
16.3 Linked Queue 191

return first == null;

}

}

So far it is straightforward. In an empty queue, both first and last are null.
To check whether a list is empty, we only have to check one of them.

add is a little more complicated because we have to deal with several special
cases.

public void add (Object obj) {

Node node = new Node (obj, null);

if (last != null) {

last.next = node;

}

last = node;

if (first == null) {

first = last;

}

}

The first condition checks to make sure that last refers to a node; if it does
then we have to make it refer to the new node.

The second condition deals with the special case where the list was initially
empty. In this case both first and last refer to the new node.

remove also deals with several special cases.

public Object remove () {

Node result = first;

if (first != null) {

first = first.next;

}

if (first == null) {

last = null;

}

return result;

}

The first condition checks whether there were any nodes in the queue. If so, we
have to copy the next node into first. The second condition deals with the
special case that the list is now empty, in which case we have to make last null.

As an exercise, draw diagrams showing these operations in both the normal case
and in the special cases, and convince yourself that they are correct.

Clearly, this implementation is more complicated than the veneer implementa-
tion, and it is more difficult to demonstrate that it is correct. The advantage is
that we have achieved the goal: add and remove are constant time operations.

192 Queues and Priority Queues

16.4 Circular buffer

Another common implementation of a queue is a circular buffer. “Buffer” is
a general name for a temporary storage location, although it often refers to an
array, as it does in this case. What it means to say a buffer is “circular” should
become clear in a minute.

The implementation of a circular buffer is similar to the array implementation
of a stack in Section 15.12. The queue items are stored in an array, and we use
indices to keep track of where we are in the array. In the stack implementation,
there was a single index that pointed to the next available space. In the queue
implementation, there are two indices: first points to the space in the array
that contains the first customer in line and next points to the next available
space.

The following figure shows a queue with two items (represented by dots).

first next

0 2

first next

There are two ways to think of the variables first and last. Literally, they are
integers, and their values are shown in boxes on the right. Abstractly, though,
they are indices of the array, and so they are often drawn as arrows pointing to
locations in the array. The arrow representation is convenient, but you should
remember that the indices are not references; they are just integers.

Here is an incomplete array implementation of a queue:

public class Queue {

public Object[] array;

public int first, next;

public Queue () {

array = new Object[128];

first = 0;

next = 0;

}

public boolean isEmpty () {

return first == next;

}

The instance variables and the constructor are straightforward, although again
we have the problem that we have to choose an arbitrary size for the array.

16.4 Circular buffer 193

Later we will solve that problem, as we did with the stack, by resizing the array
if it gets full.

The implementation of isEmpty is a little surprising. You might have thought
that first == 0 would indicate an empty queue, but that neglects the fact that
the head of the queue is not necessarily at the beginning of the array. Instead,
we know that the queue is empty if head equals next, in which case there are no
items left. Once we see the implementation of add and remove, that condition
will make more sense.

public void add (Object item) {

array[next] = item;

next++;

}

public Object remove () {

Object result = array[first];

first++;

return result;

}

add looks very much like push in Section 15.12; it puts the new item in the next
available space and then increments the index.

remove is similar. It takes the first item from the queue and then increments
first so it refers to the new head of the queue. The following figure shows
what the queue looks like after both items have been removed.

first

22

first next

next

It is always true that next points to an available space. If first catches up
with next and points to the same space, then first is referring to an “empty”
location, and the queue is empty. I put “empty” in quotation marks because it
is possible that the location that first points to actually contains a value (we
do nothing to ensure that empty locations contain null); on the other hand,
since we know the queue is empty, we will never read this location, so we can
think of it, abstractly, as empty.

Exercise 16.1 Modify remove so that it returns null if the queue is empty.

The next problem with this implementation is that eventually it will run out of
space. When we add an item we increment next and when we remove an item

194 Queues and Priority Queues

we increment first, but we never decrement either. What happens when we
get to the end of the array?

The following figure shows the queue after we add four more items:

first next

2

first

6

next

The array is now full. There is no “next available space,” so there is nowhere
for next to point. One possibility is that we could resize the array, as we did
with the stack implementation. But in that case the array would keep getting
bigger regardless of how many items were actually in queue. A better solution
is to wrap around to the beginning of the array and reuse the spaces there. This
“wrap around” is the reason this implementation is called a circular buffer.

One way to wrap the index around is to add a special case whenever we incre-
ment an index:

next++;

if (next == array.length) next = 0;

A fancy alternative is to use the modulus operator:

next = (next + 1) % array.length;

Either way, we have one last problem to solve. How do we know if the queue
is really full, meaning that we cannot add another item? The following figure
shows what the queue looks like when it is “full.”

first next

2

first

0

next

There is still one empty space in the array, but the queue is full because if we
add another item, then we have to increment next such that next == first,
and in that case it would appear that the queue was empty!

To avoid that, we sacrifice one space in the array. So how can we tell if the
queue is full?

16.5 Priority queue 195

if ((next + 1) % array.length == first)

And what should we do if the array is full? In that case resizing the array is
probably the only option.

Exercise 16.2 Write an implementation of a queue using a circular buffer that

resizes itself when necessary.

16.5 Priority queue

The Priority Queue ADT has the same interface as the Queue ADT, but different
semantics. The interface is:

constructor: Create a new, empty queue.

add: Add a new item to the queue.

remove: Remove and return an item from the queue. The item that is returned
is the one with the highest priority.

isEmpty: Check whether the queue is empty.

The semantic difference is that the item that is removed from the queue is not
necessarily the first one that was added. Rather, it is whatever item in the queue
has the highest priority. What the priorities are, and how they compare to each
other, are not specified by the Priority Queue implementation. It depends on
what the items are that are in the queue.

For example, if the items in the queue have names, we might choose them in
alphabetical order. If they are bowling scores, we might choose from highest to
lowest, but if they are golf scores, we would go from lowest to highest.

So we face a new problem. We would like an implementation of Priority Queue
that is generic—it should work with any kind of object—but at the same time
the code that implements Priority Queue needs to have the ability to compare
the objects it contains.

We have seen a way to implement generic data structures using Objects, but
that does not solve this problem, because there is no way to compare Objects

unless we know what type they are.

The answer lies in a Java feature called a metaclass.

16.6 Metaclass

A metaclass is a set of classes that provide a common set of methods. The meta-
class definition specifies the requirements a class must satisfy to be a member
of the set.

196 Queues and Priority Queues

Often metaclasses have names that end in “able” to indicate the fundamental
capability the metaclass requires. For example, any class that provides a method
named draw can be a member of the metaclass named Drawable. Any class that
contains a method named start can be a member of the metaclass Runnable.

Java provides a built-in metaclass that we can use in an implementation of
a Priority Queue. It is called Comparable, and it means what it says. Any
class that belongs to the Comparable metaclass has to provide a method named
compareTo that compares two objects and returns a value indicating whether
one is larger or smaller than the other, or whether they are the same.

Many of the built-in Java classes are members of the Comparable metaclass,
including numeric wrapper classes like Integer and Double.

In the next section I will show how to write an ADT that manipulates a meta-
class. Then we will see how to write a new class that belongs to an existing
metaclass. In the next chapter we will see how to define a new metaclass.

16.7 Array implementation of Priority Queue

In the implementation of the Priority Queue, every time we specify the type of
the items in the queue, we specify the metaclass Comparable. For example, the
instance variables are an array of Comparables and an integer:

public class PriorityQueue {

private Comparable[] array;

private int index;

}

As usual, index is the index of the next available location in the array. The
instance variables are declared private so that other classes cannot have direct
access to them.

The constructor and isEmpty are similar to what we have seen before. The
initial size of the array is arbitrary.

public PriorityQueue () {

array = new Comparable [16];

index = 0;

}

public boolean isEmpty () {

return index == 0;

}

add is similar to push:

public void add (Comparable item) {

if (index == array.length) {

resize ();

}

16.8 A Priority Queue client 197

array[index] = item;

index++;

}

The only substantial method in the class is remove, which has to traverse the
array to find and remove the largest item:

public Comparable remove () {

if (index == 0) return null;

int maxIndex = 0;

// find the index of the item with the highest priority

for (int i=1; i<index; i++) {

if (array[i].compareTo (array[maxIndex]) > 0) {

maxIndex = i;

}

}

Comparable result = array[maxIndex];

// move the last item into the empty slot

index--;

array[maxIndex] = array[index];

return result;

}

As we traverse the array, maxIndex keeps track of the index of the largest
element we have seen so far. What it means to be the “largest” is determined
by compareTo. In this case the compareTo method is provided by the Integer

class, and it does what we expect—larger (more positive) numbers win.

16.8 A Priority Queue client

The implementation of Priority Queue is written entirely in terms of Comparable
objects, but there is no such thing as a Comparable object! Go ahead, try to
create one:

Comparable comp = new Comparable (); // ERROR

You’ll get a compile-time message that says something like
“java.lang.Comparable is an interface. It can’t be instantiated.” In Java,
metaclasses are called interfaces. I have avoided this word so far because it
also means several other things, but now you have to know.

Why can’t metaclasses be instantiated? Because a metaclass only specifies re-
quirements (you must have a compareTo method); it does not provide an im-
plementation.

To create a Comparable object, you have to create one of the objects that
belongs to the Comparable set, like Integer. Then you can use that object
anywhere a Comparable is called for.

198 Queues and Priority Queues

PriorityQueue pq = new PriorityQueue ();

Integer item = new Integer (17);

pq.add (item);

This code creates a new, empty Priority Queue and a new Integer object.
Then it adds the Integer into the queue. add is expecting a Comparable as
a parameter, so it is perfectly happy to take an Integer. If we try to pass
a Rectangle, which does not belong to Comparable, we get a compile-time
message like, “Incompatible type for method. Explicit cast needed to convert
java.awt.Rectangle to java.lang.Comparable.”

That’s the compiler telling us that if we want to make that conversion, we have
to do it explicitly. We might try to do what it says:

Rectangle rect = new Rectangle ();

pq.add ((Comparable) rect);

But in that case we get a run-time error, a ClassCastException. When the
Rectangle tries to pass as a Comparable, the run-time system checks whether
it satisfies the requirements, and rejects it. So that’s what we get for following
the compiler’s advice.

To get items out of the queue, we have to reverse the process:

while (!pq.isEmpty ()) {

item = (Integer) pq.remove ();

System.out.println (item);

}

This loop removes all the items from the queue and prints them. It assumes
that the items in the queue are Integers. If they were not, we would get a
ClassCastException.

16.9 The Golfer class

Finally, let’s look at how we can make a new class that belongs to Comparable.
As an example of something with an unusual definition of “highest” priority,
we’ll use golfers:

public class Golfer implements Comparable {

String name;

int score;

public Golfer (String name, int score) {

this.name = name;

this.score = score;

}

}

The class definition and the constructor are pretty much the same as always; the
difference is that we have to declare that Golfer implements Comparable. In

16.9 The Golfer class 199

this case the keyword implements means that Golfer implements the interface
specified by Comparable.

If we try to compile Golfer.java at this point, we get something like
“class Golfer must be declared abstract. It does not define int com-
pareTo(java.lang.Object) from interface java.lang.Comparable.” In other words,
to be a Comparable, Golfer has to provide a method named compareTo. So
let’s write one:

public int compareTo (Object obj) {

Golfer that = (Golfer) obj;

int a = this.score;

int b = that.score;

// for golfers, low is good!

if (a<b) return 1;

if (a>b) return -1;

return 0;

}

Two things here are a little surprising. First, the parameter is an Object.
That’s because in general the caller doesn’t know what type the objects are that
are being compared. For example, in PriorityQueue.java when we invoke
compareTo, we pass a Comparable as a parameter. We don’t have to know
whether it is an Integer or a Golfer or whatever.

Inside compareTo we have to convert the parameter from an Object to a Golfer.
As usual, there is a risk when we do this kind of cast: if we cast to the wrong
type we get an exception.

Finally, we can create some golfers:

Golfer tiger = new Golfer ("Tiger Woods", 61);

Golfer phil = new Golfer ("Phil Mickelson", 72);

Golfer hal = new Golfer ("Hal Sutton", 69);

And put them in the queue:

pq.add (tiger);

pq.add (phil);

pq.add (hal);

When we pull them out:

while (!pq.isEmpty ()) {

golfer = (Golfer) pq.remove ();

System.out.println (golfer);

}

They appear in descending order (for golfers):

Tiger Woods 61

Hal Sutton 69

Phil Mickelson 72

200 Queues and Priority Queues

When we switched from Integers to Golfers, we didn’t have to make any
changes in PriorityQueue.java at all. So we succeeded in maintaining a barrier
between PriorityQueue and the classes that use it, allowing us to reuse the code
without modification. Furthermore, we were able to give the client code control
over the definition of compareTo, making this implementation of PriorityQueue
more versatile.

16.10 Glossary

queue: An ordered set of objects waiting for a service of some kind.

queueing discipline: The rules that determine which member of a queue is
removed next.

FIFO: “first in, first out,” a queueing discipline in which the first member to
arrive is the first to be removed.

priority queue: A queueing discipline in which each member has a priority
determined by external factors. The member with the highest priority is
the first to be removed.

Priority Queue: An ADT that defines the operations one might perform on
a priority queue.

veneer: A class definition that implements an ADT with method definitions
that are invocations of other methods, sometimes with simple transforma-
tions. The veneer does no significant work, but it improves or standardizes
the interface seen by the client.

performance hazard: A danger associated with a veneer that some of the
methods might be implemented inefficiently in a way that is not apparent
to the client.

constant time: An operation whose run time does not depend on the size of
the data structure.

linear time: An operation whose run time is a linear function of the size of
the data structure.

linked queue: An implementation of a queue using a linked list and references
to the first and last nodes.

circular buffer: An implementation of a queue using an array and indices of
the first element and the next available space.

metaclass: A set of classes. The metaclass specification lists the requirements
a class must satisfy to be included in the set.

interface: The Java word for a metaclass. Not to be confused with the more
broad meaning of the word interface.

16.11 Exercises 201

16.11 Exercises

Exercise 16.3 This question is based on Exercise 9.3.

Write a compareTo method for the Rational class that would allow Rational to im-

plement Comparable. Hint: don’t forget that the parameter is an Object.

Exercise 16.4 Write a class definition for SortedList, which extends LinkedList.
A SortedList is similar to a LinkedList; the difference is that the elements have to be
Comparable, and the list is sorted in decreasing order.

Write an object method for SortedList called add that takes a Comparable as a
parameter and that adds the new object into the list, at the appropriate place so that
the list stays sorted.

If you want, you can write a helper method in the Node class.

Exercise 16.5 Write an object method for the LinkedList class named maximum

that can be invoked on a LinkedList object, and that returns the largest cargo object
in the list, or null if the list is empty.

You can assume that every cargo element belongs to a class that belongs to the meta-

class Comparable, and that any two elements can be compared to each other.

Exercise 16.6 Write an implementation of a Priority Queue using a linked list.
There are three ways you might proceed:

• A Priority Queue might contain a LinkedList object as an instance variable.

• A Priority Queue might contain a reference to the first Node object in a linked
list.

• A Priority Queue might extend (inherit from) the existing LinkedList class.

Think about the pros and cons of each and choose one. Also, you can choose whether

to keep the list sorted (slow add, fast remove) or unsorted (slow remove, fast add).

Exercise 16.7 An event queue is a data structure that keeps track of a set of
events, where each event has a time associated with it. The ADT is:

constructor: make a new, empty event queue

add: put a new event in the queue. The parameters are the event, which is an Object,
and the time the event occurs, which is a Date object. The event Object must
not be null.

nextTime: return the Date at which the next event occurs, where the “next” event is
the one in the queue with the earliest time. Do not remove the event from the
queue. Return null if the queue is empty.

nextEvent: return the next event (an Object) from the queue and remove it from the
queue. Return null if the queue is empty.

The Date class is defined in java.util and it implements Comparable. According to
the documentation, its compareTo method returns “the value 0 if the argument Date
is equal to this Date; a value less than 0 if this Date is before the Date argument; and
a value greater than 0 if this Date is after the Date argument.”

Write an implementation of an event queue using the PriorityQueue ADT. You should
not make any assumptions about how the PriorityQueue is implemented.

HINT: create a class named Event that contains a Date and an event Object, and that

implements Comparable appropriately.

202 Queues and Priority Queues

Chapter 17

Trees

17.1 A tree node

Like lists, trees are made up of nodes. A common kind of tree is a binary tree,
in which each node contains a reference to two other nodes (possibly null). The
class definition looks like this:

public class Tree {

Object cargo;

Tree left, right;

}

Like list nodes, tree nodes contain cargo: in this case a generic Object. The
other instance variables are named left and right, in accordance with a stan-
dard way to represent trees graphically:

1cargo

rightleft

rightleft rightleft

2cargo 3cargo

tree

The top of the tree (the node referred to by tree) is called the root. In keeping
with the tree metaphor, the other nodes are called branches and the nodes at
the tips with null references are called leaves. It may seem odd that we draw
the picture with the root at the top and the leaves at the bottom, but that is
not the strangest thing.

204 Trees

To make things worse, computer scientists mix in yet another metaphor: the
family tree. The top node is sometimes called a parent and the nodes it refers
to are its children. Nodes with the same parent are called siblings, and so on.

Finally, there is also a geometric vocabulary for taking about trees. I already
mentioned left and right, but there is also “up” (toward the parent/root) and
down (toward the children/leaves). Also, all the nodes that are the same dis-
tance from the root comprise a level of the tree.

I don’t know why we need three metaphors for talking about trees, but there it
is.

17.2 Building trees

The process of assembling tree nodes is similar to the process of assembling lists.
We have a constructor for tree nodes that initializes the instance variables.

public Tree (Object cargo, Tree left, Tree right) {

this.cargo = cargo;

this.left = left;

this.right = right;

}

We allocate the child nodes first:

Tree left = new Tree (new Integer(2), null, null);

Tree right = new Tree (new Integer(3), null, null);

We can create the parent node and link it to the children at the same time:

Tree tree = new Tree (new Integer(1), left, right);

This code produces the state shown in the previous figure.

17.3 Traversing trees

The most natural way to traverse a tree is recursively. For example, to add up
all the integers in a tree, we could write this class method:

public static int total (Tree tree) {

if (tree == null) return 0;

Integer cargo = (Integer) tree.cargo;

return cargo.intValue() + total (tree.left) + total (tree.right);

}

This is a class method because we would like to use null to represent the empty
tree, and make the empty tree the base case of the recursion. If the tree is empty,
the method returns 0. Otherwise it makes two recursive calls to find the total
value of its two children. Finally, it adds in its own cargo and returns the total.

Although this method works, there is some difficulty fitting it into an object-
oriented design. It should not appear in the Tree class because it requires the

17.4 Expression trees 205

cargo to be Integer objects. If we make that assumption in Tree.java then
we lose the advantages of a generic data structure.

On the other hand, this code accesses the instance variables of the Tree nodes,
so it “knows” more than it should about the implementation of the tree. If we
change that implementation later this code will break.

Later in this chapter we will develop ways to solve this problem, allowing client
code to traverse trees containing any kinds of objects without breaking the
abstraction barrier between the client code and the implementation. Before we
get there, let’s look at an application of trees.

17.4 Expression trees

A tree is a natural way to represent the structure of a mathematical expression.
Unlike other notations, it can represent the computation unambiguously. For
example, the infix expression 1 + 2 * 3 is ambiguous unless we know that the
multiplication happens before the addition.

The following figure represents the same computation:

1cargo

rightleft

rightleft

2cargo

rightleft

3cargo

rightleft

cargo

rightleft

cargo

*

+

The nodes can be operands like 1 and 2 or operators like + and *. Operands
are leaf nodes; operator nodes contain references to their operands (all of these
operators are binary, meaning they have exactly two operands).

Looking at this figure, there is no question what the order of operations is:
the multiplication happens first in order to compute the first operand of the
addition.

Expression trees like this have many uses. The example we are going to look
at is translation from one format (postfix) to another (infix). Similar trees are
used inside compilers to parse, optimize and translate programs.

206 Trees

17.5 Traversal

I already pointed out that recursion provides a natural way to traverse a tree.
We can print the contents of an expression tree like this:

public static void print (Tree tree) {

if (tree == null) return;

System.out.print (tree + " ");

print (tree.left);

print (tree.right);

}

In other words, to print a tree, first print the contents of the root, then print the
entire left subtree, then print the entire right subtree. This way of traversing
a tree is called a preorder, because the contents of the root appear before the
contents of the children.

For the example expression the output is + 1 * 2 3. This is different from
both postfix and infix; it is a new notation called prefix, in which the operators
appear before their operands.

You might suspect that if we traverse the tree in a different order we get the
expression in a different notation. For example, if we print the subtrees first,
and then the root node:

public static void printPostorder (Tree tree) {

if (tree == null) return;

printPostorder (tree.left);

printPostorder (tree.right);

System.out.print (tree + " ");

}

We get the expression in postfix (1 2 3 * +)! As the name of the method
implies, this order of traversal is called postorder. Finally, to traverse a tree
inorder, we print the left tree, then the root, then the right tree:

public static void printInorder (Tree tree) {

if (tree == null) return;

printInorder (tree.left);

System.out.print (tree + " ");

printInorder (tree.right);

}

The result is 1 + 2 * 3, which is the expression in infix.

To be fair, I have to point out that I omitted an important complication. Some-
times when we write an expression in infix we have to use parentheses to preserve
the order of operations. So an inorder traversal is not quite sufficient to generate
an infix expression.

Nevertheless, with a few improvements, the expression tree and the three recur-
sive traversals provide a general way to translate expressions from one format
to another.

17.6 Encapsulation 207

17.6 Encapsulation

As I mentioned before, there is a problem with the way we have been traversing
trees: it breaks down the barrier between the client code (the application that
uses the tree) and the provider code (the Tree implementation). Ideally, tree
code should be general; it shouldn’t know anything about expression trees.
And the code that generates and traverses the expression tree shouldn’t know
about the implementation of the trees. This design criterion is called object
encapsulation to distinguish it from the encapsulation we saw in Section 6.6,
which we might call method encapsulation.

In the current version, the Tree code knows too much about the client. Instead,
the Tree class should provide the general capability of traversing a tree in var-
ious ways. As it traverses, it should perform operations on each node that are
specified by the client.

To facilitate this separation of interests, we will create a new metaclass, called
Visitable. The items stored in a tree will be required to be visitable, which
means that they define a method named visit that does whatever the client
wants done to each node. That way the Tree can perform the traversal and the
client can perform the node operations.

Here are the steps we have to perform to wedge a metaclass between a client
and a provider:

1. Define a metaclass that specifies the methods the provider code will need
to invoke on its components.

2. Write the provider code in terms of the new metaclass, as opposed to
generic Objects.

3. Define a class that belongs to the metaclass and that implements the
required methods as appropriate for the client.

4. Write the client code to use the new class.

The next few sections demonstrate these steps.

17.7 Defining a metaclass

There are actually two ways to implement a metaclass in Java, an an interface
or as an abstract class. The differences between them aren’t important for
now, so we’ll start by defining an interface.

An interface definition looks a lot like a class definition, with two differences:

• The keyword class is replaced with interface, and

• The method definitions have no bodies.

208 Trees

An interface definition specifies the methods a class has to implement in order
to be in the metaclass. The specification includes the name, parameter types,
and return type of each method.

The definition of Visitable is

public interface Visitable {

public void visit ();

}

That’s it! The definition of visit looks like any other method definition, except
that it has no body. This definition specifies that any class that implements
Visitable has to have a method named visit that takes no parameters and
that returns void.

Like other class definitions, interface definitions go in a file with the same name
as the class (in this case Visitable.java).

17.8 Implementing a metaclass

If we are using an expression tree to generate infix, then “visiting” a node means
printing its contents. Since the contents of an expression tree are tokens, we’ll
create a new class called Token that implements Visitable

public class Token implements Visitable {

String str;

public Token (String str) {

this.str = str;

}

public void visit () {

System.out.print (str + " ");

}

}

When we compile this class definition (which is in a file named Token.java), the
compiler checks whether the methods provided satisfy the requirements specified
by the metaclass. If not, it will produce an error message. For example, if we
misspell the name of the method that is supposed to be visit, we might get
something like, “class Token must be declared abstract. It does not define void
visit() from interface Visitable.” This is one of many error messages where the
solution suggested by the compiler is wrong. When it says the class “must be
declared abstract,” what it means is that you have to fix the class so that it
implements the interface properly. Sometimes I think the people who write
these messages should be beaten.

The next step is to modify the parser to put Token objects into the tree instead
of Strings. Here is a small example:

17.9 The Vector class 209

String expr = "1 2 3 * +";

StringTokenizer st = new StringTokenizer (expr, " +-*/", true);

String token = st.nextToken();

Tree tree = new Tree (new Token (token), null, null));

This code takes the first token in the string and wraps it in a Token object,
then puts the Token into a tree node. If the Tree requires the cargo to be
Visitable, it will convert the Token to be a Visitable object. When we
remove the Visitable from the tree, we will have to cast it back into a Token.

Exercise 17.1 Write a version of printPreorder called visitPreorder that tra-

verses the tree and invokes visit on each node in preorder.

The flow of execution for methods like visitPreorder is unusual. The client
invokes a method provided by the Tree implementation, and then the tree im-
plementation invokes a method provided by the client. This pattern is called a
callback; it is a good way to make provider code more general without breaking
down the abstraction barrier.

17.9 The Vector class

The Vector is a built-in Java class in the java.util package. It is an imple-
mentation of an array of Objects, with the added feature that it can resize itself
automatically, so we don’t have to.

Before using the Vector class, you should understand a few concepts. Every
Vector has a capacity, which is the amount of space that has been allocated to
store values, and a size, which is the number of values that are actually in the
vector.

The following figure is a simple diagram of a Vector that contains three ele-
ments, but it has a capacity of seven.

There are two sets of methods for accessing the elements of a vector. They
provide different semantics and different error-checking capabilities, and they
are easy to get confused.

The simpler accessors methods are get and set, which provide semantics similar
to the array index operator []. get takes an integer index and returns the
element at the indicated position. set takes an index and an element, and
stores the new element at the indicated position, replacing the existing element.

get and set do not change the size of the vector (number of elements). It is the
responsibility of the client code to make sure that the vector has sufficient size
before invoking set or get. The size method returns the number of elements

210 Trees

in the Vector. If you try to access an element that does not exist (in this case
the elements with indices 3 through 6), you will get an ArrayIndexOutOfBounds

exception.

The other set of methods includes several versions of add and remove. These
methods change the size of the Vector and, if necessary, the capacity. One
version of add takes an element as a parameter and adds it to the end of the
Vector. This method is safe in the sense that it will not cause an exception.

Another version of add takes an index and an element and, like set, it puts the
new element at the given position. The difference is that add doesn’t replace
the existing element; it increases the size of the Vector and shifts elements to
the right to make room for the new one. Thus, the invocation v.add (0, elt)

add the new element at the beginning of the Vector. Unfortunately, this method
is neither safe nor efficient; it can cause an ArrayIndexOutOfBounds exception
and, in most implementations, it is linear time (proportional to the size of the
Vector).

Most of the time the client doesn’t have to worry about capacity. Whenever
the size of the Vector changes, the capacity is updated automatically. For
performance reasons, some applications take control of this function, which is
why there are additional methods for increasing and decreasing capacity.

Because the client code has no access to the implementation of a vector, it is
not clear how we should traverse one. Of course, one possibility is to use a loop
variable as an index into the vector:

for (int i=0; i<v.size(); i++) {

System.out.println (v.get(i));

}

There’s nothing wrong with that, but there is another way that serves to demon-
strate the Iterator class. Vectors provide a method named iterator that
returns an Iterator object that makes it possible to traverse the vector.

17.10 The Iterator class

Iterator is an interface in the java.util package. It specifies three methods:

hasNext: Does this iteration have more elements?

next: Return the next element, or throw an exception if there is none.

remove: Remove the most recent element from the data structure we are travers-
ing.

The following example uses an iterator to traverse and print the elements of a
vector.

17.11 Glossary 211

Iterator it = vector.iterator ();

while (it.hasNext ()) {

System.out.println (it.next ());

}

Once the Iterator is created, it is a separate object from the origi-
nal Vector. Subsequent changes in the Vector are not reflected in the
Iterator. In fact, if you modify the Vector after creating an Iterator, the
Iterator becomes invalid. If you access the Iterator again, it will cause a
ConcurrentModification exception.

In a previous section we used the Visitable metaclass to allow a client to
traverse a data structure without knowing the details of its implementation.
Iterators provide another way to do the same thing. In the first case, the
provider performs the iteration and invokes client code to “visit” each element.
In the second case the provider gives the client an object that it can use to select
elements one at a time (albeit in an order controlled by the provider).

Exercise 17.2 Write a class named PreIterator that implements the Iterator

interface, and write a method named preorderIterator for the Tree class that returns
a PreIterator that selects the elements of the Tree in preorder.

HINT: The easiest way to build an Iterator is to put elements into a Vector in the

order you want and then invoke iterator on the Vector.

17.11 Glossary

binary tree: A tree in which each node refers to 0, 1, or 2 dependent nodes.

root: The top-most node in a tree, to which no other nodes refer.

leaf: A bottom-most node in a tree, which refers to no other nodes.

parent: The node that refers to a given node.

child: One of the nodes referred to by a node.

level: A set of nodes equidistant from the root.

prefix notation: A way of writing a mathematical expression with each oper-
ator appearing before its operands.

preorder: A way to traverse a tree, visiting each node before its children.

postorder: A way to traverse a tree, visiting the children of each node before
the node itself.

inorder: A way to traverse a tree, visiting the left subtree, then the root, then
the right subtree.

class variable: A static variable declared outside of any method. It is acces-
sible from any method.

212 Trees

binary operator: An operator that takes two operands.

object encapsulation: The design goal of keeping the implementations of two
objects as separate as possible. Neither class should have to know the
details of the implementation of the other.

method encapsulation: The design goal of keeping the interface of a method
separate from the details of its implementation.

callback: A flow of execution where provider code invokes a method provided
by the client.

17.12 Exercises

Exercise 17.3

a. What is the value of the postfix expression 1 2 + 3 *?

b. What is the postfix expression that is equivalent to the infix expression 1 + 2

* 3?

c. What is the value of the postfix expression 17 1 - 5 /, assuming that / per-
forms integer division?

Exercise 17.4 The height of a tree is the longest path from the root to any leaf.
Height can be defined recursively as follows:

• The height of a null tree is 0.

• The height of a non-null tree is 1 + max (leftHeight, rightHeight), where
leftHeight is the height of the left child and rightHeight is the height of the
right child.

Write a method named height that calculates the height of the Tree provided as a

parameter.

Exercise 17.5 Imagine we define a Tree that contains Comparable objects as
cargo:

public class ComparableTree {

Comparable cargo;

Tree left, right;

}

Write a Tree class method named findMax that returns the largest cargo in the tree,

where “largest” is defined by compareTo.

Exercise 17.6 A binary search tree is a special kind of tree where, for every node
N:

all the cargo in the left subtree of N < the cargo in node N

and

17.12 Exercises 213

the cargo in node N < all the cargo in the right subtree of N

Using the following class definition, write an object method called contains that takes
an Object as an argument and that returns true if the object appears in the tree or
false otherwise. You can assume that the target object and all the objects in the tree
are Comparable.

public class SearchTree {

Comparable cargo;

SearchTree left, right;

}

Exercise 17.7 In mathematics, a set is a collection of elements that contains
no duplicates. The interface java.util.Set is intended to model a mathematical set.
The methods it requires are add, contains, containsAll, remove, size, and iterator.

Write a class called TreeSet that extends SearchTree and that implements Set. To

keep things simple, you can assume that null does not appear in the tree or as an

argument to any of the methods.

Exercise 17.8 Write a method called union that takes two Sets as parameters and
returns a new TreeSet that contains all the elements that appear in either Set.

You can add this method to your implementation of TreeSet, or create a new class

that extends java.util.TreeSet and provides union.

Exercise 17.9 Write a method called intersection that takes two Sets as param-
eters and returns a new TreeSet that contains all the elements that appear in both
Sets.

union and intersection are generic in the sense that the parameters can be any type

in the metaclass Set. The two parameters don’t even have to be the same type.

Exercise 17.10 One of the reasons the Comparable interface is useful is that
it allows an object type to specify whatever ordering is appropriate. For types like
Integer and Double, the appropriate ordering is obvious, but there are lots of examples
where the ordering depends on what the objects are supposed to represent. In golf,
for example, a low score is better than a high score; if we compare two Golfer objects,
the one with the lower score wins.

a. Write a definition of a Golfer class that contains a name and an integer score
as instance variables. The class should implement Comparable and provide a
compareTo method that gives higher priority to the lower score.

b. Write a program that reads a file containing the names and scores of a set of
golfers. It should create Golfer objects, put them in a Priority Queue and then
take them out and print them. They should appear in descending order of
priority, which is increasing order by score.

Tiger Woods 61

Hal Sutton 69

Phil Mickelson 72

Allen Downey 158

214 Trees

HINT: See Section C for code that reads lines from a file.

Exercise 17.11 Write an implementation of a Stack using a Vector. Think about

whether it is better to push new elements onto the beginning or the end of the Vec-

tor.

Chapter 18

Heap

18.1 Array implementation of a tree

What does it mean to “implement” a tree? So far we have only seen one
implementation of a tree, a linked data structure similar to a linked list. But
there are other structures we would like to identify as trees. Anything that can
perform the basic set of tree operations should be recognized as a tree.

So what are the tree operations? In other words, how do we define the Tree
ADT?

constructor: Build an empty tree.

getLeft: Return the left child of this node.

getRight: Return the left child of this node.

getParent: Return the parent of this node.

getCargo: Return the cargo object from this node.

setCargo: Assign a cargo object to this node (and create the node, if necessary).

In the linked implementation, the empty tree is represented by the special value
null. getLeft and getRight are performed by accessing the instance vari-
ables of the node, as are getCargo and setCargo. We have not implemented
getParent yet (you might think about how to do it).

There is another implementation of trees that uses arrays and indices instead of
objects and references. To see how it works, we will start by looking at a hybrid
implementation that uses both arrays and objects.

This figure shows a tree like the ones we have been looking at, although it is
laid out at an angle. At the right there is an array of references that refer to
the cargo in the nodes.

216 Heap

0

1

2

3

4

5

6

7

Each node in the tree has a unique index. Furthermore, the indices have been
assigned to the nodes according to a deliberate pattern, in order to achieve the
following results:

1. The left child of the node with index i has index 2i.

2. The right child of the node with index i has index 2i + 1.

3. The parent of the node with index i has index i/2 (rounded down).

Using these formulas, we can implement getLeft, getRight and getParent

just by doing arithmetic; we don’t have to use the references at all!

Since we don’t use the references, we can get rid of them, which means that
what used to be a tree node is now just cargo and nothing else. That means we
can implement the tree as an array of cargo objects; we don’t need tree nodes.

Here’s what one implementation looks like:

public class ArrayTree {

Object[] array;

int size;

public ArrayTree () {

array = new Object [128];

}

No surprises so far. The only instance variable is the array of Objects that
contains the tree’s cargo. The constructor initializes the array with an arbitrary
initial capacity; the result is an empty tree.

Here is the simplest implementation of getCargo and setCargo.

public Object getCargo (int i) {

return array[i];

}

public void setCargo (int i, Object obj) {

array[i] = obj;

}

18.1 Array implementation of a tree 217

These methods don’t do any error-checking, so if the parameter is wrong, they
might generate an ArrayIndexOutOfBounds exception.

The implementation of getLeft, getRight and getParent is just arithmetic:

public int getLeft (int i) { return 2*i; }

public int getRight (int i) { return 2*i + 1; }

public int parent (int i) { return i/2; }

Finally we are ready to build a tree. In another class (the client), we would
write

ArrayTree tree = new ArrayTree ();

tree.setCargo (1, "cargo for root");

The constructor builds an empty tree. Invoking setCargo puts the string
"cargo for root" into the root node.

To add children to the root nodes:

tree.setCargo (tree.getLeft(1), "cargo for left");

tree.setCargo (tree.getRight(1), "cargo for right");

In the tree class we could provide a method that prints the contents of the tree
in preorder.

public void print (int i) {

Object cargo = tree.getCargo (i);

if (cargo == null) return;

System.out.println (cargo);

print (getRight (i));

print (getLeft (i));

}

To invoke this method, we have to pass the index of the root as a parameter.

tree.print (1);

The output is

cargo for root

cargo for left

cargo for right

This implementation provides the basic operations that define a tree. As I
pointed out, the linked implementation of a tree provides the same operations,
but the syntax is different.

In some ways, the array implementation is a bit awkward. For one thing, we
assume that null cargo indicates a non-existent node, but that means that we
can’t put a null object in the tree as cargo.

Another problem is that subtrees aren’t represented as objects; they are repre-
sented by indices into the array. To pass a tree node as a parameter, we have
to pass a reference to the tree object and an index into the array. Finally, some
operations that are easy in the linked implementation, like replacing an entire
subtree, are harder in the array implementation.

218 Heap

On the other hand, this implementation saves space, since there are no links
between the nodes, and there are several operations that are easier and faster in
the array implementation. It turns out that these operations are just the ones
we want to implement a Heap.

A Heap is an implementation of the Priority Queue ADT that is based on the
array implementation of a Tree. It turns out to be more efficient than the other
implementations we have seen.

To prove this claim, we will proceed in a few steps. First, we need to develop
ways of comparing the performance of various implementations. Next, we will
look at the operations Heaps perform. Finally, we will compare the Heap im-
plementation of a Priority Queue to the others (arrays and lists) and see why
the Heap is considered particularly efficient.

18.2 Performance analysis

When we compare algorithms, we would like to have a way to tell when one
is faster than another, or takes less space, or uses less of some other resource.
It is hard to answer those questions in detail, because the time and space used
by an algorithm depend on the implementation of the algorithm, the particular
problem being solved, and the hardware the program runs on.

The objective of this section is to develop a way of talking about performance
that is independent of all of those things, and only depends on the algorithm
itself. To start, we will focus on run time; later we will talk about other re-
sources.

Our decisions are guided by a series of constraints:

1. First, the performance of an algorithm depends on the hardware it runs
on, so we usually don’t talk about run time in absolute terms like seconds.
Instead, we usually count the number of abstract operations the algorithm
performs.

2. Second, performance often depends on the particular problem we are try-
ing to solve – some problems are easier than others. To compare algo-
rithms, we usually focus on either the worst-case scenario or an average
(or common) case.

3. Third, performance depends on the size of the problem (usually, but not
always, the number of elements in a collection). We address this depen-
dence explicitly by expressing run time as a function of problem size.

4. Finally, performance depends on details of the implementation like object
allocation overhead and method invocation overhead. We usually ignore
these details because they don’t affect the rate at which the number of
abstract operations increases with problem size.

18.2 Performance analysis 219

To make this process more concrete, consider two algorithms we have already
seen for sorting an array of integers. The first is selection sort, which we saw
in Section 12.3. Here is the pseudocode we used there.

selectionsort (array) {

for (int i=0; i<array.length; i++) {

// find the lowest item at or to the right of i

// swap the ith item and the lowest item

}

}

To perform the operations specified in the pseudocode, we wrote helper methods
named findLowest and swap. In pseudocode, findLowest looks like this

// find the index of the lowest item between

// i and the end of the array

findLowest (array, i) {

// lowest contains the index of the lowest item so far

lowest = i;

for (int j=i+1; j<array.length; j++) {

// compare the jth item to the lowest item so far

// if the jth item is lower, replace lowest with j

}

return lowest;

}

And swap looks like this:

swap (i, j) {

// store a reference to the ith card in temp

// make the ith element of the array refer to the jth card

// make the jth element of the array refer to temp

}

To analyze the performance of this algorithm, the first step is to decide what
operations to count. Obviously, the program does a lot of things: it increments
i, compares it to the length of the deck, it searches for the largest element of
the array, etc. It is not obvious what the right thing is to count.

It turns out that a good choice is the number of times we compare two items.
Many other choices would yield the same result in the end, but this is easy to
do and we will find that it allows us to compare the sorting algorithms most
easily.

The next step is to define the “problem size.” In this case it is natural to choose
the size of the array, which we’ll call n.

Finally, we would like to derive an expression that tells us how many abstract
operations (in this case, comparisons) we have to do, as a function of n.

We start by analyzing the helper methods. swap copies several references, but
it doesn’t perform any comparisons, so we ignore the time spent performing

220 Heap

swaps. findLowest starts at i and traverses the array, comparing each item
to lowest. The number of items we look at is n − i, so the total number of
comparisons is n − i − 1.

Next we consider how many times findLowest gets invoked and what the value
of i is each time. The last time it is invoked, i is n − 2 so the number of
comparisons is 1. The previous iteration performs 2 comparisons, and so on.
During the first iteration, i is 0 and the number of comparisons is n − 1.

So the total number of comparisons is 1 + 2 + · · · + n − 1. This sum is equal
to n2/2 − n/2. To describe this algorithm, we would typically ignore the lower
order term (n/2) and say that the total amount of work is proportional to n2.
Since the leading order term is quadratic, we might also say that this algorithm
is quadratic time.

18.3 Analysis of mergesort

In Section 12.6 I claimed that mergesort takes time that is proportional to
n log n, but I didn’t explain how or why. Now I will.

Again, we start by looking at pseudocode for the algorithm. For mergesort, it’s

mergeSort (array) {

// find the midpoint of the array

// divide the array into two halves

// sort the halves recursively

// merge the two halves and return the result

}

At each level of the recursion, we split the array in half, make two recursive
calls, and then merge the halves. Graphically, the process looks like this:

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

n

2

1

n/2

merges# arrays
items per comparisons

per mergearray total work

2−1

0

~n

1

2

n

n/2

1

2

n−1

n/2−1

~n

~n

n/2

0

Each line in the diagram is a level of the recursion. At the top, a single array
divides into two halves. At the bottom, n arrays with one element each are
merged into n/2 arrays with 2 elements each.

The first two columns of the table show the number of arrays at each level and
the number of items in each array. The third column shows the number of
merges that take place at each level of recursion. The next column is the one

