How to Think Like a Computer Scientist

Java Version

o=
o

How to Think Like a Computer Scientist

Java Version

Allen B. Downey

Version 4.1

April 23, 2008

Copyright (© 2003, 2008 Allen Downey.

Permission is granted to copy, distribute, and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later ver-
sion published by the Free Software Foundation; with Invariant Sections being
“Preface”, with no Front-Cover Texts, and with no Back-Cover Texts. A copy
of the license is included in the appendix entitled “GNU Free Documentation
License.”

The GNU Free Documentation License is available from www.gnu.org or by
writing to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307, USA.

The original form of this book is ETEX source code. Compiling this IXTEX
source has the effect of generating a device-independent representation of the
book, which can be converted to other formats and printed.
The ITEX source for this book is available from

thinkapjava.com

This book was typeset using KTEX. The illustrations were drawn in xfig. All
of these are free, open-source programs.

Preface

“As we enjoy great Advantages from the Inventions of others, we
should be glad of an Opportunity to serve others by any Invention
of ours, and this we should do freely and generously.”

—Benjamin Franklin, quoted in Benjamin Franklin by Edmund S.
Morgan.

Why I wrote this book

This is the fourth edition of a book I started writing in 1999, when I was teaching
at Colby College. I had taught an introductory computer science class using the
Java programming language, but I had not found a textbook I was happy with.
For one thing, they were all too big! There was no way my students would read
800 pages of dense, technical material, even if I wanted them to. And I didn’t
want them to. Most of the material was too specific—details about Java and its
libraries that would be obsolete by the end of the semester, and that obscured
the material I really wanted to get to.

The other problem I found was that the introduction to object oriented pro-
gramming was too abrupt. Many students who were otherwise doing well just
hit a wall when we got to objects, whether we did it at the beginning, middle
or end.

So I started writing. I wrote a chapter a day for 13 days, and on the 14th day I
edited. Then I sent it to be photocopied and bound. When I handed it out on
the first day of class, I told the students that they would be expected to read
one chapter a week. In other words, they would read it seven times slower than
I wrote it.

The philosophy behind it
Here are some of the ideas that made the book the way it is:

e Vocabulary is important. Students need to be able to talk about programs
and understand what I am saying. I tried to introduce the minimum
number of terms, to define them carefully when they are first used, and

vi Preface

to organize them in glossaries at the end of each chapter. In my class, I
include vocabulary questions on quizzes and exams, and require students
to use appropriate terms in short-answer responses.

e In order to write a program, students have to understand the algorithm,
know the programming language, and they have to be able to debug. I
think too many books neglect debugging. This book includes an appendix
on debugging and an appendix on program development (which can help
avoid debugging). I recommend that students read this material early and
come back to it often.

e Some concepts take time to sink in. Some of the more difficult ideas in
the book, like recursion, appear several times. By coming back to these
ideas, I am trying to give students a chance to review and reinforce or, if
they missed it the first time, a chance to catch up.

e [try to use the minimum amount of Java to get the maximum amount of
programming power. The purpose of this book is to teach programming
and some introductory ideas from computer science, not Java. I left out
some language features, like the switch statement, that are unnecessary,
and avoided most of the libraries, especially the ones like the AWT that
have been changing quickly or are likely to be replaced.

The minimalism of my approach has some advantages. Each chapter is about
ten pages, not including the exercises. In my classes I ask students to read each
chapter before we discuss it, and I have found that they are willing to do that
and their comprehension is good. Their preparation makes class time available
for discussion of the more abstract material, in-class exercises, and additional
topics that aren’t in the book.

But minimalism has some disadvantages. There is not much here that is intrin-
sically fun. Most of my examples demonstrate the most basic use of a language
feature, and many of the exercises involve string manipulation and mathemat-
ical ideas. I think some of them are fun, but many of the things that excite
students about computer science, like graphics, sound and network applications,
are given short shrift.

The problem is that many of the more exciting features involve lots of details
and not much concept. Pedagogically, that means a lot of effort for not much
payoff. So there is a tradeoff between the material that students enjoy and the
material that is most intellectually rich. I leave it to individual teachers to find
the balance that is best for their classes. To help, the book includes appendices
that cover graphics, keyboard input and file input.

Object-oriented programming

Some books introduce objects immediately; others warm up with a more pro-
cedural style and develop object-oriented style more gradually. This book is
probably the extreme of the “objects late” approach.

vii

Many of Java’s object-oriented features are motivated by problems with previous
languages, and their implementations are influenced by this history. Some of
these features are hard to explain if students aren’t familiar with the problems
they solve.

It wasn’t my intention to postpone object-oriented programming. On the con-
trary, I got to it as quickly as I could, limited by my intention to introduce
concepts one at a time, as clearly as possible, in a way that allows students to
practice each idea in isolation before adding the next. It just happens that it
takes 13 steps.

Data structures

In Fall 2000 I taught the second course in the introductory sequence, called
Data Structures, and wrote additional chapters covering lists, stacks, queues,
trees, and hashtables.

Each chapter presents the interface for a data structure, one or more algorithms
that use it, and at least one implementation. In most cases there is also an imple-
mentation in the java.utils package, so teachers can decide on a case-by-case
basis whether to discuss the implementation, and whether students will build
an implementation as an exercise. For the most part I present data structures
and interfaces that are consistent with the implementation in java.utils.

The Computer Science AP Exam

During Summer 2001 I worked with teachers at the Maine School of Science and
Mathematics on a version of the book that would help students prepare for the
Computer Science Advanced Placement Exam, which used C++ at the time.
The translation went quickly because, as it turned out, the material I covered
was almost identical to the AP Syllabus.

Naturally, when the College Board announced that the AP Exam would switch
to Java, I made plans to update the Java version of the book. Looking at the
proposed AP Syllabus, I saw that their subset of Java was all but identical to
the subset I had chosen.

During January 2003, I worked on the Fourth Edition of the book, making these
changes:

e | added a new chapter covering Huffman codes.

e [revised several sections that I had found problematic, including the tran-
sition to object-oriented programming and the discussion of heaps.

e [improved the appendices on debugging and program development.

e | added a few sections to improve coverage of the AP syllabus.

viii Preface

e I collected the exercises, quizzes, and exam questions I had used in my
classes and put them at the end of the appropriate chapters. I also made
up some problems that are intended to help with AP Exam preparation.

Free books!

Since the beginning, this book and its descendents have been available under
the GNU Free Documentation License. Readers are free to download the book
in a variety of formats and print it or read it on screen. Teachers are free to
send the book to a short-run printer and make as many copies as they need.
And, maybe most importantly, anyone is free to customize the book for their
needs. You can download the I#TEX source code, and then add, remove, edit,
or rearrange material, and make the book that is best for you or your class.

People have translated the book into other computer languages (including
Python and Eiffel), and other natural languages (including Spanish, French and
German). Many of these derivatives are also available under the GNU FDL.

This approach to publishing has a lot of advantages, but there is one drawback:
my books have never been through a formal editing and proofreading process
and, too often, it shows. Motivated by Open Source Software, I have adopted
the philosophy of releasing the book early and updating it often. I do my best
to minimize the number of errors, but I also depend on readers to help out.

The response has been great. I get messages almost every day from people
who have read the book and liked it enough to take the trouble to send in a
“bug report.” Often I can correct an error and post an updated version almost
immediately. I think of the book as a work in progress, improving a little
whenever I have time to make a revision, or when readers take the time to send
feedback.

Oh, the title

I get a lot of grief about the title of the book. Not everyone understands that
it is—mostly—a joke. Reading this book will probably not make you think like
a computer scientist. That takes time, experience, and probably a few more
classes.

But there is a kernel of truth in the title: this book is not about Java, and it is
only partly about programming. If it is successful, this book is about a way of
thinking. Computer scientists have an approach to problem-solving, and a way
of crafting solutions, that is unique, versatile and powerful. I hope that this
book gives you a sense of what that approach is, and that at some point you
will find yourself thinking like a computer scientist.

Allen Downey
Needham, Massachusetts
March 6, 2003

ix

Contributors List

When I started writing free books, it didn’t occur to me to keep a contributors
list. When Jeff Elkner suggested it, it seemed so obvious that I am embarassed
by the omission. This list starts with the 4th Edition, so it omits many people
who contributed suggestions and corrections to earlier versions.

e Tania Passfield pointed out that the glossary of Chapter 4 has some left-
over terms that no longer appear in the text.

e Elizabeth Wiethoff noticed that my series expansion of e~ was wrong.

She is also working on a Ruby version of the book!
e Matt Crawford sent in a whole patch file full of corrections!

e Chi-Yu Li pointed out a typo and an error in one of the code examples.

Preface

Contents

Preface

1 The way of the program

2

1.1
1.2
1.3
1.4
1.5
1.6
1.7

What is a programming language?
What is a program?o
What is debugging?
Formal and natural languages
The first program
Glossary e

Exercises

Variables and types

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

More printing Lo
Variables
Assignment
Printing variables L oL
Keywords
Operators e
Order of operations
Operators for Strings
Composition
Glossary o e

Exerciseso

xii Contents
3 Methods 23
3.1 Floating-point oo 23
3.2 Converting from double toint 24
3.3 Mathmethods 25
3.4 Composition o 26
3.5 Adding new methods 26
3.6 Classes and methods 28
3.7 Programs with multiple methods 29
3.8 Parameters and arguments 29
3.9 Stack diagrams L oo 31
3.10 Methods with multiple parameters 31
3.11 Methods with results 32
312 Glossaryo 32
3.13 Exercises 33
4 Conditionals and recursion 35
4.1 The modulus operator 35
4.2 Conditional execution 35
4.3 Alternative execution 36
4.4 Chained conditionals 37
4.5 Nested conditionals 37
4.6 The return statement L. 38
4.7 Typeconversion. oL 38
4.8 Recursion 39
4.9 Stack diagrams for recursive methods 40
4.10 Convention and divine law 41
411 Glossaryo e 42
412 EXErciseso e e e e 43

Contents xiii
5 Fruitful methods 47
5.1 Return values oL o 47
5.2 Program development 49
53 Composition Lo 51
54 Overloading Lo 51
5.5 Boolean expressions Lo L oL 52
5.6 Logical operators L. 53
5.7 Boolean methods 0. 54
5.8 More recursion Lo 54
59 Leapoffaith 57
5.10 Omne more example 57
511 Glossaryo 58
5.12 Exercises 59
6 Iteration 65
6.1 Multiple assignmento 65
6.2 Tteration Lo Lo 66
6.3 The while statement 66
6.4 Tables 68
6.5 Two-dimensional tables 69
6.6 Encapsulation and generalization 70
6.7 Methods 71
6.8 More encapsulation L 71
6.9 Local variables 72
6.10 More generalization Lo 72
6.11 Glossaryo 74
6.12 EXercises 75

xiv Contents
7 Strings and things 79
7.1 Invoking methods on objects 79
7.2 Length o 80
7.3 Traversal 80
74 Run-timeerrorso 81
7.5 Reading documentation oL 81
7.6 The index0f method 82
7.7 Looping and counting 83
7.8 Increment and decrement operators 83
7.9 Strings are immutableo 0oL 84
7.10 Strings are incomparableo 84
711 Glossary o oo e 85
712 Exerciseso 86
8 Interesting objects 91
8.1 What’s interesting? 91
82 Packages 91
8.3 Pointobjects 92
8.4 Instance variables L oL 92
8.5 Objects as parameters 93
8.6 Rectangles 94
8.7 Objects as return types 94
8.8 Objects are mutable 0. 94
8.9 Aliasing 95
810 mnull e e 96
8.11 Garbage collection L. 97
8.12 Objects and primitives 97
8.13 Glossaryo 98
8.14 EXerciseso 98

Contents XV

9

10

Create your own objects 103
9.1 Class definitions and object types 103
9.2 Time 104
9.3 Constructors 105
9.4 More constructors.o 105
9.5 Creating anew object 106
9.6 Printing an object oL oL 107
9.7 Operations on objects 108
9.8 Purefunctions. o 108
9.9 Modifiers 110
9.10 Fill-in methodso oL 111
9.11 Which is best? 111
9.12 Incremental development vs. planning 111
9.13 Generalization L oL 113
9.14 Algorithms 113
9.15 Glossaryo 114
9.16 Exerciseso 114
Arrays 119
10.1 Accessing elements L 119
10.2 Copying arrays« o vt e e 120
10.3 forloops 121
10.4 Arrays and objects Lo 122
10.5 Arraylength. oo 122
10.6 Random numberso 123
10.7 Array of random numberso 123
10.8 Counting 124
10.9 The histogram oL L o 125
10.10 A single-pass solution L. 126
1011 Glossary v o v e 126

10.12 Exercises e 127

xvi Contents

11 Arrays of Objects 131
11.1 Composition 131
11.2 Cardobjects 131
11.3 The printCard method 133
11.4 The sameCard method 134
11.5 The compareCard method 135
11.6 Arraysofcards L 136
11.7 The printDeck method 137
11.8 Searching 137
11.9 Decks and subdecks oL oL 141
11,10 Glossary v v v it e 141
11,11 Exercises o o o o oo 142

12 Objects of Arrays 143
12.1 TheDeckclass 143
12.2 Shuffling 144
123 Sorting 145
124 Subdecks. 146
12.5 Shuffling and dealing L. 147
12.6 Mergesort 147
127 Glossary oo 149
12.8 Exerciseso e 149

13 Object-oriented programming 153
13.1 Programming languages and styles 153
13.2 Object and class methods 154
13.3 The current object L o 154
13.4 Complex numbers 154
13.5 A function on Complex numbers 155
13.6 Another function on Complex numbers 156

13.7 A modifier 156

Contents xvii
13.8 The toString method 157
13.9 The equals method 157
13.10 Invoking one object method from another 158
13.11 Oddities and errorso 159
13.12 Inheritance 159
13.13 Drawable rectangles L. 160
13.14 The class hierarchy oL 161
13.15 Object-oriented design L. 161
13.16 Glossaryo 161
13.17 Exerciseso 162

14 Linked lists 163
14.1 References in objects Lo oL 163
14.2 TheNodeclass 163
14.3 Lists as collections 165
14.4 Listsand recursion 166
14.5 Infinite lists 166
14.6 The fundamental ambiguity theorem 167
14.7 Object methods for nodes 168
14.8 Modifying lists oo 168
14.9 Wrappers and helpers Lo oo 169
14.10 The IntListclass 170
14.11 Invariants oL 171
1412 Glossary« .o 171
14.13 Exercises oo 172

15 Stacks 175
15.1 Abstract data types 175
15.2 The Stack ADT 176
15.3 The Java Stack Object 176
15.4 Wrapperclasses e 177

xviii Contents

15.5 Creating wrapper objects 178
15.6 Creating more wrapper objects 178
15.7 Getting the valuesout 178
15.8 Useful methods in the wrapper classes 179
15.9 Postfix expressionso L oo 179
15.10 Parsing.o 180
15.11 Implementing ADTs 181
15.12 Array implementation of the Stack ADT 181
15.13 Resizing arrays 182
15.14 Glossary« ..o 184
15.15 Exercises oo e 185
16 Queues and Priority Queues 187
16.1 Thequeue ADT 187
16.2 Veneer 189
16.3 Linked Queue 190
16.4 Circular buffer L 192
16.5 Priority queue 195
16.6 Metaclasso 195
16.7 Array implementation of Priority Queue 196
16.8 A Priority Queue client 197
16.9 The Golferclass 198
16.10 Glossary oo 200
16.11 Exercises o o e 201
17 Trees 203
171 Atreemnode 203
17.2 Building trees 204
17.3 Traversing trees L oo 204
174 Expression trees. L oo 205

17.5 Traversal 206

Contents xix
17.6 Encapsulation Lo oo 207
17.7 Defining a metaclass L. 207
17.8 Implementing a metaclass 208
179 The Vectorclass 209
17.10 The Iterator class. 210
1711 Glossary o o oo 211
17.12 Exercises o o oo 212

18 Heap 215
18.1 Array implementation of atree L. 215
18.2 Performance analysis 0. 218
18.3 Analysis of mergesorto 220
184 Overhead 221
18.5 Priority Queue implementations 222
18.6 Definitionof aHeap 223
18.7 Heapremove 224
18.8 Heapadd 225
18.9 Performance of heaps Lo 226
18.10 Heapsort 227
1811 Glossary v o o 227
18.12 Exercises oo 228

19 Maps 229
19.1 Arrays, Vectors and Maps 229
19.2 The Map ADT 230
19.3 The built-in HashMap 230
19.4 A Vector implementation 232
19.5 The List metaclass 234
19.6 HashMap implementation 234
19.7 Hash Functions 0o, 235
19.8 Resizingahashmap 236
19.9 Performance of resizing L. 237
19.10 Glossary o o oo 237
19.11 Exercises o . o o e 238

XX Contents
20 Huffman code 241
20.1 Variable-length codes 241
20.2 The frequency table oL, 242
20.3 The Huffman Tree 243
20.4 The super method oL, 245
20.5 Decoding 246
20.6 Encoding 247
20.7 Glossary e 248
A Program development plan 249
B Debugging 255
B.1 Compile-time errors Lo 255
B.2 Run-timeerrors 258
B.3 Semanticerrors Lo o 261
C Input and Output in Java 267
D Graphics 269
D.1 Slates and Graphics objects 269
D.2 Invoking methods on a Graphics object 269
D.3 Coordinates L 270
D.4 A lame Mickey Mouse 271
D.5 Other drawing commands 272
D6 TheSlate Class v v i vttt 273

Chapter 1

The way of the program

The goal of this book, and this class, is to teach you to think like a computer
scientist. I like the way computer scientists think because they combine some of
the best features of Mathematics, Engineering, and Natural Science. Like math-
ematicians, computer scientists use formal languages to denote ideas (specifi-
cally computations). Like engineers, they design things, assembling components
into systems and evaluating tradeoffs among alternatives. Like scientists, they
observe the behavior of complex systems, form hypotheses, and test predictions.

The single most important skill for a computer scientist is problem-solving.
By that I mean the ability to formulate problems, think creatively about solu-
tions, and express a solution clearly and accurately. As it turns out, the process
of learning to program is an excellent opportunity to practice problem-solving
skills. That’s why this chapter is called “The way of the program.”

On one level, you will be learning to program, which is a useful skill by itself.
On another level you will use programming as a means to an end. As we go
along, that end will become clearer.

1.1 What is a programming language?

The programming language you will be learning is Java, which is relatively new
(Sun released the first version in May, 1995). Java is an example of a high-level
language; other high-level languages you might have heard of are Pascal, C,
C++ and FORTRAN.

As you might infer from the name “high-level language,” there are also low-
level languages, sometimes referred to as machine language or assembly lan-
guage. Loosely-speaking, computers can only execute programs written in low-
level languages. Thus, programs written in a high-level language have to be
translated before they can run. This translation takes some time, which is a
small disadvantage of high-level languages.

2 The way of the program

But the advantages are enormous. First, it is much easier to program in a high-
level language; by “easier” I mean that the program takes less time to write, it’s
shorter and easier to read, and it’s more likely to be correct. Secondly, high-
level languages are portable, meaning that they can run on different kinds of
computers with few or no modifications. Low-level programs can only run on
one kind of computer, and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level languages.
Low-level languages are only used for a few special applications.

There are two ways to translate a program; interpreting or compiling. An
interpreter is a program that reads a high-level program and does what it says.
In effect, it translates the program line-by-line, alternately reading lines and
carrying out commands.

source
code (" interpreter

The interpreter ... and the result
reads the appears on
source code... the screen.

A compiler is a program that reads a high-level program and translates it all at
once, before executing any of the commands. Often you compile the program
as a separate step, and then execute the compiled code later. In this case, the
high-level program is called the source code, and the translated program is
called the object code or the executable.

As an example, suppose you write a program in C. You might use a text editor to
write the program (a text editor is a simple word processor). When the program
is finished, you might save it in a file named program. c, where “program” is an
arbitrary name you make up, and the suffix .c is a convention that indicates
that the file contains C source code.

Then, depending on what your programming environment is like, you might
leave the text editor and run the compiler. The compiler would read your
source code, translate it, and create a new file named program.o to contain the
object code, or program.exe to contain the executable.

source object

The compiler ... and generates You execute the ... and the result
reads the object code. program (one way appears on
source code... or another)... the screen.

The Java language is unusual because it is both compiled and interpreted. In-
stead of translating Java programs into machine language, the Java compiler

1.2 What is a program? 3

generates Java byte code. Byte code is easy (and fast) to interpret, like ma-
chine language, but it is also portable, like a high-level language. Thus, it is
possible to compile a Java program on one machine, transfer the byte code to
another machine over a network, and then interpret the byte code on the other
machine. This ability is one of the advantages of Java over many other high-level
languages.

source byte

X.java x.class
The compiler ... and generates A Java interpreter ... and the result
reads the Java byte code. reads the byte appears on
source code... code... the screen.

Although this process may seem complicated, in most programming environ-
ments (sometimes called development environments), these steps are automated
for you. Usually you will only have to write a program and press a button or
type a single command to compile and run it. On the other hand, it is useful
to know what the steps are that are happening in the background, so that if
something goes wrong you can figure out what it is.

1.2 What is a program?

A program is a sequence of instructions that specifies how to perform a com-
putation. The computation might be something mathematical, like solving a
system of equations or finding the roots of a polynomial, but it can also be
a symbolic computation, like searching and replacing text in a document or
(strangely enough) compiling a program.

The instructions, which we will call statements, look different in different
programming languages, but there are a few basic operations most languages
can perform:

input: Get data from the keyboard, or a file, or some other device.
output: Display data on the screen or send data to a file or other device.
math: Perform basic mathematical operations like addition and multiplication.

testing: Check for certain conditions and execute the appropriate sequence of
statements.

repetition: Perform some action repeatedly, usually with some variation.

That’s pretty much all there is to it. Every program you’ve ever used, no matter
how complicated, is made up of statements that perform these operations. Thus,
one way to describe programming is the process of breaking a large, complex task
up into smaller and smaller subtasks until eventually the subtasks are simple
enough to be performed with one of these basic operations.

4 The way of the program

1.3 What is debugging?

Programming is a complex process, and since it is done by human beings, it often
leads to errors. For whimsical reasons, programming errors are called bugs and
the process of tracking them down and correcting them is called debugging.

There are a few different kinds of errors that can occur in a program, and it is
useful to distinguish between them in order to track them down more quickly.

1.3.1 Compile-time errors

The compiler can only translate a program if the program is syntactically cor-
rect; otherwise, the compilation fails and you will not be able to run your
program. Syntax refers to the structure of your program and the rules about
that structure.

For example, in English, a sentence must begin with a capital letter and end
with a period. this sentence contains a syntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is
why we can read the poetry of e e cummings without spewing error messages.

Compilers are not so forgiving. If there is a single syntax error anywhere in
your program, the compiler will print an error message and quit, and you will
not be able to run your program.

To make matters worse, there are more syntax rules in Java than there are in
English, and the error messages you get from the compiler are often not very
helpful. During the first few weeks of your programming career, you will prob-
ably spend a lot of time tracking down syntax errors. As you gain experience,
though, you will make fewer errors and find them faster.

1.3.2 Run-time errors

The second type of error is a run-time error, so-called because the error does
not appear until you run the program. In Java, run-time errors occur when the
interpreter is running the byte code and something goes wrong.

The good news for now is that Java tends to be a safe language, which means
that run-time errors are rare, especially for the simple sorts of programs we will
be writing for the next few weeks.

Later on in the semester, you will probably start to see more run-time errors,
especially when we start talking about objects and references (Chapter 8).

In Java, run-time errors are called exceptions, and in most environments they
appear as windows or dialog boxes that contain information about what hap-
pened and what the program was doing when it happened. This information is
useful for debugging.

1.4 Formal and natural languages 5

1.3.3 Logic errors and semantics

The third type of error is the logical or semantic error. If there is a logical
error in your program, it will compile and run successfully, in the sense that
the computer will not generate any error messages, but it will not do the right
thing. It will do something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted to
write. The meaning of the program (its semantics) is wrong. Identifying logical
errors can be tricky, since it requires you to work backwards by looking at the
output of the program and trying to figure out what it is doing.

1.3.4 Experimental debugging

One of the most important skills you will acquire in this class is debugging.
Although it can be frustrating, debugging is one of the most intellectually rich,
challenging, and interesting parts of programming.

In some ways debugging is like detective work. You are confronted with clues
and you have to infer the processes and events that lead to the results you see.

Debugging is also like an experimental science. Once you have an idea what
is going wrong, you modify your program and try again. If your hypothesis
was correct, then you can predict the result of the modification, and you take
a step closer to a working program. If your hypothesis was wrong, you have to
come up with a new one. As Sherlock Holmes pointed out, “When you have
eliminated the impossible, whatever remains, however improbable, must be the
truth.” (from A. Conan Doyle’s The Sign of Four).

For some people, programming and debugging are the same thing. That is,
programming is the process of gradually debugging a program until it does what
you want. The idea is that you should always start with a working program
that does something, and make small modifications, debugging them as you go,
so that you always have a working program.

For example, Linux is an operating system that contains thousands of lines of
code, but it started out as a simple program Linus Torvalds used to explore
the Intel 80386 chip. According to Larry Greenfield, “One of Linus’s earlier
projects was a program that would switch between printing AAAA and BBBB.
This later evolved to Linux” (from The Linux Users’ Guide Beta Version 1).

In later chapters I will make more suggestions about debugging and other pro-
gramming practices.

1.4 Formal and natural languages

Natural languages are the languages that people speak, like English, Spanish,
and French. They were not designed by people (although people try to impose
some order on them); they evolved naturally.

6 The way of the program

Formal languages are languages that are designed by people for specific appli-
cations. For example, the notation that mathematicians use is a formal language
that is particularly good at denoting relationships among numbers and symbols.
Chemists use a formal language to represent the chemical structure of molecules.
And most importantly:

Programming languages are formal languages that have
been designed to express computations.

As I mentioned before, formal languages tend to have strict rules about syntax.
For example, 3 + 3 = 6 is a syntactically correct mathematical statement, but
3 = 468 is not. Also, H2O is a syntactically correct chemical name, but 2z is
not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens
are the basic elements of the language, like words and numbers and chemical
elements. One of the problems with 3=+6$ is that $ is not a legal token in
mathematics (at least as far as I know). Similarly, 2Z2 is not legal because
there is no element with the abbreviation Zz.

The second type of syntax rule pertains to the structure of a statement; that is,
the way the tokens are arranged. The statement 3=+6$ is structurally illegal,
because you can’t have a plus sign immediately after an equals sign. Similarly,
molecular formulas have to have subscripts after the element name, not before.

When you read a sentence in English or a statement in a formal language, you
have to figure out what the structure of the sentence is (although in a natural
language you do this unconsciously). This process is called parsing.

For example, when you hear the sentence, “The other shoe fell,” you understand
that “the other shoe” is the subject and “fell” is the verb. Omnce you have
parsed a sentence, you can figure out what it means, that is, the semantics of
the sentence. Assuming that you know what a shoe is, and what it means to
fall, you will understand the general implication of this sentence.

Although formal and natural languages have many features in common—tokens,
structure, syntax and semantics—there are many differences.

ambiguity: Natural languages are full of ambiguity, which people deal with
by using contextual clues and other information. Formal languages are
designed to be nearly or completely unambiguous, which means that any
statement has exactly one meaning, regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstand-
ings, natural languages employ lots of redundancy. As a result, they are
often verbose. Formal languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If I say, “The
other shoe fell,” there is probably no shoe and nothing falling. Formal
languages mean exactly what they say.

1.5 The first program 7

People who grow up speaking a natural language (everyone) often have a hard
time adjusting to formal languages. In some ways the difference between formal
and natural language is like the difference between poetry and prose, but more
so:

Poetry: Words are used for their sounds as well as for their meaning, and the
whole poem together creates an effect or emotional response. Ambiguity
is not only common but often deliberate.

Prose: The literal meaning of words is more important and the structure con-
tributes more meaning. Prose is more amenable to analysis than poetry,
but still often ambiguous.

Programs: The meaning of a computer program is unambiguous and literal,
and can be understood entirely by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal languages).
First, remember that formal languages are much more dense than natural lan-
guages, so it takes longer to read them. Also, the structure is very important, so
it is usually not a good idea to read from top to bottom, left to right. Instead,
learn to parse the program in your head, identifying the tokens and interpret-
ing the structure. Finally, remember that the details matter. Little things like
spelling errors and bad punctuation, which you can get away with in natural
languages, can make a big difference in a formal language.

1.5 The first program

Traditionally the first program people write in a new language is called “Hello,
World.” because all it does is display the words “Hello, World.” In Java, this
program looks like this:

class Hello {
// main: generate some simple output

public static void main (String[] args) {
System.out.println ("Hello, world.");
}
}

Some people judge the quality of a programming language by the simplicity
of the “Hello, World.” program. By this standard, Java does not do very
well. Even the simplest program contains a number of features that are hard
to explain to beginning programmers. We are going to ignore a lot of them for
now, but I will explain a few.

All programs are made up of class definitions, which have the form:

8 The way of the program

class CLASSNAME {

public static void main (Stringl[] args) {
STATEMENTS
}
}

Here CLASSNAME indicates an arbitrary name that you make up. The class name
in the example is Hello.

In the second line, you should ignore the words public static void for now,
but notice the word main. main is a special name that indicates the place in the
program where execution begins. When the program runs, it starts by executing
the first statement in main and it continues, in order, until it gets to the last
statement, and then it quits.

There is no limit to the number of statements that can be in main, but the
example contains only one. It is a print statement, meaning that it prints
a message on the screen. It is a bit confusing that “print” sometimes means
“display something on the screen,” and sometimes means “send something to
the printer.” In this book I won’t say much about sending things to the printer;
we’ll do all our printing on the screen.

The statement that prints things on the screen is System.out.println, and
the thing between the parentheses is the thing that will get printed. At the end
of the statement there is a semi-colon (;), which is required at the end of every
statement.

There are a few other things you should notice about the syntax of this pro-
gram. First, Java uses squiggly-braces ({ and }) to group things together. The
outermost squiggly-braces (lines 1 and 8) contain the class definition, and the
inner braces contain the definition of main.

Also, notice that line 3 begins with //. This indicates that this line contains a
comment, which is a bit of English text that you can put in the middle of a
program, usually to explain what the program does. When the compiler sees a
//, it ignores everything from there until the end of the line.

1.6 Glossary

problem-solving: The process of formulating a problem, finding a solution,
and expressing the solution.

high-level language: A programming language like Java that is designed to
be easy for humans to read and write.

low-level language: A programming language that is designed to be easy for
a computer to execute. Also called “machine language” or “assembly
language.”

1.6 Glossary 9

formal language: Any of the languages people have designed for specific pur-
poses, like representing mathematical ideas or computer programs. All
programming languages are formal languages.

natural language: Any of the languages people speak that have evolved nat-
urally.

portability: A property of a program that can run on more than one kind of
computer.

interpret: To execute a program in a high-level language by translating it one
line at a time.

compile: To translate a program in a high-level language into a low-level lan-
guage, all at once, in preparation for later execution.

source code: A program in a high-level language, before being compiled.
object code: The output of the compiler, after translating the program.
executable: Another name for object code that is ready to be executed.

byte code: A special kind of object code used for Java programs. Byte code is
similar to a low-level language, but it is portable, like a high-level language.

statement: A part of a program that specifies an action that will be performed
when the program runs. A print statement causes output to be displayed
on the screen.

comment: A part of a program that contains information about the program,
but that has no effect when the program runs.

algorithm: A general process for solving a category of problems.
bug: An error in a program.

syntax: The structure of a program.

semantics: The meaning of a program.

parse: To examine a program and analyze the syntactic structure.

syntax error: An error in a program that makes it impossible to parse (and
therefore impossible to compile).

exception: An error in a program that makes it fail at run-time. Also called
a run-time error.

logical error: An error in a program that makes it do something other than
what the programmer intended.

debugging: The process of finding and removing any of the three kinds of
€rTors.

10 The way of the program

1.7 Exercises

Exercise 1.1

Computer scientists have the annoying habit of using common English words to mean
something different from their common English meaning. For example, in English, a
statement and a comment are pretty much the same thing, but when we are talking
about a program, they are very different.

The glossary at the end of each chapter is intended to highlight words and phrases
that have special meanings in computer science. When you see familiar words, don’t
assume that you know what they mean!

a. In computer jargon, what’s the difference between a statement and a comment?
b. What does it mean to say that a program is portable?

c. What is an executable?

Exercise 1.2

Before you do anything else, find out how to compile and run a Java program in your
environment. Some environments provide sample programs similar to the example in
Section 1.5.

a. Type in the “Hello, world” program, then compile and run it.

b. Add a second print statement that prints a second message after the “Hello,
world!”. Something witty like, “How are you?” Compile and run the program
again.

c. Add a comment line to the program (anywhere) and recompile it. Run the pro-
gram again. The new comment should not affect the execution of the program.

This exercise may seem trivial, but it is the starting place for many of the programs
we will work with. In order to debug with confidence, you have to have confidence
in your programming environment. In some environments, it is easy to lose track of
which program is executing, and you might find yourself trying to debug one program
while you are accidentally executing another. Adding (and changing) print statements
is a simple way to establish the connection between the program you are looking at
and the output when the program runs.

Exercise 1.3

It is a good idea to commit as many errors as you can think of, so that you see what
error messages the compiler produces. Sometimes the compiler will tell you exactly
what is wrong, and all you have to do is fix it. Sometimes, though, the compiler will
produce wildly misleading messages. You will develop a sense for when you can trust
the compiler and when you have to figure things out yourself.

a. Remove one of the open squiggly-braces.
b. Remove one of the close squiggly-braces.

c. Instead of main, write mian.

