
1.7 Exercises 11

d. Remove the word static.

e. Remove the word public.

f. Remove the word System.

g. Replace println with pintln.

h. Replace println with print. This one is tricky because it is a logical error, not
a syntax error. The statement System.out.print is legal, but it may or may
not do what you expect.

i. Delete one of the parentheses. Add an extra one.

12 The way of the program

Chapter 2

Variables and types

2.1 More printing

As I mentioned in the last chapter, you can put as many statements as you want
in main. For example, to print more than one line:

class Hello {

// main: generate some simple output

public static void main (String[] args) {

System.out.println ("Hello, world."); // print one line

System.out.println ("How are you?"); // print another

}

}

Also, as you can see, it is legal to put comments at the end of a line, as well as
on a line by themselves.

The phrases that appear in quotation marks are called strings, because they
are made up of a sequence (string) of letters. Actually, strings can contain any
combination of letters, numbers, punctuation marks, and other special charac-
ters.

println is short for “print line,” because after each line it adds a special char-
acter, called a newline, that causes the cursor to move to the next line of the
display. The next time println is invoked, the new text appears on the next
line.

Often it is useful to display the output from multiple print statements all on
one line. You can do this with the print command:

class Hello {

// main: generate some simple output

14 Variables and types

public static void main (String[] args) {

System.out.print ("Goodbye, ");

System.out.println ("cruel world!");

}

}

In this case the output appears on a single line as Goodbye, cruel world!.
Notice that there is a space between the word “Goodbye” and the second quo-
tation mark. This space appears in the output, so it affects the behavior of the
program.

Spaces that appear outside of quotation marks generally do not affect the be-
havior of the program. For example, I could have written:

class Hello {

public static void main (String[] args) {

System.out.print ("Goodbye, ");

System.out.println ("cruel world!");

}

}

This program would compile and run just as well as the original. The breaks
at the ends of lines (newlines) do not affect the program’s behavior either, so I
could have written:

class Hello { public static void main (String[] args) {

System.out.print ("Goodbye, "); System.out.println

("cruel world!");}}

That would work, too, although you have probably noticed that the program is
getting harder and harder to read. Newlines and spaces are useful for organizing
your program visually, making it easier to read the program and locate syntax
errors.

2.2 Variables

One of the most powerful features of a programming language is the ability
to manipulate variables. A variable is a named location that stores a value.
Values are things that can be printed and stored and (as we’ll see later) operated
on. The strings we have been printing ("Hello, World.", "Goodbye, ", etc.)
are values.

In order to store a value, you have to create a variable. Since the values we
want to store are strings, we will declare that the new variable is a string:

String fred;

This statement is a declaration, because it declares that the variable named
fred has the type String. Each variable has a type that determines what kind
of values it can store. For example, the int type can store integers, and it will
probably come as no surprise that the String type can store strings.

2.3 Assignment 15

You will notice that some types begin with a capital letter and some with lower-
case. We will learn the significance of this distinction later, but for now you
should take care to get it right. There is no such type as Int or string, and
the compiler will object if you try to make one up.

To create an integer variable, the syntax is int bob;, where bob is the arbitrary
name you made up for the variable. In general, you will want to make up variable
names that indicate what you plan to do with the variable. For example, if you
saw these variable declarations:

String firstName;

String lastName;

int hour, minute;

you could probably make a good guess at what values would be stored in them.
This example also demonstrates the syntax for declaring multiple variables with
the same type: hour and second are both integers (int type).

2.3 Assignment

Now that we have created some variables, we would like to store values in them.
We do that with an assignment statement.

fred = "Hello."; // give fred the value "Hello."

hour = 11; // assign the value 11 to hour

minute = 59; // set minute to 59

This example shows three assignments, and the comments show three different
ways people sometimes talk about assignment statements. The vocabulary can
be confusing here, but the idea is straightforward:

• When you declare a variable, you create a named storage location.

• When you make an assignment to a variable, you give it a value.

A common way to represent variables on paper is to draw a box with the name
of the variable on the outside and the value of the variable on the inside. This
figure shows the effect of the three assignment statements:

11

"Hello."

59

fred

hour

minute

For each variable, the name of the variable appears outside the box and the
value appears inside.

As a general rule, a variable has to have the same type as the value you assign
it. You cannot store a String in minute or an integer in fred.

On the other hand, that rule can be confusing, because there are many ways that
you can convert values from one type to another, and Java sometimes converts

16 Variables and types

things automatically. So for now you should remember the general rule, and
we’ll talk about special cases later.

Another source of confusion is that some strings look like integers, but they are
not. For example, fred can contain the string "123", which is made up of the
characters 1, 2 and 3, but that is not the same thing as the number 123.

fred = "123"; // legal

fred = 123; // not legal

2.4 Printing variables

You can print the value of a variable using the same commands we used to print
Strings.

class Hello {

public static void main (String[] args) {

String firstLine;

firstLine = "Hello, again!";

System.out.println (firstLine);

}

}

This program creates a variable named firstLine, assigns it the value "Hello,
again!" and then prints that value. When we talk about “printing a variable,”
we mean printing the value of the variable. To print the name of a variable, you
have to put it in quotes. For example: System.out.println ("firstLine");

If you want to get a little tricky, you could write

String firstLine;

firstLine = "Hello, again!";

System.out.print ("The value of firstLine is ");

System.out.println (firstLine);

The output of this program is

The value of firstLine is Hello, again!

I am pleased to report that the syntax for printing a variable is the same re-
gardless of the variable’s type.

int hour, minute;

hour = 11;

minute = 59;

System.out.print ("The current time is ");

System.out.print (hour);

System.out.print (":");

System.out.print (minute);

System.out.println (".");

The output of this program is The current time is 11:59.

WARNING: It is common practice to use several print commands followed by
a println, in order to put multiple values on the same line. But you have

2.5 Keywords 17

to be careful to remember the println at the end. In many environments,
the output from print is stored without being displayed until the println

command is invoked, at which point the entire line is displayed at once. If you
omit println, the program may terminate without ever displaying the stored
output!

2.5 Keywords

A few sections ago, I said that you can make up any name you want for your
variables, but that’s not quite true. There are certain words that are reserved
in Java because they are used by the compiler to parse the structure of your
program, and if you use them as variable names, it will get confused. These
words, called keywords, include public, class, void, int, and many more.

The complete list is available at

http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html

This site, provided by Sun, includes Java documentation I will be referring to
throughout the book.

Rather than memorize the list, I would suggest that you take advantage of a
feature provided in many Java development environments: code highlighting.
As you type, different parts of your program should appear in different colors.
For example, keywords might be blue, strings red, and other code black. If you
type a variable name and it turns blue, watch out! You might get some strange
behavior from the compiler.

2.6 Operators

Operators are special symbols that are used to represent simple computations
like addition and multiplication. Most of the operators in Java do exactly what
you would expect them to do, because they are common mathematical symbols.
For example, the operator for adding two integers is +.

The following are all legal Java expressions whose meaning is more or less ob-
vious:

1+1 hour-1 hour*60 + minute minute/60

Expressions can contain both variable names and numbers. In each case the
name of the variable is replaced with its value before the computation is per-
formed.

Addition, subtraction and multiplication all do what you expect, but you might
be surprised by division. For example, the following program:

int hour, minute;

hour = 11;

minute = 59;

18 Variables and types

System.out.print ("Number of minutes since midnight: ");

System.out.println (hour*60 + minute);

System.out.print ("Fraction of the hour that has passed: ");

System.out.println (minute/60);

would generate the following output:

Number of minutes since midnight: 719

Fraction of the hour that has passed: 0

The first line is what we expected, but the second line is odd. The value of the
variable minute is 59, and 59 divided by 60 is 0.98333, not 0. The reason for
the discrepancy is that Java is performing integer division.

When both of the operands are integers (operands are the things operators op-
erate on), the result must also be an integer, and by convention integer division
always rounds down, even in cases like this where the next integer is so close.

A possible alternative in this case is to calculate a percentage rather than a
fraction:

System.out.print ("Percentage of the hour that has passed: ");

System.out.println (minute*100/60);

The result is:

Percentage of the hour that has passed: 98

Again the result is rounded down, but at least now the answer is approximately
correct. In order to get an even more accurate answer, we could use a different
type of variable, called floating-point, that is capable of storing fractional values.
We’ll get to that in the next chapter.

2.7 Order of operations

When more than one operator appears in an expression the order of evaluation
depends on the rules of precedence. A complete explanation of precedence
can get complicated, but just to get you started:

• Multiplication and division take precedence (happen before) addition and
subtraction. So 2*3-1 yields 5, not 4, and 2/3-1 yields -1, not 1 (remem-
ber that in integer division 2/3 is 0).

• If the operators have the same precedence they are evaluated from left
to right. So in the expression minute*100/60, the multiplication happens
first, yielding 5900/60, which in turn yields 98. If the operations had gone
from right to left, the result would be 59*1 which is 59, which is wrong.

• Any time you want to override the rules of precedence (or you are not sure
what they are) you can use parentheses. Expressions in parentheses are
evaluated first, so 2 * (3-1) is 4. You can also use parentheses to make
an expression easier to read, as in (minute * 100) / 60, even though it
doesn’t change the result.

2.8 Operators for Strings 19

2.8 Operators for Strings

In general you cannot perform mathematical operations on Strings, even if the
strings look like numbers. The following are illegal (if we know that fred has
type String)

fred - 1 "Hello"/123 fred * "Hello"

By the way, can you tell by looking at those expressions whether fred is an
integer or a string? Nope. The only way to tell the type of a variable is to look
at the place where it is declared.

Interestingly, the + operator does work with Strings, although it does not do
exactly what you might expect. For Strings, the + operator represents con-
catenation, which means joining up the two operands by linking them end-to-
end. So "Hello, " + "world." yields the string "Hello, world." and fred

+ "ism" adds the suffix ism to the end of whatever fred is, which is often handy
for naming new forms of bigotry.

2.9 Composition

So far we have looked at the elements of a programming language—variables,
expressions, and statements—in isolation, without talking about how to combine
them.

One of the most useful features of programming languages is their ability to
take small building blocks and compose them. For example, we know how to
multiply numbers and we know how to print; it turns out we can do both at the
same time:

System.out.println (17 * 3);

Actually, I shouldn’t say “at the same time,” since in reality the multiplication
has to happen before the printing, but the point is that any expression, involving
numbers, strings, and variables, can be used inside a print statement. We’ve
already seen one example:

System.out.println (hour*60 + minute);

But you can also put arbitrary expressions on the right-hand side of an assign-
ment statement:

int percentage;

percentage = (minute * 100) / 60;

This ability may not seem so impressive now, but we will see other examples
where composition makes it possible to express complex computations neatly
and concisely.

WARNING: There are limits on where you can use certain expressions; most
notably, the left-hand side of an assignment statement has to be a variable name,
not an expression. That’s because the left side indicates the storage location
where the result will go. Expressions do not represent storage locations, only
values. So the following is illegal: minute+1 = hour;.

20 Variables and types

2.10 Glossary

variable: A named storage location for values. All variables have a type, which
is declared when the variable is created.

value: A number or string (or other thing to be named later) that can be stored
in a variable. Every value belongs to one type.

type: A set of values. The type of a variable determines which values can be
stored there. So far, the types we have seen are integers (int in Java) and
strings (String in Java).

keyword: A reserved word that is used by the compiler to parse programs. You
cannot use keywords, like public, class and void as variable names.

statement: A line of code that represents a command or action. So far, the
statements we have seen are declarations, assignments, and print state-
ments.

declaration: A statement that creates a new variable and determines its type.

assignment: A statement that assigns a value to a variable.

expression: A combination of variables, operators and values that represents
a single result value. Expressions also have types, as determined by their
operators and operands.

operator: A special symbol that represents a simple computation like addition,
multiplication or string concatenation.

operand: One of the values on which an operator operates.

precedence: The order in which operations are evaluated.

concatenate: To join two operands end-to-end.

composition: The ability to combine simple expressions and statements into
compound statements and expressions in order to represent complex com-
putations concisely.

2.11 Exercises

Exercise 2.1

a. Create a new program named Date.java. Copy or type in something like the
“Hello, World” program and make sure you can compile and run it.

b. Following the example in Section 2.4, write a program that creates variables
named day, date, month and year. day will contain the day of the week and
date will contain the day of the month. What type is each variable? Assign
values to those variables that represent today’s date.

c. Print the value of each variable on a line by itself. This is an intermediate step
that is useful for checking that everything is working so far.

2.11 Exercises 21

d. Modify the program so that it prints the date in standard American form:
Wednesday, February 17, 1999.

e. Modify the program again so that the total output is:

American format:

Wednesday, February 17, 1999

European format:

Wednesday 17 February, 1999

The point of this exercise is to use string concatenation to display values with different
types (int and String), and to practice developing programs gradually by adding a
few statements at a time.

Exercise 2.2

a. Create a new program called Time.java. From now on, I won’t remind you to
start with a small, working program, but you should.

b. Following the example in Section 2.6, create variables named hour, minute and
second, and assign them values that are roughly the current time. Use a 24-hour
clock, so that at 2pm the value of hour is 14.

c. Make the program calculate and print the number of seconds since midnight.

d. Make the program calculate and print the number of seconds remaining in the
day.

e. Make the program calculate and print the percentage of the day that has passed.

f. Change the values of hour, minute and second to reflect the current time (I
assume that some time has elapsed), and check to make sure that the program
works correctly with different values.

The point of this exercise is to use some of the arithmetic operations, and to start
thinking about compound entities like the time of day that that are represented with
multiple values. Also, you might run into problems computing percentages with ints,
which is the motivation for floating point numbers in the next chapter.

HINT: you may want to use additional variables to hold values temporarily during the
computation. Variables like this, that are used in a computation but never printed,
are sometimes called intermediate or temporary variables.

22 Variables and types

Chapter 3

Methods

3.1 Floating-point

In the last chapter we had some problems dealing with numbers that were not
integers. We worked around the problem by measuring percentages instead of
fractions, but a more general solution is to use floating-point numbers, which
can represent fractions as well as integers. In Java, the floating-point type is
called double.

You can create floating-point variables and assign values to them using the same
syntax we used for the other types. For example:

double pi;

pi = 3.14159;

It is also legal to declare a variable and assign a value to it at the same time:

int x = 1;

String empty = "";

double pi = 3.14159;

In fact, this syntax is quite common. A combined declaration and assignment
is sometimes called an initialization.

Although floating-point numbers are useful, they are often a source of confusion
because there seems to be an overlap between integers and floating-point num-
bers. For example, if you have the value 1, is that an integer, a floating-point
number, or both?

Strictly speaking, Java distinguishes the integer value 1 from the floating-point
value 1.0, even though they seem to be the same number. They belong to
different types, and strictly speaking, you are not allowed to make assignments
between types. For example, the following is illegal:

int x = 1.1;

24 Methods

because the variable on the left is an int and the value on the right is a double.
But it is easy to forget this rule, especially because there are places where Java
will automatically convert from one type to another. For example:

double y = 1;

should technically not be legal, but Java allows it by converting the int to a
double automatically. This leniency is convenient, but it can cause problems;
for example:

double y = 1 / 3;

You might expect the variable y to be given the value 0.333333, which is a legal
floating-point value, but in fact it will get the value 0.0. The reason is that
the expression on the right appears to be the ratio of two integers, so Java does
integer division, which yields the integer value 0. Converted to floating-point,
the result is 0.0.

One way to solve this problem (once you figure out what it is) is to make the
right-hand side a floating-point expression:

double y = 1.0 / 3.0;

This sets y to 0.333333, as expected.

All the operations we have seen so far—addition, subtraction, multiplication,
and division—also work on floating-point values, although you might be inter-
ested to know that the underlying mechanism is completely different. In fact,
most processors have special hardware just for performing floating-point oper-
ations.

3.2 Converting from double to int

As I mentioned, Java converts ints to doubles automatically if necessary, be-
cause no information is lost in the translation. On the other hand, going from
a double to an int requires rounding off. Java doesn’t perform this operation
automatically, in order to make sure that you, as the programmer, are aware of
the loss of the fractional part of the number.

The simplest way to convert a floating-point value to an integer is to use a
typecast. Typecasting is so called because it allows you to take a value that
belongs to one type and “cast” it into another type (in the sense of molding or
reforming, not throwing).

Unfortunately, the syntax for typecasting is ugly: you put the name of the type
in parentheses and use it as an operator. For example,

int x = (int) Math.PI;

The (int) operator has the effect of converting what follows into an integer, so
x gets the value 3.

Typecasting takes precedence over arithmetic operations, so in the following
example, the value of PI gets converted to an integer first, and the result is 60,
not 62.

3.3 Math methods 25

int x = (int) Math.PI * 20.0;

Converting to an integer always rounds down, even if the fraction part is
0.99999999.

These two properties (precedence and rounding) can make typecasting awkward.

3.3 Math methods

In mathematics, you have probably seen functions like sin and log, and you have
learned to evaluate expressions like sin(π/2) and log(1/x). First, you evaluate
the expression in parentheses, which is called the argument of the function.
For example, π/2 is approximately 1.571, and 1/x is 0.1 (assuming that x is
10).

Then you can evaluate the function itself, either by looking it up in a table or
by performing various computations. The sin of 1.571 is 1, and the log of 0.1 is
-1 (assuming that log indicates the logarithm base 10).

This process can be applied repeatedly to evaluate more complicated expressions
like log(1/ sin(π/2)). First we evaluate the argument of the innermost function,
then evaluate the function, and so on.

Java provides a set of built-in functions that includes most of the mathematical
operations you can think of. These functions are called methods. Most math
methods operate on doubles.

The math methods are invoked using a syntax that is similar to the print

commands we have already seen:

double root = Math.sqrt (17.0);

double angle = 1.5;

double height = Math.sin (angle);

The first example sets root to the square root of 17. The second example finds
the sine of 1.5, which is the value of the variable angle. Java assumes that
the values you use with sin and the other trigonometric functions (cos, tan)
are in radians. To convert from degrees to radians, you can divide by 360 and
multiply by 2π. Conveniently, Java provides π as a built-in value:

double degrees = 90;

double angle = degrees * 2 * Math.PI / 360.0;

Notice that PI is in all capital letters. Java does not recognize Pi, pi, or pie.

Another useful method in the Math class is round, which rounds a floating-point
value off to the nearest integer and returns an int.

int x = Math.round (Math.PI * 20.0);

In this case the multiplication happens first, before the method is invoked. The
result is 63 (rounded up from 62.8319).

26 Methods

3.4 Composition

Just as with mathematical functions, Java methods can be composed, meaning
that you use one expression as part of another. For example, you can use any
expression as an argument to a method:

double x = Math.cos (angle + Math.PI/2);

This statement takes the value Math.PI, divides it by two and adds the result
to the value of the variable angle. The sum is then passed as an argument to
the cos method. (Notice that PI is the name of a variable, not a method, so
there are no arguments, not even the empty argument ()).

You can also take the result of one method and pass it as an argument to
another:

double x = Math.exp (Math.log (10.0));

In Java, the log function always uses base e, so this statement finds the log
base e of 10 and then raises e to that power. The result gets assigned to x; I
hope you know what it is.

3.5 Adding new methods

So far we have only been using the methods that are built into Java, but it is
also possible to add new methods. Actually, we have already seen one method
definition: main. The method named main is special in that it indicates where
the execution of the program begins, but the syntax for main is the same as for
other method definitions:

public static void NAME (LIST OF PARAMETERS) {

STATEMENTS

}

You can make up any name you want for your method, except that you can’t
call it main or any other Java keyword. The list of parameters specifies what
information, if any, you have to provide in order to use (or invoke) the new
function.

The single parameter for main is String[] args, which indicates that whoever
invokes main has to provide an array of Strings (we’ll get to arrays in Chap-
ter 10). The first couple of methods we are going to write have no parameters,
so the syntax looks like this:

public static void newLine () {

System.out.println ("");

}

This method is named newLine, and the empty parentheses indicate that it
takes no parameters. It contains only a single statement, which prints an empty
String, indicated by "". Printing a String with no letters in it may not seem
all that useful, except remember that println skips to the next line after it
prints, so this statement has the effect of skipping to the next line.

3.5 Adding new methods 27

In main we can invoke this new method using syntax that is similar to the way
we invoke the built-in Java commands:

public static void main (String[] args) {

System.out.println ("First line.");

newLine ();

System.out.println ("Second line.");

}

The output of this program is

First line.

Second line.

Notice the extra space between the two lines. What if we wanted more space
between the lines? We could invoke the same method repeatedly:

public static void main (String[] args) {

System.out.println ("First line.");

newLine ();

newLine ();

newLine ();

System.out.println ("Second line.");

}

Or we could write a new method, named threeLine, that prints three new lines:

public static void threeLine () {

newLine (); newLine (); newLine ();

}

public static void main (String[] args) {

System.out.println ("First line.");

threeLine ();

System.out.println ("Second line.");

}

You should notice a few things about this program:

• You can invoke the same procedure repeatedly. In fact, it is quite common
and useful to do so.

• You can have one method invoke another method. In this case, main in-
vokes threeLine and threeLine invokes newLine. Again, this is common
and useful.

• In threeLine I wrote three statements all on the same line, which is syn-
tactically legal (remember that spaces and new lines usually don’t change
the meaning of a program). On the other hand, it is usually a better idea
to put each statement on a line by itself, to make your program easy to
read. I sometimes break that rule in this book to save space.

28 Methods

So far, it may not be clear why it is worth the trouble to create all these new
methods. Actually, there are a lot of reasons, but this example only demon-
strates two:

1. Creating a new method gives you an opportunity to give a name to a
group of statements. Methods can simplify a program by hiding a complex
computation behind a single command, and by using English words in
place of arcane code. Which is clearer, newLine or System.out.println
("")?

2. Creating a new method can make a program smaller by eliminating repet-
itive code. For example, how would you print nine consecutive new lines?
You could just invoke threeLine three times.

3.6 Classes and methods

Pulling together all the code fragments from the previous section, the whole
class definition looks like this:

class NewLine {

public static void newLine () {

System.out.println ("");

}

public static void threeLine () {

newLine (); newLine (); newLine ();

}

public static void main (String[] args) {

System.out.println ("First line.");

threeLine ();

System.out.println ("Second line.");

}

}

The first line indicates that this is the class definition for a new class called
NewLine. A class is a collection of related methods. In this case, the class named
NewLine contains three methods, named newLine, threeLine, and main.

The other class we’ve seen is the Math class. It contains methods named sqrt,
sin, and many others. When we invoke a mathematical function, we have to
specify the name of the class (Math) and the name of the function. That’s why
the syntax is slightly different for built-in methods and the methods that we
write:

Math.pow (2.0, 10.0);

newLine ();

3.7 Programs with multiple methods 29

The first statement invokes the pow method in the Math class (which raises
the first argument to the power of the second argument). The second statement
invokes the newLine method, which Java assumes (correctly) is in the NewLine

class, which is what we are writing.

If you try to invoke a method from the wrong class, the compiler will generate
an error. For example, if you type:

pow (2.0, 10.0);

The compiler will say something like, “Can’t find a method named pow in class
NewLine.” If you have seen this message, you might have wondered why it was
looking for pow in your class definition. Now you know.

3.7 Programs with multiple methods

When you look at a class definition that contains several methods, it is tempting
to read it from top to bottom, but that is likely to be confusing, because that
is not the order of execution of the program.

Execution always begins at the first statement of main, regardless of where it is
in the program (in this case I deliberately put it at the bottom). Statements are
executed one at a time, in order, until you reach a method invocation. Method
invocations are like a detour in the flow of execution. Instead of going to the
next statement, you go to the first line of the invoked method, execute all the
statements there, and then come back and pick up again where you left off.

That sounds simple enough, except that you have to remember that one method
can invoke another. Thus, while we are in the middle of main, we might have
to go off and execute the statements in threeLine. But while we are executing
threeLine, we get interrupted three times to go off and execute newLine.

For its part, newLine invokes the built-in method println, which causes yet
another detour. Fortunately, Java is quite adept at keeping track of where it is,
so when println completes, it picks up where it left off in newLine, and then
gets back to threeLine, and then finally gets back to main so the program can
terminate.

Actually, technically, the program does not terminate at the end of main. In-
stead, execution picks up where it left off in the program that invoked main,
which is the Java interpreter. The Java interpreter takes care of things like
deleting windows and general cleanup, and then the program terminates.

What’s the moral of this sordid tale? When you read a program, don’t read
from top to bottom. Instead, follow the flow of execution.

3.8 Parameters and arguments

Some of the built-in methods we have used have parameters, which are values
that you provide to let the method do its job. For example, if you want to

30 Methods

find the sine of a number, you have to indicate what the number is. Thus, sin
takes a double value as a parameter. To print a string, you have to provide the
string, which is why println takes a String as a parameter.

Some methods take more than one parameter, like pow, which takes two
doubles, the base and the exponent.

Notice that in each of these cases we have to specify not only how many param-
eters there are, but also what type they are. So it shouldn’t surprise you that
when you write a class definition, the parameter list indicates the type of each
parameter. For example:

public static void printTwice (String phil) {

System.out.println (phil);

System.out.println (phil);

}

This method takes a single parameter, named phil, that has type String.
Whatever that parameter is (and at this point we have no idea what it is), it
gets printed twice. I chose the name phil to suggest that the name you give
a parameter is up to you, but in general you want to choose something more
illustrative than phil.

In order to invoke this method, we have to provide a String. For example, we
might have a main method like this:

public static void main (String[] args) {

printTwice ("Don’t make me say this twice!");

}

The string you provide is called an argument, and we say that the argument is
passed to the method. In this case we are creating a string value that contains
the text “Don’t make me say this twice!” and passing that string as an argument
to printTwice where, contrary to its wishes, it will get printed twice.

Alternatively, if we had a String variable, we could use it as an argument
instead:

public static void main (String[] args) {

String argument = "Never say never.";

printTwice (argument);

}

Notice something very important here: the name of the variable we pass as an
argument (argument) has nothing to do with the name of the parameter (phil).
Let me say that again:

The name of the variable we pass as an argument has noth-
ing to do with the name of the parameter.

They can be the same or they can be different, but it is important to realize
that they are not the same thing, except that they happen to have the same
value (in this case the string "Never say never.").

3.9 Stack diagrams 31

The value you provide as an argument must have the same type as the param-
eter of the method you invoke. This rule is very important, but it often gets
complicated in Java for two reasons:

• There are some methods that can accept arguments with many different
types. For example, you can send any type to print and println, and it
will do the right thing no matter what. This sort of thing is an exception,
though.

• If you violate this rule, the compiler often generates a confusing error
message. Instead of saying something like, “You are passing the wrong
kind of argument to this method,” it will probably say something to the
effect that it could not find a method with that name that would accept
an argument with that type. Once you have seen this error message a few
times, though, you will figure out how to interpret it.

3.9 Stack diagrams

Parameters and other variables only exist inside their own methods. Within
the confines of main, there is no such thing as phil. If you try to use it, the
compiler will complain. Similarly, inside printTwice there is no such thing as
argument.

One way to keep track of where each variable is defined is with a stack diagram.
The stack diagram for the previous example looks like this:

argumentmain

philprintTwice

"Never say never."

"Never say never."

For each method there is a gray box called a frame that contains the methods
parameters and local variables. The name of the method appears outside the
frame. As usual, the value of each variable is drawn inside a box with the name
of the variable beside it.

3.10 Methods with multiple parameters

The syntax for declaring and invoking methods with multiple parameters is a
common source of errors. First, remember that you have to declare the type of
every parameter. For example

public static void printTime (int hour, int minute) {

System.out.print (hour);

32 Methods

System.out.print (":");

System.out.println (minute);

}

It might be tempting to write int hour, minute, but that format is only legal
for variable declarations, not for parameters.

Another common source of confusion is that you do not have to declare the
types of arguments. The following is wrong!

int hour = 11;

int minute = 59;

printTime (int hour, int minute); // WRONG!

In this case, Java can tell the type of hour and minute by looking at their
declarations. It is unnecessary and illegal to include the type when you pass
them as arguments. The correct syntax is printTime (hour, minute).

Exercise 3.1 Draw a stack frame that shows the state of the program when main

invokes printTime with the arguments 11 and 59.

3.11 Methods with results

You might have noticed by now that some of the methods we are using, like
the Math methods, yield results. Other methods, like println and newLine,
perform some action but they don’t return a value. That raises some questions:

• What happens if you invoke a method and you don’t do anything with
the result (i.e. you don’t assign it to a variable or use it as part of a larger
expression)?

• What happens if you use a print method as part of an expression, like
System.out.println ("boo!") + 7?

• Can we write methods that yield results, or are we stuck with things like
newLine and printTwice?

The answer to the third question is “yes, you can write methods that return
values,” and we’ll do it in a couple of chapters. I will leave it up to you to
answer the other two questions by trying them out. In fact, any time you have
a question about what is legal or illegal in Java, a good way to find out is to
ask the compiler.

3.12 Glossary

floating-point: A type of variable (or value) that can contain fractions as well
as integers. In Java this type is called double.

class: A named collection of methods. So far, we have used the Math class and
the System class, and we have written classes named Hello and NewLine.

3.13 Exercises 33

method: A named sequence of statements that performs some useful function.
Methods may or may not take parameters, and may or may not produce
a result.

parameter: A piece of information you provide in order to invoke a method.
Parameters are like variables in the sense that they contain values and
have types.

argument: A value that you provide when you invoke a method. This value
must have the same type as the corresponding parameter.

invoke: Cause a method to be executed.

3.13 Exercises

Exercise 3.2

The point of this exercise is to practice reading code and to make sure that you
understand the flow of execution through a program with multiple methods.

a. What is the output of the following program? Be precise about where there are
spaces and where there are newlines.

HINT: Start by describing in words what ping and baffle do when they are
invoked.

b. Draw a stack diagram that shows the state of the program the first time ping

is invoked.

public static void zoop () {

baffle ();

System.out.print ("You wugga ");

baffle ();

}

public static void main (String[] args) {

System.out.print ("No, I ");

zoop ();

System.out.print ("I ");

baffle ();

}

public static void baffle () {

System.out.print ("wug");

ping ();

}

public static void ping () {

System.out.println (".");

}

Exercise 3.3 The point of this exercise is to make sure you understand how to
write and invoke methods that take parameters.

34 Methods

a. Write the first line of a method named zool that takes three parameters: an
int and two Strings.

b. Write a line of code that invokes zool, passing as arguments the value 11, the
name of your first pet, and the name of the street you grew up on.

Exercise 3.4

The purpose of this exercise is to take code from a previous exercise and encapsulate
it in a method that takes parameters. You should start with a working solution to
Exercise 2.1.

a. Write a method called printAmerican that takes the day, date, month and year
as parameters and that prints them in American format.

b. Test your method by invoking it from main and passing appropriate arguments.
The output should look something like this (except that the date might be
different):

Wednesday, September 29, 1999

c. Once you have debugged printAmerican, write another method called
printEuropean that prints the date in European format.

Exercise 3.5

Many computations can be expressed concisely using the “multadd” operation, which
takes three operands and computes a*b + c. Some processors even provide a hardware
implementation of this operation for floating-point numbers.

a. Create a new program called Multadd.java.

b. Write a method called multadd that takes three doubles as parameters and that
prints their multadditionization.

c. Write a main method that tests multadd by invoking it with a few simple pa-
rameters, like 1.0, 2.0, 3.0, and then prints the result, which should be 5.0.

d. Also in main, use multadd to compute the following values:

sin π

4
+

cos
π

4

2

log 10 + log 20

e. Write a method called yikes that takes a double as a parameter and that uses
multadd to calculate and print

xe−x +
√

1 − e−x

HINT: the Math method for raising e to a power is Math.exp.

In the last part, you get a chance to write a method that invokes a method you wrote.
Whenever you do that, it is a good idea to test the first method carefully before
you start working on the second. Otherwise, you might find yourself debugging two
methods at the same time, which can be very difficult.

One of the purposes of this exercise is to practice pattern-matching: the ability to
recognize a specific problem as an instance of a general category of problems.

Chapter 4

Conditionals and recursion

4.1 The modulus operator

The modulus operator works on integers (and integer expressions) and yields
the remainder when the first operand is divided by the second. In Java, the
modulus operator is a percent sign, %. The syntax is exactly the same as for
other operators:

int quotient = 7 / 3;

int remainder = 7 % 3;

The first operator, integer division, yields 2. The second operator yields 1.
Thus, 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you
can check whether one number is divisible by another: if x % y is zero, then x

is divisible by y.

Also, you can use the modulus operator to extract the rightmost digit or digits
from a number. For example, x % 10 yields the rightmost digit of x (in base
10). Similarly x % 100 yields the last two digits.

4.2 Conditional execution

In order to write useful programs, we almost always need the ability to check
certain conditions and change the behavior of the program accordingly. Condi-
tional statements give us this ability. The simplest form is the if statement:

if (x > 0) {

System.out.println ("x is positive");

}

The expression in parentheses is called the condition. If it is true, then the
statements in brackets get executed. If the condition is not true, nothing hap-
pens.

36 Conditionals and recursion

The condition can contain any of the comparison operators, sometimes called
relational operators:

x == y // x equals y

x != y // x is not equal to y

x > y // x is greater than y

x < y // x is less than y

x >= y // x is greater than or equal to y

x <= y // x is less than or equal to y

Although these operations are probably familiar to you, the syntax Java uses is
a little different from mathematical symbols like =, 6= and ≤. A common error
is to use a single = instead of a double ==. Remember that = is the assignment
operator, and == is a comparison operator. Also, there is no such thing as =<

or =>.

The two sides of a condition operator have to be the same type. You can only
compare ints to ints and doubles to doubles. Unfortunately, at this point
you can’t compare Strings at all! There is a way to compare Strings, but we
won’t get to it for a couple of chapters.

4.3 Alternative execution

A second form of conditional execution is alternative execution, in which there
are two possibilities, and the condition determines which one gets executed. The
syntax looks like:

if (x%2 == 0) {

System.out.println ("x is even");

} else {

System.out.println ("x is odd");

}

If the remainder when x is divided by 2 is zero, then we know that x is even, and
this code prints a message to that effect. If the condition is false, the second
print statement is executed. Since the condition must be true or false, exactly
one of the alternatives will be executed.

As an aside, if you think you might want to check the parity (evenness or
oddness) of numbers often, you might want to “wrap” this code up in a method,
as follows:

public static void printParity (int x) {

if (x%2 == 0) {

System.out.println ("x is even");

} else {

System.out.println ("x is odd");

}

}

4.4 Chained conditionals 37

Now you have a method named printParity that will print an appropriate
message for any integer you care to provide. In main you would invoke this
method as follows:

printParity (17);

Always remember that when you invoke a method, you do not have to declare
the types of the arguments you provide. Java can figure out what type they
are. You should resist the temptation to write things like:

int number = 17;

printParity (int number); // WRONG!!!

4.4 Chained conditionals

Sometimes you want to check for a number of related conditions and choose one
of several actions. One way to do this is by chaining a series of ifs and elses:

if (x > 0) {

System.out.println ("x is positive");

} else if (x < 0) {

System.out.println ("x is negative");

} else {

System.out.println ("x is zero");

}

These chains can be as long as you want, although they can be difficult to read
if they get out of hand. One way to make them easier to read is to use standard
indentation, as demonstrated in these examples. If you keep all the statements
and squiggly-brackets lined up, you are less likely to make syntax errors and
you can find them more quickly if you do.

4.5 Nested conditionals

In addition to chaining, you can also nest one conditional within another. We
could have written the previous example as:

if (x == 0) {

System.out.println ("x is zero");

} else {

if (x > 0) {

System.out.println ("x is positive");

} else {

System.out.println ("x is negative");

}

}

There is now an outer conditional that contains two branches. The first branch
contains a simple print statement, but the second branch contains another
conditional statement, which has two branches of its own. Fortunately, those two

38 Conditionals and recursion

branches are both print statements, although they could have been conditional
statements as well.

Notice again that indentation helps make the structure apparent, but neverthe-
less, nested conditionals get difficult to read very quickly. In general, it is a
good idea to avoid them when you can.

On the other hand, this kind of nested structure is common, and we will see
it again, so you better get used to it.

4.6 The return statement

The return statement allows you to terminate the execution of a method before
you reach the end. One reason to use it is if you detect an error condition:

public static void printLogarithm (double x) {

if (x <= 0.0) {

System.out.println ("Positive numbers only, please.");

return;

}

double result = Math.log (x);

System.out.println ("The log of x is " + result);

}

This defines a method named printLogarithm that takes a double named x

as a parameter. The first thing it does is check whether x is less than or equal
to zero, in which case it prints an error message and then uses return to exit
the method. The flow of execution immediately returns to the caller and the
remaining lines of the method are not executed.

I used a floating-point value on the right side of the condition because there is
a floating-point variable on the left.

4.7 Type conversion

You might wonder how you can get away with an expression like "The log of

x is " + result, since one of the operands is a String and the other is a
double. Well, in this case Java is being smart on our behalf, by automatically
converting the double to a String before it does the string concatenation.

This kind of feature is an example of a common problem in designing a program-
ming language, which is that there is a conflict between formalism, which is the
requirement that formal languages should have simple rules with few exceptions,
and convenience, which is the requirement that programming languages be easy
to use in practice.

More often than not, convenience wins, which is usually good for expert pro-
grammers (who are spared from rigorous but unwieldy formalism), but bad for

4.8 Recursion 39

beginning programmers, who are often baffled by the complexity of the rules
and the number of exceptions. In this book I have tried to simplify things by
emphasizing the rules and omitting many of the exceptions.

Nevertheless, it is handy to know that whenever you try to “add” two expres-
sions, if one of them is a String, then Java will convert the other to a String

and then perform string concatenation. What do you think happens if you
perform an operation between an integer and a floating-point value?

4.8 Recursion

I mentioned in the last chapter that it is legal for one method to call another,
and we have seen several examples of that. I neglected to mention that it is also
legal for a method to invoke itself. It may not be obvious why that is a good
thing, but it turns out to be one of the most magical and interesting things a
program can do.

For example, look at the following method:

public static void countdown (int n) {

if (n == 0) {

System.out.println ("Blastoff!");

} else {

System.out.println (n);

countdown (n-1);

}

}

The name of the method is countdown and it takes a single integer as a param-
eter. If the parameter is zero, it prints the word “Blastoff.” Otherwise, it prints
the number and then invokes a method named countdown—itself—passing n-1

as an argument.

What happens if we invoke this method, in main, like this:

countdown (3);

The execution of countdown begins with n=3, and since n is not zero, it prints
the value 3, and then invokes itself...

The execution of countdown begins with n=2, and since n is not zero,
it prints the value 2, and then invokes itself...

The execution of countdown begins with n=1, and since n

is not zero, it prints the value 1, and then invokes itself...

The execution of countdown begins with n=0, and
since n is zero, it prints the word “Blastoff!” and
then returns.

The countdown that got n=1 returns.

The countdown that got n=2 returns.

40 Conditionals and recursion

The countdown that got n=3 returns.

And then you’re back in main (what a trip). So the total output looks like:

3

2

1

Blastoff!

As a second example, let’s look again at the methods newLine and threeLine.

public static void newLine () {

System.out.println ("");

}

public static void threeLine () {

newLine (); newLine (); newLine ();

}

Although these work, they would not be much help if I wanted to print 2 new-
lines, or 106. A better alternative would be

public static void nLines (int n) {

if (n > 0) {

System.out.println ("");

nLines (n-1);

}

}

This program is very similar; as long as n is greater than zero, it prints one
newline, and then invokes itself to print n-1 additional newlines. Thus, the
total number of newlines that get printed is 1 + (n-1), which usually comes
out to roughly n.

The process of a method invoking itself is called recursion, and such methods
are said to be recursive.

4.9 Stack diagrams for recursive methods

In the previous chapter we used a stack diagram to represent the state of a
program during a method call. The same kind of diagram can make it easier to
interpret a recursive method.

Remember that every time a method gets called it creates a new instance of
the method that contains a new version of the method’s local variables and
parameters.

The following figure is a stack diagram for countdown, called with n = 3:

