
6.7 Methods 71

4 8 12 16 20 24

By now you can probably guess how we are going to print a multiplication table:
we’ll invoke printMultiples repeatedly with different arguments. In fact, we
are going to use another loop to iterate through the rows.

int i = 1;

while (i <= 6) {

printMultiples (i);

i = i + 1;

}

First of all, notice how similar this loop is to the one inside printMultiples.
All I did was replace the print statement with a method invocation.

The output of this program is

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

which is a (slightly sloppy) multiplication table. If the sloppiness bothers you,
Java provides methods that give you more control over the format of the output,
but I’m not going to get into that here.

6.7 Methods

In the last section I mentioned “all the things methods are good for.” About
this time, you might be wondering what exactly those things are. Here are some
of the reasons methods are useful:

• By giving a name to a sequence of statements, you make your program
easier to read and debug.

• Dividing a long program into methods allows you to separate parts of the
program, debug them in isolation, and then compose them into a whole.

• Methods facilitate both recursion and iteration.

• Well-designed methods are often useful for many programs. Once you
write and debug one, you can reuse it.

6.8 More encapsulation

To demonstrate encapsulation again, I’ll take the code from the previous section
and wrap it up in a method:



72 Iteration

public static void printMultTable () {

int i = 1;

while (i <= 6) {

printMultiples (i);

i = i + 1;

}

}

The process I am demonstrating is a common development plan. You develop
code gradually by adding lines to main or someplace else, and then when you
get it working, you extract it and wrap it up in a method.

The reason this is useful is that you sometimes don’t know when you start
writing exactly how to divide the program into methods. This approach lets
you design as you go along.

6.9 Local variables

About this time, you might be wondering how we can use the same variable
i in both printMultiples and printMultTable. Didn’t I say that you can
only declare a variable once? And doesn’t it cause problems when one of the
methods changes the value of the variable?

The answer to both questions is “no,” because the i in printMultiples and
the i in printMultTable are not the same variable. They have the same name,
but they do not refer to the same storage location, and changing the value of
one of them has no effect on the other.

Variables that are declared inside a method definition are called local variables
because they are local to their own methods. You cannot access a local variable
from outside its “home” method, and you are free to have multiple variables
with the same name, as long as they are not in the same method.

It is often a good idea to use different variable names in different methods, to
avoid confusion, but there are good reasons to reuse names. For example, it is
common to use the names i, j and k as loop variables. If you avoid using them
in one method just because you used them somewhere else, you will probably
make the program harder to read.

6.10 More generalization

As another example of generalization, imagine you wanted a program that would
print a multiplication table of any size, not just the 6x6 table. You could add a
parameter to printMultTable:

public static void printMultTable (int high) {

int i = 1;

while (i <= high) {



6.10 More generalization 73

printMultiples (i);

i = i + 1;

}

}

I replaced the value 6 with the parameter high. If I invoke printMultTable

with the argument 7, I get

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

7 14 21 28 35 42

which is fine, except that I probably want the table to be square (same num-
ber of rows and columns), which means I have to add another parameter to
printMultiples, to specify how many columns the table should have.

Just to be annoying, I will also call this parameter high, demonstrating that
different methods can have parameters with the same name (just like local
variables):

public static void printMultiples (int n, int high) {

int i = 1;

while (i <= high) {

System.out.print (n*i + " ");

i = i + 1;

}

newLine ();

}

public static void printMultTable (int high) {

int i = 1;

while (i <= high) {

printMultiples (i, high);

i = i + 1;

}

}

Notice that when I added a new parameter, I had to change the first line of the
method (the interface or prototype), and I also had to change the place where
the method is invoked in printMultTable. As expected, this program generates
a square 7x7 table:

1 2 3 4 5 6 7

2 4 6 8 10 12 14

3 6 9 12 15 18 21

4 8 12 16 20 24 28

5 10 15 20 25 30 35

6 12 18 24 30 36 42

7 14 21 28 35 42 49



74 Iteration

When you generalize a method appropriately, you often find that the resulting
program has capabilities you did not intend. For example, you might notice
that the multiplication table is symmetric, because ab = ba, so all the entries in
the table appear twice. You could save ink by printing only half the table. To
do that, you only have to change one line of printMultTable. Change

printMultiples (i, high);

to

printMultiples (i, i);

and you get

1

2 4

3 6 9

4 8 12 16

5 10 15 20 25

6 12 18 24 30 36

7 14 21 28 35 42 49

I’ll leave it up to you to figure out how it works.

6.11 Glossary

loop: A statement that executes repeatedly while or until some condition is
satisfied.

infinite loop: A loop whose condition is always true.

body: The statements inside the loop.

iteration: One pass through (execution of) the body of the loop, including the
evaluation of the condition.

encapsulate: To divide a large complex program into components (like meth-
ods) and isolate the components from each other (for example, by using
local variables).

local variable: A variable that is declared inside a method and that exists
only within that method. Local variables cannot be accessed from outside
their home method, and do not interfere with any other methods.

generalize: To replace something unnecessarily specific (like a constant value)
with something appropriately general (like a variable or parameter). Gen-
eralization makes code more versatile, more likely to be reused, and some-
times even easier to write.

development plan: A process for developing a program. In this chapter,
I demonstrated a style of development based on developing code to do
simple, specific things, and then encapsulating and generalizing. In Sec-
tion 5.2 I demonstrated a technique I called incremental development. In
later chapters I will suggest other styles of development.



6.12 Exercises 75

6.12 Exercises

Exercise 6.1

public static void main (String[] args) {

loop (10);

}

public static void loop (int n) {

int i = n;

while (i > 1) {

System.out.println (i);

if (i%2 == 0) {

i = i/2;

} else {

i = i+1;

}

}

}

a. Draw a table that shows the value of the variables i and n during the execution
of loop. The table should contain one column for each variable and one line for
each iteration.

b. What is the output of this program?

Exercise 6.2

a. Encapsulate the following code fragment, transforming it into a method that
takes a String as an argument and that returns (and doesn’t print) the final
value of count.

b. In a sentence, describe abstractly what the resulting method does.

c. Assuming that you have already generalized this method so that it works on
any String, what else could you do to generalize it more?

String s = "((3 + 7) * 2)";

int len = s.length ();

int i = 0;

int count = 0;

while (i < len) {

char c = s.charAt(i);

if (c == ’(’) {

count = count + 1;

} else if (c == ’)’) {

count = count - 1;

}

i = i + 1;

}

System.out.println (count);



76 Iteration

Exercise 6.3 Let’s say you are given a number, a, and you want to find its square
root. One way to do that is to start with a very rough guess about the answer, x0,
and then improve the guess using the following formula:

x1 = (x0 + a/x0)/2 (6.2)

For example, if we want to find the square root of 9, and we start with x0 = 6, then
x1 = (6 + 9/6)/2 = 15/4 = 3.75, which is closer.

We can repeat the procedure, using x1 to calculate x2, and so on. In this case,
x2 = 3.075 and x3 = 3.00091. So that is converging very quickly on the right answer
(which is 3).

Write a method called squareRoot that takes a double as a parameter and that returns
an approximation of the square root of the parameter, using this algorithm. You may
not use the built-in method Math.sqrt.

As your initial guess, you should use a/2. Your method should iterate until it gets two

consecutive estimates that differ by less than 0.0001; in other words, until the absolute

value of xn − xn−1 is less than 0.0001. You can use the built-in method Math.abs to

calculate the absolute value.

Exercise 6.4 In Exercise 5.9 we wrote a recursive version of power, which takes a

double x and an integer n and returns xn. Now write an iterative method to perform

the same calculation.

Exercise 6.5 Section 5.10 presents a recursive method that computes the factorial

function. Write an iterative version of factorial.

Exercise 6.6 One way to calculate ex is to use the infinite series expansion

ex = 1 + x + x2/2! + x3/3! + x4/4! + ... (6.3)

If the loop variable is named i, then the ith term is equal to xi/i!.

a. Write a method called myexp that adds up the first n terms of the series shown
above. You can use the factorial method from Section 5.10 or your iterative
version.

b. You can make this method much more efficient if you realize that in each iter-
ation the numerator of the term is the same as its predecessor multiplied by x

and the denominator is the same as its predecessor multiplied by i. Use this
observation to eliminate the use of Math.pow and factorial, and check that
you still get the same result.

c. Write a method called check that takes a single parameter, x, and that prints
the values of x, Math.exp(x) and myexp(x) for various values of x. The output
should look something like:

1.0 2.708333333333333 2.718281828459045

HINT: you can use the String "\t" to print a tab character between columns of
a table.



6.12 Exercises 77

d. Vary the number of terms in the series (the second argument that check sends
to myexp) and see the effect on the accuracy of the result. Adjust this value
until the estimated value agrees with the “correct” answer when x is 1.

e. Write a loop in main that invokes check with the values 0.1, 1.0, 10.0, and 100.0.
How does the accuracy of the result vary as x varies? Compare the number of
digits of agreement rather than the difference between the actual and estimated
values.

f. Add a loop in main that checks myexp with the values -0.1, -1.0, -10.0, and
-100.0. Comment on the accuracy.

Exercise 6.7 One way to evaluate e−x
2

is to use the infinite series expansion

e−x
2

= 1 − 2x + 3x2/2! − 4x3/3! + 5x4/4! − ... (6.4)

In other words, we need to add up a series of terms where the ith term is equal to

(−1)i(i + 1)xi/i!. Write a method named gauss that takes x and n as arguments and

that returns the sum of the first n terms of the series. You should not use factorial

or pow.



78 Iteration



Chapter 7

Strings and things

7.1 Invoking methods on objects

In Java and other object-oriented languages, objects are collections of related
data that come with a set of methods. These methods operate on the objects,
performing computations and sometimes modifying the object’s data.

Of the types we have seen so far, only Strings are objects. Based on the
definition of object, you might ask “What is the data contained in a String

object?” and “What are the methods we can invoke on String objects?”

The data contained in a String object are the letters of the string. There are
quite a few methods that operate on Strings, but I will only use a few in this
book. The rest are documented at

http://java.sun.com/j2se/1.4.1/docs/api/java/lang/String.html

The first method we will look at is charAt, which allows you to extract letters
from a String. In order to store the result, we need a variable type that can
store individual letters (as opposed to strings). Individual letters are called
characters, and the variable type that stores them is called char.

chars work just like the other types we have seen:

char fred = ’c’;

if (fred == ’c’) {

System.out.println (fred);

}

Character values appear in single quotes (’c’). Unlike string values (which
appear in double quotes), character values can contain only a single letter or
symbol.

Here’s how the charAt method is used:

String fruit = "banana";

char letter = fruit.charAt(1);

System.out.println (letter);



80 Strings and things

The syntax fruit.charAt indicates that I am invoking the charAt method on
the object named fruit. I am passing the argument 1 to this method, which
indicates that I would like to know the first letter of the string. The result is a
character, which is stored in a char named letter. When I print the value of
letter, I get a surprise:

a

a is not the first letter of "banana". Unless you are a computer scientist. For
perverse reasons, computer scientists always start counting from zero. The 0th
letter (“zeroeth”) of "banana" is b. The 1th letter (“oneth”) is a and the 2th
(“twoeth”) letter is n.

If you want the zereoth letter of a string, you have to pass zero as an argument:

char letter = fruit.charAt(0);

7.2 Length

The second String method we’ll look at is length, which returns the number
of characters in the string. For example:

int length = fruit.length();

length takes no arguments, as indicated by (), and returns an integer, in this
case 6. Notice that it is legal to have a variable with the same name as a method
(although it can be confusing for human readers).

To find the last letter of a string, you might be tempted to try something like

int length = fruit.length();

char last = fruit.charAt (length); // WRONG!!

That won’t work. The reason is that there is no 6th letter in "banana". Since
we started counting at 0, the 6 letters are numbered from 0 to 5. To get the
last character, you have to subtract 1 from length.

int length = fruit.length();

char last = fruit.charAt (length-1);

7.3 Traversal

A common thing to do with a string is start at the beginning, select each char-
acter in turn, do something to it, and continue until the end. This pattern of
processing is called a traversal. A natural way to encode a traversal is with a
while statement:

int index = 0;

while (index < fruit.length()) {

char letter = fruit.charAt (index);

System.out.println (letter);

index = index + 1;

}



7.4 Run-time errors 81

This loop traverses the string and prints each letter on a line by itself. Notice
that the condition is index < fruit.length(), which means that when index

is equal to the length of the string, the condition is false and the body of the
loop is not executed. The last character we access is the one with the index
fruit.length()-1.

The name of the loop variable is index. An index is a variable or value used to
specify one member of an ordered set (in this case the set of characters in the
string). The index indicates (hence the name) which one you want. The set has
to be ordered so that each letter has an index and each index refers to a single
character.

As an exercise, write a method that takes a String as an argument and that
prints the letters backwards, all on one line.

7.4 Run-time errors

Way back in Section 1.3.2 I talked about run-time errors, which are errors that
don’t appear until a program has started running. In Java run-time errors are
called exceptions.

So far, you probably haven’t seen many run-time errors, because we haven’t been
doing many things that can cause one. Well, now we are. If you use the charAt
command and you provide an index that is negative or greater than length-1,
you will get an exception: specifically, a StringIndexOutOfBoundsException.
Try it and see how it looks.

If your program causes an exception, it prints an error message indicating the
type of exception and where in the program it occurred. Then the program
terminates.

7.5 Reading documentation

If you go to

http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html

and click on charAt, you get the following documentation (or something like
it):

public char charAt(int index)

Returns the character at the specified index.

An index ranges from 0 to length() - 1.

Parameters: index - the index of the character.

Returns: the character at the specified index of this string.

The first character is at index 0.



82 Strings and things

Throws: StringIndexOutOfBoundsException if the index is out of range.

The first line is the method’s prototype, which indicates the name of the
method, the type of the parameters, and the return type.

The next line describes what the method does. The following lines explain the
parameters and return values. In this case the explanations are a bit redundant,
but the documentation is supposed to fit a standard format. The last line
explains what exceptions, if any, can be caused by this method.

7.6 The indexOf method

In some ways, indexOf is the opposite of charAt. charAt takes an index and
returns the character at that index. indexOf takes a character and finds the
index where that character appears.

charAt fails if the index is out of range, and causes an exception. indexOf fails
if the character does not appear in the string, and returns the value -1.

String fruit = "banana";

int index = fruit.indexOf(’a’);

This finds the index of the letter ’a’ in the string. In this case, the letter
appears three times, so it is not obvious what indexOf should do. According to
the documentation, it returns the index of the first appearance.

In order to find subsequent appearances, there is an alternative version of
indexOf (for an explanation of this kind of overloading, see Section 5.4). It
takes a second argument that indicates where in the string to start looking. If
we invoke

int index = fruit.indexOf(’a’, 2);

it will start at the twoeth letter (the first n) and find the second a, which is at
index 3. If the letter happens to appear at the starting index, the starting index
is the answer. Thus,

int index = fruit.indexOf(’a’, 5);

returns 5. Based on the documentation, it is a little tricky to figure out what
happens if the starting index is out of range:

indexOf returns the index of the first occurrence of the character
in the character sequence represented by this object that is greater
than or equal to fromIndex, or -1 if the character does not occur.

One way to figure out what this means is to try out a couple of cases. Here are
the results of my experiments:

• If the starting index is greater than or equal to length(), the result is -1,
indicating that the letter does not appear at any index greater than the
starting index.



7.7 Looping and counting 83

• If the starting index is negative, the result is 1, indicating the first ap-
pearance of the letter at an index greater than the starting index.

If you go back and look at the documentation, you’ll see that this behavior is
consistent with the definition, even if it was not immediately obvious. Now that
we have a better idea how indexOf works, we can use it as part of a program.

7.7 Looping and counting

The following program counts the number of times the letter ’a’ appears in a
string:

String fruit = "banana";

int length = fruit.length();

int count = 0;

int index = 0;

while (index < length) {

if (fruit.charAt(index) == ’a’) {

count = count + 1;

}

index = index + 1;

}

System.out.println (count);

This program demonstrates a common idiom, called a counter. The variable
count is initialized to zero and then incremented each time we find an ’a’ (to
increment is to increase by one; it is the opposite of decrement, and unrelated
to excrement, which is a noun). When we exit the loop, count contains the
result: the total number of a’s.

As an exercise, encapsulate this code in a method named countLetters, and
generalize it so that it accepts the string and the letter as arguments.

As a second exercise, rewrite the method so that it uses indexOf to locate the
a’s, rather than checking the characters one by one.

7.8 Increment and decrement operators

Incrementing and decrementing are such common operations that Java provides
special operators for them. The ++ operator adds one to the current value of an
int or char. -- subtracts one. Neither operator works on doubles, booleans
or Strings.

Technically, it is legal to increment a variable and use it in an expression at the
same time. For example, you might see something like:

System.out.println (i++);



84 Strings and things

Looking at this, it is not clear whether the increment will take effect before or
after the value is printed. Because expressions like this tend to be confusing, I
would discourage you from using them. In fact, to discourage you even more,
I’m not going to tell you what the result is. If you really want to know, you can
try it.

Using the increment operators, we can rewrite the letter-counter:

int index = 0;

while (index < length) {

if (fruit.charAt(index) == ’a’) {

count++;

}

index++;

}

It is a common error to write something like

index = index++; // WRONG!!

Unfortunately, this is syntactically legal, so the compiler will not warn you. The
effect of this statement is to leave the value of index unchanged. This is often
a difficult bug to track down.

Remember, you can write index = index +1;, or you can write index++;, but
you shouldn’t mix them.

7.9 Strings are immutable

As you look over the documentation of the String methods, you might notice
toUpperCase and toLowerCase. These methods are often a source of confusion,
because it sounds like they have the effect of changing (or mutating) an existing
string. Actually, neither these methods nor any others can change a string,
because strings are immutable.

When you invoke toUpperCase on a String, you get a new String as a return
value. For example:

String name = "Alan Turing";

String upperName = name.toUpperCase ();

After the second line is executed, upperName contains the value "ALAN TURING",
but name still contains "Alan Turing".

7.10 Strings are incomparable

It is often necessary to compare strings to see if they are the same, or to see
which comes first in alphabetical order. It would be nice if we could use the
comparison operators, like == and >, but we can’t.

In order to compare Strings, we have to use the equals and compareTo meth-
ods. For example:



7.11 Glossary 85

String name1 = "Alan Turing";

String name2 = "Ada Lovelace";

if (name1.equals (name2)) {

System.out.println ("The names are the same.");

}

int flag = name1.compareTo (name2);

if (flag == 0) {

System.out.println ("The names are the same.");

} else if (flag < 0) {

System.out.println ("name1 comes before name2.");

} else if (flag > 0) {

System.out.println ("name2 comes before name1.");

}

The syntax here is a little weird. To compare two things, you have to invoke a
method on one of them and pass the other as an argument.

The return value from equals is straightforward enough; true if the strings
contain the same characters, and false otherwise.

The return value from compareTo is a little odd. It is the difference between the
first characters in the strings that differ. If the strings are equal, it is 0. If the
first string (the one on which the method is invoked) comes first in the alphabet,
the difference is negative. Otherwise, the difference is positive. In this case the
return value is positive 8, because the second letter of “Ada” comes before the
second letter of “Alan” by 8 letters.

Using compareTo is often tricky, and I never remember which way is which
without looking it up, but the good news is that the interface is pretty standard
for comparing many types of objects, so once you get it you are all set.

Just for completeness, I should admit that it is legal, but very seldom correct,
to use the == operator with Strings. But what that means will not make sense
until later, so for now, don’t do it.

7.11 Glossary

object: A collection of related data that comes with a set of methods that
operate on it. The only objects we have used so far are Strings.

index: A variable or value used to select one of the members of an ordered set,
like a character from a string.

traverse: To iterate through all the elements of a set performing a similar
operation on each.

counter: A variable used to count something, usually initialized to zero and
then incremented.



86 Strings and things

increment: Increase the value of a variable by one. The increment operator in
Java is ++.

decrement: Decrease the value of a variable by one. The decrement operator
in Java is --.

exception: A run time error. Exceptions cause the execution of a program to
terminate.

7.12 Exercises

Exercise 7.1

The point of this exercise is to try out some of the String operations and fill in some
of the details that aren’t covered in the chapter.

a. Create a new program named Test.java and write a main method that contains
expressions that combine various types using the + operator. For example, what
happens when you “add” a String and a char? Does it perform addition or
concatenation? What is the type of the result? (How can you determine the
type of the result?)

b. Make a bigger copy of the following table and fill it in. At the intersection of
each pair of types, you should indicate whether it is legal to use the + operator
with these types, what operation is performed (addition or concatenation), and
what the type of the result is.

boolean char int String

boolean

char

int

String

c. Think about some of the choices the designers of Java made when they filled in
this table. How many of the entries seem reasonable, as if there were no other
reasonable choice? How many seem like arbitrary choices from several equally
reasonable possibilities? How many seem stupid?

d. Here’s a puzzler: normally, the statement x++ is exactly equivalent to x = x +

1. Unless x is a char! In that case, x++ is legal, but x = x + 1 causes an error.
Try it out and see what the error message is, then see if you can figure out what
is going on.

Exercise 7.2

What is the output of this program? Describe in a sentence, abstractly, what bing

does (not how it works).

public class Mystery {

public static String bing (String s) {

int i = s.length() - 1;

String total = "";



7.12 Exercises 87

while (i >= 0 ) {

char ch = s.charAt (i);

System.out.println (i + " " + ch);

total = total + ch;

i--;

}

return total;

}

public static void main (String[] args) {

System.out.println (bing ("Allen"));

}

}

Exercise 7.3 A friend of yours shows you the following method and explains that
if number is any two-digit number, the program will output the number backwards.
He claims that if number is 17, the method will output 71.

Is he right? If not, explain what the program actually does and modify it so that it
does the right thing.

int number = 17;

int lastDigit = number%10;

int firstDigit = number/10;

System.out.println (lastDigit + firstDigit);

Exercise 7.4 What is the output of the following program?

public class Rarefy {

public static void rarefy (int x) {

if (x == 0) {

return;

} else {

rarefy (x/2);

}

System.out.print (x%2);

}

public static void main (String[] args) {

rarefy (5);

System.out.println ("");

}

}

Explain in 4-5 words what the method rarefy really does.

Exercise 7.5

a. Create a new program named Palindrome.java.



88 Strings and things

b. Write a method named first that takes a String and returns the first letter,
and one named last that returns the last letter.

c. Write a method named middle that takes a String and returns a substring that
contains everything except the first and last characters.

Hint: read the documentation of the substring method in the String class.
Run a few tests to make sure you understand how substring works before you
try to write middle.

What happens if you invoke middle on a string that has only two letters? One
letter? No letters?

d. The usual definition of a palindrome is a word that reads the same both forward
and backward, like “otto” and “palindromeemordnilap.” An alternative way to
define a property like this is to specify a way of testing for the property. For
example, we might say, “a single letter is a palindrome, and a two-letter word
is a palindrome if the letters are the same, and any other word is a palindrome
if the first letter is the same as the last and the middle is a palindrome.”

Write a recursive method named isPalindrome that takes a String and that
returns a boolean indicating whether the word is a palindrome or not.

e. Once you have a working palindrome checker, look for ways to simplify it by
reducing the number of conditions you check. Hint: it might be useful to adopt
the definition that the empty string is a palindrome.

f. On a piece of paper, figure out a strategy for checking palindromes iteratively.
There are several possible approaches, so make sure you have a solid plan before
you start writing code.

g. Implement your strategy in a method called isPalindromeIter.

Exercise 7.6 A word is said to be “abecedarian” if the letters in the word appear
in alphabetical order. For example, the following are all 6-letter English abecedarian
words.

abdest, acknow, acorsy, adempt, adipsy, agnosy, befist, behint, beknow,
bijoux, biopsy, cestuy, chintz, deflux, dehors, dehort, deinos, diluvy,
dimpsy

a. Describe an algorithm for checking whether a given word (String) is abecedarian,
assuming that the word contains only lower-case letters. Your algorithm can be
iterative or recursive.

b. Implement your algorithm in a method called isAbecedarian.

Exercise 7.7 A dupledrome is a word that contains only double letters, like
“llaammaa” or “ssaabb”. I conjecture that there are no dupledromes in common
English use. To test that conjecture, I would like a program that reads words from
the dictionary one at a time and checks them for dupledromity.

Write a method called isDupledrome that takes a String and returns a boolean indi-

cating whether the word is a dupledrome.

Exercise 7.8



7.12 Exercises 89

When names are recorded in a computer, they are sometimes written with the first
name first, like “Allen Downey,” and sometimes with the last name first and a comma,
like “Downey, Allen.” That can make it difficult to compare names and put them in
alphabetical order.

A related problem is that some people have names with capital letters in funny places,
like my friend Beth DeSombre, or no capitals at all, like the poet e.e. cummings.
When computers compare characters, they usually put all the capital letters before
the lower-case letters. As a result, computers often put names with capitals in the
wrong order.

If you are curious, find a local phone book like a campus directory and see if you can
figure out the alphabetizing scheme. Look for multiple-word names like Van Houten
and names with nonstandard capitalization, like desJardins. See if you can figure out
the sorting rules. If you have access to a European phone book, try that, too, and see
if the rules are different.

The result of all this nonstandardization is that it is usually not right to sort names
using simple String comparison. A common solution is to keep two versions of each
name: the printable version and an internal format used for sorting.

In this exercise, you will write a method that compares two names by converting them
to a standard format. We will work from the bottom up, writing some helper methods
and then compareName.

a. Create a new program called Name.java. In the documentation of String, read
about find and toLower and compareTo. Write some simple code to test each
of them and make sure you understand how they work.

b. Write a method called hasComma that takes a name as an argument and that
returns a boolean indicating whether it contains a comma. If it does, you can
assume that it is in last name first format.

c. Write a method called convertName that takes a name as an argument. It should
check whether it contains a comma. If it does, it should just return the string.

If not, then it should assume that the name is in first name first format, and it
should return a new string that contains the name converted to last name first
format.

d. Write a method called compareName that takes two names as arguments and that
returns -1 if the first comes before the second alphabetically, 0 if the names are
equal alphabetically, and 1 otherwise. Your method should be case-insensitive,
meaning that it doesn’t matter whether the letters are upper- or lower-case.

Exercise 7.9

a. The Captain Crunch decoder ring works by taking each letter in a string and
adding 13 to it. For example, ’a’ becomes ’n’ and ’b’ becomes ’o’. The letters
“wrap around” at the end, so ’z’ becomes ’m’.

Write a method that takes a String and that returns a new String containing the
encoded version. You should assume that the String contains upper and lower
case letters, and spaces, but no other punctuation. Lower case letters should
be tranformed into other lower case letters; upper into upper. You should not
encode the spaces.



90 Strings and things

b. Generalize the Captain Crunch method so that instead of adding 13 to the
letters, it adds any given amount. Now you should be able to encode things by
adding 13 and decode them by adding -13. Try it.



Chapter 8

Interesting objects

8.1 What’s interesting?

Although Strings are objects, they are not very interesting objects, because

• They are immutable.

• They have no instance variables.

• You don’t have to use the new command to create one.

In this chapter, we are going to use two new object types that are part of the
Java language, Point and Rectangle. Right from the start, I want to make it
clear that these points and rectangles are not graphical objects that appear on
the screen. They are variables that contain data, just like ints and doubles.
Like other variables, they are used internally to perform computations.

The definitions of the Point and Rectangle classes are in the java.awt package,
so we have to import them.

8.2 Packages

The built-in Java classes are divided into a number of packages, including
java.lang, which contains almost all of the classes we have seen so far, and
java.awt, which contains classes that pertain to the Java Abstract Window
Toolkit (AWT), which contains classes for windows, buttons, graphics, etc.

In order to use a package, you have to import it, which is why the program
in Section D.1 starts with import java.awt.*. The * indicates that we want
to import all the classes in the AWT package. If you want, you can name the
classes you want to import explicitly, but there is no great advantage. The
classes in java.lang are imported automatically, which is why most of our
programs haven’t required an import statement.



92 Interesting objects

All import statements appear at the beginning of the program, outside the class
definition.

8.3 Point objects

At the most basic level, a point is two numbers (coordinates) that we treat
collectively as a single object. In mathematical notation, points are often written
in parentheses, with a comma separating the coordinates. For example, (0, 0)
indicates the origin, and (x, y) indicates the point x units to the right and y
units up from the origin.

In Java, a point is represented by a Point object. To create a new point, you
have to use the new command:

Point blank;

blank = new Point (3, 4);

The first line is a conventional variable declaration: blank has type Point. The
second line is kind of funny-looking; it invokes the new command, specifies the
type of the new object, and provides arguments. It will probably not surprise
you that the arguments are the coordinates of the new point, (3, 4).

The result of the new command is a reference to the new point. I’ll explain
references more later; for now the important thing is that the variable blank

contains a reference to the newly-created object. There is a standard way to
diagram this assignment, shown in the figure.

4y

3x

blank

As usual, the name of the variable blank appears outside the box and its value
appears inside the box. In this case, that value is a reference, which is shown
graphically with a dot and an arrow. The arrow points to the object we’re
referring to.

The big box shows the newly-created object with the two values in it. The
names x and y are the names of the instance variables.

Taken together, all the variables, values, and objects in a program are called the
state. Diagrams like this that show the state of the program are called state
diagrams. As the program runs, the state changes, so you should think of a
state diagram as a snapshot of a particular point in the execution.

8.4 Instance variables

The pieces of data that make up an object are sometimes called components,
records, or fields. In Java they are called instance variables because each object,
which is an instance of its type, has its own copy of the instance variables.



8.5 Objects as parameters 93

It’s like the glove compartment of a car. Each car is an instance of the type
“car,” and each car has its own glove compartment. If you asked me to get
something from the glove compartment of your car, you would have to tell me
which car is yours.

Similarly, if you want to read a value from an instance variable, you have to
specify the object you want to get it from. In Java this is done using “dot
notation.”

int x = blank.x;

The expression blank.x means “go to the object blank refers to, and get the
value of x.” In this case we assign that value to a local variable named x. Notice
that there is no conflict between the local variable named x and the instance
variable named x. The purpose of dot notation is to identify which variable you
are referring to unambiguously.

You can use dot notation as part of any Java expression, so the following are
legal.

System.out.println (blank.x + ", " + blank.y);

int distance = blank.x * blank.x + blank.y * blank.y;

The first line prints 3, 4; the second line calculates the value 25.

8.5 Objects as parameters

You can pass objects as parameters in the usual way. For example

public static void printPoint (Point p) {

System.out.println ("(" + p.x + ", " + p.y + ")");

}

is a method that takes a point as an argument and prints it in the standard
format. If you invoke printPoint (blank), it will print (3, 4). Actually, Java
has a built-in method for printing Points. If you invoke System.out.println

(blank), you get

java.awt.Point[x=3,y=4]

This is a standard format Java uses for printing objects. It prints the name of
the type, followed by the contents of the object, including the names and values
of the instance variables.

As a second example, we can rewrite the distance method from Section 5.2 so
that it takes two Points as parameters instead of four doubles.

public static double distance (Point p1, Point p2) {

double dx = (double)(p2.x - p1.x);

double dy = (double)(p2.y - p1.y);

return Math.sqrt (dx*dx + dy*dy);

}

The typecasts are not really necessary; I just added them as a reminder that
the instance variables in a Point are integers.



94 Interesting objects

8.6 Rectangles

Rectangles are similar to points, except that they have four instance variables,
named x, y, width and height. Other than that, everything is pretty much the
same.

Rectangle box = new Rectangle (0, 0, 100, 200);

creates a new Rectangle object and makes box refer to it. The figure shows
the effect of this assignment.

100width0x

0 200heighty

box

If you print box, you get

java.awt.Rectangle[x=0,y=0,width=100,height=200]

Again, this is the result of a built-in Java method that knows how to print
Rectangle objects.

8.7 Objects as return types

You can write methods that return objects. For example, findCenter takes a
Rectangle as an argument and returns a Point that contains the coordinates
of the center of the Rectangle:

public static Point findCenter (Rectangle box) {

int x = box.x + box.width/2;

int y = box.y + box.height/2;

return new Point (x, y);

}

Notice that you can use new to create a new object, and then immediately use
the result as a return value.

8.8 Objects are mutable

You can change the contents of an object by making an assignment to one of
its instance variables. For example, to “move” a rectangle without changing its
size, you could modify the x and y values:

box.x = box.x + 50;

box.y = box.y + 100;

The result is shown in the figure:

box

x

200heighty

100width

100

50



8.9 Aliasing 95

We could take this code and encapsulate it in a method, and generalize it to
move the rectangle by any amount:

public static void moveRect (Rectangle box, int dx, int dy) {

box.x = box.x + dx;

box.y = box.y + dy;

}

The variables dx and dy indicate how far to move the rectangle in each direction.
Invoking this method has the effect of modifying the Rectangle that is passed
as an argument.

Rectangle box = new Rectangle (0, 0, 100, 200);

moveRect (box, 50, 100);

System.out.println (box);

prints java.awt.Rectangle[x=50,y=100,width=100,height=200].

Modifying objects by passing them as arguments to methods can be useful, but
it can also make debugging more difficult because it is not always clear which
method invocations do or do not modify their arguments. Later, I will discuss
some pros and cons of this programming style.

In the meantime, we can enjoy the luxury of Java’s built-in methods, which
include translate, which does exactly the same thing as moveRect, although
the syntax for invoking it is a little different. Instead of passing the Rectangle

as an argument, we invoke translate on the Rectangle and pass only dx and
dy as arguments.

box.translate (50, 100);

The effect is exactly the same.

8.9 Aliasing

Remember that when you make an assignment to an object variable, you are
assigning a reference to an object. It is possible to have multiple variables that
refer to the same object. For example, this code:

Rectangle box1 = new Rectangle (0, 0, 100, 200);

Rectangle box2 = box1;

generates a state diagram that looks like this:

x

heighty

widthbox1

box2

0

0

100

200

Both box1 and box2 refer or “point” to the same object. In other words, this
object has two names, box1 and box2. When a person uses two names, it’s
called aliasing. Same thing with objects.

When two variables are aliased, any changes that affect one variable also affect
the other. For example:



96 Interesting objects

System.out.println (box2.width);

box1.grow (50, 50);

System.out.println (box2.width);

The first line prints 100, which is the width of the Rectangle referred to by
box2. The second line invokes the grow method on box1, which expands the
Rectangle by 50 pixels in every direction (see the documentation for more
details). The effect is shown in the figure:

x

heighty

widthbox1

box2

−50

−50

200

300

As should be clear from this figure, whatever changes are made to box1 also
apply to box2. Thus, the value printed by the third line is 200, the width of
the expanded rectangle. (As an aside, it is perfectly legal for the coordinates of
a Rectangle to be negative.)

As you can tell even from this simple example, code that involves aliasing can
get confusing fast, and it can be very difficult to debug. In general, aliasing
should be avoided or used with care.

8.10 null

When you create an object variable, remember that you are creating a reference

to an object. Until you make the variable point to an object, the value of the
variable is null. null is a special value in Java (and a Java keyword) that is
used to mean “no object.”

The declaration Point blank; is equivalent to this initialization

Point blank = null;

and is shown in the following state diagram:

blank

The value null is represented by a dot with no arrow.

If you try to use a null object, either by accessing an instance variable or invoking
a method, you will get a NullPointerException. The system will print an error
message and terminate the program.

Point blank = null;

int x = blank.x; // NullPointerException

blank.translate (50, 50); // NullPointerException

On the other hand, it is legal to pass a null object as an argument or receive
one as a return value. In fact, it is common to do so, for example to represent
an empty set or indicate an error condition.



8.11 Garbage collection 97

8.11 Garbage collection

In Section 8.9 we talked about what happens when more than one variable refers
to the same object. What happens when no variable refers to an object? For
example:

Point blank = new Point (3, 4);

blank = null;

The first line creates a new Point object and makes blank refer to it. The
second line changes blank so that instead of referring to the object, it refers to
nothing (the null object).

4y

3x

blank

If no one refers to an object, then no one can read or write any of its values, or
invoke a method on it. In effect, it ceases to exist. We could keep the object in
memory, but it would only waste space, so periodically as your program runs,
the Java system looks for stranded objects and reclaims them, in a process called
garbage collection. Later, the memory space occupied by the object will be
available to be used as part of a new object.

You don’t have to do anything to make garbage collection work, and in general
you will not be aware of it.

8.12 Objects and primitives

There are two kinds of types in Java, primitive types and object types. Prim-
itives, like int and boolean begin with lower-case letters; object types begin
with upper-case letters. This distinction is useful because it reminds us of some
of the differences between them:

• When you declare a primitive variable, you get storage space for a prim-
itive value. When you declare an object variable, you get a space for a
reference to an object. In order to get space for the object itself, you have
to use the new command.

• If you don’t initialize a primitive type, it is given a default value that
depends on the type. For example, 0 for ints and true for booleans.
The default value for object types is null, which indicates no object.

• Primitive variables are well isolated in the sense that there is nothing you
can do in one method that will affect a variable in another method. Object
variables can be tricky to work with because they are not as well isolated.
If you pass a reference to an object as an argument, the method you invoke
might modify the object, in which case you will see the effect. The same



98 Interesting objects

is true when you invoke a method on an object. Of course, that can be a
good thing, but you have to be aware of it.

There is one other difference between primitives and object types. You cannot
add new primitives to the Java language (unless you get yourself on the stan-
dards committee), but you can create new object types! We’ll see how in the
next chapter.

8.13 Glossary

package: A collection of classes. The built-in Java classes are organized in
packages.

AWT: The Abstract Window Toolkit, one of the biggest and most commonly-
used Java packages.

instance: An example from a category. My cat is an instance of the category
“feline things.” Every object is an instance of some class.

instance variable: One of the named data items that make up an object. Each
object (instance) has its own copy of the instance variables for its class.

reference: A value that indicates an object. In a state diagram, a reference
appears as an arrow.

aliasing: The condition when two or more variables refer to the same object.

garbage collection: The process of finding objects that have no references
and reclaiming their storage space.

state: A complete description of all the variables and objects and their values,
at a given point during the execution of a program.

state diagram: A snapshot of the state of a program, shown graphically.

8.14 Exercises

Exercise 8.1

a. For the following program, draw a stack diagram showing the local variables
and parameters of main and fred, and show any objects those variables refer to.

b. What is the output of this program?

public static void main (String[] args)

{

int x = 5;

Point blank = new Point (1, 2);

System.out.println (fred (x, blank));

System.out.println (x);



8.14 Exercises 99

System.out.println (blank.x);

System.out.println (blank.y);

}

public static int fred (int x, Point p)

{

x = x + 7;

return x + p.x + p.y;

}

The point of this exercise is to make sure you understand the mechanism for passing

Objects as parameters.

Exercise 8.2

a. For the following program, draw a stack diagram showing the state of the pro-
gram just before distance returns. Include all variables and parameters and
the objects those variables refer to.

b. What is the output of this program?

public static double distance (Point p1, Point p2) {

int dx = p1.x - p2.x;

int dy = p1.y - p2.y;

return Math.sqrt (dx*dx + dy*dy);

}

public static Point findCenter (Rectangle box) {

int x = box.x + box.width/2;

int y = box.y + box.height/2;

return new Point (x, y);

}

public static void main (String[] args) {

Point blank = new Point (5, 8);

Rectangle rect = new Rectangle (0, 2, 4, 4);

Point center = findCenter (rect);

double dist = distance (center, blank);

System.out.println (dist);

}

Exercise 8.3 The method grow is part of the built-in Rectangle class. Here is the
documentation of it (from the Sun web page):

public void grow(int h, int v)

Grows the rectangle both horizontally and vertically.

This method modifies the rectangle so that it is h units larger on

both the left and right side, and v units larger at both the top and



100 Interesting objects

bottom.

The new rectangle has (x - h, y - v) as its top-left corner, a width

of width + 2h, and a height of height + 2v.

If negative values are supplied for h and v, the size of the rectangle

decreases accordingly. The grow method does not check whether the

resulting values of width and height are non-negative.

a. What is the output of the following program?

b. Draw a state diagram that shows the state of the program just before the end
of main. Include all local variables and the objects they refer to.

c. At the end of main, are p1 and p2 aliased? Why or why not?

public static void printPoint (Point p) {

System.out.println ("(" + p.x + ", " + p.y + ")");

}

public static Point findCenter (Rectangle box) {

int x = box.x + box.width/2;

int y = box.y + box.height/2;

return new Point (x, y);

}

public static void main (String[] args) {

Rectangle box1 = new Rectangle (2, 4, 7, 9);

Point p1 = findCenter (box1);

printPoint (p1);

box1.grow (1, 1);

Point p2 = findCenter (box1);

printPoint (p2);

}

Exercise 8.4 You are probably getting sick of the factorial method by now, but
we’re going to do one more version.

a. Create a new program called Big.java and start by writing an iterative version
of factorial.

b. Print a table of the integers from 0 to 30 along with their factorials. At some
point around 15, you will probably see that the answers are not right any more.
Why not?

c. BigIntegers are built-in objects that can represent arbitrarily big integers. There
is no upper bound except the limitations of memory size and processing speed.
Print the documentation for the BigInteger class in the java.math package,
and read it.

d. There are several ways to create a new BigInteger, but the one I recommend
uses valueOf. The following code converts an integer to a BigInteger:

int x = 17;

BigInteger big = BigInteger.valueOf (x);


