
Chapter 11

Arrays of Objects

11.1 Composition

By now we have seen several examples of composition (the ability to combine
language features in a variety of arrangements). One of the first examples we
saw was using a method invocation as part of an expression. Another example
is the nested structure of statements: you can put an if statement within a
while loop, or within another if statement, etc.

Having seen this pattern, and having learned about arrays and objects, you
should not be surprised to learn that you can have arrays of objects. In fact,
you can also have objects that contain arrays (as instance variables); you can
have arrays that contain arrays; you can have objects that contain objects, and
so on.

In the next two chapters we will look at some examples of these combinations,
using Card objects as an example.

11.2 Card objects

If you are not familiar with common playing cards, now would be a good time to
get a deck, or else this chapter might not make much sense. There are 52 cards
in a deck, each of which belongs to one of four suits and one of 13 ranks. The
suits are Spades, Hearts, Diamonds and Clubs (in descending order in Bridge).
The ranks are Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen and King. Depending
on what game you are playing, the rank of the Ace may be higher than King or
lower than 2.

If we want to define a new object to represent a playing card, it is pretty obvious
what the instance variables should be: rank and suit. It is not as obvious what
type the instance variables should be. One possibility is Strings, containing
things like "Spade" for suits and "Queen" for ranks. One problem with this

132 Arrays of Objects

implementation is that it would not be easy to compare cards to see which had
higher rank or suit.

An alternative is to use integers to encode the ranks and suits. By “encode,”
I do not mean what some people think, which is to encrypt, or translate into
a secret code. What a computer scientist means by “encode” is something like
“define a mapping between a sequence of numbers and the things I want to
represent.” For example,

Spades 7→ 3
Hearts 7→ 2
Diamonds 7→ 1
Clubs 7→ 0

The obvious feature of this mapping is that the suits map to integers in order,
so we can compare suits by comparing integers. The mapping for ranks is fairly
obvious; each of the numerical ranks maps to the corresponding integer, and for
face cards:

Jack 7→ 11
Queen 7→ 12
King 7→ 13

The reason I am using mathematical notation for these mappings is that they
are not part of the Java program. They are part of the program design, but
they never appear explicitly in the code. The class definition for the Card type
looks like this:

class Card

{

int suit, rank;

public Card () {

this.suit = 0; this.rank = 0;

}

public Card (int suit, int rank) {

this.suit = suit; this.rank = rank;

}

}

As usual, I am providing two constructors, one of which takes a parameter for
each instance variable and the other of which takes no parameters.

To create an object that represents the 3 of Clubs, we would use the new com-
mand:

Card threeOfClubs = new Card (0, 3);

The first argument, 0 represents the suit Clubs.

11.3 The printCard method 133

11.3 The printCard method

When you create a new class, the first step is usually to declare the instance
variables and write constructors. The second step is often to write the standard
methods that every object should have, including one that prints the object,
and one or two that compare objects. I will start with printCard.

In order to print Card objects in a way that humans can read easily, we want to
map the integer codes onto words. A natural way to do that is with an array of
Strings. You can create an array of Strings the same way you create an array
of primitive types:

String[] suits = new String [4];

Then we can set the values of the elements of the array.

suits[0] = "Clubs";

suits[1] = "Diamonds";

suits[2] = "Hearts";

suits[3] = "Spades";

Creating an array and initializing the elements is such a common operation that
Java provides a special syntax for it:

String[] suits = { "Clubs", "Diamonds", "Hearts", "Spades" };

The effect of this statement is identical to that of the separate declaration,
allocation, and assignment. A state diagram of this array might look like:

"Spades"

"Clubs"

"Diamonds"

"Hearts"

suits

The elements of the array are references to the Strings, rather than Strings
themselves. This is true of all arrays of objects, as I will discuss in more detail
later. For now, all we need is another array of Strings to decode the ranks:

String[] ranks = { "narf", "Ace", "2", "3", "4", "5", "6",

"7", "8", "9", "10", "Jack", "Queen", "King" };

The reason for the "narf" is to act as a place-keeper for the zeroeth element of
the array, which will never be used. The only valid ranks are 1–13. This wasted
element is not necessary, of course. We could have started at 0, as usual, but it
is best to encode 2 as 2, and 3 as 3, etc.

Using these arrays, we can select the appropriate Strings by using the suit

and rank as indices. In the method printCard,

public static void printCard (Card c) {

String[] suits = { "Clubs", "Diamonds", "Hearts", "Spades" };

String[] ranks = { "narf", "Ace", "2", "3", "4", "5", "6",

"7", "8", "9", "10", "Jack", "Queen", "King" };

System.out.println (ranks[c.rank] + " of " + suits[c.suit]);

}

134 Arrays of Objects

the expression suits[c.suit] means “use the instance variable suit from the
object c as an index into the array named suits, and select the appropriate
string.” The output of this code

Card card = new Card (1, 11);

printCard (card);

is Jack of Diamonds.

11.4 The sameCard method

The word “same” is one of those things that occur in natural language that
seem perfectly clear until you give it some thought, and then you realize there
is more to it than you expected.

For example, if I say “Chris and I have the same car,” I mean that his car and
mine are the same make and model, but they are two different cars. If I say
“Chris and I have the same mother,” I mean that his mother and mine are one
and the same. So the idea of “sameness” is different depending on the context.

When you talk about objects, there is a similar ambiguity. For example, if two
Cards are the same, does that mean they contain the same data (rank and suit),
or they are actually the same Card object?

To see if two references refer to the same object, we can use the == operator.
For example:

Card card1 = new Card (1, 11);

Card card2 = card1;

if (card1 == card2) {

System.out.println ("card1 and card2 are the same object.");

}

This type of equality is called shallow equality because it only compares the
references, not the contents of the objects.

To compare the contents of the objects—deep equality—it is common to write
a method with a name like sameCard.

public static boolean sameCard (Card c1, Card c2) {

return (c1.suit == c2.suit && c1.rank == c2.rank);

}

Now if we create two different objects that contain the same data, we can use
sameCard to see if they represent the same card:

Card card1 = new Card (1, 11);

Card card2 = new Card (1, 11);

if (sameCard (card1, card2)) {

System.out.println ("card1 and card2 are the same card.");

}

11.5 The compareCard method 135

In this case, card1 and card2 are two different objects that contain the same
data

11

1suit

rank

card1

11

1suit

rank

card2

so the condition is true. What does the state diagram look like when card1 ==

card2 is true?

In Section 7.10 I said that you should never use the == operator on Strings
because it does not do what you expect. Instead of comparing the contents of
the String (deep equality), it checks whether the two Strings are the same
object (shallow equality).

11.5 The compareCard method

For primitive types, there are conditional operators that compare values and
determine when one is greater or less than another. These operators (< and
> and the others) don’t work for object types. For Strings there is a built-in
compareTo method. For Cards we have to write our own, which we will call
compareCard. Later, we will use this method to sort a deck of cards.

Some sets are completely ordered, which means that you can compare any two
elements and tell which is bigger. For example, the integers and the floating-
point numbers are totally ordered. Some sets are unordered, which means that
there is no meaningful way to say that one element is bigger than another. For
example, the fruits are unordered, which is why we cannot compare apples and
oranges. In Java, the boolean type is unordered; we cannot say that true is
greater than false.

The set of playing cards is partially ordered, which means that sometimes we
can compare cards and sometimes not. For example, I know that the 3 of Clubs
is higher than the 2 of Clubs, and the 3 of Diamonds is higher than the 3 of
Clubs. But which is better, the 3 of Clubs or the 2 of Diamonds? One has a
higher rank, but the other has a higher suit.

In order to make cards comparable, we have to decide which is more important,
rank or suit. To be honest, the choice is completely arbitrary. For the sake of
choosing, I will say that suit is more important, because when you buy a new
deck of cards, it comes sorted with all the Clubs together, followed by all the
Diamonds, and so on.

With that decided, we can write compareCard. It will take two Cards as pa-
rameters and return 1 if the first card wins, -1 if the second card wins, and 0
if they tie (indicating deep equality). It is sometimes confusing to keep those
return values straight, but they are pretty standard for comparison methods.

136 Arrays of Objects

First we compare the suits:

if (c1.suit > c2.suit) return 1;

if (c1.suit < c2.suit) return -1;

If neither statement is true, then the suits must be equal, and we have to
compare ranks:

if (c1.rank > c2.rank) return 1;

if (c1.rank < c2.rank) return -1;

If neither of these is true, the ranks must be equal, so we return 0. In this
ordering, aces will appear lower than deuces (2s).

As an exercise, fix it so that aces are ranked higher than Kings, and encapsulate
this code in a method.

11.6 Arrays of cards

The reason I chose Cards as the objects for this chapter is that there is an
obvious use for an array of cards—a deck. Here is some code that creates a new
deck of 52 cards:

Card[] deck = new Card [52];

Here is the state diagram for this object:

deck

1 2 3 510

The important thing to see here is that the array contains only references to
objects; it does not contain any Card objects. The values of the array elements
are initialized to null. You can access the elements of the array in the usual
way:

if (deck[3] == null) {

System.out.println ("No cards yet!");

}

But if you try to access the instance variables of the non-existent Cards, you
will get a NullPointerException.

deck[2].rank; // NullPointerException

Nevertheless, that is the correct syntax for accessing the rank of the “twoeth”
card in the deck (really the third—we started at zero, remember?). This is
another example of composition, the combination of the syntax for accessing an
element of an array and an instance variable of an object.

The easiest way to populate the deck with Card objects is to write a nested
loop:

int index = 0;

for (int suit = 0; suit <= 3; suit++) {

for (int rank = 1; rank <= 13; rank++) {

11.7 The printDeck method 137

deck[index] = new Card (suit, rank);

index++;

}

}

The outer loop enumerates the suits, from 0 to 3. For each suit, the inner loop
enumerates the ranks, from 1 to 13. Since the outer loop iterates 4 times, and
the inner loop iterates 13 times, the total number of times the body is executed
is 52 (13 times 4).

I used the variable index to keep track of where in the deck the next card should
go. The following state diagram shows what the deck looks like after the first
two cards have been allocated:

2

0suit

rank1

0suit

rank

deck

1 2 3 510

Exercise 11.1 Encapsulate this deck-building code in a method called buildDeck

that takes no parameters and that returns a fully-populated array of Cards.

11.7 The printDeck method

Whenever you are working with arrays, it is convenient to have a method that
will print the contents of the array. We have seen the pattern for traversing an
array several times, so the following method should be familiar:

public static void printDeck (Card[] deck) {

for (int i=0; i<deck.length; i++) {

printCard (deck[i]);

}

}

Since deck has type Card[], an element of deck has type Card. Therefore,
deck[i] is a legal argument for printCard.

11.8 Searching

The next method I want to write is findCard, which searches through an array
of Cards to see whether it contains a certain card. It may not be obvious why
this method would be useful, but it gives me a chance to demonstrate two ways
to go searching for things, a linear search and a bisection search.

138 Arrays of Objects

Linear search is the more obvious of the two; it involves traversing the deck and
comparing each card to the one we are looking for. If we find it we return the
index where the card appears. If it is not in the deck, we return -1.

public static int findCard (Card[] deck, Card card) {

for (int i = 0; i< deck.length; i++) {

if (sameCard (deck[i], card)) return i;

}

return -1;

}

The arguments of findCard are named card and deck. It might seem odd to
have a variable with the same name as a type (the card variable has type Card).
This is legal and common, although it can sometimes make code hard to read.
In this case, though, I think it works.

The method returns as soon as it discovers the card, which means that we do
not have to traverse the entire deck if we find the card we are looking for. If the
loop terminates without finding the card, we know the card is not in the deck
and return -1.

If the cards in the deck are not in order, there is no way to search that is faster
than this. We have to look at every card, since otherwise there is no way to be
certain the card we want is not there.

But when you look for a word in a dictionary, you don’t search linearly through
every word. The reason is that the words are in alphabetical order. As a result,
you probably use an algorithm that is similar to a bisection search:

1. Start in the middle somewhere.

2. Choose a word on the page and compare it to the word you are looking
for.

3. If you found the word you are looking for, stop.

4. If the word you are looking for comes after the word on the page, flip to
somewhere later in the dictionary and go to step 2.

5. If the word you are looking for comes before the word on the page, flip to
somewhere earlier in the dictionary and go to step 2.

If you ever get to the point where there are two adjacent words on the page and
your word comes between them, you can conclude that your word is not in the
dictionary. The only alternative is that your word has been misfiled somewhere,
but that contradicts our assumption that the words are in alphabetical order.

In the case of a deck of cards, if we know that the cards are in order, we
can write a version of findCard that is much faster. The best way to write a
bisection search is with a recursive method. That’s because bisection is naturally
recursive.

11.8 Searching 139

The trick is to write a method called findBisect that takes two indices as
parameters, low and high, indicating the segment of the array that should be
searched (including both low and high).

1. To search the array, choose an index between low and high (call it mid)
and compare it to the card you are looking for.

2. If you found it, stop.

3. If the card at mid is higher than your card, search in the range from low

to mid-1.

4. If the card at mid is lower than your card, search in the range from mid+1

to high.

Steps 3 and 4 look suspiciously like recursive invocations. Here’s what this all
looks like translated into Java code:

public static int findBisect (Card[] deck, Card card, int low, int high) {

int mid = (high + low) / 2;

int comp = compareCard (deck[mid], card);

if (comp == 0) {

return mid;

} else if (comp > 0) {

return findBisect (deck, card, low, mid-1);

} else {

return findBisect (deck, card, mid+1, high);

}

}

Rather than call compareCard three times, I called it once and stored the result.

Although this code contains the kernel of a bisection search, it is still missing
a piece. As it is currently written, if the card is not in the deck, it will recurse
forever. We need a way to detect this condition and deal with it properly (by
returning -1).

The easiest way to tell that your card is not in the deck is if there are no cards
in the deck, which is the case if high is less than low. Well, there are still cards
in the deck, of course, but what I mean is that there are no cards in the segment
of the deck indicated by low and high.

With that line added, the method works correctly:

public static int findBisect (Card[] deck, Card card, int low, int high) {

System.out.println (low + ", " + high);

if (high < low) return -1;

int mid = (high + low) / 2;

int comp = deck[mid].compareCard (card);

140 Arrays of Objects

if (comp == 0) {

return mid;

} else if (comp > 0) {

return findBisect (deck, card, low, mid-1);

} else {

return findBisect (deck, card, mid+1, high);

}

}

I added a print statement at the beginning so I could watch the sequence of
recursive calls and convince myself that it would eventually reach the base case.
I tried out the following code:

Card card1 = new Card (1, 11);

System.out.println (findBisect (deck, card1, 0, 51));

And got the following output:

0, 51

0, 24

13, 24

19, 24

22, 24

23

Then I made up a card that is not in the deck (the 15 of Diamonds), and tried
to find it. I got the following:

0, 51

0, 24

13, 24

13, 17

13, 14

13, 12

-1

These tests don’t prove that this program is correct. In fact, no amount of
testing can prove that a program is correct. On the other hand, by looking at
a few cases and examining the code, you might be able to convince yourself.

The number of recursive calls is fairly small, typically 6 or 7. That means we
only had to invoke compareCard 6 or 7 times, compared to up to 52 times if
we did a linear search. In general, bisection is much faster than a linear search,
and even more so for large arrays.

Two common errors in recusive programs are forgetting to include a base case
and writing the recursive call so that the base case is never reached. Either
error will cause an infinite recursion, in which case Java will (eventually) throw
a StackOverflowException.

11.9 Decks and subdecks 141

11.9 Decks and subdecks

Looking at the interface to findBisect

public static int findBisect (Card[] deck, Card card, int low, int high)

it might make sense to think of three of the parameters, deck, low and high,
as a single parameter that specifies a subdeck. This way of thinking is quite
common, and I sometimes think of it as an abstract parameter. What I mean
by “abstract,” is something that is not literally part of the program text, but
which describes the function of the program at a higher level.

For example, when you invoke a method and pass an array and the bounds low
and high, there is nothing that prevents the invoked method from accessing
parts of the array that are out of bounds. So you are not literally sending
a subset of the deck; you are really sending the whole deck. But as long as
the recipient plays by the rules, it makes sense to think of it, abstractly, as a
subdeck.

There is one other example of this kind of abstraction that you might have
noticed in Section 9.7, when I referred to an “empty” data structure. The
reason I put “empty” in quotation marks was to suggest that it is not literally
accurate. All variables have values all the time. When you create them, they
are given default values. So there is no such thing as an empty object.

But if the program guarantees that the current value of a variable is never read
before it is written, then the current value is irrelevant. Abstractly, it makes
sense to think of such a variable as “empty.”

This kind of thinking, in which a program comes to take on meaning beyond
what is literally encoded, is a very important part of thinking like a computer
scientist. Sometimes, the word “abstract” gets used so often and in so many
contexts that it comes to lose its meaning. Nevertheless, abstraction is a central
idea in computer science (as well as many other fields).

A more general definition of “abstraction” is “The process of modeling a complex
system with a simplified description in order to suppress unnecessary details
while capturing relevant behavior.”

11.10 Glossary

encode: To represent one set of values using another set of values, by con-
structing a mapping between them.

shallow equality: Equality of references. Two references that point to the
same object.

deep equality: Equality of values. Two references that point to objects that
have the same value.

abstract parameter: A set of parameters that act together as a single param-
eter.

142 Arrays of Objects

abstraction: The process of interpreting a program (or anything else) at a
higher level than what is literally represented by the code.

11.11 Exercises

Exercise 11.2 Imagine a card game in which the objective is to get a collection
of cards with a total score of 21. The total score for a hand is the total of the scores
for all the cards. The score for each card is as follows: aces count as 1, all face cards
count as ten; for all other cards the score is the same as the rank. Example: the hand
(Ace, 10, Jack, 3) has a total score of 1 + 10 + 10 + 3 = 24.

Write a method called handScore that takes an array of cards as an argument and

that adds up (and returns) the total score. You should assume that the ranks of the

cards are encoded according to the mapping in Section 11.2, with Aces encoded as

1.

Exercise 11.3 The printCard method in Section 11.3 takes a Card object and
returns a string representation of the card.

Write a class method for the Card class called parseCard that takes a String and
returns the corresponding card. You can assume that the String contains the name of
a card in a valid format, as if it had been produced by printCard.

In other words, the string will contain a single space between the rank and the word
“of,” and between the word “of” and the suit. If the string does not contain a legal
card name, the method should return a null object.

The purpose of this problem is to review the concept of parsing and implement a

method that parses a specific set of strings.

Exercise 11.4 Write a method called suitHist that takes an array of Cards as a

parameter and that returns a histogram of the suits in the hand. Your solution should

only traverse the array once.

Exercise 11.5 Write a method called isFlush that takes an array of Cards as a

parameter and that returns true if the hand contains a flush, and false otherwise. A

flush is a poker hand that contains five or more cards of the same suit.

Chapter 12

Objects of Arrays

12.1 The Deck class

In the previous chapter, we worked with an array of objects, but I also men-
tioned that it is possible to have an object that contains an array as an instance
variable. In this chapter we are going to create a new object, called a Deck,
that contains an array of Cards as an instance variable.

The class definition looks like this

class Deck {

Card[] cards;

public Deck (int n) {

cards = new Card[n];

}

}

The name of the instance variable is cards to help distinguish the Deck object
from the array of Cards that it contains. Here is a state diagram showing what
a Deck object looks like with no cards allocated:

cardsdeck

As usual, the constructor initializes the instance variable, but in this case it
uses the new command to create the array of cards. It doesn’t create any cards
to go in it, though. For that we could write another constructor that creates a
standard 52-card deck and populates it with Card objects:

public Deck () {

cards = new Card[52];

int index = 0;

for (int suit = 0; suit <= 3; suit++) {

144 Objects of Arrays

for (int rank = 1; rank <= 13; rank++) {

cards[index] = new Card (suit, rank);

index++;

}

}

}

Notice how similar this method is to buildDeck, except that we had to change
the syntax to make it a constructor. To invoke it, we use the new command:

Deck deck = new Deck ();

Now that we have a Deck class, it makes sense to put all the methods that
pertain to Decks in the Deck class definition. Looking at the methods we have
written so far, one obvious candidate is printDeck (Section 11.7). Here’s how
it looks, rewritten to work with a Deck object:

public static void printDeck (Deck deck) {

for (int i=0; i<deck.cards.length; i++) {

Card.printCard (deck.cards[i]);

}

}

The most obvious thing we have to change is the type of the parameter, from
Card[] to Deck. The second change is that we can no longer use deck.length

to get the length of the array, because deck is a Deck object now, not an array.
It contains an array, but it is not, itself, an array. Therefore, we have to write
deck.cards.length to extract the array from the Deck object and get the
length of the array.

For the same reason, we have to use deck.cards[i] to access an element of
the array, rather than just deck[i]. The last change is that the invocation of
printCard has to say explicitly that printCard is defined in the Card class.

For some of the other methods, it is not obvious whether they should be included
in the Card class or the Deck class. For example, findCard takes a Card and a
Deck as arguments; you could reasonably put it in either class. As an exercise,
move findCard into the Deck class and rewrite it so that the first parameter is
a Deck object rather than an array of Cards.

12.2 Shuffling

For most card games you need to be able to shuffle the deck; that is, put the
cards in a random order. In Section 10.6 we saw how to generate random
numbers, but it is not obvious how to use them to shuffle a deck.

One possibility is to model the way humans shuffle, which is usually by dividing
the deck in two and then reassembling the deck by choosing alternately from
each deck. Since humans usually don’t shuffle perfectly, after about 7 iterations
the order of the deck is pretty well randomized. But a computer program would
have the annoying property of doing a perfect shuffle every time, which is not

12.3 Sorting 145

really very random. In fact, after 8 perfect shuffles, you would find the deck
back in the same order you started in. For a discussion of that claim, see
http://www.wiskit.com/marilyn/craig.html or do a web search with the
keywords “perfect shuffle.”

A better shuffling algorithm is to traverse the deck one card at a time, and at
each iteration choose two cards and swap them.

Here is an outline of how this algorithm works. To sketch the program, I am
using a combination of Java statements and English words that is sometimes
called pseudocode:

for (int i=0; i<deck.length; i++) {

// choose a random number between i and deck.cards.length

// swap the ith card and the randomly-chosen card

}

The nice thing about using pseudocode is that it often makes it clear what
methods you are going to need. In this case, we need something like randomInt,
which chooses a random integer between the parameters low and high, and
swapCards which takes two indices and switches the cards at the indicated
positions.

You can probably figure out how to write randomInt by looking at Section 10.6,
although you will have to be careful about possibly generating indices that are
out of range.

You can also figure out swapCards yourself. The only tricky thing is to decide
whether to swap just the references to the cards or the contents of the cards.
Does it matter which one you choose? Which is faster?

I will leave the remaining implementation of these methods as an exercise.

12.3 Sorting

Now that we have messed up the deck, we need a way to put it back in order.
Ironically, there is an algorithm for sorting that is very similar to the algorithm
for shuffling. This algorithm is sometimes called selection sort because it
works by traversing the array repeatedly and selecting the lowest remaining
card each time.

During the first iteration we find the lowest card and swap it with the card in
the 0th position. During the ith, we find the lowest card to the right of i and
swap it with the ith card.

Here is pseudocode for selection sort:

for (int i=0; i<deck.length; i++) {

// find the lowest card at or to the right of i

// swap the ith card and the lowest card

}

146 Objects of Arrays

Again, the pseudocode helps with the design of the helper methods. In
this case we can use swapCards again, so we only need one new one, called
findLowestCard, that takes an array of cards and an index where it should
start looking.

Once again, I am going to leave the implementation up to the reader.

12.4 Subdecks

How should we represent a hand or some other subset of a full deck? One pos-
sibility is to create a new class called Hand, which might extend Deck. Another
possibility, the one I will demonstrate, is to represent a hand with a Deck object
that happens to have fewer than 52 cards.

We might want a method, subdeck, that takes a Deck and a range of indices,
and that returns a new Deck that contains the specified subset of the cards:

public static Deck subdeck (Deck deck, int low, int high) {

Deck sub = new Deck (high-low+1);

for (int i = 0; i<sub.cards.length; i++) {

sub.cards[i] = deck.cards[low+i];

}

return sub;

}

The length of the subdeck is high-low+1 because both the low card and high
card are included. This sort of computation can be confusing, and lead to
“off-by-one” errors. Drawing a picture is usually the best way to avoid them.

Because we provide an argument with the new command, the contructor that
gets invoked will be the first one, which only allocates the array and doesn’t
allocate any cards. Inside the for loop, the subdeck gets populated with copies
of the references from the deck.

The following is a state diagram of a subdeck being created with the parameters
low=3 and high=7. The result is a hand with 5 cards that are shared with the
original deck; i.e. they are aliased.

deck cards

sub cards

12.5 Shuffling and dealing 147

I have suggested that aliasing is not generally a good idea, since changes in
one subdeck will be reflected in others, which is not the behavior you would
expect from real cards and decks. But if the objects in question are immutable,
then aliasing is less dangerous. In this case, there is probably no reason ever to
change the rank or suit of a card. Instead we will create each card once and then
treat it as an immutable object. So for Cards aliasing is a reasonable choice.

12.5 Shuffling and dealing

In Section 12.2 I wrote pseudocode for a shuffling algorithm. Assuming that
we have a method called shuffleDeck that takes a deck as an argument and
shuffles it, we can create and shuffle a deck:

Deck deck = new Deck ();

shuffleDeck (deck);

Then, to deal out several hands, we can use subdeck:

Deck hand1 = subdeck (deck, 0, 4);

Deck hand2 = subdeck (deck, 5, 9);

Deck pack = subdeck (deck, 10, 51);

This code puts the first 5 cards in one hand, the next 5 cards in the other, and
the rest into the pack.

When you thought about dealing, did you think we should give out one card at a
time to each player in the round-robin style that is common in real card games?
I thought about it, but then realized that it is unnecessary for a computer
program. The round-robin convention is intended to mitigate imperfect shuffling
and make it more difficult for the dealer to cheat. Neither of these is an issue
for a computer.

This example is a useful reminder of one of the dangers of engineering metaphors:
sometimes we impose restrictions on computers that are unnecessary, or expect
capabilities that are lacking, because we unthinkingly extend a metaphor past
its breaking point. Beware of misleading analogies.

12.6 Mergesort

In Section 12.3, we saw a simple sorting algorithm that turns out not to be very
efficient. In order to sort n items, it has to traverse the array n times, and each
traversal takes an amount of time that is proportional to n. The total time,
therefore, is proportional to n2.

In this section I will sketch a more efficient algorithm called mergesort. To
sort n items, mergesort takes time proportional to n log n. That may not seem
impressive, but as n gets big, the difference between n2 and n log n can be
enormous. Try out a few values of n and see.

148 Objects of Arrays

The basic idea behind mergesort is this: if you have two subdecks, each of which
has been sorted, it is easy (and fast) to merge them into a single, sorted deck.
Try this out with a deck of cards:

1. Form two subdecks with about 10 cards each and sort them so that when
they are face up the lowest cards are on top. Place both decks face up in
front of you.

2. Compare the top card from each deck and choose the lower one. Flip it
over and add it to the merged deck.

3. Repeat step two until one of the decks is empty. Then take the remaining
cards and add them to the merged deck.

The result should be a single sorted deck. Here’s what this looks like in pseu-
docode:

public static Deck merge (Deck d1, Deck d2) {

// create a new deck big enough for all the cards

Deck result = new Deck (d1.cards.length + d2.cards.length);

// use the index i to keep track of where we are in

// the first deck, and the index j for the second deck

int i = 0;

int j = 0;

// the index k traverses the result deck

for (int k = 0; k<result.cards.length; k++) {

// if d1 is empty, d2 wins; if d2 is empty, d1 wins;

// otherwise, compare the two cards

// add the winner to the new deck

}

return result;

}

The best way to test merge is to build and shuffle a deck, use subdeck to form
two (small) hands, and then use the sort routine from the previous chapter to
sort the two halves. Then you can pass the two halves to merge to see if it
works.

If you can get that working, try a simple implementation of mergeSort:

public static Deck mergeSort (Deck deck) {

// find the midpoint of the deck

// divide the deck into two subdecks

// sort the subdecks using sortDeck

// merge the two halves and return the result

}

12.7 Glossary 149

Then, if you get that working, the real fun begins! The magical thing about
mergesort is that it is recursive. At the point where you sort the subdecks, why
should you invoke the old, slow version of sort? Why not invoke the spiffy new
mergeSort you are in the process of writing?

Not only is that a good idea, it is necessary in order to achieve the performance
advantage I promised. In order to make it work, though, you have to add a
base case so that it doesn’t recurse forever. A simple base case is a subdeck
with 0 or 1 cards. If mergesort receives such a small subdeck, it can return it
unmodified, since it is already sorted.

The recursive version of mergesort should look something like this:

public static Deck mergeSort (Deck deck) {

// if the deck is 0 or 1 cards, return it

// find the midpoint of the deck

// divide the deck into two subdecks

// sort the subdecks using mergesort

// merge the two halves and return the result

}

As usual, there are two ways to think about recursive programs: you can think
through the entire flow of execution, or you can make the “leap of faith.” I
have deliberately constructed this example to encourage you to make the leap
of faith.

When you were using sortDeck to sort the subdecks, you didn’t feel compelled
to follow the flow of execution, right? You just assumed that the sortDeck

method would work because you already debugged it. Well, all you did to make
mergeSort recursive was replace one sorting algorithm with another. There is
no reason to read the program differently.

Well, actually, you have to give some thought to getting the base case right
and making sure that you reach it eventually, but other than that, writing the
recursive version should be no problem. Good luck!

12.7 Glossary

pseudocode: A way of designing programs by writing rough drafts in a com-
bination of English and Java.

helper method: Often a small method that does not do anything enormously
useful by itself, but which helps another, more useful, method.

12.8 Exercises

Exercise 12.1 Write a version of findBisect that takes a subdeck as an argument,

rather than a deck and an index range (see Section 11.8). Which version is more error-

prone? Which version do you think is more efficient?

150 Objects of Arrays

Exercise 12.2 In the previous version of the Card class, a deck is implemented
as an array of Cards. For example, when we pass a “deck” as a parameter, the actual
type of the parameter is Card[].

In this chapter, we developed an alternative representation for a deck, an object type
named Deck that contains an array of cards as an instance variable. In this exercise,
you will implement the new representation of a deck.

a. Add a second file, named Deck.java to the program. This file will contain the
definition of the Deck class.

b. Type in the constructors for the Deck class as shown in Section 12.1.

c. Of the methods currently in the Card class, decide which ones would be more
appropriate as members of the new Deck class. Move them there and make any
changes necessary to get the program to compile and run again.

d. Look over the program and identify every place where an array of Cards is being
used to represent a deck. Modify the program throughout so that it uses a
Deck object instead. You can use the version of printDeck in Section 12.1 as an
example.

It is probably a good idea to make this transformation one method at a time,
and test the program after each change. On the other hand, if you are confident
you know what you are doing, you can make most of the changes with search-
and-replace commands.

Exercise 12.3 The goal of this exercise is to implement the shuffling and sorting
algorithms from this chapter.

a. Write a method called swapCards that takes a deck (array of cards) and two
indices, and that switches the cards at those two locations.

HINT: it should switch the references to the two cards, rather than the contents
of the two objects. This is not only faster, but it makes it easier to deal with
the case where cards are aliased.

b. Write a method called shuffleDeck that uses the algorithm in Section 12.2.
You might want to use the randomInt method from Exercise 10.2.

c. Write a method called findLowestCard that uses the compareCard method to
find the lowest card in a given range of the deck (from lowIndex to highIndex,
including both).

d. Write a method called sortDeck that arranges a deck of cards from lowest to
highest.

Exercise 12.4 In order to make life more difficult for card-counters, many casinos
now use automatic shuffling machines that can do incremental shuffling, which means
that after each hand, the used cards are returned to the deck and, instead of reshuffling
the entire deck, the new cards are inserted in random locations.

Write a method called incrementalShuffle that takes a Deck and a Card and that

inserts the card into the deck at a random location. This is an example of an incre-

mental algorithm.

12.8 Exercises 151

Exercise 12.5 The goal of this exercise is to write a program that generates
random poker hands and classifies them, so that we can estimate the probability of
the various poker hands. Don’t worry if you don’t play poker; I’ll tell you everything
you need to know.

a. As a warmup, write a program that uses shuffleDeck and subdeck to generate
and print four random poker hands with five cards each. Did you get anything
good? Here are the possible poker hands, in increasing order of value:

pair: two cards with the same rank

two pair: two pairs of cards with the same rank

three of a kind: three cards with the same rank

straight: five cards with ranks in sequence

flush: five cards with the same suit

full house: three cards with one rank, two cards with another

four of a kind: four cards with the same rank

straight flush: five cards in sequence and with the same suit

b. Write a method called isFlush that takes a Deck as a parameter and returns a
boolean indicating whether the hand contains a flush.

c. Write a method called isThreeKind that takes a hand and returns a boolean
indicating whether the hand contains Three of a Kind.

d. Write a loop that generates a few thousand hands and checks whether they
contain a flush or three of a kind. Estimate the probability of getting one of
those hands.

e. Write methods that test for the other poker hands. Some are easier than others.
You might find it useful to write some general-purpose helper methods that can
be used for more than one test.

f. In some poker games, players get seven cards each, and they form a hand with
the best five of the seven. Modify your program to generate seven-card hands
and recompute the probabilities.

Exercise 12.6 As a special challenge, think of algorithms to check for various

poker hands if there are wild cards. For example, if “deuces are wild,” that means

that if you have a card with rank 2, you can use it to represent any card in the deck.

Exercise 12.7 The goal of this exercise is to implement mergesort.

a. Using the pseudocode in Section 12.6, write the method called merge. Be sure
to test it before trying to use it as part of a mergeSort.

b. Write the simple version of mergeSort, the one that divides the deck in half, uses
sortDeck to sort the two halves, and uses merge to create a new, fully-sorted
deck.

c. Write the fully recursive version of mergeSort. Remember that sortDeck is
a modifier and mergeSort is a function, which means that they get invoked
differently:

sortDeck (deck); // modifies existing deck

deck = mergeSort (deck); // replaces old deck with new

152 Objects of Arrays

Chapter 13

Object-oriented

programming

13.1 Programming languages and styles

There are many programming languages in the world, and almost as many pro-
gramming styles (sometimes called paradigms). Three styles that have appeared
in this book are procedural, functional, and object-oriented. Although Java is
usually thought of as an object-oriented language, it is possible to write Java
programs in any style. The style I have demonstrated in this book is pretty
much procedural. Existing Java programs and the built-in Java packages are
written in a mixture of all three styles, but they tend to be more object-oriented
than the programs in this book.

It’s not easy to define what object-oriented programming is, but here are some
of its characteristics:

• Object definitions (classes) usually correspond to relevant real-world ob-
jects. For example, in Chapter 12.1, the creation of the Deck class was a
step toward object-oriented programming.

• The majority of methods are object methods (the kind you invoke on an
object) rather than class methods (the kind you just invoke). So far all
the methods we have written have been class methods. In this chapter we
will write some object methods.

• The language feature most associated with object-oriented programming
is inheritance. I will cover inheritance later in this chapter.

Recently object-oriented programming has become quite popular, and there are
people who claim that it is superior to other styles in various ways. I hope that
by exposing you to a variety of styles I have given you the tools you need to
understand and evaluate these claims.

154 Object-oriented programming

13.2 Object and class methods

There are two types of methods in Java, called class methods and object
methods. So far, every method we have written has been a class method.
Class methods are identified by the keyword static in the first line. Any
method that does not have the keyword static is an object method.

Although we have not written any object methods, we have invoked some.
Whenever you invoke a method “on” an object, it’s an object method. For
example, charAt and the other methods we invoked on String objects are all
object methods.

Anything that can be written as a class method can also be written as an object
method, and vice versa. Sometimes it is just more natural to use one or the
other. For reasons that will be clear soon, object methods are often shorter
than the corresponding class methods.

13.3 The current object

When you invoke a method on an object, that object becomes the current
object. Inside the method, you can refer to the instance variables of the current
object by name, without having to specify the name of the object.

Also, you can refer to the current object using the keyword this. We have
already seen this used in constructors. In fact, you can think of constructors
as being a special kind of object method.

13.4 Complex numbers

As a running example for the rest of this chapter we will consider a class def-
inition for complex numbers. Complex numbers are useful for many branches
of mathematics and engineering, and many computations are performed using
complex arithmetic. A complex number is the sum of a real part and an imagi-
nary part, and is usually written in the form x + yi, where x is the real part, y
is the imaginary part, and i represents the square root of -1. Thus, i · i = −1.

The following is a class definition for a new object type called Complex:

class Complex

{

// instance variables

double real, imag;

// constructor

public Complex () {

this.real = 0.0; this.imag = 0.0;

}

13.5 A function on Complex numbers 155

// constructor

public Complex (double real, double imag) {

this.real = real;

this.imag = imag;

}

}

There should be nothing surprising here. The instance variables are doubles that
contain the real and imaginary parts. The two constructors are the usual kind:
one takes no parameters and assigns default values to the instance variables, the
other takes parameters that are identical to the instance variables. As we have
seen before, the keyword this is used to refer to the object being initialized.

In main, or anywhere else we want to create Complex objects, we have the option
of creating the object and then setting the instance variables, or doing both at
the same time:

Complex x = new Complex ();

x.real = 1.0;

x.imag = 2.0;

Complex y = new Complex (3.0, 4.0);

13.5 A function on Complex numbers

Let’s look at some of the operations we might want to perform on complex
numbers. The absolute value of a complex number is defined to be

√

x2 + y2.
The abs method is a pure function that computes the absolute value. Written
as a class method, it looks like this:

// class method

public static double abs (Complex c) {

return Math.sqrt (c.real * c.real + c.imag * c.imag);

}

This version of abs calculates the absolute value of c, the Complex object it re-
ceives as a parameter. The next version of abs is an object method; it calculates
the absolute value of the current object (the object the method was invoked on).
Thus, it does not receive any parameters:

// object method

public double abs () {

return Math.sqrt (real*real + imag*imag);

}

I removed the keyword static to indicate that this is an object method. Also,
I eliminated the unnecessary parameter. Inside the method, I can refer to the
instance variables real and imag by name without having to specify an object.
Java knows implicitly that I am referring to the instance variables of the current
object. If I wanted to make it explicit, I could have used the keyword this:

// object method

public double abs () {

156 Object-oriented programming

return Math.sqrt (this.real * this.real + this.imag * this.imag);

}

But that would be longer and not really any clearer. To invoke this method, we
invoke it on an object, for example

Complex y = new Complex (3.0, 4.0);

double result = y.abs();

13.6 Another function on Complex numbers

Another operation we might want to perform on complex numbers is addition.
You can add complex numbers by adding the real parts and adding the imagi-
nary parts. Written as a class method, that looks like:

public static Complex add (Complex a, Complex b) {

return new Complex (a.real + b.real, a.imag + b.imag);

}

To invoke this method, we would pass both operands as arguments:

Complex sum = add (x, y);

Written as an object method, it would take only one argument, which it would
add to the current object:

public Complex add (Complex b) {

return new Complex (real + b.real, imag + b.imag);

}

Again, we can refer to the instance variables of the current object implicitly,
but to refer to the instance variables of b we have to name b explicitly using
dot notation. To invoke this method, you invoke it on one of the operands and
pass the other as an argument.

Complex sum = x.add (y);

From these examples you can see that the current object (this) can take the
place of one of the parameters. For this reason, the current object is sometimes
called an implicit parameter.

13.7 A modifier

As yet another example, we’ll look at conjugate, which is a modifier method
that transforms a Complex number into its complex conjugate. The complex
conjugate of x + yi is x − yi.

As a class method, this looks like:

public static void conjugate (Complex c) {

c.imag = -c.imag;

}

As an object method, it looks like

13.8 The toString method 157

public void conjugate () {

imag = -imag;

}

By now you should be getting the sense that converting a method from one kind
to another is a mechanical process. With a little practice, you will be able to
do it without giving it much thought, which is good because you should not be
constrained to writing one kind of method or the other. You should be equally
familiar with both so that you can choose whichever one seems most appropriate
for the operation you are writing.

For example, I think that add should be written as a class method because it is
a symmetric operation of two operands, and it makes sense for both operands
to appear as parameters. To me, it seems odd to invoke the method on one of
the operands and pass the other as an argument.

On the other hand, simple operations that apply to a single object can be written
most concisely as object methods (even if they take some additional arguments).

13.8 The toString method

Every object type has a method called toString that generates a string rep-
resentation of the object. When you print an object using print or println,
Java invokes the object’s toString method. The default version of toString
returns a string that contains the type of the object and a unique identifier (see
Section 9.6). When you define a new object type, you can override the default
behavior by providing a new method with the behavior you want.

Here is what toString might look like for the Complex class:

public String toString () {

return real + " + " + imag + "i";

}

The return type for toString is String, naturally, and it takes no parameters.
You can invoke toString in the usual way:

Complex x = new Complex (1.0, 2.0);

String s = x.toString ();

or you can invoke it indirectly through println:

System.out.println (x);

In this case, the output is 1.0 + 2.0i.

This version of toString does not look good if the imaginary part is negative.
As an exercise, write a better version.

13.9 The equals method

When you use the == operator to compare two objects, what you are really
asking is, “Are these two things the same object?” That is, do both objects
refer to the same location in memory.

158 Object-oriented programming

For many types, that is not the appropriate definition of equality. For example,
two complex numbers are equal if their real parts are equal and their imaginary
parts are equal. They don’t have to be the same object.

When you define a new object type, you can provide your own definition of
equality by providing an object method called equals. For the Complex class,
this looks like:

public boolean equals (Complex b) {

return (real == b.real && imag == b.imag);

}

By convention, equals is always an object method that returns a boolean.

The documentation of equals in the Object class provides some guidelines you
should keep in mind when you make up your own definition of equality:

The equals method implements an equivalence relation:

• It is reflexive: for any reference value x, x.equals(x) should
return true.

• It is symmetric: for any reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true.

• It is transitive: for any reference values x, y, and z, if
x.equals(y) returns true and y.equals(z) returns true,
then x.equals(z) should return true.

• It is consistent: for any reference values x and y, multiple invo-
cations of x.equals(y) consistently return true or consistently
return false.

• For any reference value x, x.equals(null) should return
false.

The definition of equals I provided satisfies all these conditions except one.
Which one? As an exercise, fix it.

13.10 Invoking one object method from another

As you might expect, it is legal and common to invoke one object method from
another. For example, to normalize a complex number, you divide both parts
by the absolute value. It may not be obvious why this is useful, but it is.

Let’s write the method normalize as an object method, and let’s make it a
modifier.

public void normalize () {

double d = this.abs();

real = real/d;

imag = imag/d;

}

13.11 Oddities and errors 159

The first line finds the absolute value of the current object by invoking abs on
the current object. In this case I named the current object explicitly, but I could
have left it out. If you invoke one object method within another, Java assumes
that you are invoking it on the current object.

Exercise 13.1 Rewrite normalize as a pure function. Then rewrite it as a class

method.

13.11 Oddities and errors

If you have both object methods and class methods in the same class definition,
it is easy to get confused. A common way to organize a class definition is to put
all the constructors at the beginning, followed by all the object methods and
then all the class methods.

You can have an object method and a class method with the same name, as
long as they do not have the same number and types of parameters. As with
other kinds of overloading, Java decides which version to invoke by looking at
the arguments you provide.

Now that we know what the keyword static means, you have probably figured
out that main is a class method, which means that there is no “current object”
when it is invoked.

Since there is no current object in a class method, it is an error to use the
keyword this. If you try, you might get an error message like: “Undefined
variable: this.” Also, you cannot refer to instance variables without using dot
notation and providing an object name. If you try, you might get “Can’t make
a static reference to nonstatic variable...” This is not one of the better error
messages, since it uses some non-standard language. For example, by “nonstatic
variable” it means “instance variable.” But once you know what it means, you
know what it means.

13.12 Inheritance

The language feature that is most often associated with object-oriented pro-
gramming is inheritance. Inheritance is the ability to define a new class that
is a modified version of a previously-defined class (including built-in classes).

The primary advantage of this feature is that you can add new methods or
instance variables to an existing class without modifying the existing class. This
is particularly useful for built-in classes, since you can’t modify them even if you
want to.

The reason inheritance is called “inheritance” is that the new class inherits
all the instance variables and methods of the existing class. Extending this
metaphor, the existing class is sometimes called the parent class.

160 Object-oriented programming

13.13 Drawable rectangles

An an example of inheritance, we are going to take the existing Rectangle

class and make it “drawable.” That is, we are going to create a new class called
DrawableRectangle that will have all the instance variables and methods of a
Rectangle, plus an additional method called draw that will take a Graphics

object as a parameter and draw the rectangle.

The class definition looks like this:

import java.awt.*;

class DrawableRectangle extends Rectangle {

public void draw (Graphics g) {

g.drawRect (x, y, width, height);

}

}

Yes, that’s really all there is in the whole class definition. The first line imports
the java.awt package, which is where Rectangle and Graphics are defined.

The next line indicates that DrawableRectangle inherits from Rectangle. The
keyword extends is used to identify the class we are inheriting from, which is
called the parent class.

The rest is the definition of the draw method, which refers to the instance vari-
ables x, y, width and height. It might seem odd to refer to instance variables
that don’t appear in this class definition, but remember that they are inherited
from the parent class.

To create and draw a DrawableRectangle, you could use the following:

public static void draw (Graphics g, int x, int y, int width, int height) {

DrawableRectangle dr = new DrawableRectangle ();

dr.x = 10; dr.y = 10;

dr.width = 200; dr.height = 200;

dr.draw (g);

}

The parameters of draw are a Graphics object and the bounding box of the
drawing area (not the coordinates of the rectangle).

It might seem odd to use the new command for a class that has no constructors.
DrawableRectangle inherits the default constructor of its parent class, so there
is no problem there.

We can set the instance variables of dr and invoke methods on it in the
usual way. When we invoke draw, Java invokes the method we defined in
DrawableRectangle. If we invoked grow or some other Rectangle method
on dr, Java would know to use the method defined in the parent class.

