
1.4 Problems in Optimization 61

A very crude and yet, sometimes effective measure is restarting the optimization pro-
cess at randomly chosen points in time. One example for this method is GRASPs, Greedy
Randomized Adaptive Search Procedures [663, 652] (see Section 10.6 on page 256), which con-
tinuously restart the process of creating an initial solution and refining it with local search.
Still, such approaches are likely to fail in domino convergence situations. Increasing the
proportion of exploration operations may also reduce the chance of premature convergence.

In order to extend the duration of the evolution in evolutionary algorithms, many meth-
ods have been devised for steering the search away from areas which have already been
frequently sampled. This can be achieved by integrating density metrics into the fitness
assignment process. The most popular of such approaches are sharing and niching (see Sec-
tion 2.3.4). The Strength Pareto Algorithms, which are widely accepted to be highly efficient,
use another idea: they adapt the number of individuals that one solution candidate dom-
inates as density measure [2329, 2332]. One very simple method aiming for convergence
prevention is introduced in Section 2.4.8. Using low selection pressure furthermore decreases
the chance of premature convergence but also decreases the speed with which good solutions
are exploited.

Another approach against premature convergence is to introduce the capability of self-
adaptation, allowing the optimization algorithm to change its strategies or to modify its
parameters depending on its current state. Such behaviors, however, are often implemented
not in order to prevent premature convergence but to speed up the optimization process
(which may lead to premature convergence to local optima) [1776, 1777, 1778].

1.4.3 Ruggedness and Weak Causality

The Problem: Ruggedness

Optimization algorithms generally depend on some form of gradient in the objective or
fitness space. The objective functions should be continuous and exhibit low total variation49,
so the optimizer can descend the gradient easily. If the objective functions are unsteady
or fluctuating, i. e., going up and down, it becomes more complicated for the optimization
process to find the right directions to proceed to. The more rugged a function gets, the harder
it becomes to optimize it. For short, one could say ruggedness is multi-modality plus steep
ascends and descends in the fitness landscape. Examples of rugged landscapes are Kauffman’s
NK fitness landscape (see Section 21.2.1), the p-Spin model discussed in Section 21.2.2,
Bergman and Feldman’s jagged fitness landscape [182], and the sketch in Fig. 1.19.d on
page 57.

One Cause: Weak Causality

During an optimization process, new points in the search space are created by the search
operations. Generally we can assume that the genotypes which are the input of the search
operations correspond to phenotypes which have previously been selected. Usually, the better
or the more promising an individual is, the higher are its chances of being selected for further
investigation. Reversing this statement suggests that individuals which are passed to the
search operations are likely to have a good fitness. Since the fitness of a solution candidate
depends on its properties, it can be assumed that the features of these individuals are not so
bad either. It should thus be possible for the optimizer to introduce slight changes to their

49 http://en.wikipedia.org/wiki/Total_variation [accessed 2008-04-23]

http://en.wikipedia.org/wiki/Total_variation

62 1 Introduction

properties in order to find out whether they can be improved any further50. Normally, such
exploitive modifications should also lead to small changes in the objective values and hence,
in the fitness of the solution candidate.

Definition 1.47 (Strong Causality). Strong causality (locality) means that small
changes in the properties of an object also lead to small changes in its behavior [1713,
1714, 1759].

This principle (proposed by Rechenberg [1713, 1714]) should not only hold for the search
spaces and operations designed for optimization, but applies to natural genomes as well. The
offspring resulting from sexual reproduction of two fish, for instance, has a different genotype
than its parents. Yet, it is far more probable that these variations manifest in a unique color
pattern of the scales, for example, instead of leading to a totally different creature.

Apart from this straightforward, informal explanation here, causality has been investi-
gated thoroughly in different fields of optimization, such as Evolution Strategy [1713, 597],
structure evolution [1303, 1302], Genetic Programming [1758, 1759, 1007, 597], genotype-
phenotype mappings [1854], search operators [597], and evolutionary algorithms in general
[1955, 1765, 597].

In fitness landscapes with weak (low) causality, small changes in the solution candidates
often lead to large changes in the objective values, i. e., ruggedness. It then becomes harder
to decide which region of the problem space to explore and the optimizer cannot find reliable
gradient information to follow. A small modification of a very bad solution candidate may
then lead to a new local optimum and the best solution candidate currently known may be
surrounded by points that are inferior to all other tested individuals.

The lower the causality of an optimization problem, the more rugged its fitness landscape
is, which leads to a degeneration of the performance of the optimizer [1168]. This does not
necessarily mean that it is impossible to find good solutions, but it may take very long to
do so.

Fitness Landscape Measures

As measures for the ruggedness of a fitness landscape (or their general difficulty), many
different metrics have been proposed. Wedge and Kell [2164] and Altenberg [45] provide
nice lists of them in their work51, which we summarize here:

• Weinberger [2169] introduced the autocorrelation function and the correlation length of
random walks.

• The correlation of the search operators was used by Manderick et al. [1354] in conjunction
with the autocorrelation.

• Jones and Forrest [1070, 1069] proposed the fitness distance correlation (FDC), the corre-
lation of the fitness of an individual and its distance to the global optimum. This measure
has been extended by researchers such as Clergue et al. [416, 2103].

• The probability that search operations create offspring fitter than their parents, as defined
by Rechenberg [1713] and Beyer [196] (and called evolvability by Altenberg [42]), will be
discussed in Section 1.4.5 on page 65 in depth.

• Simulation dynamics have been researched by Altenberg [42] and Grefenstette [855].
• Another interesting metric is the fitness variance of formae (Radcliffe and Surry [1695])

and schemas (Reeves and Wright [1717]).
• The error threshold method from theoretical biology [625, 1552] has been adopted Ochoa

et al. [1557] for evolutionary algorithms. It is the “critical mutation rate beyond which
structures obtained by the evolutionary process are destroyed by mutation more fre-
quently than selection can reproduce them” [1557].

50 We have already mentioned this under the subject of exploitation.
51 Especially the one of Wedge and Kell [2164] is beautiful and far more detailed than this summary

here.

1.4 Problems in Optimization 63

• The negative slope coefficient (NSC) by Vanneschi et al. [2104, 2105] may be considered
as an extension of Altenberg’s evolvability measure.

• Davidor [489] uses the epistatic variance as a measure of utility of a certain representation
in genetic algorithms. We discuss the issue of epistasis in Section 1.4.6.

• The genotype-fitness correlation (GFC) of Wedge and Kell [2164] is a new measure for
ruggedness in fitness landscape and has been shown to be a good guide for determining
optimal population sizes in Genetic Programming.

Autocorrelation and Correlation Length

As example, let us take a look at the autocorrelation function as well as the correlation
length of random walks [2169]. Here we borrow its definition from Verel et al. [2114]:

Definition 1.48 (Autocorrelation Function). Given a random walk (xi, xi+1, . . .), the
autocorrelation function ρ of an objective function f is the autocorrelation function of the
time series (f(xi) , f(xi+1) , . . .).

ρ(k, f) =
E[f(xi) f(xi+k)]− E[f(xi)]E[f(xi+k)]

D2[f(xi)]
(1.41)

where E[f(xi)] and D2[f(xi)] are the expected value and the variance of f(xi).

The correlation length τ = − 1
log ρ(1,f) measures how the autocorrelation function de-

creases and summarizes the ruggedness of the fitness landscape: the larger the correlation
length, the lower the total variation of the landscape. From the works of Kinnear, Jr. [1141]
and Lipsitch [1293] from 18, however, we also know that correlation measures do not always
represent the hardness of a problem landscape full.

Countermeasures

To the knowledge of the author, no viable method which can directly mitigate the effects of
rugged fitness landscapes exists. In population-based approaches, using large population sizes
and applying methods to increase the diversity can reduce the influence of ruggedness, but
only up to a certain degree. Utilizing Lamarckian evolution [522, 2215] or the Baldwin effect
[123, 929, 930, 2215], i. e., incorporating a local search into the optimization process, may
further help to smoothen out the fitness landscape [864] (see Section 15.2 and Section 15.3,
respectively).

Weak causality is often a home-made problem because it results to some extent from
the choice of the solution representation and search operations. We pointed out that explo-
ration operations are important for lowering the risk of premature convergence. Exploitation
operators are as same as important for refining solutions to a certain degree. In order to
apply optimization algorithms in an efficient manner, it is necessary to find representations
which allow for iterative modifications with bounded influence on the objective values, i. e.,
exploitation. In Section 1.5.2, we present some further rules-of-thumb for search space and
operation design.

1.4.4 Deceptiveness

64 1 Introduction

Introduction

Especially annoying fitness landscapes show deceptiveness (or deceptivity). The gradient of
deceptive objective functions leads the optimizer away from the optima, as illustrated in
Fig. 1.19.e.

The term deceptiveness is mainly used in the genetic algorithm52 community in the
context of the Schema Theorem. Schemas describe certain areas (hyperplanes) in the search
space. If an optimization algorithm has discovered an area with a better average fitness
compared to other regions, it will focus on exploring this region based on the assumption
that highly fit areas are likely to contain the true optimum. Objective functions where this
is not the case are called deceptive [190, 821, 1285]. Examples for deceptiveness are the ND
fitness landscapes outlined in Section 21.2.3, trap functions (see Section 21.2.3), and the
fully deceptive problems given by Goldberg et al. [825, 541].

The Problem

If the information accumulated by an optimizer actually guides it away from the optimum,
search algorithms will perform worse than a random walk or an exhaustive enumeration
method. This issue has been known for a long time [2159, 1433, 1434, 2034] and has been
subsumed under the No Free Lunch Theorem which wewill discuss in Section 1.4.10.

Countermeasures

Solving deceptive optimization tasks perfectly involves sampling many individuals with very
bad features and low fitness. This contradicts the basic ideas of metaheuristics and thus,
there are no efficient countermeasures against deceptivity. Using large population sizes, main-
taining a very high diversity, and utilizing linkage learning (see Section 1.4.6) are, maybe,
the only approaches which can provide at least a small chance of finding good solutions.

1.4.5 Neutrality and Redundancy

The Problem: Neutrality

Definition 1.49 (Neutrality). We consider the outcome of the application of a search
operation to an element of the search space as neutral if it yields no change in the objective
values [1718, 149].

It is challenging for optimization algorithms if the best solution candidate currently
known is situated on a plane of the fitness landscape, i. e., all adjacent solution candidates
have the same objective values. As illustrated in Fig. 1.19.f, an optimizer then cannot find
any gradient information and thus, no direction in which to proceed in a systematic manner.
From its point of view, each search operation will yield identical individuals. Furthermore,
optimization algorithms usually maintain a list of the best individuals found, which will then
overflow eventually or require pruning.

The degree of neutrality ν is defined as the fraction of neutral results among all possible
products of the search operations applied to a specific genotype [149]. We can generalize
this measure to areas G in the search space G by averaging over all their elements. Regions
where ν is close to one are considered as neutral.

∀g1 ∈ G⇒ ν(g1) =
|{g2 : P (g2 = Op(g1)) > 0 ∧ F (gpm(g2)) = F (gpm(g1))}|

|{g2 : P (g2 = Op(g1)) > 0}| (1.42)

∀G ⊆ G⇒ ν(G) =
1

|G|
∑

g∈G

ν(g) (1.43)

52 We are going to discuss genetic algorithms in Chapter 3 on page 141 and the Schema Theorem
in Section 3.6 on page 150.

1.4 Problems in Optimization 65

Evolvability

Another metaphor in global optimization borrowed from biological systems is evolvability53

[500]. Wagner [2132, 2133] points out that this word has two uses in biology: According
to Kirschner and Gerhart [1144], a biological system is evolvable if it is able to generate
heritable, selectable phenotypic variations. Such properties can then be spread by natural
selection and changed during the course of evolution. In its second sense, a system is evolvable
if it can acquire new characteristics via genetic change that help the organism(s) to survive
and to reproduce. Theories about how the ability of generating adaptive variants has evolved
have been proposed by Riedl [1732], Altenberg [43], Wagner and Altenberg [2134], Bonner
[247], and Conrad [439], amongst others. The idea of evolvability can be adopted for global
optimization as follows:

Definition 1.50 (Evolvability). The evolvability of an optimization process in its current
state defines how likely the search operations will lead to solution candidates with new (and
eventually, better) objectives values.

The direct probability of success [1713, 196], i.e., the chance that search operators produce
offspring fitter than their parents, is also sometimes referred to as evolvability in the context
of evolutionary algorithms [45, 42].

Neutrality: Problematic and Beneficial

The link between evolvability and neutrality has been discussed by many researchers [2300,
2133]. The evolvability of neutral parts of a fitness landscape depends on the optimization
algorithm used. It is especially low for hill climbing and similar approaches, since the search
operations cannot directly provide improvements or even changes. The optimization process
then degenerates to a random walk, as illustrated in Fig. 1.19.f on page 57. The work of
Beaudoin et al. [161] on the ND fitness landscapes54 shows that neutrality may “destroy”
useful information such as correlation.

Researchers in molecular evolution, on the other hand, found indications that the major-
ity of mutations in biology have no selective influence [732, 980] and that the transformation
from genotypes to phenotypes is a many-to-one mapping. Wagner [2133] states that neutral-
ity in natural genomes is beneficial if it concerns only a subset of the properties peculiar to
the offspring of a solution candidate while allowing meaningful modifications of the others.
Toussaint and Igel [2050] even go as far as declaring it a necessity for self-adaptation.

The theory of punctuated equilibria55, in biology introduced by Eldredge and Gould
[630, 629], states that species experience long periods of evolutionary inactivity which are
interrupted by sudden, localized, and rapid phenotypic evolutions [118].56 It is assumed that
the populations explore neutral layers57 during the time of stasis until, suddenly, a relevant
change in a genotype leads to a better adapted phenotype [2098] which then reproduces
quickly. Similar phenomena can be observed/are utilized in EAs [426, 1365].

“Uh?”, you may think, “How does this fit together?” The key to differentiating between
“good” and “bad” neutrality is its degree ν in relation to the number of possible solutions
maintained by the optimization algorithms. Smith et al. [1913] have used illustrative ex-
amples similar to Figure 1.21 showing that a certain amount of neutral reproductions can
foster the progress of optimization. In Fig. 1.21.a, basically the same scenario of premature
convergence as in Fig. 1.20.a on page 59 is depicted. The optimizer is drawn to a local opti-
mum from which it cannot escape anymore. Fig. 1.21.b shows that a little shot of neutrality

53 http://en.wikipedia.org/wiki/Evolvability [accessed 2007-07-03]

54 See Section 21.2.3 on page 333 for a detailed elaboration on the ND fitness landscape.
55 http://en.wikipedia.org/wiki/Punctuated_equilibrium [accessed 2008-07-01]

56 A very similar idea is utilized in the Extremal Optimization method discussed in Chapter 13.
57 Or neutral networks, as discussed in Section 1.4.5.

http://en.wikipedia.org/wiki/Evolvability
http://en.wikipedia.org/wiki/Punctuated_equilibrium

66 1 Introduction

could form a bridge to the global optimum. The optimizer now has a chance to escape the
smaller peak if it is able to find and follow that bridge, i. e., the evolvability of the system
has increased. If this bridge gets wider, as sketched in Fig. 1.21.c, the chance of finding the
global optimum increases as well. Of course, if the bridge gets too wide, the optimization
process may end up in a scenario like in Fig. 1.19.f on page 57 where it cannot find any
direction. Furthermore, in this scenario we expect the neutral bridge to lead to somewhere
useful, which is not necessarily the case in reality.

global optimum

local optimum

Fig. 1.21.a: Premature Conver-
gence

Fig. 1.21.b: Small Neutral
Bridge

Fig. 1.21.c: Wide Neutral
Bridge

Figure 1.21: Possible positive influence of neutrality.

Recently, the idea of utilizing the processes of molecular58 and evolutionary59 biology as
complement to Darwinian evolution for optimization gains interest [144]. Scientists like Hu
and Banzhaf [967, 968] have begun to study the application of metrics such as the evolution
rate of gene sequences [2281, 2257] to evolutionary algorithms. Here, the degree of neutrality
(synonymous vs. non-synonymous changes) seems to play an important role.

Examples for neutrality in fitness landscapes are the ND family (see Section 21.2.3), the
NKp and NKq models (discussed in Section 21.2.1), and the Royal Road (see Section 21.2.4).
Another common instance of neutrality is bloat in Genetic Programming, which is outlined
in Section 4.10.3 on page 224.

Neutral Networks

From the idea of neutral bridges between different parts of the search space as sketched by
Smith et al. [1913], we can derive the concept of neutral networks.

Definition 1.51 (Neutral Network). Neutral networks are equivalence classes K of el-
ements of the search space G which map to elements of the problem space X with the same
objective values and are connected by chains of applications of the search operators Op [149].

∀g1, g2 ∈ G : g1 ∈ K(g2) ⊆ G⇔ ∃k ∈ N0 : P
(
g2 = Opk(g1)

)
> 0 ∧

F (gpm(g1)) = F (gpm(g2)) (1.44)

Barnett [149] states that a neutral network has the constant innovation property if

58 http://en.wikipedia.org/wiki/Molecular_biology [accessed 2008-07-20]

59 http://en.wikipedia.org/wiki/Evolutionary_biology [accessed 2008-07-20]

http://en.wikipedia.org/wiki/Molecular_biology
http://en.wikipedia.org/wiki/Evolutionary_biology

1.4 Problems in Optimization 67

1. the rate of discovery of innovations keeps constant for a reasonably large amount of
applications of the search operations [981], and

2. if this rate is comparable with that of an unconstrained random walk.

Networks with this property may prove very helpful if they connect the optima in the fitness
landscape. Stewart [1962] utilizes neutral networks and the idea of punctuated equilibria
in his extrema selection, a genetic algorithm variant that focuses on exploring individuals
which are far away from the centroid of the set of currently investigated solution candidates
(but have still good objective values). Then again, Barnett [148] showed that populations
in genetic algorithm tend to dwell in neutral networks of high dimensions of neutrality
regardless of their objective values, which (obviously) cannot be considered advantageous.

The convergence on neutral networks has furthermore been studied by Bornberg-Bauer
and Chan [251], van Nimwegen et al. [2097, 2096], and Wilke [2225]. Their results show that
the topology of neutral networks strongly determines the distribution of genotypes on them.
Generally, the genotypes are “drawn” to the solutions with the highest degree of neutrality
ν on the neutral network Beaudoin et al. [161].

Redundancy: Problematic and Beneficial

Definition 1.52 (Redundancy). Redundancy in the context of global optimization is a
feature of the genotype-phenotype mapping and means that multiple genotypes map to the
same phenotype, i. e., the genotype-phenotype mapping is not injective.

∃g1, g2 : g1 6= g2 ∧ gpm(g1) = gpm(g2) (1.45)

The role of redundancy in the genome is as controversial as that of neutrality [2168].
There exist many accounts of its positive influence on the optimization process. Shipman
et al. [1871, 1856], for instance, tried to mimic desirable evolutionary properties of RNA
folding [980]. They developed redundant genotype-phenotype mappings using voting (both,
via uniform redundancy and via a non-trivial approach), Turing machine-like binary instruc-
tions, Cellular automata, and random Boolean networks [1099]. Except for the trivial voting
mechanism based on uniform redundancy, the mappings induced neutral networks which
proved beneficial for exploring the problem space. Especially the last approach provided par-
ticularly good results [1871, 1856]. Possibly converse effects like epistasis (see Section 1.4.6)
arising from the new genotype-phenotype mappings have not been considered in this study.

Redundancy can have a strong impact on the explorability of the problem space. When
utilizing a one-to-one mapping, the translation of a slightly modified genotype will always
result in a different phenotype. If there exists a many-to-one mapping between genotypes
and phenotypes, the search operations can create offspring genotypes different from the
parent which still translate to the same phenotype. The optimizer may now walk along a
path through this neutral network. If many genotypes along this path can be modified to
different offspring, many new solution candidates can be reached [1871]. One example for
beneficial redundancy is the extradimensional bypass idea discussed in Section 1.5.2.

The experiments of Shipman et al. [1872, 1870] additionally indicate that neutrality
in the genotype-phenotype mapping can have positive effects. In the Cartesian Genetic
Programming method, neutrality is explicitly introduced in order to increase the evolvability
(see Section 4.7.4 on page 201) [2110, 2297].

Yet, Rothlauf [1765] and Shackleton et al. [1856] show that simple uniform redundancy
is not necessarily beneficial for the optimization process and may even slow it down. There
is no use in introducing encodings which, for instance, represent each phenotypic bit with
two bits in the genotype where 00 and 01 map to 0 and 10 and 11 map to 1. Another example
for this issue is given in Fig. 1.31.b on page 86.

68 1 Introduction

Summary

Different from ruggedness which is always bad for optimization algorithms, neutrality has
aspects that may further as well as hinder the process of finding good solutions. Generally
we can state that degrees of neutrality ν very close to 1 degenerate optimization processes
to random walks. Some forms of neutral networks accompanied by low (nonzero) values of
ν can improve the evolvability and hence, increase the chance of finding good solutions.

Adverse forms of neutrality are often caused by bad design of the search space or
genotype-phenotype mapping. Uniform redundancy in the genome should be avoided where
possible and the amount of neutrality in the search space should generally be limited.

Needle-In-A-Haystack

One of the worst cases of fitness landscapes is the needle-in-a-haystack (NIAH) problem
sketched in Fig. 1.19.g on page 57, where the optimum occurs as isolated spike in a plane. In
other words, small instances of extreme ruggedness combine with a general lack of informa-
tion in the fitness landscape. Such problems are extremely hard to solve and the optimization
processes often will converge prematurely or take very long to find the global optimum. An
example for such fitness landscapes is the all-or-nothing property often inherent to Genetic
Programming of algorithms [2058], as discussed in Section 4.10.2 on page 223.

1.4.6 Epistasis

Introduction

In biology, epistasis60 is defined as a form of interaction between different genes [1640].
The term was coined by Bateson [157] and originally meant that one gene suppresses the
phenotypical expression of another gene. In the context of statistical genetics, epistasis was
initially called “epistacy” by Fisher [677]. According to Lush [1335], the interaction between
genes is epistatic if the effect on the fitness of altering one gene depends on the allelic state of
other genes. This understanding of epistasis comes very close to another biological expression:
Pleiotropy61, which means that a single gene influences multiple phenotypic traits [2227]. In
the area of global optimization, such fine-grained distinctions are usually not made and the
two terms are often used more or less synonymously.

Definition 1.53 (Epistasis). In optimization, epistasis is the dependency of the contribu-
tion of one gene to the value of the objective functions on the allelic state of other genes.
[491, 44, 1503]

We speak of minimal epistasis when every gene is independent of every other gene. Then,
the optimization process equals finding the best value for each gene and can most efficiently
be carried out by a simple greedy search (see Section 17.4.1) [491]. A problem is maximally
epistatic when no proper subset of genes is independent of any other gene [1924, 1503].
Examples of problems with a high degree of epistasis are Kauffman’s NK fitness landscape
[1098, 1100] (Section 21.2.1), the p-Spin model [48] (Section 21.2.2), and the tunable model
of Weise et al. [2185] (Section 21.2.7).

The Problem

As sketched in Figure 1.22, epistasis has a strong influence on many of the previously dis-
cussed problematic features. If one gene can “turn off” or affect the expression of other

60 http://en.wikipedia.org/wiki/Epistasis [accessed 2008-05-31]

61 http://en.wikipedia.org/wiki/Pleiotropy [accessed 2008-03-02]

http://en.wikipedia.org/wiki/Epistasis
http://en.wikipedia.org/wiki/Pleiotropy

1.4 Problems in Optimization 69

genes, a modification of this gene will lead to a large change in the features of the pheno-
type. Hence, the causality will be weakened and ruggedness ensues in the fitness landscape.
It also becomes harder to define search operations with exploitive character. Moreover, sub-
sequent changes to the “deactivated” genes may have no influence on the phenotype at all,
which would then increase the degree of neutrality in the search space. Epistasis is mainly an
aspect of the way in which the genome G and the genotype-phenotype mapping are defined.
It should be avoided where possible.

ruggedness multi-
modality

weak causality

high
epistasis

º causes

neutrality

Needle in a
Haystack

Figure 1.22: The influence of epistasis on the fitness landscape.

Generally, epistasis and conflicting objectives in multi-objective optimization should be
distinguished from each other. Epistasis as well as pleiotropy is a property of the influence
of the editable elements (the genes) of the genotypes on the phenotypes. Objective functions
can conflict without the involvement of any of these phenomena. We can, for example,
define two objective functions f1(x) = x and f2(x) = −x which are clearly contradicting
regardless of whether they both are subject to maximization or minimization. Nevertheless,
if the solution candidates x and the genotypes are simple real numbers and the genotype-
phenotype mapping is an identity mapping, neither epistatic nor pleiotropic effects can
occur.

Naudts and Verschoren [1504] have shown for the special case of length-two binary string
genomes that deceptiveness does not occur in situations with low epistasis and also that
objective functions with high epistasis are not necessarily deceptive. Another discussion
about different shapes of fitness landscapes under the influence of epistasis is given by
Beerenwinkel et al. [167].

Countermeasures

General

We have shown that epistasis is a root cause for multiple problematic features of optimiza-
tion tasks. General countermeasures against epistasis can be divided into two groups. The
symptoms of epistasis can be mitigated with the same methods which increase the chance of
finding good solutions in the presence of ruggedness or neutrality – using larger populations
and favoring explorative search operations. Epistasis itself is a feature which results from
the choice of the search space structure, the search operations, and the genotype-phenotype
mapping. Avoiding epistatic effects should be a major concern during their design. This can
lead to a great improvement in the quality of the solutions produced by the optimization
process [2181]. Some general rules for search space design are outlined in Section 1.5.2.

70 1 Introduction

Linkage Learning

According to Winter et al. [2242], linkage is “the tendency for alleles of different genes to
be passed together from one generation to the next” in genetics. This usually indicates
that these genes are closely located in the same chromosome. In the context of evolutionary
algorithms, this notation is not useful since identifying spatially close elements inside the
genotypes g ∈ G is trivial. Instead, we are interested in alleles of different genes which have
a joint effect on the fitness [1486, 1485].

Identifying these linked genes, i. e., learning their epistatic interaction, is very helpful for
the optimization process. Such knowledge can be used to protect building blocks62 from being
destroyed by the search operations (such as crossover in genetic algorithms), for instance.
Finding approaches for linkage learning has become an especially popular discipline in the
area of evolutionary algorithms with binary [896, 1486, 1647] and real [546] genomes. Two
important methods from this area are the messy GA (mGA, see Section 3.7) by Goldberg
et al. [825] and the Bayesian Optimization Algorithm (BOA) [1633, 333]. Module acquisition
[66] may be considered as such an effort.

1.4.7 Noise and Robustness

Introduction – Noise

In the context of optimization, three types of noise can be distinguished. The first form is
noise in the training data used as basis for learning (i). In many applications of machine
learning or optimization where a model for a given system is to be learned, data samples
including the input of the system and its measured response are used for training. Some
typical examples of situations where training data is the basis for the objective function
evaluation are

1. the usage of global optimization for building classifiers (for example for predicting buying
behavior using data gathered in a customer survey for training),

2. the usage of simulations for determining the objective values in Genetic Programming
(here, the simulated scenarios correspond to training cases), and

3. the fitting of mathematical functions to (x, y)-data samples (with artificial neural net-
works or symbolic regression, for instance).

Since no measurement device is 100% accurate and there are always random errors, noise is
present in such optimization problems.

Besides inexactnesses and fluctuations in the input data of the optimization process,
perturbations are also likely to occur during the application of its results. This category
subsumes the other two types of noise: perturbations that may arise from (ii) inaccuracies
in the process of realizing the solutions and (iii) environmentally induced perturbations
during the applications of the products.

This issue can be illustrated by using the process of developing the perfect tire for a car
as an example. As input for the optimizer, all sorts of material coefficients and geometric
constants measured from all known types of wheels and rubber could be available. Since
these constants have been measured or calculated from measurements, they include a certain
degree of noise and imprecision (i).

The result of the optimization process will be the best tire construction plan discovered
during its course and it will likely incorporate different materials and structures. We would
hope that the tires created according to the plan will not fall apart if, accidently, an extra
0.0001% of a specific rubber component is used (ii). During the optimization process, the
behavior of many construction plans will be simulated in order to find out about their
utility. When actually manufactured, the tires should not behave unexpectedly when used

62 See Section 3.6.5 for information on the Building Block Hypothesis.

1.4 Problems in Optimization 71

in scenarios different from those simulated (iii) and should instead be applicable in all driving
situations likely to occur.

The effects of noise in optimization have been studied by various researchers; Miller
and Goldberg [1416, 1415], Lee and Wong [1268], and Gurin and Rastrigin [870] are some
of them. Many global optimization algorithms and theoretical results have been proposed
which can deal with noise. Some of them are, for instance, specialized

1. genetic algorithms [685, 2062, 2060, 1799, 1800, 1146],
2. Evolution Strategies [195, 100, 881], and
3. Particle Swarm Optimization [1606, 884] approaches.

The Problem: Need for Robustness

The goal of global optimization is to find the global optima of the objective functions. While
this is fully true from a theoretical point of view, it may not suffice in practice. Optimization
problems are normally used to find good parameters or designs for components or plans to
be put into action by human beings or machines. As we have already pointed out, there will
always be noise and perturbations in practical realizations of the results of optimization.
There is no process in the world that is 100% accurate and the optimized parameters,
designs, and plans have to tolerate a certain degree of imprecision.

Definition 1.54 (Robustness). A system in engineering or biology isrobust if it is able to
function properly in the face of genetic or environmental perturbations [2132].

Therefore, a local optimum (or even a non-optimal element) for which slight disturbances
only lead to gentle performance degenerations is usually favored over a global optimum lo-
cated in a highly rugged area of the fitness landscape [276]. In other words, local optima in
regions of the fitness landscape with strong causality are sometimes better than global op-
tima with weak causality. Of course, the level of this acceptability is application-dependent.
Figure 1.23 illustrates the issue of local optima which are robust vs. global optima which
are not. More examples from the real world are:

1. When optimizing the control parameters of an airplane or a nuclear power plant, the
global optimum is certainly not used if a slight perturbation can have hazardous effects
on the system [2062].

2. Wiesmann et al. [2218, 2217] bring up the topic of manufacturing tolerances in multilayer
optical coatings. It is no use to find optimal configurations if they only perform optimal
when manufactured to a precision which is either impossible or too hard to achieve on
a constant basis.

3. The optimization of the decision process on which roads should be precautionary salted
for areas with marginal winter climate is an example of the need for dynamic robustness.
The global optimum of this problem is likely to depend on the daily (or even current)
weather forecast and may therefore be constantly changing. Handa et al. [886] point
out that it is practically infeasible to let road workers follow a constantly changing plan
and circumvent this problem by incorporating multiple road temperature settings in the
objective function evaluation.

4. Tsutsui et al. [2062, 2060] found a nice analogy in nature: The phenotypic characteristics
of an individual are described by its genetic code. During the interpretation of this code,
perturbations like abnormal temperature, nutritional imbalances, injuries, illnesses and
so on may occur. If the phenotypic features emerging under these influences have low fit-
ness, the organism cannot survive and procreate. Thus, even a species with good genetic
material will die out if its phenotypic features become too sensitive to perturbations.
Species robust against them, on the other hand, will survive and evolve.

72 1 Introduction

global optimum
robust local optimum

f(x)

X

Figure 1.23: A robust local optimum vs. a “unstable” global optimum.

Countermeasures

For the special case where the phenome is a real vector space (X ⊆ Rn), several approaches
for dealing with the need for robustness have been developed. Inspired by Taguchi meth-
ods63 [1995], possible disturbances are represented by a vector δ = (δ1, δ2, .., δn)

T
, δi ∈ R

in the method suggested by Greiner [859, 860]. If the distributions and influences of
the δi are known, the objective function f(x) : x ∈ X can be rewritten as f̃(x, δ)
[2218]. In the special case where δ is normally distributed, this can be simplified to

f̃
(

(x1 + δ1, x2 + δ2, .., xn + δn)
T
)

. It would then make sense to sample the probability distri-

bution of δ a number of t times and to use the mean values of f̃(x, δ) for each objective func-
tion evaluation during the optimization process. In cases where the optimal value y⋆ of the
objective function f is known, Equation 1.46 can be minimized. This approach is also used
in the work of Wiesmann et al. [2217, 2218] and basically turns the optimization algorithm
into something like a maximum likelihood estimator (see Section 28.7.2 and Equation 28.252
on page 502).

f ′(x) =
1

t

t∑

i=1

(
y⋆ − f̃(x, δi)

)2

(1.46)

This method corresponds to using multiple, different training scenarios during the objec-
tive function evaluation in situations where X 6⊆ Rn. By adding random noise and artificial
perturbations to the training cases, the chance of obtaining robust solutions which are stable
when applied or realized under noisy conditions can be increased.

1.4.8 Overfitting and Oversimplification

In all scenarios where optimizers evaluate some of the objective values of the solution can-
didates by using training data, two additional phenomena with negative influence can be
observed: overfitting and oversimplification.

Overfitting

The Problem

Definition 1.55 (Overfitting). Overfitting64 is the emergence of an overly complicated
model (solution candidate) in an optimization process resulting from the effort to provide
the best results for as much of the available training data as possible [1805, 1905, 785, 564].

63 http://en.wikipedia.org/wiki/Taguchi_methods [accessed 2008-07-19]

64 http://en.wikipedia.org/wiki/Overfitting [accessed 2007-07-03]

http://en.wikipedia.org/wiki/Taguchi_methods
http://en.wikipedia.org/wiki/Overfitting

1.4 Problems in Optimization 73

A model (solution candidate) m ∈ X optimized based on a finite set of training data
is considered to be overfitted if a less complicated, alternative model m′ ∈ X exists which
has a smaller error for the set of all possible (maybe even infinitely many), available, or
(theoretically) producible data samples. This model m′ may, however, have a larger error in
the training data.

The phenomenon of overfitting is best known and can often be encountered in the field
of artificial neural networks or in curve fitting65 [2019, 1291, 1265, 1806, 1761]. The latter
means that we have a set A of n training data samples (xi, yi) and want to find a function
f that represents these samples as well as possible, i. e., f(xi) = yi ∀ (xi, yi) ∈ A.

There exists exactly one polynomial66 of the degree n− 1 that fits to each such training
data and goes through all its points.67 Hence, when only polynomial regression is performed,
there is exactly one perfectly fitting function of minimal degree. Nevertheless, there will also
be an infinite number of polynomials with a higher degree than n − 1 that also match the
sample data perfectly. Such results would be considered as overfitted.

In Figure 1.24, we have sketched this problem. The function f1(x) = x shown in
Fig. 1.24.b has been sampled three times, as sketched in Fig. 1.24.a. There exists no other
polynomial of a degree of two or less that fits to these samples than f1. Optimizers, however,
could also find overfitted polynomials of a higher degree such as f2 which also match the
data, as shown in Fig. 1.24.c. Here, f2 plays the role of the overly complicated model m
which will perform as good as the simpler model m′ when tested with the training sets only,
but will fail to deliver good results for all other input data.

x

y

Fig. 1.24.a: Three sample
points of f1.

x

y

m`

Fig. 1.24.b: m′ ≡ f1(x) = x.

x

y

m

Fig. 1.24.c: m ≡ f2(x).

Figure 1.24: Overfitting due to complexity.

A very common cause for overfitting is noise in the sample data. As we have already
pointed out, there exists no measurement device for physical processes which delivers per-
fect results without error. Surveys that represent the opinions of people on a certain topic
or randomized simulations will exhibit variations from the true interdependencies of the ob-
served entities, too. Hence, data samples based on measurements will always contain some
noise.

In Figure 1.25 we have sketched how such noise may lead to overfitted results. Fig. 1.25.a
illustrates a simple physical process obeying some quadratic equation. This process has been
measured using some technical equipment and the 100 noisy samples depicted in Fig. 1.25.b
has been obtained. Fig. 1.25.c shows a function resulting from an optimization that fits
the data perfectly. It could, for instance, be a polynomial of degree 99 that goes right
through all the points and thus, has an error of zero. Although being a perfect match to the

65 We will discuss overfitting in conjunction with Genetic Programming-based symbolic regression
in Section 23.1 on page 397.

66 http://en.wikipedia.org/wiki/Polynomial [accessed 2007-07-03]

67 http://en.wikipedia.org/wiki/Polynomial_interpolation [accessed 2008-03-01]

http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Polynomial_interpolation

74 1 Introduction

measurements, this complicated model does not accurately represent the physical law that
produced the sample data and will not deliver precise results for new, different inputs.

m`

x

y

Fig. 1.25.a: The original phys-
ical process.

x

y

Fig. 1.25.b: The measuremen-
t/training data.

x

y

m

Fig. 1.25.c: The overfitted re-
sult.

Figure 1.25: Fitting noise.

From the examples we can see that the major problem that results from overfitted solu-
tions is the loss of generality.

Definition 1.56 (Generality). A solution of an optimization process is general if it is
not only valid for the sample inputs a1, a2, . . . , an which were used for training during the
optimization process, but also for different inputs a 6= ai ∀i : 0 < i ≤ n if such inputs a
exist.

Countermeasures

There exist multiple techniques that can be utilized in order to prevent overfitting to a
certain degree. It is most efficient to apply multiple such techniques together in order to
achieve best results.

A very simple approach is to restrict the problem space X in a way that only solutions up
to a given maximum complexity can be found. In terms of function fitting, this could mean
limiting the maximum degree of the polynomials to be tested. Furthermore, the functional
objective functions which solely concentrate on the error of the solution candidates should
be augmented by penalty terms and non-functional objective functions putting pressure in
the direction of small and simple models [564, 1108].

Large sets of sample data, although slowing down the optimization process, may improve
the generalization capabilities of the derived solutions. If arbitrarily many training datasets
or training scenarios can be generated, there are two approaches which work against over-
fitting:

1. The first method is to use a new set of (randomized) scenarios for each evaluation of
each solution candidate. The resulting objective values then may differ largely even if
the same individual is evaluated twice in a row, introducing incoherence and ruggedness
into the fitness landscape.

2. At the beginning of each iteration of the optimizer, a new set of (randomized) scenarios
is generated which is used for all individual evaluations during that iteration. This
method leads to objective values which can be compared without bias. They can be
made even more comparable if the objective functions are always normalized into some
fixed interval, say [0, 1].

In both cases it is helpful to use more than one training sample or scenario per evaluation
and to set the resulting objective value to the average (or better median) of the outcomes.

1.4 Problems in Optimization 75

Otherwise, the fluctuations of the objective values between the iterations will be very large,
making it hard for the optimizers to follow a stable gradient for multiple steps.

Another simple method to prevent overfitting is to limit the runtime of the optimizers
[1805]. It is commonly assumed that learning processes normally first find relatively general
solutions which subsequently begin to overfit because the noise “is learned”, too.

For the same reason, some algorithms allow to decrease the rate at which the solution
candidates are modified by time. Such a decay of the learning rate makes overfitting less
likely.

Dividing Data into Training and Test Sets If only one finite set of data samples is available
for training/optimization, it is common practice to separate it into a set of training data
At and a set of test cases Ac. During the optimization process, only the training data is
used. The resulting solutions are tested with the test cases afterwards. If their behavior is
significantly worse when applied to Ac than when applied to At, they are probably overfitted.

The same approach can be used to detect when the optimization process should be
stopped. The best known solution candidates can be checked with the test cases in each
iteration without influencing their objective values which solely depend on the training data.
If their performance on the test cases begins to decrease, there are no benefits in letting the
optimization process continue any further.

Oversimplification

The Problem

Oversimplification (also called overgeneralization) is the opposite of overfitting. Whereas
overfitting denotes the emergence of overly complicated solution candidates, oversimplified
solutions are not complicated enough. Although they represent the training samples used
during the optimization process seemingly well, they are rough overgeneralizations which
fail to provide good results for cases not part of the training.

A common cause for oversimplification is sketched in Figure 1.26: The training sets
only represent a fraction of the set of possible inputs. As this is normally the case, one
should always be aware that such an incomplete coverage may fail to represent some of the
dependencies and characteristics of the data, which then may lead to oversimplified solutions.
Another possible reason for oversimplification is that ruggedness, deceptiveness, too much
neutrality, or high epistasis in the fitness landscape may lead to premature convergence and
prevent the optimizer from surpassing a certain quality of the solution candidates. It then
cannot adapt them completely even if the training data perfectly represents the sampled
process. A third possible cause is that a problem space could have been chosen which does
not include the correct solution.

Fig. 1.26.a shows a cubic function. Since it is a polynomial of degree three, four sample
points are needed for its unique identification. Maybe not knowing this, only three samples
have been provided in Fig. 1.26.b. By doing so, some vital characteristics of the function
are lost. Fig. 1.26.c depicts a square function – the polynomial of the lowest degree that fits
exactly to these samples. Although it is a perfect match, this function does not touch any
other point on the original cubic curve and behaves totally differently at the lower parameter
area.

However, even if we had included point P in our training data, it would still be possible
that the optimization process would yield Fig. 1.26.c as a result. Having training data that
correctly represents the sampled system does not mean that the optimizer is able to find a
correct solution with perfect fitness – the other, previously discussed problematic phenomena
can prevent it from doing so. Furthermore, if it was not known that the system which was
to be modeled by the optimization process can best be represented by a polynomial of the
third degree, one could have limited the problem space X to polynomials of degree two and
less. Then, the result would likely again be something like Fig. 1.26.c, regardless of how
many training samples are used.

76 1 Introduction

x

y

P

Fig. 1.26.a: The “real system”
and the points describing it.

x

y

Fig. 1.26.b: The sampled train-
ing data.

x

y

Fig. 1.26.c: The oversimplified
result.

Figure 1.26: Oversimplification.

Countermeasures

In order to counter oversimplification, its causes have to be mitigated. Generally, it is not
possible to have training scenarios which cover the complete input space of the evolved
programs. By using multiple scenarios for each individual evaluation, the chance of missing
important aspects is decreased. These scenarios can be replaced with new, randomly created
ones in each generation, in order to decrease this chance even more. The problem space, i. e.,
the representation of the solution candidates, should further be chosen in a way which
allows constructing a correct solution to the problem defined. Then again, releasing too
many constraints on the solution structure increases the risk of overfitting and thus, careful
proceeding is recommended.

1.4.9 Dynamically Changing Fitness Landscape

It should also be mentioned that there exist problems with dynamically changing fitness
landscapes [282, 1465, 1729, 277, 278]. The task of an optimization algorithm is then to
provide solution candidates with momentarily optimal objective values for each point in
time. Here we have the problem that an optimum in iteration t will possibly not be an
optimum in iteration t+ 1 anymore.

Problems with dynamic characteristics can, for example, be tackled with special forms
[2280] of

1. evolutionary algorithms [2053, 2224, 279, 280, 1463, 1464, 82],
2. genetic algorithms [817, 1457, 1458, 1459, 1146],
3. Particle Swarm Optimization [343, 344, 1280, 1605, 211],
4. Differential Evolution [1391, 2266], and
5. Ant Colony Optimization [868, 869]

The moving peaks benchmarks by Branke [277, 278] and Morrison and De Jong [1465]
are good examples for dynamically changing fitness landscapes. You can find them discussed
in Section 21.1.3 on page 328.

1.4.10 The No Free Lunch Theorem

By now, we know the most important problems that can be encountered when applying
an optimization algorithm to a given problem. Furthermore, we have seen that it is arguable
what actually an optimum is if multiple criteria are optimized at once. The fact that there

1.4 Problems in Optimization 77

is most likely no optimization method that can outperform all others on all problems can,
thus, easily be accepted. Instead, there exist a variety of optimization methods specialized
in solving different types of problems. There are also algorithms which deliver good results
for many different problem classes, but may be outperformed by highly specialized methods
in each of them. These facts have been formalized by Wolpert and Macready [2244, 2245]
in their No Free Lunch Theorems68 (NFL) for search and optimization algorithms.

Initial Definitions

Wolpert and Macready [2245] consider single-objective optimization and define an optimiza-
tion problem φ(g) ≡ f(gpm(g)) as a mapping of a search space G to the objective space Y.69

Since this definition subsumes the problem space and the genotype-phenotype mapping, only
skipping the possible search operations, it is very similar to our Definition 1.34 on page 46.
They further call a time-ordered set dm of m distinct visited points in G×Y a “sample” of
size m and write dm ≡ {(dg

m(1), dy
m(1)) , (dg

m(2), dy
m(2)) , . . . , (dg

m(m), dy
m(m))}. dg

m(i) is the
genotype and dy

m(i) the corresponding objective value visited at time step i. Then, the set
Dm = (G× Y)

m
is the space of all possible samples of length m and D = ∪m≥0Dm is the

set of all samples of arbitrary size.
An optimization algorithm a can now be considered to be a mapping of the previously

visited points in the search space (i. e., a sample) to the next point to be visited. Formally,
this means a : D 7→ G. Without loss of generality, Wolpert and Macready [2245] only regard
unique visits and thus define a : d ∈ D 7→ g : g 6∈ d.

Performance measures Ψ can be defined independently from the optimization algorithms
only based on the values of the objective function visited in the samples dm. If the objective
function is subject to minimization, Ψ(dy

m) = min {dy
m : i = 1..m} would be the appropriate

measure.
Often, only parts of the optimization problem φ are known. If the minima of the objective

function f were already identified beforehand, for instance, its optimization would be useless.
Since the behavior in wide areas of φ is not obvious, it makes sense to define a probability
P (φ) that we are actually dealing with φ and no other problem. Wolpert and Macready
[2245] use the handy example of the travelling salesman problem in order to illustrate this
issue. Each distinct TSP produces a different structure of φ. Yet, we would use the same
optimization algorithm a for all problems of this class without knowing the exact shape of φ.
This corresponds to the assumption that there is a set of very similar optimization problems
which we may encounter here although their exact structure is not known. We act as if there
was a probability distribution over all possible problems which is non-zero for the TSP-alike
ones and zero for all others.

The Theorem

The performance of an algorithm a iterated m times on an optimization problem φ can
then be defined as P (dy

m |φ,m, a), i. e., the conditional probability of finding a particular
sample dy

m. Notice that this measure is very similar to the value of the problem landscape
Φ(x, τ) introduced in Definition 1.38 on page 48 which is the cumulative probability that
the optimizer has visited the element x ∈ X until (inclusively) the τ th evaluation of the
objective function(s).

Wolpert and Macready [2245] prove that the sum of such probabilities over all possi-
ble optimization problems φ is always identical for all optimization algorithms. For two
optimizers a1 and a2, this means that

68 http://en.wikipedia.org/wiki/No_free_lunch_in_search_and_optimization [accessed 2008-03-

28]

69 Notice that we have partly utilized our own notations here in order to be consistent throughout
the book.

http://en.wikipedia.org/wiki/No_free_lunch_in_search_and_optimization

78 1 Introduction
∑

∀φ

P (dy
m |φ,m, a1) =

∑

∀φ

P (dy
m |φ,m, a2) (1.47)

Hence, the average over all φ of P (dy
m |φ,m, a) is independent of a.

Implications

From this theorem, we can immediately follow that, in order to outperform a1 in one opti-
mization problem, a2 will necessarily perform worse in another. Figure 1.27 visualizes this
issue. It shows that general optimization approaches like evolutionary algorithms can solve
a variety of problem classes with reasonable performance. In this figure, we have chosen
a performance measure Φ subject to maximization, i. e., the higher its values, the faster
will the problem be solved. Hill climbing approaches, for instance, will be much faster than
evolutionary algorithms if the objective functions are steady and monotonous, that is, in a
smaller set of optimization tasks. Greedy search methods will perform fast on all problems
with matroid70 structure. Evolutionary algorithms will most often still be able to solve these
problems, it just takes them longer to do so. The performance of hill climbing and greedy
approaches degenerates in other classes of optimization tasks as a trade-off for their high
utility in their “area of expertise”.

all possible optimization problems

p
er

fo
rm

an
ce

random walk or exhaustive enumeration or ...

general optimization algorithm - an EA, for instance

specialized optimization algorithm 1; a hill climber, for instance

specialized optimization algorithm 2; a depth-first search, for instance

very crude sketch

Figure 1.27: A visualization of the No Free Lunch Theorem.

One interpretation of the No Free Lunch Theorem is that it is impossible for any opti-
mization algorithm to outperform random walks or exhaustive enumerations on all possible
problems. For every problem where a given method leads to good results, we can construct
a problem where the same method has exactly the opposite effect (see Section 1.4.4). As
a matter of fact, doing so is even a common practice to find weaknesses of optimization
algorithms and to compare them with each other, see Section 21.2.6, for example.

70 http://en.wikipedia.org/wiki/Matroid [accessed 2008-03-28]

http://en.wikipedia.org/wiki/Matroid

1.4 Problems in Optimization 79

Another interpretation is that every useful optimization algorithm utilizes some form
of problem-specific knowledge. Radcliffe [1696] states that without such knowledge, search
algorithms cannot exceed the performance of simple enumerations. Incorporating knowledge
starts with relying on simple assumptions like “if x is a good solution candidate, than we
can expect other good solution candidates in its vicinity”, i. e., strong causality. The more
(correct) problem specific knowledge is integrated (correctly) into the algorithm structure,
the better will the algorithm perform. On the other hand, knowledge correct for one class
of problems is, quite possibly, misleading for another class. In reality, we use optimizers to
solve a given set of problems and are not interested in their performance when (wrongly)
applied to other classes.

The rough meaning of the NLF is that all black-box optimization methods perform
equally well over the complete set of all optimization problems [1563]. In practice, we do not
want to apply an optimizer to all possible problems but to only some, restricted classes. In
terms of these classes, we can make statements about which optimizer performs better.

Today, there exists a wide range of work on No Free Lunch Theorems for many different
aspects of machine learning. The website http://www.no-free-lunch.org/71 gives a good
overview about them. Further summaries, extensions, and criticisms have been provided by
Köppen et al. [1173], Droste et al. [602, 601, 599, 600], Oltean [1563], and Igel and Toussaint
[1008, 1009]. Radcliffe and Surry [1694] discuss the NFL in the context of evolutionary
algorithms and the representations used as search spaces. The No Free Lunch Theorem is
furthermore closely related to the Ugly Duckling Theorem72 proposed by Watanabe [2159]
for classification and pattern recognition.

1.4.11 Conclusions

The subject of this introductory chapter was the question about what makes optimization
problems hard, especially for metaheuristic approaches. We have discussed numerous differ-
ent phenomena which can affect the optimization process and lead to disappointing results.

If an optimization process has converged prematurely, it has been trapped in a non-
optimal region of the search space from which it cannot “escape” anymore (Section 1.4.2).
Ruggedness (Section 1.4.3) and deceptiveness (Section 1.4.4) in the fitness landscape, of-
ten caused by epistatic effects (Section 1.4.6), can misguide the search into such a region.
Neutrality and redundancy (Section 1.4.5) can either slow down optimization because the
application of the search operations does not lead to a gain in information or may also con-
tribute positively by creating neutral networks from which the search space can be explored
and local optima can be escaped from. Noise is present in virtually all practical optimization
problems. The solutions that are derived for them should be robust (Section 1.4.7). Also,
they should neither be too general (oversimplification, Section 1.4.8) nor too specifically
aligned only to the training data (overfitting, Section 1.4.8). Furthermore, many practical
problems are multi-objective, i. e., involve the optimization of more than one criterion at
once (partially discussed in Section 1.2.2), or concern objectives which may change over time
(Section 1.4.9).

In the previous section, we discussed the No Free Lunch Theorem and argued that it is
not possible to develop the one optimization algorithm, the problem-solving machine which
can provide us with near-optimal solutions in short time for every possible optimization
task. This must sound very depressing for everybody new to this subject.

Actually, quite the opposite is the case, at least from the point of view of a researcher.
The No Free Lunch Theorem means that there will always be new ideas, new approaches
which will lead to better optimization algorithms to solve a given problem. Instead of being
doomed to obsolescence, it is far more likely that most of the currently known optimization
methods have at least one niche, one area where they are excellent. It also means that it

71 accessed: 2008-03-28
72 http://en.wikipedia.org/wiki/Ugly_duckling_theorem [accessed 2008-08-22]

http://www.no-free-lunch.org/
http://en.wikipedia.org/wiki/Ugly_duckling_theorem

80 1 Introduction

Evolutionary
Algorithms

ACO

PSO

Extremal
Optimiz.

Simulated
Annealing

EDA

Tabu
Search

Branch &
Bound Dynamic

Program.

A
«

Search

IDDFS

Hill
Climbing

Memetic
Algorithms

Downhill
Simplex

GA, GP, ES,
DE, EP, ...

LCS

RFD

Random
Optimiz.

Figure 1.28: The puzzle of optimization algorithms.

is very likely that the “puzzle of optimization alorithms” will never be completed. There
will always be a chance that an inspiring moment, an observation in nature, for instance,
may lead to the invention of a new optimization algorithm which performs better in some
problem areas than all currently known ones.

1.5 Formae and Search Space/Operator Design

Most global optimization algorithms share the premise that solutions to problems are either
elements of a somewhat continuous space that can be approximated stepwise or that they can
be composed of smaller modules which have good attributes even when occurring separately.

The design of the search space (or genome) G and the genotype-phenotype mapping
gpm is vital for the success of the optimization process. It determines to what degree these
expected features can be exploited by defining how the properties and the behavior of
the solution candidates are encoded and how the search operations influence them. In this
chapter, we will first discuss a general theory about how properties of individuals can be
defined, classified, and how they are related. We will then outline some general rules for
the design of the genome which are inspired by our previous discussion of the possible
problematic aspects of fitness landscapes.

1.5.1 Forma Analysis

The Schema Theorem has been stated for genetic algorithms by Holland [940] in its seminal
work [940, 512, 945]. In this section, we are going to discuss it in the more general version
from Weicker [2167] as introduced by Radcliffe and Surry [1695] and Surry [1983] in [1692,
1696, 1691, 1691, 1695].

The different individuals p in the population Pop of the search and optimization algo-
rithms are characterized by their properties φ. Whereas the optimizers themselves focus
mainly on the phenotypical properties since these are evaluated by the objective functions,
the properties of the genotypes may be of interest in an analysis of the optimization perfor-
mance.

A rather structural property φ1 of formulas f : R 7→ R in symbolic regression73 would be
whether it contains the mathematical expression x+1 or not. We can also declare a behavioral
property φ2 which is true if |f(0)− 1| ≤ 0.1 holds, i. e., if the result of f is close to a value

73 More information on symbolic regression can be found in Section 23.1 on page 397.

