
4.10 Problems Inherent in the Evolution of Algorithms 221

Halting Problem

The Halting Problem is basically an instance of the Entscheidungsproblem and asks for an
algorithm that decides whether another algorithm will terminate at some point in time or
runs forever if provided with a certain, finite input. Again, Turing [2065, 2066] proved that
a general algorithm solving the Halting Problem cannot exist in general. One possible way
to show this is to use a simple counter-example: Assume that a correct algorithm doesHalt
exists (as presumed in Algorithm 4.2) which takes a program algo as input and determines
whether it will terminate or not. It is now possible to specify a program trouble which, in
turn, uses doesHalt to determine if it will halt at some point in time. If doesHalt returns
true, trouble loops forever. Otherwise it halts immediately. In other words, doesHalt cannot
return the correct result for trouble and hence, cannot be applied universally. Thus, it is
not possible to solve the Halting Problem algorithmically for Turing-complete programs in
a Turing-complete representation. One consequence of this fact is that there are no means
to determine when an evolved program will terminate or whether it will do so at all (if
its representation allows infinite execution, that is) [2011, 2254]. Langdon and Poli [1243]
have shown that in Turing-complete linear Genetic Programming systems, most synthesized
programs loop forever and the fraction of halting programs of size length is proportional to√
length, i. e., small.

Algorithm 4.2: Halting Problem: reductio ad absurdum

begin1

doesHalt(algo) ∈ {true, false}2

begin3

. . .4

end5

Subalgorithm trouble()6

begin7

if doesHalt(trouble) then8

while true do9

. . .10

end11

end12

Countermeasures

Against the Entscheidungsproblem

For general, Turing-complete program representations, neither exhaustive testing nor algo-
rithmic detection of correctness is possible.

Model Checking Model checking76 techniques [413, 1483] have made great advance since
the 1980s. According to Clarke and Emerson [412], “Model checking is an automated tech-
nique that, given a finite-state model of a system and a logical property, systematically checks
whether this property holds for (a given initial state in) that model.” The result of the check-
ing process is either a confirmation of the correctness of the checked model, a counterexample
in which it fails to obey its specification, or failure, i. e., a situation in which no conclusion
could be reached.

Hence, in the context of Genetic Programming, a model checker can be utilized as a
Boolean function ϕ : X 7→ B which maps the evolved programs to correct (≡ true) or

76 http://en.wikipedia.org/wiki/Model_checking [accessed 2008-10-02]

http://en.wikipedia.org/wiki/Model_checking

222 4 Genetic Programming

incorrect (≡ false). As objective function, ϕ therefore is rather infeasible, since it would
lead directly to the all-or-nothing problem discussed in Section 4.10.2.77

Still, model checkers can be an interesting way to define termination criteria for the
evolution or to verify its results. This may require a reduction of the expressiveness of the
GP approaches utilized in order to make them compliant with the input languages of the
model checkers. Then again, there are very powerful model checkers such as SPIN78 [955,
176, 256], which processes systems written in the Promela79 (the Process Meta Language)
with which asynchronous distributed algorithms can be specified [175]. If such a system was
used, no reduction of the expressiveness of the program representation would be needed at
all. Nevertheless, a formal transformation of the GP representation to these languages must
be provided in any circumstance. Creating such a transformation is complicated and requires
a formal proof of correctness – checking a model without having shown the correctness of
the model representation first is, basically, nonsense.80

The idea of using model checkers like SPIN is very tempting. One important drawback
of this method is the unforeseeable runtime of the checking process which spans from almost
instantaneous return up to almost half an hour [2031]. In the same series of experiments
([2031]), the checking process also failed in a fraction of cases (≈ 18%) depending on the
problem to be verified. Especially the unpredictable runtime for general problems led us to
the decision to not use SPIN in our own works yet, since in the worst case, a few thousand
program verifications could be required per generation in the GP system. Still, it is an
interesting idea to evolve programs in Promela language and we will reconsider it in our
future work and evaluate the utility and applicability of SPIN for the said purposes in
detail.

Functional Adequacy In the face of this situation where we cannot automatically determine
whether an evolved algorithm is correct, overfitted, or oversimplified, a notation for which
solutions are acceptable and which are not is required. One definition which fits perfectly in
this context is the idea of functional adequacy provided by Camps et al. [327], Gleizes et al.
[809]:

Definition 4.7 (Functional Adequacy). When a system has the “right” behavior –
judged by an external observer knowing the environment – we say that it is functionally
adequate [809].

In the context of Genetic Programming, the external observer is represented by the
objective functions which evaluate the behavior of the programs in the simulation environ-
ments. According to Gleizes et al. [809], functional adequacy also subsumes non-functional
criteria such as memory consumption or response time if they become crucial in a certain en-
vironment, i. e., influence the functionality. For optimizing such criteria, different additional
approaches are provided in Section 4.10.3.

Against The Halting Problem

In order to circumvent the Halting Problem, the evolved programs can be executed in sim-
ulations which allow limiting their runtime [2254, 1027]. Programs which have not finished
until the time limit has elapsed are terminated automatically. Especially in linear Genetic
Programming approaches, it is easy to do so by simply defining an upper bound for the
number of instructions being executed. For tree-based representations, this is slightly more
complicated.

Teller [2011] suggests to apply time-limiting approaches too, but also the use of so-called
anytime algorithms, i. e., algorithms that store their best guess of the result in a certain

77 One approach to circumvent this problem would be to check for several properties separately.
78 http://en.wikipedia.org/wiki/SPIN_model_checker [accessed 2008-10-02]

79 http://en.wikipedia.org/wiki/Promela [accessed 2008-10-02]

80 Thanks to Hendrik Skubch for discussing this issue with me.

http://en.wikipedia.org/wiki/SPIN_model_checker
http://en.wikipedia.org/wiki/Promela

4.10 Problems Inherent in the Evolution of Algorithms 223

memory cell and update it during their run. Anytime algorithms can be stopped at any
time, since the result is always there, although it would have been refined in the future
course of the algorithm.

Another way to deal with this problem is to prohibit the evolution of infinite loops or
recursions from the start by restricting the structural elements in the programming language.
If there are no loops, there surely cannot be infinite ones either. Imposing such limitations,
however, also restricts the programs that can evolve: A representation which does not allow
infinite loops cannot be Turing-complete either.

A B
X

X

Y

Figure 4.34: A sketch of an infinite message loop.

Often it is not sufficient to restrict just the programming language. An interesting ex-
ample for this issue is the evolution of distributed algorithms. Here, the possible network
situations and the reactions to them would also need to be limited. One would need to
exclude situations like the one illustrated in Figure 4.34 where

1. node A sends message X to node B which
2. triggers an action there, leading to a response message Y from B back to node A which,

in turn,
3. causes an action on A that includes sending X to B again
4. and so on. . .

Preventing such a situation is even more complicated and will, most likely, also prevent the
evolution of useful solutions.

4.10.2 All-Or-Nothing?

The evolution of algorithms often proves as a special instance of the needle-in-a-haystack
problem. From a näıve and, at the same time, mathematically precise point of view, an
algorithm computing the greatest common divisor of two numbers, for instance, is either
correct or wrong. Approaching this problem straightforwardly leads to the application of a
single objective function which can take on only two values, provoking the all-or-nothing
problem in Genetic Programming. In such a fitness landscape, a few steep spikes of equal
height represent the correct algorithms and are distributed over a large plane of infeasible
solution candidates with equally bad fitness.

The negative influence of all-or-nothing problems have been reported from many areas
of Genetic Programming, such as the evolution of distributed protocols [2058] (see Sec-
tion 23.2.2), quantum algorithms [1932], expression parsers [1027], and mathematical algo-
rithms (such as the GCD).

In Section 21.3.2, we show how to some means to mitigate this problem for the GCD
evolution. However, like those mentioned in some of the previously cited works, such methods
are normally application dependent and often cannot be transferred to other problems in a
simple manner.

Countermeasures

There are two direct countermeasures against the all-or-nothing problem in GP. The first
one is to devise objective functions which can take on as many values as possible, i. e., which
also reward partial solutions.

224 4 Genetic Programming

The second countermeasure is using as many test cases as possible and applying the
objective functions to all of them, setting the final objective values to be the average of the
results. Testing with ten training cases will transform a binary objective function to one
which (theoretically) can take on eleven values, for instance: 1.0 if all training cases were
processed correctly, 0.9 if one training case failed while nine worked out properly, . . . , and
0.0 if the evolved algorithm was unable to behave adequately in any of the training cases.
Using multiple training cases has, of course, the drawback that the time needed for the
objective function evaluation will increase (linearly).

Vaguely related to these two measures is another approach, the utilization of Lamarck-
ian evolution [522, 2215] or the Baldwin effect [123, 929, 930, 2215] (see Section 15.2 and
Section 15.3, respectively). As already pointed out in Section 1.4.3, they incorporate a local
search into the optimization process which may further help to smoothen out the fitness
landscape [864].

In our experiments reported in [2177], an approach similar to Lamarckian evolution was
incorporated. Although providing good results, the runtime of the approaches increased to
a degree rendering it unfeasible for large-scale.81

4.10.3 Non-Functional Features of Algorithms

Besides evaluating an algorithm in terms of its functionality, there always exists a set of non-
functional features that should be regarded too. For most non-functional aspects (such as
code size, runtime requirements, and memory consumption) and the parsimony82 principle
holds: less is better. In this section, we will discuss various reasons for applying parsimony
pressure in Genetic Programming.

Code Size

In Section 30.1.1 on page 547, we define what algorithms are: compositions of atomic in-
structions that, if executed, solve some kind of problem or a class of problems. Without
specifying any closer what atomic instructions are, we can define the following:

Definition 4.8 (Code Size). The code size of an algorithm or program is the number of
atomic instructions it is composed of.

The atomic instructions cannot be broken down into smaller pieces. Therefore, the code
size is a positive integer number in N0. Since algorithms are statically finite per definition
(see Definition 30.9 on page 550), the code size is always finite.

Code Bloat

Definition 4.9 (Bloat). In Genetic Programming, bloat is the uncontrolled growth in size
of the individuals during the course of the evolution [1318, 229, 140, 1196, 1241].

The term code bloat is often used in conjunction with code introns, which are regions
inside programs that do not contribute to the functional objective values (because they
can never be reached, for instance; see Definition 3.2 on page 146). Limiting the code size
and increasing the code efficiency by reducing the number of introns is an important task
in Genetic Programming since disproportionate program growth has many bad side effects
like:

1. The evolving programs become unnecessarily big while elegant solutions should always
be as small and simple as possible.

81 These issues were not the subject of the paper and thus, not discussed there.
82 http://en.wikipedia.org/wiki/Parsimony [accessed 2008-10-14]

http://en.wikipedia.org/wiki/Parsimony

4.10 Problems Inherent in the Evolution of Algorithms 225

2. Mutation and recombination operators always have to select the point in an individual
where they will apply their changes. If there are many points that do not contribute
to functionality, the probability of selecting such a point for modification is high. The
generated offspring will then have exactly the same functionality as its parents and the
genetic operation performed was literarily useless.

3. Bloat slows down both, the evaluation [872] and the breeding process of new solution
candidates.

4. Furthermore, it leads to increased memory consumption of the Genetic Programming
system.

There are many theories about how code bloat emerges [1318], some of them are:

1. Unnecessary code hitchhikes with good individuals. If it is part of a fit solution candidate
that creates many offspring, it is likely to be part of many new individuals. According
to Tackett [1994], high selection pressure is thus likely to cause code growth. This idea
is supported by the research of Langdon and Poli [1241], Smith and Harries [1906], and
Gustafson et al. [872].

2. As already stated, unnecessary code makes it harder for genetic operations to alter the
functionality of an individual. In most cases, genetic operators yield offspring with worse
fitness than its parents. If a solution candidate has good objective values, unnecessary
code can be one defense method against recombination and mutation. If the genetic
operators are neutralized, the offspring will have the same fitness as its parent. This idea
has been suggested in many sources, such as [229, 228, 1544, 1384, 1756, 140, 1244, 1906].
From this point of view, introns are a “bad” form of neutrality83. By the way, the
reduction of the destructive effect of recombination on the fitness may also have positive
effects, as pointed out by Nordin et al. [1546, 1547], since it may lead to a more durable
evolution.

3. Luke [1318] defines a theory for tree growth based on the fact that recombination is
likely to destroy the functionality of an individual. However, the deeper the crossover
point is located in the tree, the smaller is its influence because fewer instructions are
removed. If only a few instructions are replaced from a functionally adequate program,
they are likely to be exchanged by a larger sub-tree. A new offspring that retains the
functionality of its parents therefore tends to be larger.

4. Similar to the last two theories, the idea of removal bias by Soule and Foster [1922]
states that removing code from an individual will preserve the individual’s functionality
if the code removed is non-functional. Since the portion of useless code inside a program
is finite, there also exists an upper limit of the amount of code that can be removed
without altering the functionality of the program. For the size of new sub-trees that
could be inserted instead (due to mutation or crossover), no such limit exists. Therefore,
programs tend to grow [1922, 1244].

5. According to the diffusion theory of Langdon et al. [1244], the number of large pro-
grams in the problem space that are functionally adequate is higher than the number
of small adequate programs. Thus, code bloat could correspond to the movement of the
population into the direction of equilibrium [1318].

6. Another theory considers the invalidators that make code unreachable or dysfunctional.
In the formula 4+0∗(4−x) for example, the multiplication with 0 makes the whole part
(4 − x) inviable. Luke [1318] argues that the influence of invalidators would be higher
in large trees than in small trees. If programs grow while the fraction of invalidators
remains constant and those inherited from the parents stay in place, their chance to occur
proportionally closer to the root increases. Then, the amount of unnecessary instructions
would increase too and naturally approach 100%.

7. Instead of being real solutions, programs that grow uncontrolled also tend to be some
sort of decision tables. This phenomenon is called overfitting and has already discussed

83 You can find the topic of neutrality discussed in Section 1.4.5 on page 64.

226 4 Genetic Programming

in Section 1.4.8 on page 72 and Section 23.1.3 on page 399 in detail. The problem is that
overfitted programs tend to have marvelous good fitness for the training cases/sample
data, but are normally useless for any other input.

8. Like Tackett [1994], Gustafson et al. [872] link code growth to high selection pressure
but also to loss of diversity in general. In populations with less diversity, recombination
will frequently be applied to very similar individuals, which often yields slightly larger
offspring.

Some approaches for fighting bloat are discussed in Section 4.10.3.

Runtime and Memory Consumption

Another aspect subject to minimization is generally the runtime of the algorithms grown.
The amount of steps needed to solve a given task, i. e., the time complexity, is only loosely
related to the code size. Although large programs with many instructions tend to run longer
than small programs with few instructions, the existence of loops and recursion invalidates
a direct relation.

Like the complexity in time, the complexity in memory space of the evolved solutions
often is minimized, too. The number of variables and memory cells needed by program in
order to perform its work should be as small as possible. Section 30.1.3 on page 550 provides
some additional definitions and discussion about the complexity of algorithms.

Errors

An example for an application where the non-functional errors that can occur should be min-
imized is symbolic regression. Therefore, the property of closure specified in Definition 4.1 on
page 178 is usually ensured. Then, the division operator div is re-defined in order to prevent
division-by-zero errors. Therefore, such a division could either be rendered to a nop (i. e.,
does nothing) or yields 1 or the dividend as result. However, the number of such arithmetical
errors could also be counted and made the subject to minimization too.

Transmission Count

If evolving distributed algorithms, the number of messages required to solve a problem
should be as low as possible since transmissions are especially costly and time-consuming
operations.

Optimizing Non-Functional Aspects

Optimizing the non-functional aspects of the individuals evolved is a topic of scientific in-
terest.

1. One of the simplest means of doing so is to define additional objective functions which
minimize the program size and to perform a multi-objective optimization. Successful
and promising experiments by Bleuler et al. [227], de Jong et al. [510], and Ekárt and
Németh [626] showed that this is a viable countermeasure for code bloat, for instance.

2. Another method is limiting the aspect of choice. A very simple measure to limit code
bloat, for example, is to prohibit the evolution of trees with a depth surpassing a certain
limit [1320].

3. Poli [1660] furthermore suggests that the fitness of a certain portion of the population
with above-average code size should simply be set to the worst possible value. These
artificial fitness holes will repel the individuals from becoming too large and hence,
reduce the code bloat.

5

Evolution Strategy

5.1 Introduction

Evolution Strategies1 (ES) introduced by Rechenberg [1712, 1713, 1714] are a heuristic
optimization technique based in the ideas of adaptation and evolution, a special form of
evolutionary algorithms [1712, 1713, 1714, 103, 200, 1841, 198, 916]. Evolution Strategies
have the following features:

1. They usually use vectors of real numbers as solution candidates, i. e., G = X = Rn. In
other words, both the search and the problem space are fixed-length strings of floating
point numbers, similar to the real-encoded genetic algorithms mentioned in Section 3.3
on page 145.

2. Mutation and selection are the primary operators and recombination is less common.
3. Mutation most often changes the elements x[i] of the solution candidate vector x

to a number drawn from a normal distribution N
(
x[i], σ2

i

)
. For reference, you can

check Equation 11.1 on page 259 in the text about Random Optimization.
4. Then, the values σi are governed by self-adaptation [891, 1400, 1214] such as covariance

matrix adaptation [888, 889, 890, 1041].
5. In all other aspects, they perform exactly like basic evolutionary algorithms as defined

in Algorithm 2.1 on page 99.

5.2 General Information

5.2.1 Areas Of Application

Some example areas of application of Evolution Strategy are:

Application References

Data Mining and Data Analysisanalysis [445]
Scheduling [971]
Chemistry, Chemical Engineering [1755, 470, 632]
Ressource Minimization, Environment Surveillance/Pro-
tection

[1556]

Combinatorial Optimization [1536, 193, 197]
Geometry and Physics [1122, 2173]
Optics and Image Processing [859, 860, 101, 2218, 2217, 1279]

1 http://en.wikipedia.org/wiki/Evolution_strategy [accessed 2007-07-03], http://www.

scholarpedia.org/article/Evolution_Strategies [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Evolution_strategy
http://www.scholarpedia.org/article/Evolution_Strategies
http://www.scholarpedia.org/article/Evolution_Strategies

228 5 Evolution Strategy

5.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on Evolution Strategy are:

EUROGEN: Evolutionary Methods for Design Optimization and Control with Applications
to Industrial Problems

see Section 2.2.2 on page 106

5.2.3 Books

Some books about (or including significant information about) Evolution Strategy are:

Schwefel [1841]: Evolution and Optimum Seeking: The Sixth Generation
Rechenberg [1713]: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution
Rechenberg [1714]: Evolutionsstrategie ’94
Beyer [198]: The theory of evolution strategies
Schwefel [1840]: Numerical Optimization of Computer Models
Schöneburg, Heinzmann, and Feddersen [1831]: Genetische Algorithmen und Evolution-
sstrategien
Bäck [99]: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolution-
ary Programming, Genetic Algorithms

5.3 Populations in Evolution Strategy

Evolution Strategies usually combine truncation selection (as introduced in Section 2.4.2 on
page 122) with one of the following population strategies. These strategies listed below have
partly been borrowed from German Wikipedia [2219] site for Evolution Strategy2.

5.3.1 (1 + 1)-ES

The population only consists of a single individual which is reproduced. From the elder and
the offspring, the better individual will survive and form the next population. This scheme
is very close to hill climbing which will be introduced in Chapter 10 on page 253.

5.3.2 (µ + 1)-ES

Here, the population contains µ individuals from which one is drawn randomly. This indi-
vidual is reproduced from the joint set of its offspring and the current population, the least
fit individual is removed.

5.3.3 (µ + λ)-ES

Using the reproduction operations, from µ parent individuals λ ≥ µ offspring are created.
From the joint set of offspring and parents, only the µ fittest ones are kept [936].

2 http://de.wikipedia.org/wiki/Evolutionsstrategie [accessed 2007-07-03]

http://de.wikipedia.org/wiki/Evolutionsstrategie

5.5 Differential Evolution 229

5.3.4 (µ, λ)-ES

In (µ, λ) Evolution Strategies, introduced by Schwefel [1840], again λ ≥ µ children are
created from µ parents. The parents are subsequently deleted and from the λ offspring
individuals, only the µ fittest are retained [1840, 196].

5.3.5 (µ/ρ, λ)-ES

Evolution Strategies named (µ/ρ, λ) are basically (µ, λ) strategies. The additional parameter
ρ is added, denoting the number of parent individuals of one offspring. As already said,
normally, we only use mutation (ρ = 1). If recombination is also used as in other evolutionary
algorithms, ρ = 2 holds. A special case of (µ/ρ, λ) algorithms is the (µ/µ, λ) Evolution
Strategy [1369].

5.3.6 (µ/ρ + λ)-ES

Analogously to (µ/ρ, λ)-Evolution Strategies, the (µ/ρ + λ)-Evolution Strategies are (µ, λ)
approaches where ρ denotes the number of parents of an offspring individual.

5.3.7 (µ′, λ′(µ, λ)γ)-ES

Geyer et al. [791, 792, 793] have developed nested Evolution Strategies where λ′ offspring
are created and isolated for γ generations from a population of the size µ′. In each of the
γ generations, λ children are created from which the fittest µ are passed on to the next
generation. After the γ generations, the best individuals from each of the γ isolated solution
candidates propagated back to the top-level population, i. e., selected. Then, the cycle starts
again with λ′ new child individuals. This nested Evolution Strategy can be more efficient than
the other approaches when applied to complex multimodal fitness environments [1714, 793].

5.4 One-Fifth Rule

The 1
5 success rule defined by Rechenberg [1713] states that the quotient of the number of

successful mutations (i. e., those which lead to fitness improvements) to the total number
of mutations should be approximately 1

5 . If the quotient is bigger, the σ-values should be
increased and with that, the scatter of the mutation. If it is lower, σ should be decreased
and thus, the mutations are narrowed down.

5.5 Differential Evolution

5.5.1 Introduction

Differential Evolution3 (DE, DES) is a method for mathematical optimization of multidi-
mensional functions that belongs to the group of evolution strategies [1676, 653, 1404, 288,
1234, 1391, 189]. Developed by Storn and Price [1974], the DE technique has been invented
in order to solve the Chebyshev polynomial fitting problem. It has proven to be a very reli-
able optimization strategy for many different tasks where parameters that can be encoded
in real vectors.

The essential idea behind Differential Evolution is the way the (ternary) recombination
operator “deRecombination” is defined for creating new solution candidates. The difference

3 http://en.wikipedia.org/wiki/Differential_evolution [accessed 2007-07-03], http://www.icsi.
berkeley.edu/~storn/code.html [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Differential_evolution
http://www.icsi.berkeley.edu/~storn/code.html
http://www.icsi.berkeley.edu/~storn/code.html

230 5 Evolution Strategy

x1−x2 of two vectors x1 and x2 in X is weighted with a weight w ∈ R and added to a third
vector x3 in the population.

x = deRecombination(x1,x2,x3)⇒ x = x3 + w (x1 − x2) (5.1)

Except for determining w, no additional probability distribution has to be used and the Dif-
ferential Evolution scheme is completely self-organizing. This classical reproduction strategy
has been complemented with new ideas like triangle mutation and alternations with weighted
directed strategies.

Gao and Wang [770] emphasize the close similarities between the reproduction operators
of Differential Evolution and the search step of the downhill simplex. Thus, it is only logical
to combine or to compare the two methods (see Section 16.4 on page 286). Further improve-
ments to the basic Differential Evolution scheme have been contributed, for instance, by
Kaelo and Ali. Their DERL and DELB algorithms outperformed [1078, 1079, 1077] stan-
dard DE on the test benchmark from Ali et al. [38].

5.5.2 General Information

Areas Of Application

Some example areas of application of Differential Evolution are:

Application References

Engineering, Structural Optimization, and Design [1233, 1506]
Chemistry, Chemical Engineering [2148, 1846, 2052, 399]
Scheduling [1289]
Function Optimization [1972]
Electrical Engineering and Circuit Design [1971, 1973]

Journals

Some journals that deal (at least partially) with Differential Evolution are:

Journal of Heuristics (see Section 1.6.3 on page 91)

Books

Some books about (or including significant information about) Differential Evolution are:

Price, Storn, and Lampinen [1676]: Differential Evolution – A Practical Approach to Global
Optimization
Feoktistov [653]: Differential Evolution – In Search of Solutions
Corne, Dorigo, Glover, Dasgupta, Moscato, Poli, and Price [448]: New Ideas in Optimisation

6

Evolutionary Programming

6.1 Introduction

Different from the other major types of evolutionary algorithms introduced, there exists
no clear specification or algorithmic variant for evolutionary programming1 (EP) to the
knowledge of the author. There is though a semantic difference: while single individuals of a
species are the biological metaphor for solution candidates in other evolutionary algorithms,
in evolutionary programming, a solution candidate is thought of as a species itself.2 Hence,
mutation and selection are the only operators used in EP and recombination is usually not
applied. The selection scheme utilized in evolutionary programming is normally quite similar
to the (µ+ λ) method in Evolution Strategies.

Evolutionary programming was pioneered by Fogel [705] in his PhD thesis back in 1964.
Fogel et al. [708] experimented with the evolution of finite state machines as predictors for
data streams [623]. Evolutionary programming is also the research area of his son David
Fogel [697, 699, 700] with whom he also published joint work [707, 1671].

Generally, it is hard to distinguish evolutionary programming from Genetic Program-
ming, genetic algorithms, and Evolution Strategy. Although there are semantic differences
(as already mentioned), the author thinks that the many aspects of the evolutionary pro-
gramming approach have merged into these other research areas.

6.2 General Information

6.2.1 Areas Of Application

Some example areas of application of evolutionary programming are:

Application References

Machine Learning [697]

Cellular Automata and Finite State Machines [708]
Evolving Behaviors, e.g., for Agents or Game Players [699, 700]
Machine Learning [1671]
Chemistry, Chemical Engineering and Biochemistry [779, 609, 778]
Electrical Engineering and Circuit Design [1135, 1518]
Data Mining and Data Analysis [1802]

Robotics [1136]

1 http://en.wikipedia.org/wiki/Evolutionary_programming [accessed 2007-07-03]

2 In this aspect it is very similar to the much newer Extremal Optimization approach which will
be discussed in Chapter 13.

http://en.wikipedia.org/wiki/Evolutionary_programming

232 6 Evolutionary Programming

6.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on evolutionary programming are:

EP: International Conference on Evolutionary Programming
now part of CEC, see Section 2.2.2 on page 105
History: 1998: San Diego, California, USA, see [1670]

1997: Indianapolis, Indiana, USA, see [68]
1996: San Diego, California, USA, see [709]
1995: San Diego, California, USA, see [1380]
1994: see [1849]
1993: see [702]
1992: see [701]

EUROGEN: Evolutionary Methods for Design Optimization and Control with Applications
to Industrial Problems

see Section 2.2.2 on page 106

6.2.3 Books

Some books about (or including significant information about) evolutionary programming
are:

Fogel, Owens, and Walsh [708]: Artificial Intelligence through Simulated Evolution
Fogel [706]: Intelligence Through Simulated Evolution: Forty Years of Evolutionary Program-
ming
Fogel [697]: System Identification through Simulated Evolution: A Machine Learning Ap-
proach to Modeling
Fogel [700]: Blondie24: playing at the edge of AI
Bäck [99]: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolution-
ary Programming, Genetic Algorithms

7

Learning Classifier Systems

7.1 Introduction

In the late 1970s, Holland, the father of genetic algorithms, also invented the concept of
classifier systems (CS) [948, 941, 946]. These systems are a special case of production systems
[497, 498] and consist of four major parts:

1. a set of interacting production rules, called classifiers,
2. a performance algorithm which directs the actions of the system in the environment,
3. a learning algorithm which keeps track on the success of each classifier and distributes

rewards, and
4. a genetic algorithm which modifies the set of classifiers so that variants of good classifiers

persist and new, potentially better ones are created in an efficient manner [947].

By time, classifier systems have undergone some name changes. In 1986, reinforcement
learning was added to the approach and the name changed to Learning Classifier Systems1

(LCS) [916, 1909]. Learning Classifier Systems are sometimes subsumed under a machine
learning paradigm called evolutionary reinforcement learning (ERL) [916] or Evolutionary
Algorithms for Reinforcement Learning (EARLs) [1460].

7.2 General Information

7.2.1 Areas Of Application

Some example areas of application of Learning Classifier Systems are:

Application References

Data Mining and Data Analysisg [768, 92, 479, 444, 2178]

Grammar Induction [2073, 2074, 472]

Medicine [951]
Image Processing [1287, 1376]
Sequence Prediction [1736]

7.2.2 Conferences, Workshops, etc.

Some conferences, workshops and such and such on Learning Classifier Systems are:

1 http://en.wikipedia.org/wiki/Learning_classifier_system [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Learning_classifier_system

234 7 Learning Classifier Systems

IWLCS: International Workshop on Learning Classifier Systems
Nowadays often co-located with GECCO (see Section 2.2.2 on page 107).
History: 2007: London, England, see [1946]

2006: Seattle, WA, USA, see [1847]
2005: Washington DC, USA, see [2157, 1181]
2004: Seattle, Washington, USA, see [1848, 1181]
2003: Chicago, IL, USA, see [2022, 1181]
2002: Granada, Spain, see [1254]
2001: San Francisco, CA, USA, see [1944]
2000: Paris, France, see [1253]
1999: Orlando, Florida, USA, see [1585]
1992: Houston, Texas, USA, see [1501]

7.2.3 Books

Some books about (or including significant information about) Learning Classifier Systems
are:

Bull [301]: Applications Of Learning Classifier Systems
Bull and Kovacs [303]: Foundations of Learning Classifier Systems
Butz [314]: Anticipatory Learning Classifier Systems
Butz [315]: Rule-Based Evolutionary Online Learning Systems: A Principled Approach to
LCS Analysis and Design
Lanzi, Stolzmann, and Wilson [1252]: Learning Classifier Systems, From Foundations to
Applications

7.3 The Basic Idea of Learning Classifier Systems

Figure 7.1 illustrates the structure of a Michigan-style Learning Classifier System. A classifier
system is connected via detectors (b) and effectors (c) to its environment (a). The input
in the system (coming from the detectors) is encoded in form of binary messages that are
written into a message list (d). On this list, simple if-then rules (e), the so-called classifiers,
are applied. The result of a classification is again encoded as a message and written to the
message list. These new messages may now trigger other rules or are signals for the effectors
[507]. The payoff of the performed actions is distributed by the credit apportionment system
(f) to the rules. Additionally, a rule discovery system (g) is responsible for finding new rules
and adding them to the classifier population [794].

Classifier systems are special instances of production systems, which were shown to be
Turing-complete by Post [1672] and Minsky [1427, 1426]. Thus, Learning Classifier Systems
are as powerful as any other Turing-equivalent programming language and can be pictured
as something like computer programs where the rules play the role of the instructions and
the messages are the memory.

7.3.1 A Small Example

In order to describe how rules and messages are structured in a basic classifier systems, we
borrow a simple example from Heitkötter and Beasley [916]. We will orient our explanation
at the syntax described by Geyer-Schulz [794]. You should, however, be aware that there
are many different forms of classifier system and take this as an example for how it could be
done rather than as the way it is to be done.

So let us imagine that we want to find a classifier system that is able to control the
behavior of a frog. Our frog likes to eat nutritious flies. Therefore, it can detect small,

7.3 The Basic Idea of Learning Classifier Systems 235

(a) Environment

(b) Detectors (c) Effectors

(d) Message List

(e) Rule Base

(f) Apportionment of
Credit System

(e.g. Bucket Brigade)

(g) Rule Discovery
System

(e.g. Genetic Algorithm)

Learning Classifier System

information action

payoff

Non-Learning Classifier System,
Production System

Figure 7.1: The structure of a Michigan style Learning Classifier System according to Geyer-
Schulz [794].

flying objects and eat them if they are right in front of it. The frog also has a sense of
direction and can distinguish between objects which are in front, to the left, or to the right
of it and may also turn into any of these directions. It can furthermore distinguish objects
with stripes from those without. Flying objects with stripes are most likely bees or wasps,
eating of which would probably result in being stung. The frog can also sense large, looming
objects far above: birds, which should be avoided by jumping away quickly. We can compile
a corresponding behavior into the form of simple if-then rules which are listed in Table 7.1.

No. premise (if-part) conclusion (then-part)

1 small, flying object with no stripes to the left send a
2 small, flying object with no stripes to the right send b
3 small, flying object with no stripes to the front send c
4 large, looming object send d
5 a and not d turn left
6 b and not d turn right
7 c and not d eat
8 d move away rapidly

Table 7.1: if-then rules for frogs

236 7 Learning Classifier Systems

7.3.2 Messages

Z F DD S MMM TT J E

size
0=
1=

small
large

0=
1=

flying
looming

type

0=
1=

without
with

stripes

01=
10=
11=

left
center
right

direction

eat
0
1
=no
=yes

turn
00
01
10

=don t turn
=left
=right

’

memory
001
010
011
100

=a
=b
=c
=d

detector input actions

jump0
1
=no
=yes

Figure 7.2: One possible encoding of messages for a frog classifier system

In Figure 7.2, we demonstrate how the messages in a classifier system that drives such a
frog can be encoded. Here, input information as well as action commands (the conclusions
of the rules) are compiled in one message type. Also, three bits are assigned for encoding
the internal messages a to d. Two bits would not suffice, since 00 occurs in all “original”
input messages. At the beginning of a classification process, the input messages are written
to the message list. They contain information only at the positions reserved for detections
and have zeros in the bits for memory or actions. The classifiers transform them to internal
messages which normally have only the bits marked as “memory” set. These messages are
finally transformed to output messages by setting some action bits. In our frog system, a
message is in total k = 12 bits long, i. e., len(m) = 12 ∀message m.

7.3.3 Conditions

Rules in classifier systems consist of a condition part and an action part. The conditions
have the same length k as the messages. Instead of being binary encoded strings, a ternary
system consisting of the symbols 0, 1, and * is used. In a condition,

1. 0 means that the corresponding bit in the message must be 0,
2. 1 means that the corresponding bit in the message must be 1, and
3. * means don’t care, i. e., the corresponding bit in the message may be 0 as well as 1 for

the condition to match.

Definition 7.1 (match). A message m matches to a condition c if match(m, c) evaluates
to true.

match(m, c) = ∀0 ≤ i < |m| ⇒ m[i] = c[i] ∨ c[i] = ∗ (7.1)

The conditional part of a rule may consist of multiple conditions which are implicitly
concatenated with logical and (∧). A classifier is satisfied if all its conditions are satisfied

7.3 The Basic Idea of Learning Classifier Systems 237

by at least one message in the current message list. It is allowed that each of the conditions
of a classifier may match to different messages.

We can precede each single condition c with an additional ternary digit which defines
if it should be negated or not: * stands for the negation c and 0 as well as 1 denotes c.
Here we deviate from the syntax described in Geyer-Schulz [794] because the definition of
the “conditionSpecifity” (see Definition 7.2) becomes more beautiful this way. A negated
condition evaluates to true if no message exists that matches it. By combining and and not,
we get nands with which we can build all other logic operations and, hence, whole computers
[2045]. Algorithm 7.1 illustrates how the condition part C is matched against the message
list M . If the matching is successful, it returns the list S of messages that satisfied the
conditions. Otherwise, the output will be the empty list ().

Algorithm 7.1: S ←− matchesConditions(M,C)

Input: M : the message list
Input: C: the condition part of a classifier
Input: [implicit] k: the length of the messages m ∈M and the single conditions c ∈ C
Input: [implicit] havePrefix: true if and only if the single conditions have a prefix which

determines whether or not they are negated, false if no such prefixes are used
Data: i: a counter variable
Data: c: a condition
Data: neg: should the condition be negated?
Data: m: a single message from M
Data: b: a Boolean variable
Output: S: the messages that match the condition part C, or () if none such message exists

begin1

S ←− ()2

b←− true3

i←− 04

while (i < len(C)) ∧ b do5

if havePrefix then6

neg ←− (C [i] = ∗)7

i←− i+ 18

else neg ←− false9

c←− subList(C, i, k)10

i←− i+ k11

if ∃m ∈M : match(m, c) then12

b←− neg13

if b then S ←− addListItem(S,m)14

else15

b←− neg16

if b then S ←− addListItem(S, createList(k, 0))17

if b then return S18

else return ()19

end20

Definition 7.2 (Condition Specificity). The condition specificity conditionSpecifity(x)
of a classifier x is the number of non-* symbols in its condition part C(x).

conditionSpecifity(x) = | {∀i : C(x) [i] 6= ∗} | (7.2)

A classifier (rule) x1 with a higher condition specificity is more specific than an-
other rule x2 with a lower condition specificity. On the other hand, a rule x2 with

238 7 Learning Classifier Systems

conditionSpecifity(x1) > conditionSpecifity(x2) is more general than the rule x1. We can
use this information if two rules match to one message, and only one should be allowed to
post a message. Preferring the more specific rule in such situations leads to default hierar-
chies [949, 1737, 1739, 1908] which allows general classifications to “delegate” special cases
to specialized classifiers. Even more specialized classifiers can then represent exceptions to
these refined rules.

7.3.4 Actions

The action part of a rule has normally exactly the same length as a message. It can be
represented by a string of either binary or ternary symbols. In the first case, the action part
of a rule is simple copied to the message list if the classifier is satisfied. In the latter case,
some sort of merging needs to be performed. Here,

1. a 0 in the action part will lead to a 0 in the corresponding message bit,
2. a 1 in the action part will lead to a 1 in the corresponding message bit,
3. and for a * in the action part, we copy the corresponding bit from the (first) message

that matched the classifier’s condition to the newly created message.

Definition 7.3 (mergeAction). The function “mergeAction” computes a new message n
as product of an action a. If the alphabet the action is based on is ternary and may contain *-
symbols, mergeAction needs access to the message m which has satisfied the first condition of
the classifier to which a belongs. If the classifier contains negation symbols and the first con-
dition was negated, m is assumed to be a string of zeros (m = createList(len(a) , 0)). Notice
that we do not explicitly distinguish between binary and ternary encoding in mergeAction,
since * cannot occur in actions based on a binary alphabet and Equation 7.3 stays valid.

n = mergeAction(a,m)⇔ (len(n) = len(a)) ∧
(n[i] = a[i] ∀i ∈ 0..len(a)− 1 : a[i] 6= ∗) ∧
(n[i] = m[i] ∀i ∈ 0..len(a)− 1 : a[i] = ∗) (7.3)

7.3.5 Classifiers

So we know that a rule x consists of a condition part C(x) and an action part a(x). C
is a list of r ∈ N conditions ci, and we distinguish between representations with (C =
(n1, c1, n2, c2, . . . , nr, cr)) and without negation symbol (C = (c1, c2, . . . , cr)). Let us now
go back to our frog example. Based on the encoding scheme defined in Figure 7.2, we can
translate Table 7.1 into a set of classifiers. We therefore compose the condition parts of two
conditions c1 and c2 with the negation symbols n1 and n2, i. e., r = 2. Table 7.2 contains

No. n1 c1 n2 c2 a

1 0 0 0 01 0 *** ** * * 0 * * ** * *** ** * * 0 0 00 0 001 00 0 0

2 0 0 0 11 0 *** ** * * 0 * * ** * *** ** * * 0 0 00 0 010 00 0 0

3 0 0 0 10 0 *** ** * * 0 * * ** * *** ** * * 0 0 00 0 011 00 0 0

4 0 1 1 ** * *** ** * * 0 * * ** * *** ** * * 0 0 00 0 100 00 0 0

5 0 * * ** * 001 ** * * * * * ** * 100 ** * * 0 0 00 0 000 01 0 0

6 0 * * ** * 010 ** * * * * * ** * 100 ** * * 0 0 00 0 000 10 0 0

7 0 * * ** * 011 ** * * * * * ** * 100 ** * * 0 0 00 0 000 00 0 1

8 0 * * ** * 100 ** * * 0 * * ** * *** ** * * 0 0 00 0 000 00 1 0

Table 7.2: The encoded form of the if-then rules for frogs from Table 7.1.

the result of this encoding. We can apply this classifier to a situation in the life of our frog
where it detects

7.3 The Basic Idea of Learning Classifier Systems 239

1. a fly to its left,
2. a bee to its right, and
3. a stork left in the air.

How will it react? The input sensors will generate three messages and insert them into the
message list M1 = (m1,m2,m3):

1. m1 = (000100000000) for the fly,
2. m2 = (001110000000) for the bee, and
3. m3 = (110100000000) for the stork.

The first message triggers rule 1 and the third message triggers rule 4 whereas no condition
fits to the second message. As a result, the new message list M2 contains two messages, m4

and m5, produced by the corresponding actions.

1. m4 = (000000010000) from rule 1 and
2. m5 = (000001000000) from rule 4.

m4 could trigger rule 5 but is inhibited by the negated second condition c2 because of message
m5. m5 matches to classifier 8 which finally produces message m6 = (000000000010) which
forces the frog to jump away. No further classifiers become satisfied with the new message
list M3 = (m6) and the classification process is terminated.

7.3.6 Non-Learning Classifier Systems

So far, we have described a non-learning classifier system. Algorithm 7.2 defines the behavior
of such a system which we also could observe in the example. It still lacks the credit ap-
portionment and the rule discovery systems (see (f) and (g) in Figure 7.1). A non-learning
classifier is able to operate correctly on a fixed set of situations. It is sufficient for all ap-
plications where we are able to determine this set beforehand and no further adaptation is
required. If this is the case, we can use genetic algorithms to evolve the classifier systems
offline, for instance.

Algorithm 7.2 illustrates how a classifier system works. No optimization or approximation
of a solution is done; this is a complete control system in action. Therefore we do not need
a termination criterion but run an infinite loop.

7.3.7 Learning Classifier Systems

In order to convert this non-learning classifier system to Learning Classifier System as pro-
posed by Holland [943] and sketched in Algorithm 7.3, we have to add the aforementioned
missing components. Heitkötter and Beasley [916] suggest two ways for doing so:

1. Currently, the activation of a classifier x results solely from the message-matching pro-
cess. If a message matches the condition(s) C(x), the classifier may perform its action
a(x). We can change this mechanism by making it also dependent on an additional pa-
rameter v(x) – a strength value, which can be modified as a result of experience, i. e., by
reinforcement from the environment. Therefore, we have to solve the credit assignment
problem first defined by Minsky [1425, 1428], since chains of multiple classifiers can cause
a certain action.

2. Furthermore (or instead), we may also modify the set of classifiers P by adding, remov-
ing, or combining condition/action parts of existing classifiers.

A Learning Classifier System hence is a control system which is able to learn while
actually running and performing its work. Usually, a training phase will precede any actual
deployment. Afterwards, the learning may even be deactivated, which turns the LCS into
an ordinary classifier system or the learning rate is decreased.

240 7 Learning Classifier Systems

Algorithm 7.2: nonLearningClassifierSystem(P)

Input: P : the list of rules xi that determine the behavior of the classifier system
Input: [implicit] readDetectors: a function which creates a new message list containing only the

input messages from the detectors
Input: [implicit] sendEffectors: a function which translates all messages concerning effectors to

signals for the output interface
Input: [implicit] tmax ∈ N: the maximum number of iterations for the internal loop, avoids

endless loops
Data: t: a counter the internal loop
Data: M,N,S: the message lists
Data: x: a single classifier

begin1

while true do2

M ←− readDetectors()3

t←− 04

repeat5

N ←− ()6

foreach x ∈ P do7

S ←− matchesConditions(M,C(x))8

if len(S) > 0 then9

N ←− addListItem(N,mergeAction(a(x) , S[0]))10

M ←− N11

t←− t+ 112

until (len(M) = 0) ∨ (t > tmax)13

if len(M) > 0 then sendEffectors(M)14

end15

7.3.8 The Bucket Brigade Algorithm

The Bucket Brigade Algorithm has been developed by Holland [942, 943] as one method
of solving the credit assignment problem in Learning Classifier Systems. Research work
concerning this approach and its possible extensions has been conducted by Westerdale
[2195, 2196, 2197], Antonisse [74], Huang [969], Riolo [1738, 1737], Dorigo [579], Spiessens
[1942], Wilson [2234], Holland and Burks [946], and Hewahi and Bharadwaj [922] and has
neatly been summarized by Hewahi [920, 921]. In the following, we will outline this approach
with the notation of de Boer [507].

The Bucket Brigade Algorithm selects the classifiers from the match set X that are
allowed to post a message (i. e., becoming member in the activated set U) by an auction.
Therefore, each matching classifier x places a bid B(x) which is the product of a linear
function ϑ of the condition specificity of x, a constant 0 < β ≤ 1 that determines the fraction
of the strength of xshould be used and its strength v(x) itself. In practical applications, values
like 1

8 or 1
16 are often chosen for β.

B(x) = ϑ(x) ∗ β ∗ v(x) + randomn

(
0, σ2

)
(7.4)

Sometimes, a normal distributed random number is added to each bid in order to make the
decisions of the system less deterministic, as done in Equation 7.4.

The condition specificity is included in the bid calculation because it gives a higher value
to rules with fewer *-symbols in their conditions. These rules match to fewer messages and
can be considered more relevant in the cases they do match. For ϑ, the quotient of the
number non-*-symbols and the condition length plus some constant 0 < α determining the
importance of the specificity of the classifier is often used [507].

ϑ(x) =
conditionSpecifity(x)

len(C(x))
+ α (7.5)

