show how to find a new path starting at x which contains all the vertices of
V (P ) ∪ V (C1). Repeating this process we obtain the desired path. Clearly,
we may assume that k < p and that xp has no arc to V (C1).

Assume first that D is an extended locally out-semicomplete digraph. If P
has a vertex xi which is similar to a vertex yj in C1, then xiyj+1, yjxi+1 ∈ A
and using these arcs we see that P [x1, xi]C[yj+1, yj ]P [xi+1, xp] is a path
starting from x and containing all the vertices of P ∪ C1. If P has no vertex
that is similar to a vertex in C1, then we can apply the result of Exercise
4.37 to P [xk, xp] and xkC1[ys, ys−1] and merge these two paths into a path
R starting from xk and containing all the vertices of P [xk, xp] ∪ C1. Now,
P [x1, xk−1]R is a path starting at x and containing all the vertices of P ∪C1.

Suppose now that D is semicomplete bipartite. Then either ys−1→xk+1,
which implies that P [x1, xk]C1[ys, ys−1]P [xk+1, xp] is a path starting at x
and covering all the vertices of P ∪ C1, or xk+1→ys−1. In the latter case,
we consider the arc between xk+2 and ys−2. If ys−2→xk+2 we can construct
the desired path, otherwise we continue to consider arcs between xk+3 and
ys−3 and so on. If we do not construct the desired path in this way, then we
find that the last vertex of P dominates a vertex in C1, contradicting our
assumption above.

Using the process above and breadth-first search, one can construct an
O(n2)-algorithm for finding the desired hamiltonian path starting at x. ut

Just as the problem of finding a minimum path factor generalizes the
hamiltonian path problem, we may generalize the problem of finding a hamil-
tonian path starting at a certain vertex to the problem of finding a path factor
with as few paths as possible such that one of these paths starts at a specified
vertex x. We say that a path factor starts at x if one of its paths starts at
x and denote by pcx(D) the minimum number of paths in a path factor that

1 This is equivalent to saying that D has an out-branching with root x.
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starts at x. The problem of finding a path factor with pcx(D) paths which
starts at x in a digraph D is called the PFx problem2.

Let Φ1 be the union of all semicomplete bipartite, extended locally semi-
complete and acyclic digraphs. Using an approach similar to that taken in
Section 5.10, Bang-Jensen and Gutin proved the following.

Theorem 6.1.3 [66] Let D be a totally Φ1-decomposable digraph. Then the
PFx problem for D can be solved in time O(|V (D)|4). ut

6.2 Weakly Hamiltonian-Connected Digraphs

Recall that an [x, y]-path in a digraph D = (V, A) is a path which ei-
ther starts at x and ends at y or oppositely. We say that D is weakly
hamiltonian-connected if it has a hamiltonian [x, y]-path (also called an
[x, y]-hamiltonian path) for every choice of distinct vertices x, y ∈ V . Ob-
viously deciding whether a digraph contains an [x, y]-hamiltonian path for
some x, y is not easier than determining whether D has any hamiltonian path
and hence for general digraphs this is an NP-complete problem by Theorem
5.0.2 (see also Exercise 6.3). In this section we discuss various results that
have been obtained for generalizations of tournaments. All of these results
imply polynomial algorithms for finding the desired paths.

6.2.1 Results for Extended Tournaments

We start with a theorem due to Thomassen [698] which has been generalized
to several classes of generalizations of tournaments as will be seen in the
following subsections.

Theorem 6.2.1 [698] Let D = (V, A) be a tournament and let x1, x2 be
distinct vertices of D. Then D has an [x1, x2]-hamiltonian path if and only
if none of the following holds.

(a) D is not strong and either none of x1, x2 belongs to the initial strong com-
ponent of D or none of x1, x2 belongs to the terminal strong component
(or both).

(b) D is strong and for i = 1 or 2, D − xi is not strong and x3−i belongs to
neither the initial nor the terminal strong component of D − xi.

(c) D is isomorphic to one of the two tournaments in Figure 6.1 (possibly
after interchanging the names of x1 and x2).

The following easy corollary is left as Exercise 6.4:
2 Observe that pcx(D) ≤ pc(D) + 1 holds for every digraph D.
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Figure 6.1 The exceptional tournaments in Theorem 6.2.1. The edge between x1

and x2 can be oriented arbitrarily.

Corollary 6.2.2 [698] Let D be a strong tournament and let x, y, z be dis-
tinct vertices of D. Then D has a hamiltonian path connecting two of the
vertices in the set {x, y, z}. ut

Thomassen [698] used a nice trick in his proof of Theorem 6.2.1 by using
Corollary 6.2.2 in the induction proof. We will give his proof below.

Proof of Theorem 6.2.1: Let x1, x2 be distinct vertices in a tournament
D. It is easy to check that if any of (a)-(c) holds, then there is no [x1, x2]-
hamiltonian path in D.

Suppose now that none of (a)-(c) hold. We prove by induction on n that D
has an [x1, x2]-hamiltonian path. This is easy to show when n ≤ 4 so assume
now that n ≥ 5 and consider the induction step with the obvious induction
hypothesis. If D is not strong then let D1, D2, . . . , Ds, s ≥ 2 be the acyclic
ordering of the strong components of D. Since (a) does not hold, we may
assume without loss of generality that x1 ∈ V (D1) and x2 ∈ V (Ds). Observe
that D1 has a hamiltonian path P1 starting at x1 (Exercise 6.1) and Ds has
a hamiltonian path Ps ending at x2. Let Pi be a hamiltonian path in Di for
each i = 2, 3, . . . , s−1. Then P1P2 . . . Ps−1Ps is an (x1, x2)-hamiltonian path.

If D − xi is not strong for i = 1 or 2, then we may assume without loss
of generality that i = 1. Let D′

1, . . . , D
′
p, p ≥ 2 be the acyclic ordering of the

strong components of D − x1. Since (b) does not hold we may assume, by
considering the converse of D if necessary, that x2 belongs to D′

p. Let y be
any out-neighbour of x1 in D′

1. Our argument for the previous case implies
that there is a (y, x2)-hamiltonian path P in D−x1, implying that x1P is an
(x1, x2)-hamiltonian path in D. Hence we may assume that D − xi is strong
for i = 1, 2.

If D − {x1, x2} is not strong, then it is easy to prove that D has an
(xi, x3−i)-hamiltonian path for i = 1, 2 (Exercise 6.2). Hence we only need
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to consider the case when D′ = D − {x1, x2} is strong. Let u1u2 . . . un−2u1

be a hamiltonian cycle of D′. By considering the converse if necessary, we
may assume that x1 dominates u1. Then D has an (x1, x2)-hamiltonian path
unless x2 dominates un−2 so we may assume that is the case. By the same
argument we see that either the desired path exists or x1 dominates un−3 and
x2 dominates un−4. Now it is easy to see that either the desired path exists,
or n− 2 is even and we have x1 7→{u1, u3, . . . , un−3}, x2 7→{u2, u4, . . . , un−2}.
If x1 or x2 dominates any vertex other than those described above, then by
repeating the argument above we see that either the desired path exists or
{x1, x2}7→V (C), which is impossible since D is strong. Hence we may assume
that

{u2, u4, . . . , un−2}7→ x1 7→{u1, u3, . . . , un−3},
{u1, u3, . . . , un−3}7→ x2 7→{u2, u4, . . . , un−2} (6.1)

If n = 6, then using that (c) does not hold, it is easy to see that the desired
path exists. So we may assume that n ≥ 8. By induction, the theorem and
hence also Corollary 6.2.2 holds for all tournaments on n− 2 vertices. Thus
D′ has a hamiltonian path P which starts and ends in the set {u1, u3, u5}
and by (6.1), P can be extended to an (x1, x2)-hamiltonian path of D. ut

We now turn to extended tournaments. An extended tournament D does
not always have a hamiltonian path, but, as we saw in Theorem 5.7.1, it
does when the following obviously necessary condition is satisfied: there is
a 1-path-cycle factor in D. Thus if we are looking for a sufficient condition
for the existence of an [x, y]-hamiltonian path, we must require the existence
on an [x, y]-path P such that D − P has a cycle factor (this includes the
case when P is already hamiltonian). Checking for such a path factor in an
arbitrary digraph can be done in polynomial time using flows, see Exercise
3.62.

The next result is similar to the structure we found in the last part of the
proof of Theorem 6.2.1.

Lemma 6.2.3 [67] Suppose that D is a strong extended tournament con-
taining two adjacent vertices x and y such that D − {x, y} has a hamil-
tonian cycle C but D has no hamiltonian [x, y]-path. Then C is an even
cycle, N+(x) ∩ V (C) = N−(y) ∩ V (C), N−(x) ∩ V (C) = N+(y) ∩ V (C),
and the neighbours of x alternate between in-neighbours and out-neighbours
around C.

Proof: Exercise 6.5. ut
Bang-Jensen, Gutin and Huang obtained the following characterization

for the existence of an [x, y]-hamiltonian path in an extended tournament.
Note the strong similarity with Theorem 6.2.1.
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Theorem 6.2.4 [67] Let D be an extended tournament and x1, x2 be distinct
vertices of D. Then D has an [x1, x2]-hamiltonian path if and only if D has
an [x1, x2]-path P such that D−P has a cycle factor and D does not satisfy
any of the conditions below:

(a) D is not strong and either the initial or the terminal component of D
(or both) contains none of x1 and x2;

(b) D is strong and the following holds for i = 1 or i = 2: D−xi is not strong
and either x3−i belongs to neither the initial nor the terminal component
of D−xi, or x3−i does belong to the initial (terminal) component of D−xi

but there is no (x3−i, xi)-path ((xi, x3−i)-path) P ′ such that D − P ′ has
a cycle factor.

(c) D, D− x1, and D− x2 are all strong and D is isomorphic to one of the
tournaments in Figure 6.1. ut
The proof of this theorem in [67] is constructive and implies the following

result (the proof is much more involved than that of Theorem 6.2.1). We point
out that the proof in [67] makes explicit use of the fact that the digraphs have
no 2-cycles. Hence the proof is only valid for extended tournaments and not
for general extended semicomplete digraphs, for which the problem is still
open.

Theorem 6.2.5 [67] There exists an O(
√

nm) algorithm to decide if a given
extended tournament has a hamiltonian path connecting two specified vertices
x and y. Furthermore, within the same time bound a hamiltonian [x, y]-path
can be found if it exists. ut

Theorem 6.2.4 implies the following characterization of extended tourna-
ments which are weakly hamiltonian-connected (see Exercise 6.7).

Theorem 6.2.6 [67] Let D be an extended tournament. Then D is weakly
hamiltonian-connected if and only if it satisfies each of the conditions below.

(a) D is strongly connected.
(b) For every pair of distinct vertices x and y of D, there is an [x, y]-path

P such that D − P has a cycle factor.
(c) For each vertex x of D, D − x has at most two strong components and

if D − x is not strong, then for each vertex y in the initial (respectively
terminal) strong component, there is a (y, x)-path (respectively an (x, y)-
path) P ′ such that D − P ′ has a cycle factor.

(d) D is not isomorphic to any of the two tournaments in Figure 6.1. ut
The following result generalizes Corollary 6.2.2. Note that we must assume

the existence of the paths described below in order to have any chance of
having a hamiltonian path with end vertices in the set {x, y, z}. The proof
below illustrates how to argue with extended tournament structure.
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Corollary 6.2.7 [67] Let x, y and z be three vertices of a strong extended
tournament D. Suppose that, for every choice of distinct vertices u, v ∈
{x, y, z}, there is a [u, v]-path P in D so that D − P has a cycle factor.
Then there is a hamiltonian path connecting two of the vertices in {x, y, z}.
Proof: If both D − x and D − y are strong, then, by Theorem 6.2.4, either
D has a hamiltonian path connecting x and y, or D is isomorphic to one
of the tournaments in Figure 6.1, in which case there is a hamiltonian path
connecting x and z. There is a similar argument if both D − x and D − z,
or D − y and D − z are strong. So, without loss of generality, assume that
neither D − x nor D − y is strong. Let S1, S2, . . . , St be an acyclic ordering
of the strong components of D − x. Note that St has an arc to x, since D is
strong.

Suppose first that y ∈ V (Si) for some 1 < i < t. We show that this implies
that D − y is strong, contradicting our assumption. Consider an [x, y]-path
P and a cycle factor F of D − P . It is easy to see that P cannot contain
any vertex of Si+1, . . . , St. Hence each of these strong components contains a
cycle factor consisting of those cycles from F that are in Sj for j = i+1, . . . , t.
In particular (since it contains a cycle), each Sj has size at least 3 for j =
i+1, . . . , t. It also follows from the existence of P and F that every vertex in
Si is dominated by at least one vertex from U = V (S1)∪. . .∪V (Si−1). Indeed,
if some vertex z ∈ V (Si) is not dominated by any vertex from U , then using
that Sr⇒Sp for all 1 ≤ r < p ≤ t we get that z is similar to all vertices in
U . However, this contradicts the existence of P and F . Now it is easy to see
that D− y is strong since every vertex of Si− y is dominated by some vertex
from V (S1)∪ . . .∪ V (Si−1) and dominates a vertex in V (Si+1)∪ . . .∪ V (St).
Hence we may assume that y belongs to S1 or St.

By considering the converse of D if necessary, we may assume that y ∈
V (S1). By Theorem 6.2.4(b) we may assume that there is no (y, x)-path W
such that D −W has a cycle factor. Thus it follows from the assumption of
the corollary that there is an (x, y)-path P ′ = v1v2 . . . vr, v1 = x, vr = y such
that D − P ′ has a cycle factor F ′. Since P ′ − x is contained in S1, we can
argue as above that each Si, i > 1, has a cycle factor (inherited from F ′) and
hence each Si contains a hamiltonian cycle Ci, by Theorem 5.7.7.

Note that every vertex of S1 which is not on P ′ belongs to some cycle
of F ′ that lies entirely inside S1. Hence, if r = 2 (that is, P ′ is just the
arc x→y), then it follows from Proposition 6.1.1 (which is also valid when
the path in question has length zero) that S1 contains a hamiltonian path
starting at y. This path can easily be extended to a (y, x)-hamiltonian path
in D, since each Si, i > 1, is hamiltonian. Thus we may assume that r ≥ 3.

If S1−y is strong then D−y is strong, contradicting our assumption above.
Let T1, T2, . . . , Ts, s ≥ 2, be an acyclic ordering of the strong components of
S1 − y. Note that each V (Ti) is either covered by some cycles from the cycle
factor F ′ of D − P ′ and hence Ti has a hamiltonian cycle (by Theorem
5.7.5), or is covered by a subpath of P ′[v2, vr−1] and some cycles (possibly
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zero) from F ′ and hence Ti has a hamiltonian path (by Theorem 5.7.1). Note
also that there is at least one arc from y to T1 and at least one arc from Ts

to y. If T1 contains a portion of P ′[v2, vr−1], then it is clear that T1 contains
v2. But then D − y is strong since x→v2, contradicting our assumption. So
T1 contains no vertices of P ′[v1, vr−1] and hence, by the remark above, T1

has a hamiltonian cycle to which there is at least one arc from y. Using the
structure derived above, it is easy to show that D has a (y, x)-hamiltonian
path (Exercise 6.6). ut

It can be seen from the results above that, when we consider weak
hamiltonian-connectedness, extended tournaments have a structure which is
closely related to that of tournaments. To see that Theorem 6.2.4 does not
extend to general multipartite tournaments, consider the multipartite tour-
nament D obtained from a hamiltonian bipartite tournament B with classes
X and Y , by adding two new vertices x and y along with the following arcs:
all arcs from x to X and from Y to x, all arcs from y to Y and X to y and an
arc between x and y in any direction. It is easy to see that D satisfies none
of the conditions (a)-(c) in Theorem 6.2.4, yet there can be no hamiltonian
path with end vertices x and y in D because any such path would contain a
hamiltonian path of B starting and ending in X or starting and ending in Y .
Such a path cannot exist for parity reasons (|X| = |Y |). Note also that we can
choose B so that the resulting multipartite tournament is highly connected.

Bang-Jensen and Manoussakis [86] characterized weakly hamiltonian-
connected bipartite tournaments. In particular, they proved a necessary and
sufficient condition for the existence of an [x, y]-hamiltonian path in a bipar-
tite tournament. The statement of this characterization turns out to be quite
similar to that of Theorem 6.2.4. The only difference between the statements
of these two characterizations is in Condition (c): in the characterization for
bipartite tournaments the set of forbidden digraphs is absolutely different
and moreover infinite.

6.2.2 Results for Locally Semicomplete Digraphs

Our next goal is to describe the solution of the [x, y]-hamiltonian path prob-
lem for locally semicomplete digraphs. Notice that this solution also covers
the case of semicomplete digraphs and so, in particular, it generalizes Theo-
rem 6.2.1 to semicomplete digraphs.

We start by establishing notation for some special locally semicomplete
digraphs. Up to isomorphism there is a unique strong tournament with four
vertices. We denote this by T 1

4 . It has the following vertices and arcs:

V (T 1
4 ) = {a1, a2, a3, a4}, A(T 1

4 ) = {a1a2, a2a3, a3a4, a4a1, a1a3, a2a4}.

The semicomplete digraphs T 2
4 , T 3

4 , and T 4
4 are obtained from T 1

4 by adding
some arcs, namely:
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A(T 2
4 ) = A(T 1

4 ) ∪ {a3a1, a4a2},

A(T 3
4 ) = A(T 1

4 ) ∪ {a3a1}, A(T 4
4 ) = A(T 1

4 ) ∪ {a1a4}.
Let T4 = {T 1

4 , T 2
4 , T 3

4 , T 4
4 }. It is easy to see that every digraph of T4 has a

unique hamiltonian cycle and has no hamiltonian path between two vertices
which are not consecutive on this hamiltonian cycle (such two vertices are
called opposite).

Let T6 be the set of semicomplete digraphs with the vertex set {x1, x2, a1,
a2, a3, a4}, each member D of T6 has a cycle a1a2a3a4a1 and the digraph
D〈{a1, a2, a3, a4}〉 is isomorphic to one member of T4, in addition, xi →
{a1, a3} → x3−i → {a2, a4} → xi for i = 1 or i = 2. It is straightforward
to verify that T6 contains only two tournaments (denoted by T ′6 and T ′′6 ),
namely the ones shown in Figure 6.1, and that |T6| = 11. Since none of the
digraphs of T4 has a hamiltonian path connecting any two opposite vertices,
no digraph of T6 has a hamiltonian path between x1 and x2.

For every even integer m ≥ 4 there is only one 2-strong, 2-regular locally
semicomplete digraph on m vertices, namely the second power ~C2

m of an
m-cycle (Exercise 6.8). We define

T ∗ = { ~C2
m | m is even and m ≥ 4}.

It is not difficult to prove that every digraph of T ∗ has a unique hamil-
tonian cycle and is not weakly hamiltonian-connected (Exercise 6.9, see
also [47]). For instance, if the unique hamiltonian cycle of ~C2

6 is denoted
by u1u2u3u4u5u6u1, then u1u3u5u1 and u2u4u6u2 are two cycles of ~C2

6 and
there is no hamiltonian path between any two vertices of {u1, u3, u5} or of
{u2, u4, u6}.

Let T 1
8 be the digraph consisting of ~C2

6 together with two new vertices x1

and x2 such that x1 → {u1, u3, u5} → x2 → {u2, u4, u6} → x1. Furthermore,
T 2

8 (T 3
8 , respectively) is defined as the digraph obtained from T 1

8 by adding
the arc x1x2 (the arcs x1x2 and x2x1, respectively). Let T8 = {T 1

8 , T 2
8 , T 3

8 }.
It is easy to see that every element of T8 is a 3-strong locally semicomplete
digraph and has no hamiltonian path between x1 and x2.

Before we present the main result, we state the following two lemmas that
were used in the proof of Theorem 6.2.10 by Bang-Jensen, Guo and Volkmann
in [56]. The first lemma generalizes the structure found in the last part of the
proof of Theorem 6.2.1.
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Lemma 6.2.8 [56] Let D be a strong locally semicomplete digraph on n ≥ 4
vertices and x1, x2 two distinct vertices of D. If D − {x1, x2} is strong, and
N+(x1) ∩N+(x2) 6= ∅ or N−(x1) ∩N−(x2) 6= ∅, then D has a hamiltonian
path connecting x1 and x2.

Proof: Exercise 6.10. ut
Another useful ingredient in the proof of Theorem 6.2.10 is the following

linking result. An odd chain is the second power, ~P 2
2k+1 for some k ≥ 1, of

a path on an odd number of vertices.

Lemma 6.2.9 [56] Let D be a connected, locally semicompletedigraph with
p ≥ 4 strong components and acyclic ordering D1, D2, ..., Dp of these. Suppose
that V (D1) = {u1} and V (Dp) = {v1} and that D − x is connected for
every vertex x. Then for every choice of u2 ∈ V (D2) and v2 ∈ V (Dp−1), D
has two vertex disjoint paths P1 from u2 to v1 and P2 from u1 to v2 with
V (P1) ∪ V (P2) = V (D) if and only if D is not an odd chain from u1 to v1.

Proof: If D is an odd chain, it is easy to see that D has no two vertex disjoint
(ui, v3−i)-path for i = 1, 2 (Exercise 6.11). We prove by induction on p that
the converse is true as well. Suppose that D is not an odd chain from u1 to
v1. Since the subdigraph D−x is connected for every vertex x, |N+(Di)| ≥ 2
for all i ≤ p − 2 and |N−(Dj)| ≥ 2 for all j ≥ 3. If p = 4, then it is not
difficult see that D has two vertex disjoint paths P1 from u2 to v1 and P2

from u1 to v2 with V (P1) ∪ V (P2) = V (D) (Exercise 6.13). If p = 5, it is
also not difficult to check that D has the desired paths, unless D is a chain
on five vertices. So we assume that p ≥ 6. Now we consider the digraph D′,
which is obtained from D by deleting the vertex sets {u1, v1}, V (D2 − u2)
and V (Dp−1 − v2).

Using the assumption on D, it is not difficult to show that D′ is a con-
nected, but not strongly connected locally semicompletedigraph with the
acyclic ordering {u2}, D3, D4, . . . , Dp−2, {v2} of its strong components. Fur-
thermore, for every vertex y of D′, the subdigraph D′ − y is still connected.
Let u be an arbitrary vertex of D3 and v an arbitrary vertex of Dp−2. Note
that there is a (u1, u)-hamiltonian path P in D〈{u1, u} ∪ V (D2 − u2)〉 and
similarly there is a (v, v1)-hamiltonian path Q in D〈{v, v1} ∪ V (Dp−1 − v2)〉.
Hence if D′ has disjoint (u2, v)-, (u, v2)-paths which cover all vertices of D′,
then D has the desired paths. So we can assume D′ has no such paths. By
induction, D′ is an odd chain from u2 to v2. Now using that D is not an odd
chain from u1 to v1 it is easy to see that D has the desired paths. We leave
the details to the reader. ut

A weaker version of Lemma 6.2.9 was proved in [47, Theorem 4.5].

Below we give a characterization, due to Bang-Jensen, Guo and Volkmann
for the existence of an [x, y]-hamiltonian path in a locally semicomplete di-
graph. Note again the similarity to Theorem 6.2.1.
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Theorem 6.2.10 [56] Let D be a connected locally semicomplete digraph
on n vertices and x1 and x2 be two distinct vertices of D. Then D has no
hamiltonian [x1, x2]-path if and only if one of the following conditions is
satisfied:

(1) D is not strong and either the initial or the terminal component of D (or
both) contains none of x1, x2.

(2) D is strongly connected, but not 2-strong,
(2.1) there is an i ∈ {1, 2} such that D−xi is not strong and x3−i belongs

to neither the initial nor the terminal component of D − xi;
(2.2) D − x1 and D − x2 are strong, s is a separating vertex of D,

D1, D2, ..., Dp is the acyclic ordering of the strong components of
D − s, xi ∈ V (Dα) and x3−i ∈ V (Dβ) with α ≤ β − 2. Further-
more, V (Dα+1) ∪ V (Dα+2) ∪ ... ∪ V (Dβ−1) contains a separating
vertex of D, or D′ = D〈V (Dα) ∪ V (Dα+1) ∪ ... ∪ V (Dβ)〉 is an odd
chain from xi to x3−i with N−(Dα+2) ∩ V (D − V (D′)) = ∅ and
N+(Dβ−2) ∩ V (D − V (D′)) = ∅.

(3) D is 2-strong and is isomorphic to T 2
4 or to one member of T6 ∪ T8 ∪ T ∗

and x1, x2 are the corresponding vertices in the definitions. ut
As an easy consequence of Theorem 6.2.10, we obtain a characterization

of weakly hamiltonian-connected locally semicomplete digraphs. The proof is
left to the interested reader as Exercise 6.12.

Theorem 6.2.11 [56] A locally semicomplete digraph D with at least three
vertices is weakly hamiltonian–connected if and only if it satisfies (a), (b) and
(c) below:

(a) D is strong,
(b) the subdigraph D − x has at most two components for each vertex x of

D,
(c) D is not isomorphic to any member of T6 ∪ T8 ∪ T ∗. ut

6.3 Hamiltonian-Connected Digraphs

We now turn to hamiltonian paths with specified initial and terminal vertices.
An (x, y)-hamiltonian path is a hamiltonian path from x to y. Clearly,
asking for such a path in an arbitrary digraph is an even stronger require-
ment than asking for an [x, y]-hamiltonian path3. A digraph D = (V,A)
is hamiltonian-connected if D has an (x, y)-hamiltonian path for every
choice of distinct vertices x, y ∈ V .
3 We know of no class of digraphs for which the [x, y]-hamiltonian path problem is

polynomially solvable, but the (x, y)-hamiltonian path problem is NP-complete.
For arbitrary digraphs they are equivalent from a complexity point of view (see
Exercise 6.3).
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No characterization for the existence of an (x, y)-hamiltonian path is
known even for the case of tournaments4. Note however, that we sketch a
polynomial algorithm for the problem in the next section, so in the algorith-
mic sense a good characterization does exist. The following very important
partial result due to Thomassen will be used in the algorithm of the next
section.

Theorem 6.3.1 (Thomassen) [698] Let D = (V, A) be a 2-strong semi-
complete digraph with distinct vertices x, y. Then D contains an (x, y)-
hamiltonian path if either (a) or (b) below is satisfied.

(a) D contains three internally disjoint (x, y)-paths each of length at least
two,

(b) D contains a vertex z which is dominated by every vertex of V −x and D
contains two internally disjoint (x, y)-paths each of length at least two.

ut
In his proof Thomassen explicitly uses the fact that the digraph is allowed

to have cycles of length 2. This simplifies the proof (which is still far from
trivial), since one can use contraction to reduce to a smaller instance and
then use induction.

An important ingredient in the proof of Theorem 6.3.1 as well as in several
other proofs concerning the existence of an (x, y)-hamiltonian path in a semi-
complete digraph D is to prove that D contains a spanning acyclic graph in
which x can reach all other vertices and y can be reached by all other vertices.
The reason for this can be seen from the following result which generalizes
an observation by Thomassen in [698].

Proposition 6.3.2 [50] Let D be a path-mergeable digraph. Then D has a
hamiltonian (x, y)-path if and only if D contains a spanning acyclic digraph
H in which d−H(x) = d+

H(y) = 0 and such that, for every vertex z ∈ V (D), H
contains an (x, z)-path and a (z, y)-path.

Proof: Exercise 6.15. ut
Theorem 6.3.1 and Menger’s theorem (see Theorem 7.3.1) immediately

imply the following result. For another nice consequence see Exercise 6.16.

Theorem 6.3.3 [698] If a semicomplete digraph D is 4-strong, then D is
hamiltonian-connected. ut

Thomassen constructed an infinite family of 3-strongly connected tour-
naments with two vertices x, y for which there is no (x, y)-hamiltonian path
[698]. Hence, from a connectivity point of view, Theorem 6.3.3 is the best
possible.
4 By this we mean a structural characterization involving only conditions that can

be checked in polynomial time.
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Theorem 6.3.3 is a very important result with several consequences.
Thomassen has shown in several papers how to use Theorem 6.3.3 to ob-
tain results on spanning collections of paths and cycles in semicomplete di-
graphs. See e.g. the papers [699, 701] by Thomassen and also Section 6.7.
The following extension of Theorem 6.3.3 to extended tournaments has been
conjectured by Bang-Jensen, Gutin and Huang:

Conjecture 6.3.4 [67] If D is a 4-strong extended tournament with an
(x, y)-path P such that D − P has a cycle factor, then D has an (x, y)-
hamiltonian path.

Extending Theorem 6.3.3 to locally semicomplete digraphs, Guo [342]
proved the following:

Theorem 6.3.5 (Guo) [342] Let D be a 2-strong locally semicomplete di-
graph and let x, y be two distinct vertices of D. Then D contains a hamil-
tonian path from x to y if (a) or (b) below is satisfied.

(a) There are three internally disjoint (x, y)-paths in D, each of which is of
length at least 2 and D is not isomorphic to any of the digraphs T 1

8 and
T 2

8 (see the definition in the preceding section).
(b) The digraph D has two internally disjoint (x, y)-paths P1, P2, each of

which is of length at least 2 and a path P which either starts at x, or
ends at y and has only x or y in common with P1, P2 such that V (D) =
V (P1) ∪ V (P2) ∪ V (P ). Furthermore, for any vertex z 6∈ V (P1) ∪ V (P2),
z has a neighbour on P1 − {x, y} if and only if it has a neighbour on
P2 − {x, y}. ut
Since neither of the two exceptions in (a) is 4-strong, Theorem 6.3.5 im-

plies the following:

Corollary 6.3.6 [342] If a locally semicomplete digraph is 4-strong, then it
is hamiltonian-connected. ut

In [341] Guo used Theorem 6.3.5 to give a complete characterization of
those 3-strongly connected arc-3-cyclic (that is, every arc is in a 3-cycle) lo-
cally tournament digraphs with no hamiltonian path from x to y for specified
vertices x and y. In particular this characterization shows that there exist in-
finitely many 3-strongly connected digraphs which are locally tournament di-
graphs (but not semicomplete digraphs) and are not hamiltonian-connected.
Thus, as far as this problem is concerned, it is not only the subclass of semi-
complete digraphs which contain difficult instances within the class of locally
semicomplete digraphs. It should be noted that Guo’s proof does not rely on
Theorem 6.3.3. However, due to the non-semicomplete exceptions mentioned
above, it seems unlikely that a much simpler proof of Corollary 6.3.6 can be
found using Theorem 6.3.3 and Theorem 4.11.15.

Not surprisingly, there are also several results, such as the following by
Lewin, on hamiltonian-connectivity in digraphs with many arcs.
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Theorem 6.3.7 [514] Every digraph on n ≥ 3 vertices and at least (n −
1)2 + 1 arcs is hamiltonian-connected. ut

If a digraph D is hamiltonian-connected, then D is also hamiltonian (since
every arc is in a hamiltonian cycle). The next result, due to Bermond, shows
that we only need a slight strengthening of the degree condition in Theorem
5.6.3 to get a sufficient condition for strong hamiltonian-connectivity.

Theorem 6.3.8 [108] Every digraph D on n vertices which satisfies δ0(D) ≥
n+1

2 is hamiltonian-connected. ut
If we just ask for weak hamiltonian-connectness then Overbeck-Larisch

showed that we can replace the condition on the semi-degrees by a condition
on the degrees:

Theorem 6.3.9 [597] Every 2-strong digraph on n vertices and minimum
degree at least n + 1 is weakly hamiltonian-connected. ut

Thomassen asked whether all 3-strong digraphs D = (V,A) on n vertices
with d+(x) + d−(x) ≥ n + 1 for all x ∈ V are necessarily hamiltonian-
connected. However, this is not the case, as was shown by Darbinyan [179].

6.4 Finding a Hamiltonian (x, y)-Path in a
Semicomplete Digraph

In this section we discuss algorithmic aspects of the (x, y)-hamiltonian path
problem for semicomplete digraphs. The main result is the following by Bang-
Jensen, Manoussakis and Thomassen:

Theorem 6.4.1 [87] The (x, y)-hamiltonian path problem is polynomially
solvable for semicomplete digraphs. ut

We will not give the proof of this difficult result here, but rather outline
the most interesting ingredients in the non-trivial proof in [87]. As usual, we
will always use n to denote the number of vertices of the digraph in question.

The first lemma is quite simple to prove, but it turns out to be very useful
for the design of the algorithm of Theorem 6.4.1.

If x,w, z are distinct vertices of a digraph D, then we use the notation
Qx,z, Q.,w to denote two disjoint paths such that the first path is an (x, z)-
path, the second path has terminal vertex w, and V (Qx,z)∪V (Q.,w) = V (D).
Similarly Qz,x and Qw,. denote two disjoint paths, such that the first path is
a (z, x)-path, the second path has initial vertex w, and V (Qz,x)∪ V (Qw,.) =
V (D).

Lemma 6.4.2 [87] Let x, w, z be distinct vertices in a semicomplete digraph
T , such that there exist internally disjoint (x, w)-, (x, z)-paths P1, P2 in T .
Let R = T − V (P1) ∪ V (P2).
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(a) There are either Qx,w, Q.,z or Qx,z, Q.,w in T , unless there is no arc
from Rt to V (P1) ∪ V (P2) − x, where Rt is the terminal component of
T 〈R〉.

(b) In the case when there is an arc from Rt to V (P1) ∪ V (P2) − x we can
find one of the pairs of paths, such that the path with only one end vertex
specified has length at least one, unless V (P1) ∪ V (P2) = {w, x, z}.

(c) Moreover there is an O(n2) algorithm to find one of the pairs of paths
above if they exist.

Proof: If R = ∅ then both pairs of paths exist. Hence we may assume that
R 6= ∅. Assume there is an arc uv where u ∈ Rt and v ∈ (V (P1)∪V (P2))−x.
Assume without loss of generality that v ∈ P1. Since u ∈ Rt, T 〈R〉 has a
hamiltonian path Q ending at u and starting at some vertex y. By Proposition
4.10.2, the semicomplete digraph T 〈R ∪ V (P1)− x〉 has a hamiltonian path
starting either at y or the successor of x on P1 and ending in w. This path
together with P2 forms the desired pair of paths Qx,z, Q.,w. This proves (a).
It is easy to verify (b) by the same argument. As the strong components of
T 〈R〉 and a hamiltonian cycle in each of them can be found in O(n2) time
(Theorem 5.5.2), we can find Q and Qx,z, Q.,w in O(n2) time. ut

We point out that the proof above shows that Lemma 6.4.2 is valid also
for digraphs that are locally in-semicomplete.

The following lemma allows one to use symmetry and thereby reduces the
number of cases to consider when looking for an (x, y)-hamiltonian path.

Lemma 6.4.3 Let T be a semicomplete digraph and x, y vertices of T , such
that there exist 2 internally disjoint (x, y)-paths and an (x, y)-separator {u, v}
in T . Suppose that u, v do not induce a 2-cycle, say, v 6→u. Let T ′ denote the
semicomplete digraph obtained from T , by adding the arc v→u. Then T has
an (x, y)-hamiltonian path if and only if T ′ has an (x, y)-hamiltonian path.

Proof: Exercise 6.18. ut
The next result shows that either T is 2-strong or we can reduce the

problem to smaller instances.

Lemma 6.4.4 [87] If T is not 2-strong then either the desired path exists in
T , or we can reduce the problem to one or two smaller problems, such that
in the latter case the total size of the subproblems is at most n + 1. ut

We now outline the major steps of the algorithm in [87] for the (x, y)-
hamiltonian path problem. First we make some assumptions which do not
change the problem.

We assume that there is no arc from x to y and that neither x nor y are
contained in a 2-cycle (if there is such a cycle containing x (y), then delete
the arc entering x (leaving y)). It is easy to see that the new semicomplete
digraph has an (x, y)-hamiltonian path if and only if the original digraph has
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one. So we assume that the input is a semicomplete digraph T which has
the form above. In order to refer to smaller versions of the same problem we
refer to the problem as the hamiltonian problem. Note that by Lemma
6.4.4 we may assume that T is 2-strong (otherwise we just consider smaller
subproblems).

With the assumptions above it follows from Theorem 6.3.1 that, if there
are three internally disjoint (x, y)-paths in T , then the desired hamiltonian
path exists. Thus, by Lemma 6.4.4, the interesting part is when T is 2-strong
and there are two but not three internally disjoint (x, y)-paths. By Menger’s
theorem (which we study in Chapter 7) we may thus assume that there exists
an (x, y)-separator of size two in T .

The next theorem by Bang-Jensen, Manoussakis and Thomassen gener-
alizes Theorem 6.3.1. It is very important for the proof of Theorem 6.4.1,
because it corresponds to a case when no reduction is possible (see the de-
scription of the algorithm below) and hence one has to prove the existence
of the desired path directly. Recall that for specified distinct vertices s, t, an
(s, t)-separator is a subset S ⊆ V −{s, t} such that D−S has no (s, t)-path.
An (s, t)-separator is trivial if either s has out-degree zero or t has in-degree
zero in D − S.

Theorem 6.4.5 [87] Let T be a 2-strong semicomplete digraph on at least 10
vertices and let x, y be vertices of T such that y 7→x. Suppose that T −x, T −y
are both 2-strong. If all (x, y)-separators consisting of two vertices (if any
exist) are trivial, then T has an (x, y)-hamiltonian path. ut

Besides the results mentioned above the algorithm uses the following re-
sults:

Lemma 6.4.6 [87] Suppose T is 2-strong and there exists a non-trivial sep-
arator {u, v} of x, y. Let A,B denote a partition of T − {u, v} such that
y ∈ A, x ∈ B and A7→B. Let T ′ = T 〈A ∪ {u, v}〉, T ′′ = T 〈B ∪ {u, v}〉. We
can reduce the hamiltonian problem to at most four hamiltonian problems
such that one has size max{|A|, |B|}+ 2 or max{|A|, |B|}+ 3 and the others
(if any) have size at most min{|A|, |B|}+ 3. ut
Lemma 6.4.7 [87] Suppose that T is 2-strong, n ≥ 6, and all (x, y)-
separators of size 2 x, y are trivial. If T − x or T − y is not 2-strong, then
either the desired path exists in T , or we can reduce the problem to one or
two smaller problems, such that in the latter case, the total size of the sub-
problems is at most n + 2. ut
The hamiltonian algorithm

1. If n ≤ 9, then settle the problem in constant time.
2. If T is not 2-strong, then using Lemma 6.4.4 we settle the problem, or

reduce to smaller instances of the hamiltonian problem.
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3. If there are no (x, y)-separators of size 2, then T has the desired path,
by Theorem 6.3.1.

4. If all (x, y)-separators of size 2 are trivial, we check if T − x and T − y
are 2-strong. Then we settle or reduce the problem using Theorem 6.4.5
or Lemma 6.4.7.

5. Let {u, v} be a non-trivial (x, y)-separator and let A, B form a partition
of T −{u, v}, such that y ∈ A, x ∈ B and A7→B. (Such a partition can be
found in time O(n2), by letting B be the vertices which in T −{u, v} can
be reached from x by a directed path and then taking A = V −B−{u, v}.)
Also, if necessary, add an arc to make u, v induce a 2-cycle. This does
not change the problem, by Lemma 6.4.3.

6. Use the algorithmic version of Lemma 6.4.2 to find Qx,u, Q.,v or Qx,v,
Q.,u in T ′′ = T (B∪{u, v}), and use an analogous algorithm to find Qu,y,
Qv,. or Qv,y, Qu,. in T ′ = T (A ∪ {u, v}). These paths exist, since T is
2-strong, and the paths with one end vertex unspecified can be chosen
of length at least one, since A,B both have size at least 2 (here we used
that {u, v} is a non-trivial separator).

7. If these paths match then T has the desired (x, y)-hamiltonian path. So
suppose (by renaming u, v if necessary) that we find Qx,u, Q.,v in T ′′ and
Qu,y, Qv,. in T ′.

8. Using Lemma 6.4.6 we can now reduce the problem to smaller instances
of the hamiltonian problem.

In Step 7 we say that the two sets of paths in T ′′ and T ′ match if the
following holds: the paths are P1 from x to w and P2 from p to z in T ′′ and
R1 from r to y and R2 from s to q in T ′ where {w, z} = {r, s} = {u, v} and
w = s and z = r. In this case the path P1R2P2R1 is the desired hamiltonian
path since q→p by the definition of B in Step 5.

The complexity of the algorithm outlined above is O(n5) (in fact, it is
O(n4+ε) for every ε > 0). No attempt was made in [87] to improve the
complexity, but it seems quite difficult to improve it very much.

It is interesting to note that the algorithm described above cannot be
easily modified to solve the problem of finding the longest path with specified
initial and terminal vertex in a semicomplete digraph. In several places we
explicitly use that we are searching for a hamiltonian path. There also does
not seem to be any simple reduction of this problem to the problem of deciding
the existence of a hamiltonian path from x to y.

Conjecture 6.4.8 [65] There exists a polynomial algorithm which, given a
semicomplete digraph D and two distinct vertices x and y of D, finds a longest
(x, y)-path.

Note that, if we ask for the longest [x, y]-path in a tournament, then this
can be answered using Theorem 6.2.1 (see Exercise 6.19).
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Conjecture 6.4.9 [65] There exists a polynomial algorithm which, given
a digraph D that is either extended semicomplete or locally semicomplete,
and two distinct vertices x and y of D, decides whether D has an (x, y)-
hamiltonian path and finds such a path if one exists.

6.5 Pancyclicity of Digraphs

A digraph D of order n is pancyclic if it has cycles of all lengths 3, 4, . . . , n.
We say that D is vertex-pancyclic if for any v ∈ V (D) and any k ∈
{3, 4, ..., n} there is a cycle of length k containing v. We also say that D
is (vertex-)m-pancyclic if D contains a k-cycle (every vertex of D is on
a k-cycle) for each k = m,m + 1, . . . , n. Note that some early papers on
pancyclicity in digraphs require that D is (vertex-)2-pancyclic in order to be
(vertex-)pancyclic (see e.g. the survey [115] by Bermond and Thomassen). We
feel that this definition is too restrictive, since often one can prove pancyclicity
results for much broader classes of digraphs when the 2-cycle is omitted from
the requirement.

6.5.1 (Vertex-)Pancyclicity in Degree-Constrained Digraphs

The following claim is due to Alon and Gutin:

Lemma 6.5.1 [11] Every directed graph D = (V, A) on n vertices for which
δ0(D) ≥ n/2 + 1 is vertex-2-pancyclic.

Proof: Let v ∈ V be arbitrary. By Corollary 5.6.3 there is a Hamilton cycle
u1u2 . . . un−1u1 in D − v. If there is no cycle of length k through v then
for every i, |N+(v) ∩ {ui}| + |N−(v) ∩ {ui+k−2}| ≤ 1, where the indices are
computed modulo n− 1. By summing over all values of i, 1 ≤ i ≤ n− 1, we
conclude that |N−(v)|+ |N+(v)| ≤ n− 1, contradicting the assumption that
all in-degrees and out-degrees exceed n/2. ut

Thomassen [696] proved that just by adding one to the degree condition
for hamiltonicity in Theorem 5.6.7 one obtains cycles of all possible lengths
in the digraphs satisfying the degree condition.

Theorem 6.5.2 [696] Let D be a strong digraph on n vertices such that
d(x) + d(y) ≥ 2n whenever x and y are nonadjacent. Then either D has
cycles of all lengths 2, 3, . . . , n, or D is a tournament (in which case it has
cycles of all lengths 3, 4, . . . , n) or n is even and D is isomorphic to

↔
K n

2 , n
2
.
ut

The following example from [696] shows that 2n cannot be replaced by
2n− 1 in Theorem 6.5.2. For some m ≤ n let Dn,m = (V, A) be the digraph
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with vertices V = {v1, v2, . . . , vn} and arcs A = {vivj |i < j or i = j + 1} −
{vivi+m−1|1 ≤ i ≤ n−m+1}. We leave it as Exercise 6.20 to show that Dn,m

is strong, has no m-cycle and if m > (n+1)/2, then Dn,m satisfies Meyniel’s
condition for hamiltonicity (Theorem 5.6.7). In [176] Darbinyan characterizes
those digraphs which satisfy Meyniel’s condition, but are not pancyclic.

Theorem 6.5.2 extends Moon’s theorem (Theorem 1.5.1) and Corollaries
5.6.2 and 5.6.6. However, as pointed out by Bermond and Thomassen in
[115], Theorem 6.5.2 does not imply Meyniel’s theorem (Theorem 5.6.7). The
following result is due to Häggkvist:

Theorem 6.5.3 [391] Every hamiltonian digraph on n vertices and at least
1
2n(n + 1)− 1 arcs is pancyclic. ut

Song [679] generalized the result of Jackson given in Theorem 5.12.5 and
proved the following theorem.

Theorem 6.5.4 [679] Let D = (V, A) be an oriented graph on n ≥ 9 vertices
with minimum degree n− 2. Suppose that D satisfies the following property:

xy 6∈ A ⇒ d+(x) + d−(y) ≥ n− 3. (6.2)

Then D is pancyclic. ut
Song [679] pointed out that, if the minimum degree condition in Theorem

6.5.4 is relaxed, then it is no longer guaranteed that D is hamiltonian.
Using Theorem 6.5.4 and Theorem 10.7.3, Bang-Jensen and Guo proved

that under the same conditions as in Theorem 6.5.4 the digraph is in fact
vertex-pancyclic.

Theorem 6.5.5 [54] Let D be an oriented graph on n ≥ 9 vertices and
suppose that D satisfies the conditions in Theorem 6.5.4. Then D is vertex
pancyclic. ut

It should be noted that every digraph which satisfies the condition of
Theorem 6.5.4 is a multipartite tournament with independence number at
most 2.

There are several other results on pancyclicity of digraphs with large
minimum degrees, see e.g. the papers [174, 175, 178] by Darbinyan.

6.5.2 Pancyclicity in Extended Semicomplete and
Quasi-Transitive Digraphs

In this subsection we show how to use the close relationship between the class
of quasi-transitive digraphs and the class of extended semicomplete digraphs
to derive results on pancyclic and vertex-pancyclic quasi-transitive digraphs
from analogous results for extended semicomplete digraphs.
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A digraph D is triangular with partition V0, V1, V2, if the vertex set of
D can be partitioned into three disjoint sets V0, V1, V2 with V0 7→V1 7→V2 7→V0.
Note that this is equivalent to saying that D = ~C3[D〈V0〉, D〈V1〉, D〈V2〉].

Gutin [367] characterized pancyclic and vertex-pancyclic extended semi-
complete digraphs. Clearly no extended semicomplete digraph of the form
D = ~C2[Kn1 ,Kn2 ] with at least 3 vertices is pancyclic since all cycles are
of even length. Hence we must assume that there are at least 3 partite sets
in order to get a pancyclic extended semicomplete digraph. It is also easy
to see that the (unique) strong 3-partite extended semicomplete digraph on
4 vertices is not pancyclic (since it has no 4-cycle). These observations and
the following theorem completely characterize pancyclic and vertex-pancyclic
extended semicomplete digraphs.

Theorem 6.5.6 [367] Let D be a hamiltonian extended semicomplete di-
graph of order n ≥ 5 with k partite sets (k ≥ 3). Then

1. (a) D is pancyclic if and only if D is not triangular with a partition
V0, V1, V2, two of which induce digraphs with no arcs, such that either
|V0| = |V1| = |V2| or no D〈Vi〉 (i = 0, 1, 2) contains a path of length 2.

2. (b) D is vertex-pancyclic if and only if it is pancyclic and either k > 3
or k = 3 and D contains two cycles Z, Z ′ of length 2 such that Z ∪ Z ′

has vertices in the three partite sets. ut
It is not difficult to see that Theorem 6.5.6 extends Theorem 1.5.1, since

no semicomplete digraph on n ≥ 5 vertices satisfies any of the exceptions
from (a) and (b).

The next two lemmas by Bang-Jensen and Huang [79] concern cycles
in triangular digraphs. They are used in the proof of Theorem 6.5.9 which
characterizes pancyclic and vertex-pancyclic quasi-transitive digraphs.

Lemma 6.5.7 [79] Suppose that D is a triangular digraph with a partition
V0, V1, V2 and suppose that D is hamiltonian. If D〈V1〉 contains an arc xy
and D〈V2〉 contains an arc uv, then every vertex of V0 ∪ {x, y, u, v} is on
cycles of lengths 3, 4, . . . , n.

Proof: Let C be a hamiltonian cycle of D. We construct an extended semi-
complete digraph D′ from D in the following way. For each of i = 0, 1, 2, first
path-contract5 each maximal subpath of C which is contained in D〈Vi〉 and
then delete the remaining arcs of D〈Vi〉. It is clear that D′ is a subdigraph of
D, and in this process, C is changed to a hamiltonian cycle C ′ of D′. Hence D′

is also triangular with a partition V ′
0 , V ′

1 , V ′
2 such that |V ′

0 | = |V ′
1 | = |V ′

2 | = r,
for some r (the last fact follows from the existence of a hamiltonian cycle in
D′). Then each vertex of D is on a cycle of length k with 3r ≤ k ≤ |V (D)|
(to see this, just use suitable pieces of the r subpaths of C in each Vi).

5 Recall the definition of path-contraction from Subsection 5.1.1.
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Now we may assume that r ≥ 2 and we show that each vertex of V0 ∪
{x, y, u, v} is on a cycle of length k with 3 ≤ k ≤ 3r−1. To see this, we modify
D′ to another digraph D′′ as follows. If x and y are in distinct maximal
subpaths Px, Py of C in D〈V1〉, then we add (in D′) an arc from the vertex to
which Px was contracted to the vertex to which Py was contracted. If x and
y are in the same maximal subpath P of C in D〈V1〉, then we add (in D′) an
arc from the vertex to which P was contracted to an arbitrary other vertex of
V ′

1 . For the vertices u and v we make a similar modification. Hence we obtain
a digraph D′′ which is isomorphic to a subdigraph of D. The digraph D′′ is
also triangular with a partition V ′′

0 , V ′′
1 , V ′′

2 such that |V ′′
0 | = |V ′′

1 | = |V ′′
2 | = r.

Moreover D′′〈V ′′
1 〉 contains an arc x′y′ and D′′〈V ′′

2 〉 contains an arc u′v′. It
is clear now that each vertex of V ′′

0 ∪ {x′, y′, u′, v′} is on a cycle of length k
where 3 ≤ k ≤ 3r − 1. Using the same structure as for these cycles we can
see that in D each vertex of V0 ∪ {x, y, u, v} is on a cycle of length k with
3 ≤ k ≤ 3r − 1. ut
Lemma 6.5.8 [79] Suppose that D is a triangular digraph with a partition
V0, V1, V2 and D has a hamiltonian cycle C. If D〈V0〉 contains an arc of C
and a path P of length 2, then every vertex of V1 ∪ V2 ∪ V (P ) is on cycles of
lengths 3, 4, . . . , n.

Proof: Exercise 6.24. ut
It is easy to check that a strong quasi-transitive digraph on 4 vertices is

pancyclic if and only if it is a semicomplete digraph. For n ≥ 5 we have the
following characterization due to Bang-Jensen and Huang:

Theorem 6.5.9 [79] Let D = (V, A) be a hamiltonian quasi-transitive di-
graph on n ≥ 5 vertices.

1. (a) D is pancyclic if and only if it is not triangular with a partition
V0, V1, V2, two of which induce digraphs with no arcs, such that either
|V0| = |V1| = |V2|, or no D〈Vi〉 (i = 0, 1, 2) contains a path of length 2.

2. (b) D is not vertex-pancyclic if and only if D is not pancyclic or D is
triangular with a partition V0, V1, V2 such that one of the following occurs:

(b1) |V1| = |V2|, both D〈V1〉 and D〈V2〉 have no arcs, and there exists a
vertex x ∈ V0 such that x is not contained in any path of length 2 in
D〈V0〉 (in which case x is not contained in a cycle of length 5).

(b2) one of D〈V1〉 and D〈V2〉 has no arcs and the other contains no path of
length 2, and there exists a vertex x ∈ V0 such that x is not contained
in any path of length 1 in D〈V0〉 (in which case x is not contained in
a cycle of length 5).

Proof: To see the necessity of the condition in (a), suppose that D is trian-
gular with a partition V0, V1, V2, two of which induce digraphs with no arcs.
If |V0| = |V1| = |V2|, then D contains no cycle of length n − 1. If no D〈Vi〉


