
4.10 Convention and divine law 41

countdown

countdown

main

countdown

countdown

3

2

1

0

n

n

n

n

There is one instance of main and four instances of countdown, each with a
different value for the parameter n. The bottom of the stack, countdown with
n=0 is the base case. It does not make a recursive call, so there are no more
instances of countdown.

The instance of main is empty because main does not have any parameters or
local variables.

Exercise 4.1 Draw a stack diagram that shows the state of the program after

main invokes nLines with the parameter n=4, just before the last instance of nLines

returns.

4.10 Convention and divine law

In the last few sections, I used the phrase “by convention” several times to indi-
cate design decisions that are arbitrary in the sense that there are no significant
reasons to do things one way or another, but dictated by convention.

In these cases, it is to your advantage to be familiar with convention and use it,
since it will make your programs easier for others to understand. At the same
time, it is important to distinguish between (at least) three kinds of rules:

Divine law: This is my phrase to indicate a rule that is true because of some
underlying principle of logic or mathematics, and that is true in any pro-
gramming language (or other formal system). For example, there is no
way to specify the location and size of a bounding box using fewer than
four pieces of information. Another example is that adding integers is
commutative. That’s part of the definition of addition and has nothing to
do with Java.

Rules of Java: These are the syntactic and semantic rules of Java that you
cannot violate, because the resulting program will not compile or run.
Some are arbitrary; for example, the fact that the + symbol represents
addition and string concatenation. Others reflect underlying limitations
of the compilation or execution process. For example, you have to specify
the types of parameters, but not arguments.

42 Conditionals and recursion

Style and convention: There are a lot of rules that are not enforced by the
compiler, but that are essential for writing programs that are correct, that
you can debug and modify, and that others can read. Examples include
indentation and the placement of squiggly braces, as well as conventions
for naming variables, methods and classes.

As we go along, I will try to indicate which category various things fall into,
but you might want to give it some thought from time to time.

While I am on the topic, you have probably figured out by now that the names
of classes always begin with a capital letter, but variables and methods begin
with lower case. If a name includes more than one word, you usually capitalize
the first letter of each word, as in newLine and printParity. Which category
are these rules in?

4.11 Glossary

modulus: An operator that works on integers and yields the remainder when
one number is divided by another. In Java it is denoted with a percent
sign (%).

conditional: A block of statements that may or may not be executed depend-
ing on some condition.

chaining: A way of joining several conditional statements in sequence.

nesting: Putting a conditional statement inside one or both branches of an-
other conditional statement.

coordinate: A variable or value that specifies a location in a two-dimensional
graphical window.

pixel: The unit in which coordinates are measured.

bounding box: A common way to specify the coordinates of a rectangular
area.

typecast: An operator that converts from one type to another. In Java it
appears as a type name in parentheses, like (int).

interface: A description of the parameters required by a method and their
types.

prototype: A way of describing the interface to a method using Java-like syn-
tax.

recursion: The process of invoking the same method you are currently execut-
ing.

infinite recursion: A method that invokes itself recursively without ever
reaching the base case. The usual result is a StackOverflowException.

4.12 Exercises 43

fractal: A kind of image that is defined recursively, so that each part of the
image is a smaller version of the whole.

4.12 Exercises

Exercise 4.2 If you are given three sticks, you may or may not be able to arrange
them in a triangle. For example, if one of the sticks is 12 inches long and the other
two are one inch long, it is clear that you will not be able to get the short sticks to
meet in the middle. For any three lengths, there is a simple test to see if it is possible
to form a triangle:

“If any of the three lengths is greater than the sum of the other two,
then you cannot form a triangle. Otherwise, you can.”

Write a method named isTriangle that it takes three integers as arguments, and that
returns either true or false, depending on whether you can or cannot form a triangle
from sticks with the given lengths.

The point of this exercise is to use conditional statements to write a method that

returns a value.

Exercise 4.3 This exercise reviews the flow of execution through a program with
multiple methods. Read the following code and answer the questions below.

public class Buzz {

public static void baffle (String blimp) {

System.out.println (blimp);

zippo ("ping", -5);

}

public static void zippo (String quince, int flag) {

if (flag < 0) {

System.out.println (quince + " zoop");

} else {

System.out.println ("ik");

baffle (quince);

System.out.println ("boo-wa-ha-ha");

}

}

public static void main (String[] args) {

zippo ("rattle", 13);

}

}

a. Write the number 1 next to the first statement of this program that will be
executed. Be careful to distinguish things that are statements from things that
are not.

b. Write the number 2 next to the second statement, and so on until the end of
the program. If a statement is executed more than once, it might end up with
more than one number next to it.

44 Conditionals and recursion

c. What is the value of the parameter blimp when baffle gets invoked?

d. What is the output of this program?

Exercise 4.4 The first verse of the song “99 Bottles of Beer” is:

99 bottles of beer on the wall, 99 bottles of beer, ya’ take one down, ya’
pass it around, 98 bottles of beer on the wall.

Subsequent verses are identical except that the number of bottles gets smaller by one
in each verse, until the last verse:

No bottles of beer on the wall, no bottles of beer, ya’ can’t take one down,
ya’ can’t pass it around, ’cause there are no more bottles of beer on the
wall!

And then the song (finally) ends.

Write a program that prints the entire lyrics of “99 Bottles of Beer.” Your program
should include a recursive method that does the hard part, but you also might want
to write additional methods to separate the major functions of the program.

As you are developing your code, you will probably want to test it with a small number
of verses, like “3 Bottles of Beer.”

The purpose of this exercise is to take a problem and break it into smaller problems,

and to solve the smaller problems by writing simple, easily-debugged methods.

Exercise 4.5 What is the output of the following program?

public class Narf {

public static void zoop (String fred, int bob) {

System.out.println (fred);

if (bob == 5) {

ping ("not ");

} else {

System.out.println ("!");

}

}

public static void main (String[] args) {

int bizz = 5;

int buzz = 2;

zoop ("just for", bizz);

clink (2*buzz);

}

public static void clink (int fork) {

System.out.print ("It’s ");

zoop ("breakfast ", fork) ;

}

public static void ping (String strangStrung) {

4.12 Exercises 45

System.out.println ("any " + strangStrung + "more ");

}

}

Exercise 4.6 Fermat’s Last Theorem says that there are no integers a, b, and c
such that

an + bn = cn

except in the case when n = 2.

Write a method named checkFermat that takes four integers as parameters—a, b, c
and n—and that checks to see if Fermat’s theorem holds. If n is greater than 2 and
it turns out to be true that an + bn = cn, the program should print “Holy smokes,
Fermat was wrong!” Otherwise the program should print “No, that doesn’t work.”

You should assume that there is a method named raiseToPow that takes two integers
as arguments and that raises the first argument to the power of the second. For
example:

int x = raiseToPow (2, 3);

would assign the value 8 to x, because 23 = 8.

46 Conditionals and recursion

Chapter 5

Fruitful methods

5.1 Return values

Some of the built-in methods we have used, like the Math functions, have pro-
duced results. That is, the effect of invoking the method is to generate a new
value, which we usually assign to a variable or use as part of an expression. For
example:

double e = Math.exp (1.0);

double height = radius * Math.sin (angle);

But so far all the methods we have written have been void methods; that is,
methods that return no value. When you invoke a void method, it is typically
on a line by itself, with no assignment:

nLines (3);

g.drawOval (0, 0, width, height);

In this chapter, we are going to write methods that return things, which I will
refer to as fruitful methods, for want of a better name. The first example is
area, which takes a double as a parameter, and returns the area of a circle with
the given radius:

public static double area (double radius) {

double area = Math.PI * radius * radius;

return area;

}

The first thing you should notice is that the beginning of the method definition
is different. Instead of public static void, which indicates a void method,
we see public static double, which indicates that the return value from this
method will have type double. I still haven’t explained what public static

means, but be patient.

Also, notice that the last line is an alternative form of the return statement that
includes a return value. This statement means, “return immediately from this

48 Fruitful methods

method and use the following expression as a return value.” The expression you
provide can be arbitrarily complicated, so we could have written this method
more concisely:

public static double area (double radius) {

return Math.PI * radius * radius;

}

On the other hand, temporary variables like area often make debugging easier.
In either case, the type of the expression in the return statement must match
the return type of the method. In other words, when you declare that the return
type is double, you are making a promise that this method will eventually
produce a double. If you try to return with no expression, or an expression
with the wrong type, the compiler will take you to task.

Sometimes it is useful to have multiple return statements, one in each branch
of a conditional:

public static double absoluteValue (double x) {

if (x < 0) {

return -x;

} else {

return x;

}

}

Since these return statements are in an alternative conditional, only one will
be executed. Although it is legal to have more than one return statement in a
method, you should keep in mind that as soon as one is executed, the method
terminates without executing any subsequent statements.

Code that appears after a return statement, or any place else where it can
never be executed, is called dead code. Some compilers warn you if part of
your code is dead.

If you put return statements inside a conditional, then you have to guarantee
that every possible path through the program hits a return statement. For
example:

public static double absoluteValue (double x) {

if (x < 0) {

return -x;

} else if (x > 0) {

return x;

} // WRONG!!

}

This program is not legal because if x happens to be 0, then neither condition will
be true and the method will end without hitting a return statement. A typical
compiler message would be “return statement required in absoluteValue,” which
is a confusing message considering that there are already two of them.

5.2 Program development 49

5.2 Program development

At this point you should be able to look at complete Java methods and tell what
they do. But it may not be clear yet how to go about writing them. I am going
to suggest one technique that I call incremental development.

As an example, imagine you want to find the distance between two points, given
by the coordinates (x1, y1) and (x2, y2). By the usual definition,

distance =
√

(x2 − x1)2 + (y2 − y1)2 (5.1)

The first step is to consider what a distance method should look like in Java.
In other words, what are the inputs (parameters) and what is the output (return
value).

In this case, the two points are the parameters, and it is natural to represent
them using four doubles, although we will see later that there is a Point object
in Java that we could use. The return value is the distance, which will have
type double.

Already we can write an outline of the method:

public static double distance

(double x1, double y1, double x2, double y2) {

return 0.0;

}

The statement return 0.0; is a place-keeper that is necessary in order to
compile the program. Obviously, at this stage the program doesn’t do anything
useful, but it is worthwhile to try compiling it so we can identify any syntax
errors before we make it more complicated.

In order to test the new method, we have to invoke it with sample values.
Somewhere in main I would add:

double dist = distance (1.0, 2.0, 4.0, 6.0);

I chose these values so that the horizontal distance is 3 and the vertical distance
is 4; that way, the result will be 5 (the hypotenuse of a 3-4-5 triangle). When
you are testing a method, it is useful to know the right answer.

Once we have checked the syntax of the method definition, we can start adding
lines of code one at a time. After each incremental change, we recompile and
run the program. That way, at any point we know exactly where the error must
be—in the last line we added.

The next step in the computation is to find the differences x2 − x1 and y2 − y1.
I will store those values in temporary variables named dx and dy.

public static double distance

(double x1, double y1, double x2, double y2) {

double dx = x2 - x1;

double dy = y2 - y1;

50 Fruitful methods

System.out.println ("dx is " + dx);

System.out.println ("dy is " + dy);

return 0.0;

}

I added print statements that will let me check the intermediate values before
proceeding. As I mentioned, I already know that they should be 3.0 and 4.0.

When the method is finished I will remove the print statements. Code like that
is called scaffolding, because it is helpful for building the program, but it is
not part of the final product. Sometimes it is a good idea to keep the scaffolding
around, but comment it out, just in case you need it later.

The next step in the development is to square dx and dy. We could use the
Math.pow method, but it is simpler and faster to just multiply each term by
itself.

public static double distance

(double x1, double y1, double x2, double y2) {

double dx = x2 - x1;

double dy = y2 - y1;

double dsquared = dx*dx + dy*dy;

System.out.println ("dsquared is " + dsquared);

return 0.0;

}

Again, I would compile and run the program at this stage and check the inter-
mediate value (which should be 25.0).

Finally, we can use the Math.sqrt method to compute and return the result.

public static double distance

(double x1, double y1, double x2, double y2) {

double dx = x2 - x1;

double dy = y2 - y1;

double dsquared = dx*dx + dy*dy;

double result = Math.sqrt (dsquared);

return result;

}

Then in main, we should print and check the value of the result.

As you gain more experience programming, you might find yourself writing
and debugging more than one line at a time. Nevertheless, this incremental
development process can save you a lot of debugging time.

The key aspects of the process are:

• Start with a working program and make small, incremental changes. At
any point, if there is an error, you will know exactly where it is.

• Use temporary variables to hold intermediate values so you can print and
check them.

5.3 Composition 51

• Once the program is working, you might want to remove some of the
scaffolding or consolidate multiple statements into compound expressions,
but only if it does not make the program difficult to read.

5.3 Composition

As you should expect by now, once you define a new method, you can use it as
part of an expression, and you can build new methods using existing methods.
For example, what if someone gave you two points, the center of the circle and
a point on the perimeter, and asked for the area of the circle?

Let’s say the center point is stored in the variables xc and yc, and the perimeter
point is in xp and yp. The first step is to find the radius of the circle, which is
the distance between the two points. Fortunately, we have a method, distance
that does that.

double radius = distance (xc, yc, xp, yp);

The second step is to find the area of a circle with that radius, and return it.

double area = area (radius);

return area;

Wrapping that all up in a method, we get:

public static double fred

(double xc, double yc, double xp, double yp) {

double radius = distance (xc, yc, xp, yp);

double area = area (radius);

return area;

}

The name of this method is fred, which may seem odd. I will explain why in
the next section.

The temporary variables radius and area are useful for development and de-
bugging, but once the program is working we can make it more concise by
composing the method invocations:

public static double fred

(double xc, double yc, double xp, double yp) {

return area (distance (xc, yc, xp, yp));

}

5.4 Overloading

In the previous section you might have noticed that fred and area perform
similar functions—finding the area of a circle—but take different parameters.
For area, we have to provide the radius; for fred we provide two points.

If two methods do the same thing, it is natural to give them the same name. In
other words, it would make more sense if fred were called area.

52 Fruitful methods

Having more than one method with the same name, which is called overload-
ing, is legal in Java as long as each version takes different parameters. So we
can go ahead and rename fred:

public static double area

(double x1, double y1, double x2, double y2) {

return area (distance (xc, yc, xp, yp));

}

When you invoke an overloaded method, Java knows which version you want
by looking at the arguments that you provide. If you write:

double x = area (3.0);

Java goes looking for a method named area that takes a single double as an
argument, and so it uses the first version, which interprets the argument as a
radius. If you write:

double x = area (1.0, 2.0, 4.0, 6.0);

Java uses the second version of area. More amazing still, the second version of
area actually invokes the first.

Many of the built-in Java commands are overloaded, meaning that there are
different versions that accept different numbers or types of parameters. For
example, there are versions of print and println that accept a single parameter
of any type. In the Math class, there is a version of abs that works on doubles,
and there is also a version for ints.

Although overloading is a useful feature, it should be used with caution. You
might get yourself nicely confused if you are trying to debug one version of a
method while accidently invoking a different one.

Actually, that reminds me of one of the cardinal rules of debugging: make sure
that the version of the program you are looking at is the version of
the program that is running! Some time you may find yourself making one
change after another in your program, and seeing the same thing every time
you run it. This is a warning sign that for one reason or another you are not
running the version of the program you think you are. To check, stick in a print

statement (it doesn’t matter what you print) and make sure the behavior of the
program changes accordingly.

5.5 Boolean expressions

Most of the operations we have seen produce results that are the same type as
their operands. For example, the + operator takes two ints and produces an
int, or two doubles and produces a double, etc.

The exceptions we have seen are the relational operators, which compare
ints and floats and return either true or false. true and false are special
values in Java, and together they make up a type called boolean. You might

5.6 Logical operators 53

recall that when I defined a type, I said it was a set of values. In the case of
ints, doubles and Strings, those sets are pretty big. For booleans, not so big.

Boolean expressions and variables work just like other types of expressions and
variables:

boolean fred;

fred = true;

boolean testResult = false;

The first example is a simple variable declaration; the second example is an
assignment, and the third example is a combination of a declaration and an
assignment, sometimes called an initialization. The values true and false

are keywords in Java, so they may appear in a different color, depending on
your development environment.

As I mentioned, the result of a conditional operator is a boolean, so you can
store the result of a comparison in a variable:

boolean evenFlag = (n%2 == 0); // true if n is even

boolean positiveFlag = (x > 0); // true if x is positive

and then use it as part of a conditional statement later:

if (evenFlag) {

System.out.println ("n was even when I checked it");

}

A variable used in this way is frequently called a flag, since it flags the presence
or absence of some condition.

5.6 Logical operators

There are three logical operators in Java: AND, OR and NOT, which are
denoted by the symbols &&, || and !. The semantics (meaning) of these oper-
ators is similar to their meaning in English. For example x > 0 && x < 10 is
true only if x is greater than zero AND less than 10.

evenFlag || n%3 == 0 is true if either of the conditions is true, that is, if
evenFlag is true OR the number is divisible by 3.

Finally, the NOT operator has the effect of negating or inverting a boolean
expression, so !evenFlag is true if evenFlag is false—if the number is odd.

Logical operators often provide a way to simplify nested conditional statements.
For example, how would you write the following code using a single conditional?

if (x > 0) {

if (x < 10) {

System.out.println ("x is a positive single digit.");

}

}

54 Fruitful methods

5.7 Boolean methods

Methods can return boolean values just like any other type, which is often
convenient for hiding complicated tests inside methods. For example:

public static boolean isSingleDigit (int x) {

if (x >= 0 && x < 10) {

return true;

} else {

return false;

}

}

The name of this method is isSingleDigit. It is common to give boolean
methods names that sound like yes/no questions. The return type is boolean,
which means that every return statement has to provide a boolean expression.

The code itself is straightforward, although it is a bit longer than it needs to
be. Remember that the expression x >= 0 && x < 10 has type boolean, so
there is nothing wrong with returning it directly, and avoiding the if statement
altogether:

public static boolean isSingleDigit (int x) {

return (x >= 0 && x < 10);

}

In main you can invoke this method in the usual ways:

boolean bigFlag = !isSingleDigit (17);

System.out.println (isSingleDigit (2));

The first line assigns the value true to bigFlag only if 17 is not a single-digit
number. The second line prints true because 2 is a single-digit number. Yes,
println is overloaded to handle booleans, too.

The most common use of boolean methods is inside conditional statements

if (isSingleDigit (x)) {

System.out.println ("x is little");

} else {

System.out.println ("x is big");

}

5.8 More recursion

Now that we have methods that return values, you might be interested to know
that we have a complete programming language, by which I mean that any-
thing that can be computed can be expressed in this language. Any program
ever written could be rewritten using only the language features we have used
so far (actually, we would need a few commands to control devices like the
keyboard, mouse, disks, etc., but that’s all).

5.8 More recursion 55

Proving this claim is a non-trivial exercise first accomplished by Alan Turing,
one of the first computer scientists (well, some would argue that he was a math-
ematician, but a lot of the early computer scientists started as mathematicians).
Accordingly, it is known as the Turing thesis. If you take a course on the Theory
of Computation, you will have a chance to see the proof.

To give you an idea of what you can do with the tools we have learned so
far, let’s look at some methods for evaluating recursively-defined mathematical
functions. A recursive definition is similar to a circular definition, in the sense
that the definition contains a reference to the thing being defined. A truly
circular definition is typically not very useful:

frabjuous: an adjective used to describe something that is frabjuous.

If you saw that definition in the dictionary, you might be annoyed. On the other
hand, if you looked up the definition of the mathematical function factorial,
you might get something like:

0! = 1

n! = n · (n − 1)!

(Factorial is usually denoted with the symbol !, which is not to be confused with
the Java logical operator ! which means NOT.) This definition says that the
factorial of 0 is 1, and the factorial of any other value, n, is n multiplied by the
factorial of n − 1. So 3! is 3 times 2!, which is 2 times 1!, which is 1 times 0!.
Putting it all together, we get 3! equal to 3 times 2 times 1 times 1, which is 6.

If you can write a recursive definition of something, you can usually write a Java
program to evaluate it. The first step is to decide what the parameters are for
this function, and what the return type is. With a little thought, you should
conclude that factorial takes an integer as a parameter and returns an integer:

public static int factorial (int n) {

}

If the argument happens to be zero, all we have to do is return 1:

public static int factorial (int n) {

if (n == 0) {

return 1;

}

}

Otherwise, and this is the interesting part, we have to make a recursive call to
find the factorial of n − 1, and then multiply it by n.

public static int factorial (int n) {

if (n == 0) {

return 1;

} else {

56 Fruitful methods

int recurse = factorial (n-1);

int result = n * recurse;

return result;

}

}

If we look at the flow of execution for this program, it is similar to nLines from
the previous chapter. If we invoke factorial with the value 3:

Since 3 is not zero, we take the second branch and calculate the factorial of
n − 1...

Since 2 is not zero, we take the second branch and calculate the
factorial of n − 1...

Since 1 is not zero, we take the second branch and calculate
the factorial of n − 1...

Since 0 is zero, we take the first branch and re-
turn the value 1 immediately without making any
more recursive calls.

The return value (1) gets multiplied by n, which is 1, and
the result is returned.

The return value (1) gets multiplied by n, which is 2, and the result
is returned.

The return value (2) gets multiplied by n, which is 3, and the result, 6, is
returned to main, or whoever invoked factorial (3).

Here is what the stack diagram looks like for this sequence of function calls:

factorial

factorial

factorial

factorial

main

3

2

1

0

2

1

1

6

2

1

n

n

n

n

recurse

recurse

recurse result

result

result

1

1

2

6

The return values are shown being passed back up the stack.

Notice that in the last instance of factorial, the local variables recurse and
result do not exist because when n=0 the branch that creates them does not
execute.

5.9 Leap of faith 57

5.9 Leap of faith

Following the flow of execution is one way to read programs, but as you saw
in the previous section, it can quickly become labarynthine. An alternative is
what I call the “leap of faith.” When you come to a method invocation, instead
of following the flow of execution, you assume that the method works correctly
and returns the appropriate value.

In fact, you are already practicing this leap of faith when you use built-in meth-
ods. When you invoke Math.cos or drawOval, you don’t examine the imple-
mentations of those methods. You just assume that they work, because the
people who wrote the built-in classes were good programmers.

Well, the same is true when you invoke one of your own methods. For exam-
ple, in Section 5.7 we wrote a method called isSingleDigit that determines
whether a number is between 0 and 9. Once we have convinced ourselves that
this method is correct—by testing and examination of the code—we can use the
method without ever looking at the code again.

The same is true of recursive programs. When you get to the recursive invo-
cation, instead of following the flow of execution, you should assume that the
recursive invocation works (yields the correct result), and then ask yourself,
“Assuming that I can find the factorial of n − 1, can I compute the factorial of
n?” In this case, it is clear that you can, by multiplying by n.

Of course, it is a bit strange to assume that the method works correctly when
you have not even finished writing it, but that’s why it’s called a leap of faith!

5.10 One more example

In the previous example I used temporary variables to spell out the steps, and
to make the code easier to debug, but I could have saved a few lines:

public static int factorial (int n) {

if (n == 0) {

return 1;

} else {

return n * factorial (n-1);

}

}

From now on I will tend to use the more concise version, but I recommend that
you use the more explicit version while you are developing code. When you have
it working, you can tighten it up, if you are feeling inspired.

After factorial, the classic example of a recursively-defined mathematical
function is fibonacci, which has the following definition:

fibonacci(0) = 1

58 Fruitful methods

fibonacci(1) = 1

fibonacci(n) = fibonacci(n − 1) + fibonacci(n − 2);

Translated into Java, this is

public static int fibonacci (int n) {

if (n == 0 || n == 1) {

return 1;

} else {

return fibonacci (n-1) + fibonacci (n-2);

}

}

If you try to follow the flow of execution here, even for fairly small values of n,
your head explodes. But according to the leap of faith, if we assume that the
two recursive calls (yes, you can make two recursive calls) work correctly, then
it is clear that we get the right result by adding them together.

5.11 Glossary

return type: The part of a method declaration that indicates what type of
value the method returns.

return value: The value provided as the result of a method invocation.

dead code: Part of a program that can never be executed, often because it
appears after a return statement.

scaffolding: Code that is used during program development but is not part of
the final version.

void: A special return type that indicates a void method; that is, one that does
not return a value.

overloading: Having more than one method with the same name but different
parameters. When you invoke an overloaded method, Java knows which
version to use by looking at the arguments you provide.

boolean: A type of variable that can contain only the two values true and
false.

flag: A variable (usually boolean) that records a condition or status informa-
tion.

conditional operator: An operator that compares two values and produces a
boolean that indicates the relationship between the operands.

logical operator: An operator that combines boolean values and produces
boolean values.

initialization: A statement that declares a new variable and assigns a value
to it at the same time.

5.12 Exercises 59

5.12 Exercises

Exercise 5.1 Write a class method named isDivisible that takes two integers,

n and m and that returns true if n is divisible by m and false otherwise.

Exercise 5.2 What is the output of the following program? The purpose of this
exercise is to make sure you understand logical operators and the flow of execution
through fruitful methods.

public static void main (String[] args) {

boolean flag1 = isHoopy (202);

boolean flag2 = isFrabjuous (202);

System.out.println (flag1);

System.out.println (flag2);

if (flag1 && flag2) {

System.out.println ("ping!");

}

if (flag1 || flag2) {

System.out.println ("pong!");

}

}

public static boolean isHoopy (int x) {

boolean hoopyFlag;

if (x%2 == 0) {

hoopyFlag = true;

} else {

hoopyFlag = false;

}

return hoopyFlag;

}

public static boolean isFrabjuous (int x) {

boolean frabjuousFlag;

if (x > 0) {

frabjuousFlag = true;

} else {

frabjuousFlag = false;

}

return frabjuousFlag;

}

Exercise 5.3 The distance between two points (x1, y1) and (x2, y2) is

Distance =
√

(x2 − x1)2 + (y2 − y1)2

Please write a method named distance that takes four doubles as parameters—x1,
y1, x2 and y2—and that prints the distance between the points.

You should assume that there is a method named sumSquares that calculates and
returns the sum of the squares of its arguments. For example:

60 Fruitful methods

double x = sumSquares (3.0, 4.0);

would assign the value 25.0 to x.

The point of this exercise is to write a new method that uses an existing one. You

should write only one method: distance. You should not write sumSquares or main

and you should not invoke distance.

Exercise 5.4 The point of this exercise is to practice the syntax of fruitful methods.

a. Dig out your solution to Exercise 3.5 and make sure you can still compile and
run it.

b. Transform multadd into a fruitful method, so that instead of printing a result,
it returns it.

c. Everywhere in the program that multadd gets invoked, change the invocation
so that it stores the result in a variable and/or prints the result.

d. Transform yikes in the same way.

Exercise 5.5 The point of this exercise is to use a stack diagram to understand
the execution of a recursive program.

public class Prod {

public static void main (String[] args) {

System.out.println (prod (1, 4));

}

public static int prod (int m, int n) {

if (m == n) {

return n;

} else {

int recurse = prod (m, n-1);

int result = n * recurse;

return result;

}

}

}

a. Draw a stack diagram showing the state of the program just before the last
instance of prod completes. What is the output of this program?

b. Explain in a few words what prod does.

c. Rewrite prod without using the temporary variables recurse and result.

Exercise 5.6 The purpose of this exercise is to translate a recursive definition into
a Java method. The Ackerman function is defined for non-negative integers as follows:

A(m, n) =







n + 1 if m = 0
A(m − 1, 1) if m > 0, n = 0
A(m − 1, A(m, n − 1)) if m > 0, n > 0

5.12 Exercises 61

Write a method called ack that takes two ints as parameters and that computes and
returns the value of the Ackerman function.

Test your implementation of Ackerman by invoking it from main and printing the
return value.

WARNING: the return value gets very big very quickly. You should try it only for
small values of m and n (not bigger than 2).

Exercise 5.7

a. Create a program called Recurse.java and type in the following methods:

// first: returns the first character of the given String

public static char first (String s) {

return s.charAt (0);

}

// last: returns a new String that contains all but the

// first letter of the given String

public static String rest (String s) {

return s.substring (1, s.length());

}

// length: returns the length of the given String

public static int length (String s) {

return s.length();

}

b. Write some code in main that tests each of these methods. Make sure they work,
and make sure you understand what they do.

c. Write a method called printString that takes a String as a parameter and that
prints the letters of the String, one on each line. It should be a void method.

d. Write a method called printBackward that does the same thing as printString
but that prints the String backwards (one character per line).

e. Write a method called reverseString that takes a String as a parameter and
that returns a new String as a return value. The new String should contain the
same letters as the parameter, but in reverse order. For example, the output of
the following code

String backwards = reverseString ("Allen Downey");

System.out.println (backwards);

should be

yenwoD nellA

Exercise 5.8

a. Create a new program called Sum.java, and type in the following two methods.

62 Fruitful methods

public static int methOne (int m, int n) {

if (m == n) {

return n;

} else {

return m + methOne (m+1, n);

}

}

public static int methTwo (int m, int n) {

if (m == n) {

return n;

} else {

return n * methTwo (m, n-1);

}

}

b. Write a few lines in main to test these methods. Invoke them a couple of times,
with a few different values, and see what you get. By some combination of
testing and examination of the code, figure out what these methods do, and
give them more meaningful names. Add comments that describe their function
abstractly.

c. Add a println statement to the beginning of both methods so that they print
their arguments each time they are invoked. This is a useful technique for
debugging recursive programs, since it demonstrates the flow of execution.

Exercise 5.9 Write a recursive method called power that takes a double x and an

integer n and that returns xn. Hint: a recursive definition of this operation is power

(x, n) = x * power (x, n-1). Also, remember that anything raised to the zeroeth

power is 1.

Exercise 5.10 (This exercise is based on page 44 of Ableson and Sussman’s
Structure and Interpretation of Computer Programs.)

The following algorithm is known as Euclid’s Algorithm because it appears in Euclid’s
Elements (Book 7, ca. 300 B.C.). It may be the oldest nontrivial algorithm.

The algorithm is based on the observation that, if r is the remainder when a is divided
by b, then the common divisors of a and b are the same as the common divisors of b
and r. Thus we can use the equation

gcd(a, b) = gcd(b, r)

to successively reduce the problem of computing a GCD to the problem of computing
the GCD of smaller and smaller pairs of integers. For example,

gcd(36, 20) = gcd(20, 16) = gcd(16, 4) = gcd(4, 0) = 4

implies that the GCD of 36 and 20 is 4. It can be shown that for any two starting
numbers, this repeated reduction eventually produces a pair where the second number
is 0. Then the GCD is the other number in the pair.

5.12 Exercises 63

Write a method called gcd that takes two integer parameters and that uses Euclid’s

algorithm to compute and return the greatest common divisor of the two numbers.

64 Fruitful methods

Chapter 6

Iteration

6.1 Multiple assignment

I haven’t said much about it, but it is legal in Java to make more than one
assignment to the same variable. The effect of the second assignment is to
replace the old value of the variable with a new value.

int fred = 5;

System.out.print (fred);

fred = 7;

System.out.println (fred);

The output of this program is 57, because the first time we print fred his value
is 5, and the second time his value is 7.

This kind of multiple assignment is the reason I described variables as a
container for values. When you assign a value to a variable, you change the
contents of the container, as shown in the figure:

fred 5

fred 75

int fred = 5;

fred = 7;

When there are multiple assignments to a variable, it is especially important
to distinguish between an assignment statement and a statement of equality.
Because Java uses the = symbol for assignment, it is tempting to interpret a
statement like a = b as a statement of equality. It is not!

First of all, equality is commutative, and assignment is not. For example, in
mathematics if a = 7 then 7 = a. But in Java a = 7; is a legal assignment
statement, and 7 = a; is not.

Furthermore, in mathematics, a statement of equality is true for all time. If
a = b now, then a will always equal b. In Java, an assignment statement can
make two variables equal, but they don’t have to stay that way!

66 Iteration

int a = 5;

int b = a; // a and b are now equal

a = 3; // a and b are no longer equal

The third line changes the value of a but it does not change the value of b, and so
they are no longer equal. In many programming languages an alternative symbol
is used for assignment, such as <- or :=, in order to avoid this confusion.

Although multiple assignment is frequently useful, you should use it with cau-
tion. If the values of variables are changing constantly in different parts of the
program, it can make the code difficult to read and debug.

6.2 Iteration

One of the things computers are often used for is the automation of repetitive
tasks. Repeating identical or similar tasks without making errors is something
that computers do well and people do poorly.

We have already seen programs that use recursion to perform repetition, such
as nLines and countdown. This type of repetition is called iteration, and
Java provides several language features that make it easier to write iterative
programs.

The two features we are going to look at are the while statement and the for

statement.

6.3 The while statement

Using a while statement, we can rewrite countdown:

public static void countdown (int n) {

while (n > 0) {

System.out.println (n);

n = n-1;

}

System.out.println ("Blastoff!");

}

You can almost read a while statement as if it were English. What this means
is, “While n is greater than zero, continue printing the value of n and then
reducing the value of n by 1. When you get to zero, print the word ‘Blastoff!”’

More formally, the flow of execution for a while statement is as follows:

1. Evaluate the condition in parentheses, yielding true or false.

2. If the condition is false, exit the while statement and continue execution
at the next statement.

6.3 The while statement 67

3. If the condition is true, execute each of the statements between the
squiggly-brackets, and then go back to step 1.

This type of flow is called a loop because the third step loops back around to
the top. Notice that if the condition is false the first time through the loop, the
statements inside the loop are never executed. The statements inside the loop
are sometimes called the body of the loop.

The body of the loop should change the value of one or more variables so that,
eventually, the condition becomes false and the loop terminates. Otherwise the
loop will repeat forever, which is called an infinite loop. An endless source
of amusement for computer scientists is the observation that the directions on
shampoo, “Lather, rinse, repeat,” are an infinite loop.

In the case of countdown, we can prove that the loop will terminate because
we know that the value of n is finite, and we can see that the value of n gets
smaller each time through the loop (each iteration), so eventually we have to
get to zero. In other cases it is not so easy to tell:

public static void sequence (int n) {

while (n != 1) {

System.out.println (n);

if (n%2 == 0) { // n is even

n = n / 2;

} else { // n is odd

n = n*3 + 1;

}

}

}

The condition for this loop is n != 1, so the loop will continue until n is 1,
which will make the condition false.

At each iteration, the program prints the value of n and then checks whether it
is even or odd. If it is even, the value of n is divided by two. If it is odd, the
value is replaced by 3n + 1. For example, if the starting value (the argument
passed to sequence) is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof
that n will ever reach 1, or that the program will terminate. For some particular
values of n, we can prove termination. For example, if the starting value is a
power of two, then the value of n will be even every time through the loop, until
we get to 1. The previous example ends with such a sequence, starting with 16.

Particular values aside, the interesting question is whether we can prove that
this program terminates for all values of n. So far, no one has been able to
prove it or disprove it!

68 Iteration

6.4 Tables

One of the things loops are good for is generating and printing tabular data.
For example, before computers were readily available, people had to calculate
logarithms, sines and cosines, and other common mathematical functions by
hand.

To make that easier, there were books containing long tables where you could
find the values of various functions. Creating these tables was slow and boring,
and the result tended to be full of errors.

When computers appeared on the scene, one of the initial reactions was, “This
is great! We can use the computers to generate the tables, so there will be no
errors.” That turned out to be true (mostly), but shortsighted. Soon thereafter
computers (and calculators) were so pervasive that the tables became obsolete.

Well, almost. It turns out that for some operations, computers use tables of
values to get an approximate answer, and then perform computations to improve
the approximation. In some cases, there have been errors in the underlying
tables, most famously in the table the original Intel Pentium used to perform
floating-point division.

Although a “log table” is not as useful as it once was, it still makes a good
example of iteration. The following program prints a sequence of values in the
left column and their logarithms in the right column:

double x = 1.0;

while (x < 10.0) {

System.out.println (x + " " + Math.log(x));

x = x + 1.0;

}

The output of this program is

1.0 0.0

2.0 0.6931471805599453

3.0 1.0986122886681098

4.0 1.3862943611198906

5.0 1.6094379124341003

6.0 1.791759469228055

7.0 1.9459101490553132

8.0 2.0794415416798357

9.0 2.1972245773362196

Looking at these values, can you tell what base the log function uses by default?

Since powers of two are so important in computer science, we often want to find
logarithms with respect to base 2. To find that, we have to use the following
formula:

log2 x = logex/loge2 (6.1)

Changing the print statement to

6.5 Two-dimensional tables 69

System.out.println (x + " " + Math.log(x) / Math.log(2.0));

yields

1.0 0.0

2.0 1.0

3.0 1.5849625007211563

4.0 2.0

5.0 2.321928094887362

6.0 2.584962500721156

7.0 2.807354922057604

8.0 3.0

9.0 3.1699250014423126

We can see that 1, 2, 4 and 8 are powers of two, because their logarithms base
2 are round numbers. If we wanted to find the logarithms of other powers of
two, we could modify the program like this:

double x = 1.0;

while (x < 100.0) {

System.out.println (x + " " + Math.log(x) / Math.log(2.0));

x = x * 2.0;

}

Now instead of adding something to x each time through the loop, which yields
an arithmetic sequence, we multiply x by something, yielding a geometric
sequence. The result is:

1.0 0.0

2.0 1.0

4.0 2.0

8.0 3.0

16.0 4.0

32.0 5.0

64.0 6.0

Log tables may not be useful any more, but for computer scientists, knowing
the powers of two is! Some time when you have an idle moment, you should
memorize the powers of two up to 65536 (that’s 216).

6.5 Two-dimensional tables

A two-dimensional table is a table where you choose a row and a column and
read the value at the intersection. A multiplication table is a good example.
Let’s say you wanted to print a multiplication table for the values from 1 to 6.

A good way to start is to write a simple loop that prints the multiples of 2, all
on one line.

int i = 1;

while (i <= 6) {

System.out.print (2*i + " ");

70 Iteration

i = i + 1;

}

System.out.println ("");

The first line initializes a variable named i, which is going to act as a counter,
or loop variable. As the loop executes, the value of i increases from 1 to 6,
and then when i is 7, the loop terminates. Each time through the loop, we print
the value 2*i followed by three spaces. Since we are using the print command
rather than println, all the output appears on a single line.

As I mentioned in Section 2.4, in some environments the output from print

gets stored without being displayed until println is invoked. If the program
terminates, and you forget to invoke println, you may never see the stored
output.

The output of this program is:

2 4 6 8 10 12

So far, so good. The next step is to encapsulate and generalize.

6.6 Encapsulation and generalization

Encapsulation usually means taking a piece of code and wrapping it up in a
method, allowing you to take advantage of all the things methods are good for.
We have seen two examples of encapsulation, when we wrote printParity in
Section 4.3 and isSingleDigit in Section 5.7.

Generalization means taking something specific, like printing multiples of 2, and
making it more general, like printing the multiples of any integer.

Here’s a method that encapsulates the loop from the previous section and gen-
eralizes it to print multiples of n.

public static void printMultiples (int n) {

int i = 1;

while (i <= 6) {

System.out.print (n*i + " ");

i = i + 1;

}

System.out.println ("");

}

To encapsulate, all I had to do was add the first line, which declares the name,
parameter, and return type. To generalize, all I had to do was replace the value
2 with the parameter n.

If I invoke this method with the argument 2, I get the same output as before.
With argument 3, the output is:

3 6 9 12 15 18

and with argument 4, the output is

