
8.14 Exercises 101

Type in this code and try out a few simple cases like creating a BigInteger and
printing it. Notice that println knows how to print BigIntegers! Don’t forget
to add import java.math.BigInteger to the beginning of your program.

e. Unfortunately, because BigIntegers are not primitive types, we cannot use the
usual math operators on them. Instead we have to use object methods like add.
In order to add two BigIntegers, you have to invoke add on one of the objects
and pass the other as an argument. For example:

BigInteger small = BigInteger.valueOf (17);

BigInteger big = BigInteger.valueOf (1700000000);

BigInteger total = small.add (big);

Try out some of the other methods, like multiply and pow.

f. Convert factorial so that it performs its calculation using BigIntegers, and
then returns the BigInteger as a result. You can leave the parameter alone—it
will still be an integer.

g. Try printing the table again with your modified factorial function. Is it correct
up to 30? How high can you make it go? I calculated the factorial of all the
numbers from 0 to 999, but my machine is pretty slow, so it took a while. The
last number, 999!, has 2565 digits.

Exercise 8.5 Many encryption algorithms depends on the ability to raise large
integers to an integer power. Here is a method that implements a (reasonably) fast
algorithm for integer exponentiation:

public static int pow (int x, int n) {

if (n==0) return 1;

// find x to the n/2 recursively

int t = pow (x, n/2);

// if n is even, the result is t squared

// if n is odd, the result is t squared times x

if (n%2 == 0) {

return t*t;

} else {

return t*t*x;

}

}

The problem with this method is that it will only work if the result is smaller than 2
billion. Rewrite it so that the result is a BigInteger. The parameters should still be
integers, though.

You can use the BigInteger methods add and multiply, but don’t use the built-in pow

method, which would spoil the fun.

102 Interesting objects

Chapter 9

Create your own objects

9.1 Class definitions and object types

Every time you write a class definition, you create a new object type, with the
same name as the class. Way back in Section 1.5, when we defined the class
named Hello, we also created an object type named Hello. We didn’t create
any variables with type Hello, and we didn’t use the new command to create
any Hello objects, but we could have!

That example doesn’t make much sense, since there is no reason to create a
Hello object, and it is not clear what it would be good for if we did. In this
chapter, we will look at some examples of class definitions that create useful

new object types.

Here are the most important ideas in this chapter:

• Defining a new class also creates a new object type with the same name.

• A class definition is like a template for objects: it determines what instance
variables the objects have and what methods can operate on them.

• Every object belongs to some object type; hence, it is an instance of some
class.

• When you invoke the new command to create an object, Java invokes a
special method called a constructor to initialize the instance variables.
You provide one or more constructors as part of the class definition.

• Typically all the methods that operate on a type go in the class definition
for that type.

Here are some syntax issues about class definitions:

• Class names (and hence object types) always begin with a capital letter,
which helps distinguish them from primitive types and variable names.

104 Create your own objects

• You usually put one class definition in each file, and the name of the file
must be the same as the name of the class, with the suffix .java. For
example, the Time class is defined in the file named Time.java.

• In any program, one class is designated as the startup class. The startup
class must contain a method named main, which is where the execution of
the program begins. Other classes may have a method named main, but
it will not be executed.

With those issues out of the way, let’s look at an example of a user-defined type,
Time.

9.2 Time

A common motivation for creating a new Object type is to take several related
pieces of data and encapsulate them into an object that can be manipulated
(passed as an argument, operated on) as a single unit. We have already seen
two built-in types like this, Point and Rectangle.

Another example, which we will implement ourselves, is Time, which is used
to record the time of day. The various pieces of information that form a time
are the hour, minute and second. Because every Time object will contain these
data, we need to create instance variables to hold them.

The first step is to decide what type each variable should be. It seems clear
that hour and minute should be integers. Just to keep things interesting, let’s
make second a double, so we can record fractions of a second.

Instance variables are declared at the beginning of the class definition, outside
of any method definition, like this:

class Time {

int hour, minute;

double second;

}

All by itself, this code fragment is a legal class definition. The state diagram
for a Time object would look like this:

hour 0

minute 0

0.0second

After declaring the instance variables, the next step is usually to define a con-
structor for the new class.

9.3 Constructors 105

9.3 Constructors

The usual role of a constructor is to initialize the instance variables. The syntax
for constructors is similar to that of other methods, with three exceptions:

• The name of the constructor is the same as the name of the class.

• Constructors have no return type and no return value.

• The keyword static is omitted.

Here is an example for the Time class:

public Time () {

this.hour = 0;

this.minute = 0;

this.second = 0.0;

}

Notice that where you would expect to see a return type, between public and
Time, there is nothing. That’s how we (and the compiler) can tell that this is a
constructor.

This constructor does not take any arguments, as indicated by the empty paren-
theses (). Each line of the constructor initializes an instance variable to an
arbitrary default value (in this case, midnight). The name this is a special
keyword that is the name of the object we are creating. You can use this the
same way you use the name of any other object. For example, you can read and
write the instance variables of this, and you can pass this as an argument to
other methods.

But you do not declare this and you do not use new to create it. In fact, you
are not even allowed to make an assignment to it! this is created by the system;
all you have to do is store values in its instance variables.

A common error when writing constructors is to put a return statement at the
end. Resist the temptation.

9.4 More constructors

Constructors can be overloaded, just like other methods, which means that you
can provide multiple constructors with different parameters. Java knows which
constructor to invoke by matching the arguments of the new command with the
parameters of the constructors.

It is very common to have one constructor that takes no arguments (shown
above), and one constructor that takes a parameter list that is identical to the
list of instance variables. For example:

106 Create your own objects

public Time (int hour, int minute, double second) {

this.hour = hour;

this.minute = minute;

this.second = second;

}

The names and types of the parameters are exactly the same as the names and
types of the instance variables. All the constructor does is copy the information
from the parameters to the instance variables.

If you go back and look at the documentation for Points and Rectangles, you
will see that both classes provide constructors like this. Overloading construc-
tors provides the flexibility to create an object first and then fill in the blanks,
or to collect all the information before creating the object.

So far this might not seem very interesting, and in fact it is not. Writing
constructors is a boring, mechanical process. Once you have written two, you
will find that you can churn them out in your sleep, just by looking at the list
of instance variables.

9.5 Creating a new object

Although constructors look like methods, you never invoke them directly. In-
stead, when you use the new command, the system allocates space for the new
object and then invokes your constructor to initialize the instance variables.

The following program demonstrates two ways to create and initialize Time

objects:

class Time {

int hour, minute;

double second;

public Time () {

this.hour = 0;

this.minute = 0;

this.second = 0.0;

}

public Time (int hour, int minute, double second) {

this.hour = hour;

this.minute = minute;

this.second = second;

}

public static void main (String[] args) {

// one way to create and initialize a Time object

Time t1 = new Time ();

9.6 Printing an object 107

t1.hour = 11;

t1.minute = 8;

t1.second = 3.14159;

System.out.println (t1);

// another way to do the same thing

Time t2 = new Time (11, 8, 3.14159);

System.out.println (t2);

}

}

As an exercise, figure out the flow of execution through this program.

In main, the first time we invoke the new command, we provide no arguments,
so Java invokes the first constructor. The next few lines assign values to each
of the instance variables.

The second time we invoke the new command, we provide arguments that match
the parameters of the second constructor. This way of initializing the instance
variables is more concise (and slightly more efficient), but it can be harder to
read, since it is not as clear which values are assigned to which instance variables.

9.6 Printing an object

The output of this program is:

Time@80cc7c0

Time@80cc807

When Java prints the value of a user-defined object type, it prints the name
of the type and a special hexadecimal (base 16) code that is unique for each
object. This code is not meaningful in itself; in fact, it can vary from machine
to machine and even from run to run. But it can be useful for debugging, in
case you want to keep track of individual objects.

In order to print objects in a way that is more meaningful to users (as opposed
to programmers), you usually want to write a method called something like
printTime:

public static void printTime (Time t) {

System.out.println (t.hour + ":" + t.minute + ":" + t.second);

}

Compare this method to the version of printTime in Section 3.10.

The output of this method, if we pass either t1 or t2 as an argument, is
11:8:3.14159. Although this is recognizable as a time, it is not quite in the
standard format. For example, if the number of minutes or seconds is less than
10, we expect a leading 0 as a place-keeper. Also, we might want to drop the
decimal part of the seconds. In other words, we want something like 11:08:03.

In most languages, there are simple ways to control the output format for num-
bers. In Java there are no simple ways.

108 Create your own objects

Java provides very powerful tools for printing formatted things like times and
dates, and also for interpreting formatted input. Unfortunately, these tools are
not very easy to use, so I am going to leave them out of this book. If you want,
though, you can take a look at the documentation for the Date class in the
java.util package.

9.7 Operations on objects

Even though we can’t print times in an optimal format, we can still write meth-
ods that manipulate Time objects. In the next few sections, I will demonstrate
several of the possible interfaces for methods that operate on objects. For some
operations, you will have a choice of several possible interfaces, so you should
consider the pros and cons of each of these:

pure function: Takes objects and/or primitives as arguments but does not
modify the objects. The return value is either a primitive or a new object
created inside the method.

modifier: Takes objects as arguments and modifies some or all of them. Often
returns void.

fill-in method: One of the arguments is an “empty” object that gets filled in
by the method. Technically, this is a type of modifier.

9.8 Pure functions

A method is considered a pure function if the result depends only on the ar-
guments, and it has no side effects like modifying an argument or printing
something. The only result of invoking a pure function is the return value.

One example is after, which compares two Times and returns a boolean that
indicates whether the first operand comes after the second:

public static boolean after (Time time1, Time time2) {

if (time1.hour > time2.hour) return true;

if (time1.hour < time2.hour) return false;

if (time1.minute > time2.minute) return true;

if (time1.minute < time2.minute) return false;

if (time1.second > time2.second) return true;

return false;

}

What is the result of this method if the two times are equal? Does that seem like
the appropriate result for this method? If you were writing the documentation
for this method, would you mention that case specifically?

9.8 Pure functions 109

A second example is addTime, which calculates the sum of two times. For
example, if it is 9:14:30, and your breadmaker takes 3 hours and 35 minutes,
you could use addTime to figure out when the bread will be done.

Here is a rough draft of this method that is not quite right:

public static Time addTime (Time t1, Time t2) {

Time sum = new Time ();

sum.hour = t1.hour + t2.hour;

sum.minute = t1.minute + t2.minute;

sum.second = t1.second + t2.second;

return sum;

}

Although this method returns a Time object, it is not a constructor. You should
go back and compare the syntax of a method like this with the syntax of a
constructor, because it is easy to get confused.

Here is an example of how to use this method. If currentTime contains the
current time and breadTime contains the amount of time it takes for your
breadmaker to make bread, then you could use addTime to figure out when
the bread will be done.

Time currentTime = new Time (9, 14, 30.0);

Time breadTime = new Time (3, 35, 0.0);

Time doneTime = addTime (currentTime, breadTime);

printTime (doneTime);

The output of this program is 12:49:30.0, which is correct. On the other hand,
there are cases where the result is not correct. Can you think of one?

The problem is that this method does not deal with cases where the number of
seconds or minutes adds up to more than 60. In that case, we have to “carry”
the extra seconds into the minutes column, or extra minutes into the hours
column.

Here’s a second, corrected version of this method.

public static Time addTime (Time t1, Time t2) {

Time sum = new Time ();

sum.hour = t1.hour + t2.hour;

sum.minute = t1.minute + t2.minute;

sum.second = t1.second + t2.second;

if (sum.second >= 60.0) {

sum.second -= 60.0;

sum.minute += 1;

}

if (sum.minute >= 60) {

sum.minute -= 60;

sum.hour += 1;

}

return sum;

110 Create your own objects

}

Although it’s correct, it’s starting to get big. Later, I will suggest an alternative
approach to this problem that will be much shorter.

This code demonstrates two operators we have not seen before, += and -=.
These operators provide a concise way to increment and decrement variables.
They are similar to ++ and --, except (1) they work on doubles as well as ints,
and (2) the amount of the increment does not have to be 1. The statement
sum.second -= 60.0; is equivalent to sum.second = sum.second - 60;

9.9 Modifiers

As an example of a modifier, consider increment, which adds a given number
of seconds to a Time object. Again, a rough draft of this method looks like:

public static void increment (Time time, double secs) {

time.second += secs;

if (time.second >= 60.0) {

time.second -= 60.0;

time.minute += 1;

}

if (time.minute >= 60) {

time.minute -= 60;

time.hour += 1;

}

}

The first line performs the basic operation; the remainder deals with the same
cases we saw before.

Is this method correct? What happens if the argument secs is much greater
than 60? In that case, it is not enough to subtract 60 once; we have to keep
doing it until second is below 60. We can do that by simply replacing the if

statements with while statements:

public static void increment (Time time, double secs) {

time.second += secs;

while (time.second >= 60.0) {

time.second -= 60.0;

time.minute += 1;

}

while (time.minute >= 60) {

time.minute -= 60;

time.hour += 1;

}

}

This solution is correct, but not very efficient. Can you think of a solution that
does not require iteration?

9.10 Fill-in methods 111

9.10 Fill-in methods

Occasionally you will see methods like addTime written with a different interface
(different arguments and return values). Instead of creating a new object every
time addTime is invoked, we could require the caller to provide an “empty”
object where addTime should store the result. Compare the following with the
previous version:

public static void addTimeFill (Time t1, Time t2, Time sum) {

sum.hour = t1.hour + t2.hour;

sum.minute = t1.minute + t2.minute;

sum.second = t1.second + t2.second;

if (sum.second >= 60.0) {

sum.second -= 60.0;

sum.minute += 1;

}

if (sum.minute >= 60) {

sum.minute -= 60;

sum.hour += 1;

}

}

One advantage of this approach is that the caller has the option of reusing the
same object repeatedly to perform a series of additions. This can be slightly
more efficient, although it can be confusing enough to cause subtle errors. For
the vast majority of programming, it is worth spending a little run time to avoid
a lot of debugging time.

9.11 Which is best?

Anything that can be done with modifiers and fill-in methods can also be done
with pure functions. In fact, there are programming languages, called func-
tional programming languages, that only allow pure functions. Some program-
mers believe that programs that use pure functions are faster to develop and
less error-prone than programs that use modifiers. Nevertheless, there are times
when modifiers are convenient, and some cases where functional programs are
less efficient.

In general, I recommend that you write pure functions whenever it is reasonable
to do so, and resort to modifiers only if there is a compelling advantage. This
approach might be called a functional programming style.

9.12 Incremental development vs. planning

In this chapter I have demonstrated an approach to program development I
refer to as rapid prototyping with iterative improvement. In each case,

112 Create your own objects

I wrote a rough draft (or prototype) that performed the basic calculation, and
then tested it on a few cases, correcting flaws as I found them.

Although this approach can be effective, it can lead to code that is unnecessarily
complicated—since it deals with many special cases—and unreliable—since it
is hard to convince yourself that you have found all the errors.

An alternative is high-level planning, in which a little insight into the problem
can make the programming much easier. In this case the insight is that a Time

is really a three-digit number in base 60! The second is the “ones column,” the
minute is the “60’s column”, and the hour is the “3600’s column.”

When we wrote addTime and increment, we were effectively doing addition in
base 60, which is why we had to “carry” from one column to the next.

Thus an alternative approach to the whole problem is to convert Times into
doubles and take advantage of the fact that the computer already knows how
to do arithmetic with doubles. Here is a method that converts a Time into a
double:

public static double convertToSeconds (Time t) {

int minutes = t.hour * 60 + t.minute;

double seconds = minutes * 60 + t.second;

return seconds;

}

Now all we need is a way to convert from a double to a Time object. We could
write a method to do it, but it might make more sense to write it as a third
constructor:

public Time (double secs) {

this.hour = (int) (secs / 3600.0);

secs -= this.hour * 3600.0;

this.minute = (int) (secs / 60.0);

secs -= this.minute * 60;

this.second = secs;

}

This constructor is a little different from the others, since it involves some
calculation along with assignments to the instance variables.

You might have to think a bit to convince yourself that the technique I am using
to convert from one base to another is correct. Assuming you are convinced, we
can use these methods to rewrite addTime:

public static Time addTime (Time t1, Time t2) {

double seconds = convertToSeconds (t1) + convertToSeconds (t2);

return new Time (seconds);

}

This is much shorter than the original version, and it is much easier to demon-
strate that it is correct (assuming, as usual, that the methods it invokes are
correct). As an exercise, rewrite increment the same way.

9.13 Generalization 113

9.13 Generalization

In some ways converting from base 60 to base 10 and back is harder than just
dealing with times. Base conversion is more abstract; our intuition for dealing
with times is better.

But if we have the insight to treat times as base 60 numbers, and make the
investment of writing the conversion methods (convertToSeconds and the third
constructor), we get a program that is shorter, easier to read and debug, and
more reliable.

It is also easier to add more features later. For example, imagine subtracting
two Times to find the duration between them. The naive approach would be
to implement subtraction complete with “borrowing.” Using the conversion
methods would be much easier.

Ironically, sometimes making a problem harder (more general) makes it easier
(fewer special cases, fewer opportunities for error).

9.14 Algorithms

When you write a general solution for a class of problems, as opposed to a specific
solution to a single problem, you have written an algorithm. I mentioned this
word in Chapter 1, but did not define it carefully. It is not easy to define, so I
will try a couple of approaches.

First, consider some things that are not algorithms. For example, when you
learned to multiply single-digit numbers, you probably memorized the multipli-
cation table. In effect, you memorized 100 specific solutions, so that knowledge
is not really algorithmic.

But if you were “lazy,” you probably cheated by learning a few tricks. For
example, to find the product of n and 9, you can write n − 1 as the first digit
and 10 − n as the second digit. This trick is a general solution for multiplying
any single-digit number by 9. That’s an algorithm!

Similarly, the techniques you learned for addition with carrying, subtraction
with borrowing, and long division are all algorithms. One of the characteristics
of algorithms is that they do not require any intelligence to carry out. They
are mechanical processes in which each step follows from the last according to
a simple set of rules.

In my opinion, it is embarrassing that humans spend so much time in school
learning to execute algorithms that, quite literally, require no intelligence.

On the other hand, the process of designing algorithms is interesting, intellec-
tually challenging, and a central part of what we call programming.

Some of the things that people do naturally, without difficulty or conscious
thought, are the most difficult to express algorithmically. Understanding natural

114 Create your own objects

language is a good example. We all do it, but so far no one has been able to
explain how we do it, at least not in the form of an algorithm.

Later you will have the opportunity to design simple algorithms for a variety of
problems.

9.15 Glossary

class: Previously, I defined a class as a collection of related methods. In this
chapter we learned that a class definition is also a template for a new type
of object.

instance: A member of a class. Every object is an instance of some class.

constructor: A special method that initializes the instance variables of a
newly-constructed object.

project: A collection of one or more class definitions (one per file) that make
up a program.

startup class: The class that contains the main method where execution of
the program begins.

function: A method whose result depends only on its parameters, and that
has no side-effects other than returning a value.

functional programming style: A style of program design in which the ma-
jority of methods are functions.

modifier: A method that changes one or more of the objects it receives as
parameters, and usually returns void.

fill-in method: A type of method that takes an “empty” object as a parameter
and fills in its instance variables instead of generating a return value. This
type of method is usually not the best choice.

algorithm: A set of instructions for solving a class of problems by a mechanical
process.

9.16 Exercises

Exercise 9.1 In the board game Scrabble1, each tile contains a letter, which is
used to spell words, and a score, which is used to determine the value of a word.

a. Write a definition for a class named Tile that represents Scrabble tiles. The
instance variables should be a character named letter and an integer named
value.

1Scrabble is a registered trademark owned in the U.S.A and Canada by Hasbro Inc., and

in the rest of the world by J.W. Spear & Sons Limited of Maidenhead, Berkshire, England, a

subsidiary of Mattel Inc.

9.16 Exercises 115

b. Write a constructor that takes parameters named letter and value and initial-
izes the instance variables.

c. Write a method named printTile that takes a Tile object as a parameter and
prints the instance variables in some reader-friendly format.

d. Write a method named testTile that creates a Tile object with the letter Z

and the value 10, and then uses printTile to print the state of the object.

The point of this exercise is to practice the mechanical part of creating a new class

definition and code that tests it.

Exercise 9.2 Write a class definition for Date, an object type that contains three
integers, year, month and day. This class should provide two constructors. The first
should take no parameters. The second should take parameters named year, month
and day, and use them to initialize the instance variables.

Add code to main that creates a new Date object named birthday. The new object

should contain your birthdate. You can use either constructor.

Exercise 9.3

A rational number is a number that can be represented as the ratio of two integers.
For example, 2/3 is a rational number, and you can think of 7 as a rational number
with an implicit 1 in the denominator. For this assignment, you are going to write a
class definition for rational numbers.

a. Examine the following program and make sure you understand what it does:

public class Complex

{

double real, imag;

// simple constructor

public Complex () {

this.real = 0.0; this.imag = 0.0;

}

// constructor that takes arguments

public Complex (double real, double imag) {

this.real = real; this.imag = imag;

}

public static void printComplex (Complex c) {

System.out.println (c.real + " + " + c.imag + "i");

}

// conjugate is a modifier

public static void conjugate (Complex c) {

c.imag = -c.imag;

}

// abs is a function that returns a primitive

public static double abs (Complex c) {

return Math.sqrt (c.real * c.real + c.imag * c.imag);

116 Create your own objects

}

// add is a function that returns a new Complex object

public static Complex add (Complex a, Complex b) {

return new Complex (a.real + b.real, a.imag + b.imag);

}

public static void main(String args[]) {

// use the first constructor

Complex x = new Complex ();

x.real = 1.0;

x.imag = 2.0;

// use the second constructor

Complex y = new Complex (3.0, 4.0);

System.out.println (Complex.abs (y));

Complex.conjugate (x);

Complex.printComplex (x);

Complex.printComplex (y);

Complex s = Complex.add (x, y);

Complex.printComplex (s);

}

}

b. Create a new program called Rational.java that defines a class named
Rational. A Rational object should have two integer instance variables to
store the numerator and denominator of a rational number.

c. Write a constructor that takes no arguments and that sets the two instance
variables to zero.

d. Write a method called printRational that takes a Rational object as an argu-
ment and prints it in some reasonable format.

e. Write a main method that creates a new object with type Rational, sets its
instance variables to some values, and prints the object.

f. At this stage, you have a minimal testable (debuggable) program. Test it and,
if necessary, debug it.

g. Write a second constructor for your class that takes two arguments and that
uses them to initalize the instance variables.

h. Write a method called negate that reverses the sign of a rational number. This
method should be a modifier, so it should return void. Add lines to main to
test the new method.

i. Write a method called invert that inverts the number by swapping the numer-
ator and denominator. Remember the swap pattern we have seen before. Add
lines to main to test the new method.

j. Write a method called toDouble that converts the rational number to a double
(floating-point number) and returns the result. This method is a pure function;
it does not modify the object. As always, test the new method.

9.16 Exercises 117

k. Write a modifier named reduce that reduces a rational number to its lowest
terms by finding the GCD of the numerator and denominator and then dividing
top and bottom by the GCD. This method should be a pure function; it should
not modify the instance variables of the object on which it is invoked.

You may want to write a method called gcd that finds the greatest common
divisor of the numerator and the denominator (See Exercise 5.10).

l. Write a method called add that takes two Rational numbers as arguments and
returns a new Rational object. The return object, not surprisingly, should con-
tain the sum of the arguments.

There are several ways to add fractions. You can use any one you want, but
you should make sure that the result of the operation is reduced so that the
numerator and denominator have no common divisor (other than 1).

The purpose of this exercise is to write a class definition that includes a variety of

methods, including constructors, modifiers and pure functions.

118 Create your own objects

Chapter 10

Arrays

An array is a set of values where each value is identified by an index. You can
make an array of ints, doubles, or any other type, but all the values in an array
have to have the same type.

Syntactically, array types look like other Java types except they are followed
by []. For example, int[] is the type “array of integers” and double[] is the
type “array of doubles.”

You can declare variables with these types in the usual ways:

int[] count;

double[] values;

Until you initialize these variables, they are set to null. To create the array
itself, use the new command.

count = new int[4];

values = new double[size];

The first assignment makes count refer to an array of 4 integers; the second
makes values refer to an array of doubles. The number of elements in values

depends on size. You can use any integer expression as an array size.

The following figure shows how arrays are represented in state diagrams:

count

0 1 2 3

0 0 0 0

The large numbers inside the boxes are the elements of the array. The small
numbers outside the boxes are the indices used to identify each box. When you
allocate a new array, the elements are initialized to zero.

10.1 Accessing elements

To store values in the array, use the [] operator. For example count[0] refers to
the “zeroeth” element of the array, and count[1] refers to the “oneth” element.

120 Arrays

You can use the [] operator anywhere in an expression:

count[0] = 7;

count[1] = count[0] * 2;

count[2]++;

count[3] -= 60;

All of these are legal assignment statements. Here is the effect of this code
fragment:

count

0 1 2 3

7 14 1 −60

By now you should have noticed that the four elements of this array are num-
bered from 0 to 3, which means that there is no element with the index 4.
This should sound familiar, since we saw the same thing with String indices.
Nevertheless, it is a common error to go beyond the bounds of an array, which
will cause an ArrayOutOfBoundsException. As with all exceptions, you get an
error message and the program quits.

You can use any expression as an index, as long as it has type int. One of the
most common ways to index an array is with a loop variable. For example:

int i = 0;

while (i < 4) {

System.out.println (count[i]);

i++;

}

This is a standard while loop that counts from 0 up to 4, and when the loop
variable i is 4, the condition fails and the loop terminates. Thus, the body of
the loop is only executed when i is 0, 1, 2 and 3.

Each time through the loop we use i as an index into the array, printing the
ith element. This type of array traversal is very common. Arrays and loops go
together like fava beans and a nice Chianti.

10.2 Copying arrays

When you copy an array variable, remember that you are copying a reference
to the array. For example:

double[] a = new double [3];

double[] b = a;

This code creates one array of three doubles, and sets two different variables to
refer to it. This situation is a form of aliasing.

0 1 2

0.0 0.0 0.0

a

b

10.3 for loops 121

Any changes in either array will be reflected in the other. This is not usually the
behavior you want; instead, you should make a copy of the array, by allocating
a new array and copying each element from one to the other.

double[] b = new double [3];

int i = 0;

while (i < 4) {

b[i] = a[i];

i++;

}

10.3 for loops

The loops we have written so far have a number of elements in common. All of
them start by initializing a variable; they have a test, or condition, that depends
on that variable; and inside the loop they do something to that variable, like
increment it.

This type of loop is so common that there is an alternative loop statement,
called for, that expresses it more concisely. The general syntax looks like this:

for (INITIALIZER; CONDITION; INCREMENTOR) {

BODY

}

This statement is exactly equivalent to

INITIALIZER;

while (CONDITION) {

BODY

INCREMENTOR

}

except that it is more concise and, since it puts all the loop-related statements
in one place, it is easier to read. For example:

for (int i = 0; i < 4; i++) {

System.out.println (count[i]);

}

is equivalent to

int i = 0;

while (i < 4) {

System.out.println (count[i]);

i++;

}

As an exercise, write a for loop to copy the elements of an array.

122 Arrays

10.4 Arrays and objects

In many ways, arrays behave like objects:

• When you declare an array variable, you get a reference to an array.

• You have to use the new command to create the array itself.

• When you pass an array as an argument, you pass a reference, which
means that the invoked method can change the contents of the array.

Some of the objects we have looked at, like Rectangles, are similar to arrays,
in the sense that they are named collection of values. This raises the question,
“How is an array of 4 integers different from a Rectangle object?”

If you go back to the definition of “array” at the beginning of the chapter, you
will see one difference, which is that the elements of an array are identified by
indices, whereas the elements (instance variables) of an object have names (like
x, width, etc.).

Another difference between arrays and objects is that all the elements of an
array have to be the same type. Although that is also true of Rectangles, we
have seen other objects that have instance variables with different types (like
Time).

10.5 Array length

Actually, arrays do have one named instance variable: length. Not surprisingly,
it contains the length of the array (number of elements). It is a good idea to
use this value as the upper bound of a loop, rather than a constant value. That
way, if the size of the array changes, you won’t have to go through the program
changing all the loops; they will work correctly for any size array.

for (int i = 0; i < a.length; i++) {

b[i] = a[i];

}

The last time the body of the loop gets executed, i is a.length - 1, which
is the index of the last element. When i is equal to a.length, the condition
fails and the body is not executed, which is a good thing, since it would cause
an exception. This code assumes that the array b contains at least as many
elements as a.

As an exercise, write a method called cloneArray that takes an array of integers
as a parameter, creates a new array that is the same size, copies the elements
from the first array into the new one, and then returns a reference to the new
array.

10.6 Random numbers 123

10.6 Random numbers

Most computer programs do the same thing every time they are executed, so
they are said to be deterministic. Usually, determinism is a good thing, since
we expect the same calculation to yield the same result. For some applications,
though, we would like the computer to be unpredictable. Games are an obvious
example, but there are many more.

Making a program truly nondeterministic turns out to be not so easy, but
there are ways to make it at least seem nondeterministic. One of them is to gen-
erate random numbers and use them to determine the outcome of the program.
Java provides a built-in method that generates pseudorandom numbers, which
are not truly random in the mathematical sense, but for our purposes, they will
do.

Check out the documentation of the random method in the Math class. The
return value is a double between 0.0 and 1.0. To be precise, it is greater than
or equal to 0.0 and strictly less than 1.0. Each time you invoke random you get
the next number in a pseudorandom sequence. To see a sample, run this loop:

for (int i = 0; i < 10; i++) {

double x = Math.random ();

System.out.println (x);

}

To generate a random double between 0.0 and an upper bound like high, you
can multiply x by high. How would you generate a random number between
low and high? How would you generate a random integer?

Exercise 10.1 Write a method called randomDouble that takes two doubles, low

and high, and that returns a random double x so that low ≤ x < high.

Exercise 10.2 Write a method called randomInt that takes two arguments, low and

high, and that returns a random integer between low and high (including both).

10.7 Array of random numbers

If your implementation of randomInt is correct, then every value in the range
from low to high should have the same probability. If you generate a long series
of numbers, every value should appear, at least approximately, the same number
of times.

One way to test your method is to generate a large number of random values,
store them in an array, and count the number of times each value occurs.

The following method takes a single argument, the size of the array. It allocates
a new array of integers, fills it with random values, and returns a reference to
the new array.

public static int[] randomArray (int n) {

int[] a = new int[n];

124 Arrays

for (int i = 0; i<a.length; i++) {

a[i] = randomInt (0, 100);

}

return a;

}

The return type is int[], which means that this method returns an array of
integers. To test this method, it is convenient to have a method that prints the
contents of an array.

public static void printArray (int[] a) {

for (int i = 0; i<a.length; i++) {

System.out.println (a[i]);

}

}

The following code generates an array and prints it:

int numValues = 8;

int[] array = randomArray (numValues);

printArray (array);

On my machine the output is

27

6

54

62

54

2

44

81

which is pretty random-looking. Your results may differ.

If these were exam scores, and they would be pretty bad exam scores, the teacher
might present the results to the class in the form of a histogram, which is a
set of counters that keeps track of the number of times each value appear.

For exam scores, we might have ten counters to keep track of how many students
scored in the 90s, the 80s, etc. The next few sections develop code to generate
a histogram.

10.8 Counting

A good approach to problems like this is to think of simple methods that are
easy to write, and that might turn out to be useful. Then you can combine them
into a solution. Of course, it is not easy to know ahead of time which methods
are likely to be useful, but as you gain experience you will have a better idea.

Also, it is not always obvious what sort of things are easy to write, but a good
approach is to look for subproblems that fit a pattern you have seen before.

10.9 The histogram 125

Back in Section 7.7 we looked at a loop that traversed a string and counted the
number of times a given letter appeared. You can think of this program as an
example of a pattern called “traverse and count.” The elements of this pattern
are:

• A set or container that can be traversed, like an array or a string.

• A test that you can apply to each element in the container.

• A counter that keeps track of how many elements pass the test.

In this case, the container is an array of integers. The test is whether or not a
given score falls in a given range of values.

Here is a method called inRange that counts the number of elements in an array
that fall in a given range. The parameters are the array and two integers that
specify the lower and upper bounds of the range.

public static int inRange (int[] a, int low, int high) {

int count = 0;

for (int i=0; i<a.length; i++) {

if (a[i] >= low && a[i] < high) count++;

}

return count;

}

In my description of the method, I wasn’t very careful about whether something
equal to low or high falls in the range, but you can see from the code that low
is in and high is out. That should keep us from counting any elements twice.

Now we can count the number of scores in the ranges we are interested in:

int[] scores = randomArray (30);

int a = inRange (scores, 90, 100);

int b = inRange (scores, 80, 90);

int c = inRange (scores, 70, 80);

int d = inRange (scores, 60, 70);

int f = inRange (scores, 0, 60);

10.9 The histogram

The code we have so far is a bit repetitious, but it is acceptable as long as the
number of ranges want is small. But now imagine that we want to keep track
of the number of times each score appears, all 100 possible values. Would you
want to write:

int count0 = inRange (scores, 0, 1);

int count1 = inRange (scores, 1, 2);

int count2 = inRange (scores, 2, 3);

...

int count3 = inRange (scores, 99, 100);

126 Arrays

I don’t think so. What we really want is a way to store 100 integers, preferably
so we can use an index to access each one. Immediately, you should be thinking
“array!”

The counting pattern is the same whether we use a single counter or an array
of counters. In this case, we initialize the array outside the loop; then, inside
the loop, we invoke inRange and store the result:

int[] counts = new int [100];

for (int i = 0; i<100; i++) {

counts[i] = inRange (scores, i, i+1);

}

The only tricky thing here is that we are using the loop variable in two roles:
as in index into the array, and as the parameter to inRange.

10.10 A single-pass solution

Although this code works, it is not as efficient as it could be. Every time it
invokes inRange, it traverses the entire array. As the number of ranges increases,
that gets to be a lot of traversals.

It would be better to make a single pass through the array, and for each value,
compute which range it falls in. Then we could increment the appropriate
counter. In this example, that computation is trivial, because we can use the
value itself as an index into the array of counters.

Here is code that traverses an array of scores, once, and generates a histogram.

int[] counts = new int [100];

for (int i = 0; i < scores.length; i++) {

int index = scores[i];

counts[index]++;

}

Exercise 10.3 Encapsulate this code in a method called scoreHist that takes an
array of scores and returns a histogram of the values in the array.

Modify the method so that the histogram has only 10 counters, and count the number

of scores in each range of 10 values; that is, the 90s, the 80s, etc.

10.11 Glossary

array: A named collection of values, where all the values have the same type,
and each value is identified by an index.

collection: Any data structure that contains a set of items or elements.

10.12 Exercises 127

element: One of the values in an array. The [] operator selects elements of
an array.

index: An integer variable or value used to indicate an element of an array.

deterministic: A program that does the same thing every time it is invoked.

pseudorandom: A sequence of numbers that appear to be random, but which
are actually the product of a deterministic computation.

histogram: An array of integers where each integer counts the number of values
that fall into a certain range.

10.12 Exercises

Exercise 10.4 Write a class method named areFactors that takes an integer n and

an array of integers, and that returns true if the numbers in the array are all factors

of n (which is to say that n is divisible by all of them). HINT: See Exercise 5.1.

Exercise 10.5 Write a method that takes an array of integers and an integer

named target as arguments, and that returns the first index where target appears

in the array, if it does, and -1 otherwise.

Exercise 10.6 Write a method called arrayHist that takes an array of integers
and that returns a new histogram array. The histogram should contain 11 elements
with the following contents:

element 0 -- number of elements in the array that are <= 0

1 -- number of elements in the array that are == 1

2 -- number of elements in the array that are == 2

...

9 -- number of elements in the array that are == 9

10 -- number of elements in the array that are >= 10

Exercise 10.7 Some programmers disagree with the general rule that variables
and methods should be given meaningful names. Instead, they think variables and
methods should be named after fruit.

For each of the following methods, write one sentence that describes abstractly what
the method does. For each variable, identify the role it plays.

public static int banana (int[] a) {

int grape = 0;

int i = 0;

while (i < a.length) {

grape = grape + a[i];

i++;

}

return grape;

}

128 Arrays

public static int apple (int[] a, int p) {

int i = 0;

int pear = 0;

while (i < a.length) {

if (a[i] == p) pear++;

i++;

}

return pear;

}

public static int grapefruit (int[] a, int p) {

for (int i = 0; i<a.length; i++) {

if (a[i] == p) return i;

}

return -1;

}

The purpose of this exercise is to practice reading code and recognizing the solution

patterns we have seen.

Exercise 10.8

a. What is the output of the following program?

b. Draw a stack diagram that shows the state of the program just before mus

returns.

c. Describe in a few words what mus does.

public static int[] make (int n) {

int[] a = new int[n];

for (int i=0; i<n; i++) {

a[i] = i+1;

}

return a;

}

public static void dub (int[] jub) {

for (int i=0; i<jub.length; i++) {

jub[i] *= 2;

}

}

public static int mus (int[] zoo) {

int fus = 0;

for (int i=0; i<zoo.length; i++) {

fus = fus + zoo[i];

}

return fus;

}

public static void main (String[] args) {

int[] bob = make (5);

10.12 Exercises 129

dub (bob);

System.out.println (mus (bob));

}

Exercise 10.9 Many of the patterns we have seen for traversing arrays can also
be written recursively. It is not common to do so, but it is a useful exercise.

a. Write a method called maxInRange that takes an array of integers and a range
of indices (lowIndex and highIndex), and that finds the maximum value in the
array, considering only the elements between lowIndex and highIndex, including
both ends.

This method should be recursive. If the length of the range is 1, that is, if
lowIndex == highIndex, we know immediately that the sole element in the
range must be the maximum. So that’s the base case.

If there is more than one element in the range, we can break the array into two
pieces, find the maximum in each of the pieces, and then find the maximum of
each of the piece-maxima.

b. Methods like maxInRange can be awkward to use. To find the largest element
in an array, we have to provide a range that includes the entire array.

double max = maxInRange (array, 0, a.length-1);

Write a method called max that takes an array as a parameter and that uses
maxInRange to find and return the largest value. Methods like max are sometimes
called wrapper methods because they provide a layer of abstraction around
an awkward method and provide an interface to the outside world that is easier
to use. The method that actually performs the computation is called the helper

method. We will see this pattern again in Section 14.9.

c. Write a recursive version of find using the wrapper-helper pattern. find should
take an array of integers and a target integer. It should return the index of the
first location where the target integer appears in the array, or -1 if it does not
appear.

Exercise 10.10 One not-very-efficient way to sort the elements of an array is to
find the largest element and swap it with the first element, then find the second-largest
element and swap it with the second, and so on.

a. Write a method called indexOfMaxInRange that takes an array of integers, finds
the largest element in the given range, and returns its index. You can modify
your recursive version of maxInRange or you can write an iterative version from
scratch.

b. Write a method called swapElement that takes an array of integers and two
indices, and that swaps the elements at the given indices.

c. Write a method called sortArray that takes an array of integers and that uses
indexOfMaxInRange and swapElement to sort the array from largest to smallest.

Exercise 10.11 Write a method called letterHist that takes a String as a param-

eter and that returns a histogram of the letters in the String. The zeroeth element of

130 Arrays

the histogram should contain the number of a’s in the String (upper and lower case);

the 25th element should contain the number of z’s. Your solution should only traverse

the String once.

Exercise 10.12 A word is said to be a “doubloon” if every letter that appears
in the word appears exactly twice. For example, the following are all the doubloons I
found in my dictionary.

Abba, Anna, appall, appearer, appeases, arraigning, beriberi, bilabial,
boob, Caucasus, coco, Dada, deed, Emmett, Hannah, horseshoer, in-
testines, Isis, mama, Mimi, murmur, noon, Otto, papa, peep, reappear,
redder, sees, Shanghaiings, Toto

Write a method called isDoubloon that returns true if the given word is a doubloon

and false otherwise.

Exercise 10.13 In Scrabble each player has a set of tiles with letters on them,
and the object of the game is to use those letters to spell words. The scoring system
is complicated, but as a rough guide longer words are often worth more than shorter
words.

Imagine you are given your set of tiles as a String, like "qijibo" and you are given

another String to test, like "jib". Write a method called testWord that takes these

two Strings and returns true if the set of tiles can be used to spell the word. You might

have more than one tile with the same letter, but you can only use each tile once.

Exercise 10.14 In real Scrabble, there are some blank tiles that can be used as
wild cards; that is, a blank tile can be used to represent any letter.

Think of an algorithm for testWord that deals with wild cards. Don’t get bogged

down in details of implementation like how to represent wild cards. Just describe the

algorithm, using English, pseudocode, or Java.

