
Chapter 4

Programming in the Large I:
Subroutines

One way to break up a complex program into manageable pieces is to use subroutines.
A subroutine consists of the instructions for carrying out a certain task, grouped together and
given a name. Elsewhere in the program, that name can be used as a stand-in for the whole set
of instructions. As a computer executes a program, whenever it encounters a subroutine name,
it executes all the instructions necessary to carry out the task associated with that subroutine.

Subroutines can be used over and over, at different places in the program. A subroutine
can even be used inside another subroutine. This allows you to write simple subroutines and
then use them to help write more complex subroutines, which can then be used in turn in other
subroutines. In this way, very complex programs can be built up step-by-step, where each step
in the construction is reasonably simple.

As mentioned in Section 3.8, subroutines in Java can be either static or non-static. This
chapter covers static subroutines only. Non-static subroutines, which are used in true object-
oriented programming, will be covered in the next chapter.

4.1 Black Boxes

A subroutine consists of instructions for performing some task, chunked together and
given a name. “Chunking” allows you to deal with a potentially very complicated task as
a single concept. Instead of worrying about the many, many steps that the computer might
have to go though to perform that task, you just need to remember the name of the subroutine.
Whenever you want your program to perform the task, you just call the subroutine. Subroutines
are a major tool for dealing with complexity.

A subroutine is sometimes said to be a “black box” because you can’t see what’s “inside”
it (or, to be more precise, you usually don’t want to see inside it, because then you would
have to deal with all the complexity that the subroutine is meant to hide). Of course, a black
box that has no way of interacting with the rest of the world would be pretty useless. A black
box needs some kind of interface with the rest of the world, which allows some interaction
between what’s inside the box and what’s outside. A physical black box might have buttons
on the outside that you can push, dials that you can set, and slots that can be used for passing
information back and forth. Since we are trying to hide complexity, not create it, we have the
first rule of black boxes:

117

118 CHAPTER 4. SUBROUTINES

The interface of a black box should be fairly straight-

forward, well-defined, and easy to understand.

Are there any examples of black boxes in the real world? Yes; in fact, you are surrounded by
them. Your television, your car, your VCR, your refrigerator. . . . You can turn your television
on and off, change channels, and set the volume by using elements of the television’s interface—
dials, remote control, don’t forget to plug in the power—without understanding anything about
how the thing actually works. The same goes for a VCR, although if the stories are true about
how hard people find it to set the time on a VCR, then maybe the VCR violates the simple
interface rule.

Now, a black box does have an inside—the code in a subroutine that actually performs
the task, all the electronics inside your television set. The inside of a black box is called its
implementation . The second rule of black boxes is that:

To use a black box, you shouldn’t need to know any-

thing about its implementation; all you need to know is

its interface.

In fact, it should be possible to change the implementation, as long as the behavior of the
box, as seen from the outside, remains unchanged. For example, when the insides of TV sets
went from using vacuum tubes to using transistors, the users of the sets didn’t even need to
know about it—or even know what it means. Similarly, it should be possible to rewrite the
inside of a subroutine, to use more efficient code, for example, without affecting the programs
that use that subroutine.

Of course, to have a black box, someone must have designed and built the implementation
in the first place. The black box idea works to the advantage of the implementor as well as
of the user of the black box. After all, the black box might be used in an unlimited number
of different situations. The implementor of the black box doesn’t need to know about any of
that. The implementor just needs to make sure that the box performs its assigned task and
interfaces correctly with the rest of the world. This is the third rule of black boxes:

The implementor of a black box should not need to

know anything about the larger systems in which the box

will be used.

In a way, a black box divides the world into two parts: the inside (implementation) and the
outside. The interface is at the boundary, connecting those two parts.

∗ ∗ ∗

By the way, you should not think of an interface as just the physical connection between
the box and the rest of the world. The interface also includes a specification of what the
box does and how it can be controlled by using the elements of the physical interface. It’s not
enough to say that a TV set has a power switch; you need to specify that the power switch is
used to turn the TV on and off!

To put this in computer science terms, the interface of a subroutine has a semantic as well
as a syntactic component. The syntactic part of the interface tells you just what you have
to type in order to call the subroutine. The semantic component specifies exactly what task
the subroutine will accomplish. To write a legal program, you need to know the syntactic
specification of the subroutine. To understand the purpose of the subroutine and to use it
effectively, you need to know the subroutine’s semantic specification. I will refer to both parts
of the interface—syntactic and semantic—collectively as the contract of the subroutine.

4.2. STATIC SUBROUTINES AND VARIABLES 119

The contract of a subroutine says, essentially, “Here is what you have to do to use me,
and here is what I will do for you, guaranteed.” When you write a subroutine, the comments
that you write for the subroutine should make the contract very clear. (I should admit that
in practice, subroutines’ contracts are often inadequately specified, much to the regret and
annoyance of the programmers who have to use them.)

For the rest of this chapter, I turn from general ideas about black boxes and subroutines
in general to the specifics of writing and using subroutines in Java. But keep the general ideas
and principles in mind. They are the reasons that subroutines exist in the first place, and they
are your guidelines for using them. This should be especially clear in Section 4.6, where I will
discuss subroutines as a tool in program development.

∗ ∗ ∗

You should keep in mind that subroutines are not the only example of black boxes in
programming. For example, a class is also a black box. We’ll see that a class can have a
“public” part, representing its interface, and a “private” part that is entirely inside its hidden
implementation. All the principles of black boxes apply to classes as well as to subroutines.

4.2 Static Subroutines and Static Variables

Every subroutine in Java must be defined inside some class. This makes Java rather
unusual among programming languages, since most languages allow free-floating, independent
subroutines. One purpose of a class is to group together related subroutines and variables.
Perhaps the designers of Java felt that everything must be related to something. As a less
philosophical motivation, Java’s designers wanted to place firm controls on the ways things are
named, since a Java program potentially has access to a huge number of subroutines created by
many different programmers. The fact that those subroutines are grouped into named classes
(and classes are grouped into named “packages”) helps control the confusion that might result
from so many different names.

A subroutine that is a member of a class is often called a method , and “method” is the
term that most people prefer for subroutines in Java. I will start using the term “method”
occasionally; however, I will continue to prefer the more general term “subroutine” for static
subroutines. I will use the term “method” most often to refer to non-static subroutines, which
belong to objects rather than to classes. This chapter will deal with static subroutines almost
exclusively. We’ll turn to non-static methods and object-oriented programming in the next
chapter.

4.2.1 Subroutine Definitions

A subroutine definition in Java takes the form:

〈modifiers 〉 〈return-type 〉 〈subroutine-name〉 (〈parameter-list〉) {

〈statements 〉
}

It will take us a while—most of the chapter—to get through what all this means in detail. Of
course, you’ve already seen examples of subroutines in previous chapters, such as the main()

routine of a program and the paint() routine of an applet. So you are familiar with the general
format.

The 〈statements〉 between the braces, { and }, in a subroutine definition make up the body
of the subroutine. These statements are the inside, or implementation part, of the “black box”,

120 CHAPTER 4. SUBROUTINES

as discussed in the previous section. They are the instructions that the computer executes when
the method is called. Subroutines can contain any of the statements discussed in Chapter 2
and Chapter 3.

The 〈modifiers〉 that can occur at the beginning of a subroutine definition are words that
set certain characteristics of the subroutine, such as whether it is static or not. The modifiers
that you’ve seen so far are “static” and “public”. There are only about a half-dozen possible
modifiers altogether.

If the subroutine is a function, whose job is to compute some value, then the 〈return-type〉 is
used to specify the type of value that is returned by the function. We’ll be looking at functions
and return types in some detail in Section 4.4. If the subroutine is not a function, then the
〈return-type〉 is replaced by the special value void, which indicates that no value is returned.
The term “void” is meant to indicate that the return value is empty or non-existent.

Finally, we come to the 〈parameter-list〉 of the method. Parameters are part of the interface
of a subroutine. They represent information that is passed into the subroutine from outside,
to be used by the subroutine’s internal computations. For a concrete example, imagine a class
named Television that includes a method named changeChannel(). The immediate question
is: What channel should it change to? A parameter can be used to answer this question. Since
the channel number is an integer, the type of the parameter would be int, and the declaration
of the changeChannel() method might look like

public void changeChannel(int channelNum) { ... }

This declaration specifies that changeChannel() has a parameter named channelNum of type
int. However, channelNum does not yet have any particular value. A value for channelNum is
provided when the subroutine is called; for example: changeChannel(17);

The parameter list in a subroutine can be empty, or it can consist of one or more parameter
declarations of the form 〈type〉 〈parameter-name〉. If there are several declarations, they are
separated by commas. Note that each declaration can name only one parameter. For example,
if you want two parameters of type double, you have to say “double x, double y”, rather
than “double x, y”.

Parameters are covered in more detail in the next section.

Here are a few examples of subroutine definitions, leaving out the statements that define
what the subroutines do:

public static void playGame() {

// "public" and "static" are modifiers; "void" is the

// return-type; "playGame" is the subroutine-name;

// the parameter-list is empty.

. . . // Statements that define what playGame does go here.

}

int getNextN(int N) {

// There are no modifiers; "int" in the return-type

// "getNextN" is the subroutine-name; the parameter-list

// includes one parameter whose name is "N" and whose

// type is "int".

. . . // Statements that define what getNextN does go here.

}

static boolean lessThan(double x, double y) {

// "static" is a modifier; "boolean" is the

// return-type; "lessThan" is the subroutine-name; the

4.2. STATIC SUBROUTINES AND VARIABLES 121

// parameter-list includes two parameters whose names are

// "x" and "y", and the type of each of these parameters

// is "double".

. . . // Statements that define what lessThan does go here.

}

In the second example given here, getNextN is a non-static method, since its definition does
not include the modifier “static”—and so it’s not an example that we should be looking at in
this chapter! The other modifier shown in the examples is “public”. This modifier indicates
that the method can be called from anywhere in a program, even from outside the class where
the method is defined. There is another modifier, “private”, which indicates that the method
can be called only from inside the same class. The modifiers public and private are called
access specifiers. If no access specifier is given for a method, then by default, that method
can be called from anywhere in the “package” that contains the class, but not from outside
that package. (Packages were introduced in Subsection 2.6.4, and you’ll learn more about them
later in this chapter, in Section 4.5.) There is one other access modifier, protected, which will
only become relevant when we turn to object-oriented programming in Chapter 5.

Note, by the way, that the main() routine of a program follows the usual syntax rules for
a subroutine. In

public static void main(String[] args) { ... }

the modifiers are public and static, the return type is void, the subroutine name is main, and
the parameter list is “String[] args”. The only question might be about “String[]”, which
has to be a type if it is to match the syntax of a parameter list. In fact, String[] represents
a so-called “array type”, so the syntax is valid. We will cover arrays in Chapter 7. (The
parameter, args, represents information provided to the program when the main() routine is
called by the system. In case you know the term, the information consists of any “command-line
arguments” specified in the command that the user typed to run the program.)

You’ve already had some experience with filling in the implementation of a subroutine. In
this chapter, you’ll learn all about writing your own complete subroutine definitions, including
the interface part.

4.2.2 Calling Subroutines

When you define a subroutine, all you are doing is telling the computer that the subroutine
exists and what it does. The subroutine doesn’t actually get executed until it is called. (This
is true even for the main() routine in a class—even though you don’t call it, it is called by the
system when the system runs your program.) For example, the playGame() method given as
an example above could be called using the following subroutine call statement:

playGame();

This statement could occur anywhere in the same class that includes the definition of
playGame(), whether in a main() method or in some other subroutine. Since playGame()

is a public method, it can also be called from other classes, but in that case, you have to tell
the computer which class it comes from. Since playGame() is a static method, its full name
includes the name of the class in which it is defined. Let’s say, for example, that playGame() is
defined in a class named Poker. Then to call playGame() from outside the Poker class, you
would have to say

Poker.playGame();

122 CHAPTER 4. SUBROUTINES

The use of the class name here tells the computer which class to look in to find the method. It
also lets you distinguish between Poker.playGame() and other potential playGame() methods
defined in other classes, such as Roulette.playGame() or Blackjack.playGame().

More generally, a subroutine call statement for a static subroutine takes the form

〈subroutine-name〉(〈parameters 〉);

if the subroutine that is being called is in the same class, or

〈class-name 〉.〈subroutine-name〉(〈parameters 〉);

if the subroutine is defined elsewhere, in a different class. (Non-static methods belong to objects
rather than classes, and they are called using object names instead of class names. More on
that later.) Note that the parameter list can be empty, as in the playGame() example, but the
parentheses must be there even if there is nothing between them.

4.2.3 Subroutines in Programs

It’s time to give an example of what a complete program looks like, when it includes other
subroutines in addition to the main() routine. Let’s write a program that plays a guessing
game with the user. The computer will choose a random number between 1 and 100, and the
user will try to guess it. The computer tells the user whether the guess is high or low or correct.
If the user gets the number after six guesses or fewer, the user wins the game. After each game,
the user has the option of continuing with another game.

Since playing one game can be thought of as a single, coherent task, it makes sense to write
a subroutine that will play one guessing game with the user. The main() routine will use a
loop to call the playGame() subroutine over and over, as many times as the user wants to play.
We approach the problem of designing the playGame() subroutine the same way we write a
main() routine: Start with an outline of the algorithm and apply stepwise refinement. Here is
a short pseudocode algorithm for a guessing game program:

Pick a random number

while the game is not over:

Get the user’s guess

Tell the user whether the guess is high, low, or correct.

The test for whether the game is over is complicated, since the game ends if either the user
makes a correct guess or the number of guesses is six. As in many cases, the easiest thing to
do is to use a “while (true)” loop and use break to end the loop whenever we find a reason
to do so. Also, if we are going to end the game after six guesses, we’ll have to keep track of the
number of guesses that the user has made. Filling out the algorithm gives:

Let computersNumber be a random number between 1 and 100

Let guessCount = 0

while (true):

Get the user’s guess

Count the guess by adding 1 to guess count

if the user’s guess equals computersNumber:

Tell the user he won

break out of the loop

if the number of guesses is 6:

Tell the user he lost

break out of the loop

if the user’s guess is less than computersNumber:

4.2. STATIC SUBROUTINES AND VARIABLES 123

Tell the user the guess was low

else if the user’s guess is higher than computersNumber:

Tell the user the guess was high

With variable declarations added and translated into Java, this becomes the definition of the
playGame() routine. A random integer between 1 and 100 can be computed as (int)(100 *

Math.random()) + 1. I’ve cleaned up the interaction with the user to make it flow better.

static void playGame() {

int computersNumber; // A random number picked by the computer.

int usersGuess; // A number entered by user as a guess.

int guessCount; // Number of guesses the user has made.

computersNumber = (int)(100 * Math.random()) + 1;

// The value assigned to computersNumber is a randomly

// chosen integer between 1 and 100, inclusive.

guessCount = 0;

TextIO.putln();

TextIO.put("What is your first guess? ");

while (true) {

usersGuess = TextIO.getInt(); // Get the user’s guess.

guessCount++;

if (usersGuess == computersNumber) {

TextIO.putln("You got it in " + guessCount

+ " guesses! My number was " + computersNumber);

break; // The game is over; the user has won.

}

if (guessCount == 6) {

TextIO.putln("You didn’t get the number in 6 guesses.");

TextIO.putln("You lose. My number was " + computersNumber);

break; // The game is over; the user has lost.

}

// If we get to this point, the game continues.

// Tell the user if the guess was too high or too low.

if (usersGuess < computersNumber)

TextIO.put("That’s too low. Try again: ");

else if (usersGuess > computersNumber)

TextIO.put("That’s too high. Try again: ");

}

TextIO.putln();

} // end of playGame()

Now, where exactly should you put this? It should be part of the same class as the main()

routine, but not inside the main routine. It is not legal to have one subroutine physically
nested inside another. The main() routine will call playGame(), but not contain it physically.
You can put the definition of playGame() either before or after the main() routine. Java is not
very picky about having the members of a class in any particular order.

It’s pretty easy to write the main routine. You’ve done things like this before. Here’s what
the complete program looks like (except that a serious program needs more comments than I’ve
included here).

public class GuessingGame {

public static void main(String[] args) {

TextIO.putln("Let’s play a game. I’ll pick a number between");

TextIO.putln("1 and 100, and you try to guess it.");

124 CHAPTER 4. SUBROUTINES

boolean playAgain;

do {

playGame(); // call subroutine to play one game

TextIO.put("Would you like to play again? ");

playAgain = TextIO.getlnBoolean();

} while (playAgain);

TextIO.putln("Thanks for playing. Goodbye.");

} // end of main()

static void playGame() {

int computersNumber; // A random number picked by the computer.

int usersGuess; // A number entered by user as a guess.

int guessCount; // Number of guesses the user has made.

computersNumber = (int)(100 * Math.random()) + 1;

// The value assigned to computersNumber is a randomly

// chosen integer between 1 and 100, inclusive.

guessCount = 0;

TextIO.putln();

TextIO.put("What is your first guess? ");

while (true) {

usersGuess = TextIO.getInt(); // Get the user’s guess.

guessCount++;

if (usersGuess == computersNumber) {

TextIO.putln("You got it in " + guessCount

+ " guesses! My number was " + computersNumber);

break; // The game is over; the user has won.

}

if (guessCount == 6) {

TextIO.putln("You didn’t get the number in 6 guesses.");

TextIO.putln("You lose. My number was " + computersNumber);

break; // The game is over; the user has lost.

}

// If we get to this point, the game continues.

// Tell the user if the guess was too high or too low.

if (usersGuess < computersNumber)

TextIO.put("That’s too low. Try again: ");

else if (usersGuess > computersNumber)

TextIO.put("That’s too high. Try again: ");

}

TextIO.putln();

} // end of playGame()

} // end of class GuessingGame

Take some time to read the program carefully and figure out how it works. And try to
convince yourself that even in this relatively simple case, breaking up the program into two
methods makes the program easier to understand and probably made it easier to write each
piece.

4.2.4 Member Variables

A class can include other things besides subroutines. In particular, it can also include variable
declarations. Of course, you can declare variables inside subroutines. Those are called local
variables. However, you can also have variables that are not part of any subroutine. To

4.2. STATIC SUBROUTINES AND VARIABLES 125

distinguish such variables from local variables, we call them member variables, since they
are members of a class.

Just as with subroutines, member variables can be either static or non-static. In this
chapter, we’ll stick to static variables. A static member variable belongs to the class itself, and
it exists as long as the class exists. Memory is allocated for the variable when the class is first
loaded by the Java interpreter. Any assignment statement that assigns a value to the variable
changes the content of that memory, no matter where that assignment statement is located in
the program. Any time the variable is used in an expression, the value is fetched from that
same memory, no matter where the expression is located in the program. This means that the
value of a static member variable can be set in one subroutine and used in another subroutine.
Static member variables are “shared” by all the static subroutines in the class. A local variable
in a subroutine, on the other hand, exists only while that subroutine is being executed, and is
completely inaccessible from outside that one subroutine.

The declaration of a member variable looks just like the declaration of a local variable
except for two things: The member variable is declared outside any subroutine (although it
still has to be inside a class), and the declaration can be marked with modifiers such as static,
public, and private. Since we are only working with static member variables for now, every
declaration of a member variable in this chapter will include the modifier static. They might
also be marked as public or private. For example:

static String usersName;

public static int numberOfPlayers;

private static double velocity, time;

A static member variable that is not declared to be private can be accessed from outside
the class where it is defined, as well as inside. When it is used in some other class, it must be
referred to with a compound identifier of the form 〈class-name〉.〈variable-name〉. For example,
the System class contains the public static member variable named out, and you use this
variable in your own classes by referring to System.out. If numberOfPlayers is a public
static member variable in a class named Poker, then subroutines in the Poker class would
refer to it simply as numberOfPlayers, while subroutines in another class would refer to it as
Poker.numberOfPlayers.

As an example, let’s add a static member variable to the GuessingGame class that we wrote
earlier in this section. This variable will be used to keep track of how many games the user wins.
We’ll call the variable gamesWon and declare it with the statement “static int gamesWon;”.
In the playGame() routine, we add 1 to gamesWon if the user wins the game. At the end of the
main() routine, we print out the value of gamesWon. It would be impossible to do the same
thing with a local variable, since we need access to the same variable from both subroutines.

When you declare a local variable in a subroutine, you have to assign a value to that variable
before you can do anything with it. Member variables, on the other hand are automatically
initialized with a default value. For numeric variables, the default value is zero. For boolean

variables, the default is false. And for char variables, it’s the unprintable character that has
Unicode code number zero. (For objects, such as Strings, the default initial value is a special
value called null, which we won’t encounter officially until later.)

Since it is of type int, the static member variable gamesWon automatically gets assigned an
initial value of zero. This happens to be the correct initial value for a variable that is being
used as a counter. You can, of course, assign a different value to the variable at the beginning
of the main() routine if you are not satisfied with the default initial value.

126 CHAPTER 4. SUBROUTINES

Here’s a revised version of GuessingGame.java that includes the gamesWon variable. The
changes from the above version are shown in italic:

public class GuessingGame2 {

static int gamesWon; // The number of games won by

// the user.

public static void main(String[] args) {

gamesWon = 0; // This is actually redundant, since 0 is

// the default initial value.

TextIO.putln("Let’s play a game. I’ll pick a number between");

TextIO.putln("1 and 100, and you try to guess it.");

boolean playAgain;

do {

playGame(); // call subroutine to play one game

TextIO.put("Would you like to play again? ");

playAgain = TextIO.getlnBoolean();

} while (playAgain);

TextIO.putln();

TextIO.putln("You won " + gamesWon + " games.");

TextIO.putln("Thanks for playing. Goodbye.");

} // end of main()

static void playGame() {

int computersNumber; // A random number picked by the computer.

int usersGuess; // A number entered by user as a guess.

int guessCount; // Number of guesses the user has made.

computersNumber = (int)(100 * Math.random()) + 1;

// The value assigned to computersNumber is a randomly

// chosen integer between 1 and 100, inclusive.

guessCount = 0;

TextIO.putln();

TextIO.put("What is your first guess? ");

while (true) {

usersGuess = TextIO.getInt(); // Get the user’s guess.

guessCount++;

if (usersGuess == computersNumber) {

TextIO.putln("You got it in " + guessCount

+ " guesses! My number was " + computersNumber);

gamesWon++; // Count this game by incrementing gamesWon.

break; // The game is over; the user has won.

}

if (guessCount == 6) {

TextIO.putln("You didn’t get the number in 6 guesses.");

TextIO.putln("You lose. My number was " + computersNumber);

break; // The game is over; the user has lost.

}

// If we get to this point, the game continues.

// Tell the user if the guess was too high or too low.

if (usersGuess < computersNumber)

TextIO.put("That’s too low. Try again: ");

else if (usersGuess > computersNumber)

TextIO.put("That’s too high. Try again: ");

}

4.3. PARAMETERS 127

TextIO.putln();

} // end of playGame()

} // end of class GuessingGame2

4.3 Parameters

If a subroutine is a black box, then a parameter provides a mechanism for passing infor-
mation from the outside world into the box. Parameters are part of the interface of a subroutine.
They allow you to customize the behavior of a subroutine to adapt it to a particular situation.

As an analogy, consider a thermostat—a black box whose task it is to keep your house
at a certain temperature. The thermostat has a parameter, namely the dial that is used to
set the desired temperature. The thermostat always performs the same task: maintaining a
constant temperature. However, the exact task that it performs—that is, which temperature
it maintains—is customized by the setting on its dial.

4.3.1 Using Parameters

As an example, let’s go back to the “3N+1” problem that was discussed in Subsection 3.2.2.
(Recall that a 3N+1 sequence is computed according to the rule, “if N is odd, multiply by 3
and add 1; if N is even, divide by 2; continue until N is equal to 1.” For example, starting from
N=3 we get the sequence: 3, 10, 5, 16, 8, 4, 2, 1.) Suppose that we want to write a subroutine
to print out such sequences. The subroutine will always perform the same task: Print out a
3N+1 sequence. But the exact sequence it prints out depends on the starting value of N. So, the
starting value of N would be a parameter to the subroutine. The subroutine could be written
like this:

/**

* This subroutine prints a 3N+1 sequence to standard output, using

* startingValue as the initial value of N. It also prints the number

* of terms in the sequence. The value of the parameter, startingValue,

* must be a positive integer.

*/

static void print3NSequence(int startingValue) {

int N; // One of the terms in the sequence.

int count; // The number of terms.

N = startingValue; // The first term is whatever value

// is passed to the subroutine as

// a parameter.

int count = 1; // We have one term, the starting value, so far.

System.out.println("The 3N+1 sequence starting from " + N);

System.out.println();

System.out.println(N); // print initial term of sequence

while (N > 1) {

if (N % 2 == 1) // is N odd?

N = 3 * N + 1;

else

N = N / 2;

128 CHAPTER 4. SUBROUTINES

count++; // count this term

System.out.println(N); // print this term

}

System.out.println();

System.out.println("There were " + count + " terms in the sequence.");

} // end print3NSequence

The parameter list of this subroutine, “(int startingValue)”, specifies that the subroutine
has one parameter, of type int. Within the body of the subroutine, the parameter name can
be used in the same way as a variable name. However, the parameter gets its initial value
from outside the subroutine. When the subroutine is called, a value must be provided for
this parameter in the subroutine call statement. This value will be assigned to the parameter,
startingValue, before the body of the subroutine is executed. For example, the subrou-
tine could be called using the subroutine call statement “print3NSequence(17);”. When the
computer executes this statement, the computer assigns the value 17 to startingValue and
then executes the statements in the subroutine. This prints the 3N+1 sequence starting from
17. If K is a variable of type int, then when the computer executes the subroutine call state-
ment “print3NSequence(K);”, it will take the value of the variable K, assign that value to
startingValue, and execute the body of the subroutine.

The class that contains print3NSequence can contain a main() routine (or other subrou-
tines) that call print3NSequence. For example, here is a main() program that prints out 3N+1
sequences for various starting values specified by the user:

public static void main(String[] args) {

TextIO.putln("This program will print out 3N+1 sequences");

TextIO.putln("for starting values that you specify.");

TextIO.putln();

int K; // Input from user; loop ends when K < 0.

do {

TextIO.putln("Enter a starting value;")

TextIO.put("To end the program, enter 0: ");

K = TextIO.getInt(); // Get starting value from user.

if (K > 0) // Print sequence, but only if K is > 0.

print3NSequence(K);

} while (K > 0); // Continue only if K > 0.

} // end main

Remember that before you can use this program, the definitions of main and of
print3NSequence must both be wrapped inside a class definition.

4.3.2 Formal and Actual Parameters

Note that the term “parameter” is used to refer to two different, but related, concepts. There
are parameters that are used in the definitions of subroutines, such as startingValue in the
above example. And there are parameters that are used in subroutine call statements, such
as the K in the statement “print3NSequence(K);”. Parameters in a subroutine definition are
called formal parameters or dummy parameters. The parameters that are passed to a
subroutine when it is called are called actual parameters or arguments. When a subroutine
is called, the actual parameters in the subroutine call statement are evaluated and the values
are assigned to the formal parameters in the subroutine’s definition. Then the body of the
subroutine is executed.

4.3. PARAMETERS 129

A formal parameter must be a name, that is, a simple identifier. A formal parameter is
very much like a variable, and—like a variable—it has a specified type such as int, boolean, or
String. An actual parameter is a value, and so it can be specified by any expression, provided
that the expression computes a value of the correct type. The type of the actual parameter must
be one that could legally be assigned to the formal parameter with an assignment statement.
For example, if the formal parameter is of type double, then it would be legal to pass an int as
the actual parameter since ints can legally be assigned to doubles. When you call a subroutine,
you must provide one actual parameter for each formal parameter in the subroutine’s definition.
Consider, for example, a subroutine

static void doTask(int N, double x, boolean test) {

// statements to perform the task go here

}

This subroutine might be called with the statement

doTask(17, Math.sqrt(z+1), z >= 10);

When the computer executes this statement, it has essentially the same effect as the block of
statements:

{

int N; // Allocate memory locations for the formal parameters.

double x;

boolean test;

N = 17; // Assign 17 to the first formal parameter, N.

x = Math.sqrt(z+1); // Compute Math.sqrt(z+1), and assign it to

// the second formal parameter, x.

test = (z >= 10); // Evaluate "z >= 10" and assign the resulting

// true/false value to the third formal

// parameter, test.

// statements to perform the task go here

}

(There are a few technical differences between this and “doTask(17,Math.sqrt(z+1),z>=10);”
—besides the amount of typing—because of questions about scope of variables and what hap-
pens when several variables or parameters have the same name.)

Beginning programming students often find parameters to be surprisingly confusing. Call-
ing a subroutine that already exists is not a problem—the idea of providing information to the
subroutine in a parameter is clear enough. Writing the subroutine definition is another matter.
A common mistake is to assign values to the formal parameters at the beginning of the subrou-
tine, or to ask the user to input their values. This represents a fundamental misunderstanding.
When the statements in the subroutine are executed, the formal parameters will already have
values. The values come from the subroutine call statement. Remember that a subroutine is
not independent. It is called by some other routine, and it is the calling routine’s responsibility
to provide appropriate values for the parameters.

4.3.3 Overloading

In order to call a subroutine legally, you need to know its name, you need to know how many
formal parameters it has, and you need to know the type of each parameter. This information is
called the subroutine’s signature. The signature of the subroutine doTask, used as an example
above, can be expressed as as: doTask(int,double,boolean). Note that the signature does

130 CHAPTER 4. SUBROUTINES

not include the names of the parameters; in fact, if you just want to use the subroutine, you
don’t even need to know what the formal parameter names are, so the names are not part of
the interface.

Java is somewhat unusual in that it allows two different subroutines in the same class to
have the same name, provided that their signatures are different. (The language C++ on
which Java is based also has this feature.) When this happens, we say that the name of the
subroutine is overloaded because it has several different meanings. The computer doesn’t get
the subroutines mixed up. It can tell which one you want to call by the number and types of
the actual parameters that you provide in the subroutine call statement. You have already seen
overloading used in the TextIO class. This class includes many different methods named putln,
for example. These methods all have different signatures, such as:

putln(int) putln(double)

putln(String) putln(char)

putln(boolean) putln()

The computer knows which of these subroutines you want to use based on the type
of the actual parameter that you provide. TextIO.putln(17) calls the subroutine with
signature putln(int), while TextIO.putln("Hello") calls the subroutine with signature
putln(String). Of course all these different subroutines are semantically related, which is
why it is acceptable programming style to use the same name for them all. But as far as the
computer is concerned, printing out an int is very different from printing out a String, which is
different from printing out a boolean, and so forth—so that each of these operations requires
a different method.

Note, by the way, that the signature does not include the subroutine’s return type. It is
illegal to have two subroutines in the same class that have the same signature but that have
different return types. For example, it would be a syntax error for a class to contain two
methods defined as:

int getln() { ... }

double getln() { ... }

So it should be no surprise that in the TextIO class, the methods for reading different types
are not all named getln(). In a given class, there can only be one routine that has the name
getln and has no parameters. So, the input routines in TextIO are distinguished by having
different names, such as getlnInt() and getlnDouble().

Java 5.0 introduced another complication: It is possible to have a single subroutine that
takes a variable number of actual parameters. You have already used subroutines that do
this—the formatted output routines System.out.printf and TextIO.putf. When you call
these subroutines, the number of parameters in the subroutine call can be arbitrarily large, so
it would be impossible to have different subroutines to handle each case. Unfortunately, writing
the definition of such a subroutine requires some knowledge of arrays, which will not be covered
until Chapter 7. When we get to that chapter, you’ll learn how to write subroutines with a
variable number of parameters. For now, we will ignore this complication.

4.3.4 Subroutine Examples

Let’s do a few examples of writing small subroutines to perform assigned tasks. Of course,
this is only one side of programming with subroutines. The task performed by a subroutine is
always a subtask in a larger program. The art of designing those programs—of deciding how to

4.3. PARAMETERS 131

break them up into subtasks—is the other side of programming with subroutines. We’ll return
to the question of program design in Section 4.6.

As a first example, let’s write a subroutine to compute and print out all the divisors of a
given positive integer. The integer will be a parameter to the subroutine. Remember that the
syntax of any subroutine is:

〈modifiers 〉 〈return-type 〉 〈subroutine-name〉 (〈parameter-list〉) {

〈statements 〉
}

Writing a subroutine always means filling out this format. In this case, the statement of the
problem tells us that there is one parameter, of type int, and it tells us what the statements
in the body of the subroutine should do. Since we are only working with static subroutines
for now, we’ll need to use static as a modifier. We could add an access modifier (public or
private), but in the absence of any instructions, I’ll leave it out. Since we are not told to
return a value, the return type is void. Since no names are specified, we’ll have to make up
names for the formal parameter and for the subroutine itself. I’ll use N for the parameter and
printDivisors for the subroutine name. The subroutine will look like

static void printDivisors(int N) {

〈statements 〉
}

and all we have left to do is to write the statements that make up the body of the routine. This
is not difficult. Just remember that you have to write the body assuming that N already has
a value! The algorithm is: “For each possible divisor D in the range from 1 to N, if D evenly
divides N, then print D.” Written in Java, this becomes:

/**

* Print all the divisors of N.

* We assume that N is a positive integer.

*/

static void printDivisors(int N) {

int D; // One of the possible divisors of N.

System.out.println("The divisors of " + N + " are:");

for (D = 1; D <= N; D++) {

if (N % D == 0)

System.out.println(D);

}

}

I’ve added a comment before the subroutine definition indicating the contract of the
subroutine—that is, what it does and what assumptions it makes. The contract includes the
assumption that N is a positive integer. It is up to the caller of the subroutine to make sure
that this assumption is satisfied.

As a second short example, consider the problem: Write a subroutine named printRow. It
should have a parameter ch of type char and a parameter N of type int. The subroutine should
print out a line of text containing N copies of the character ch.

Here, we are told the name of the subroutine and the names of the two parameters, so we
don’t have much choice about the first line of the subroutine definition. The task in this case is
pretty simple, so the body of the subroutine is easy to write. The complete subroutine is given
by

132 CHAPTER 4. SUBROUTINES

/**

* Write one line of output containing N copies of the

* character ch. If N <= 0, an empty line is output.

*/

static void printRow(char ch, int N) {

int i; // Loop-control variable for counting off the copies.

for (i = 1; i <= N; i++) {

System.out.print(ch);

}

System.out.println();

}

Note that in this case, the contract makes no assumption about N, but it makes it clear what
will happen in all cases, including the unexpected case that N < 0.

Finally, let’s do an example that shows how one subroutine can build on another. Let’s
write a subroutine that takes a String as a parameter. For each character in the string, it will
print a line of output containing 25 copies of that character. It should use the printRow()

subroutine to produce the output.
Again, we get to choose a name for the subroutine and a name for the parameter. I’ll call

the subroutine printRowsFromString and the parameter str. The algorithm is pretty clear:
For each position i in the string str, call printRow(str.charAt(i),25) to print one line of
the output. So, we get:

/**

* For each character in str, write a line of output

* containing 25 copies of that character.

*/

static void printRowsFromString(String str) {

int i; // Loop-control variable for counting off the chars.

for (i = 0; i < str.length(); i++) {

printRow(str.charAt(i), 25);

}

}

We could use printRowsFromString in a main() routine such as

public static void main(String[] args) {

String inputLine; // Line of text input by user.

TextIO.put("Enter a line of text: ");

inputLine = TextIO.getln();

TextIO.putln();

printRowsFromString(inputLine);

}

Of course, the three routines, main(), printRowsFromString(), and printRow(), would
have to be collected together inside the same class. The program is rather useless, but it does
demonstrate the use of subroutines. You’ll find the program in the file RowsOfChars.java, if
you want to take a look.

4.3.5 Throwing Exceptions

I have been talking about the “contract” of a subroutine. The contract says what the subroutine
will do, provided that the caller of the subroutine provides acceptable values for subroutine’s

4.3. PARAMETERS 133

parameters. The question arises, though, what should the subroutine do when the caller violates
the contract by providing bad parameter values?

We’ve already seen that some subroutines respond to bad parameter values by throw-
ing exceptions. (See Section 3.7.) For example, the contract of the built-in subroutine
Double.parseDouble says that the parameter should be a string representation of a num-
ber of type double; if this is true, then the subroutine will convert the string into the equivalent
numeric value. If the caller violates the contract by passing an invalid string as the actual
parameter, the subroutine responds by throwing an exception of type NumberFormatException.

Many subroutines throw IllegalArgumentExceptions in response to bad parameter values.
You might want to take this response in your own subroutines. This can be done with a throw
statement . An exception is an object, and in order to throw an exception, you must create
an exception object. You won’t officially learn how to do this until Chapter 5, but for now, you
can use the following syntax for a throw statement that throws an IllegalArgumentException:

throw new IllegalArgumentException(〈error-message〉);

where 〈error-message〉 is a string that describes the error that has been detected. (The word
“new” in this statement is what creates the object.) To use this statement in a subroutine,
you would check whether the values of the parameters are legal. If not, you would throw the
exception. For example, consider the print3NSequence subroutine from the beginning of this
section. The parameter of print3NSequence is supposed to be a positive integer. We can
modify the subroutine definition to make it throw an exception when this condition is violated:

static void print3NSequence(int startingValue) {

if (startingValue <= 0) // The contract is violated!

throw new IllegalArgumentException("Starting value must be positive.");

.

. // (The rest of the subroutine is the same as before.)

.

If the start value is bad, the computer executes the throw statement. This will immediately
terminate the subroutine, without executing the rest of the body of the subroutine. Further-
more, the program as a whole will crash unless the exception is “caught” and handled elsewhere
in the program by a try..catch statement, as discussed in Section 3.7.

4.3.6 Global and Local Variables

I’ll finish this section on parameters by noting that we now have three different sorts of vari-
ables that can be used inside a subroutine: local variables declared in the subroutine, formal
parameter names, and static member variables that are declared outside the subroutine but
inside the same class as the subroutine.

Local variables have no connection to the outside world; they are purely part of the internal
working of the subroutine. Parameters are used to “drop” values into the subroutine when it
is called, but once the subroutine starts executing, parameters act much like local variables.
Changes made inside a subroutine to a formal parameter have no effect on the rest of the
program (at least if the type of the parameter is one of the primitive types—things are more
complicated in the case of objects, as we’ll see later).

Things are different when a subroutine uses a variable that is defined outside the subroutine.
That variable exists independently of the subroutine, and it is accessible to other parts of the
program, as well as to the subroutine. Such a variable is said to be global to the subroutine,

134 CHAPTER 4. SUBROUTINES

as opposed to the local variables defined inside the subroutine. The scope of a global variable
includes the entire class in which it is defined. Changes made to a global variable can have effects
that extend outside the subroutine where the changes are made. You’ve seen how this works
in the last example in the previous section, where the value of the global variable, gamesWon,
is computed inside a subroutine and is used in the main() routine.

It’s not always bad to use global variables in subroutines, but you should realize that the
global variable then has to be considered part of the subroutine’s interface. The subroutine
uses the global variable to communicate with the rest of the program. This is a kind of sneaky,
back-door communication that is less visible than communication done through parameters,
and it risks violating the rule that the interface of a black box should be straightforward and
easy to understand. So before you use a global variable in a subroutine, you should consider
whether it’s really necessary.

I don’t advise you to take an absolute stand against using global variables inside subroutines.
There is at least one good reason to do it: If you think of the class as a whole as being a kind
of black box, it can be very reasonable to let the subroutines inside that box be a little sneaky
about communicating with each other, if that will make the class as a whole look simpler from
the outside.

4.4 Return Values

A subroutine that returns a value is called a function . A given function can only
return a value of a specified type, called the return type of the function. A function call
generally occurs in a position where the computer is expecting to find a value, such as the right
side of an assignment statement, as an actual parameter in a subroutine call, or in the middle
of some larger expression. A boolean-valued function can even be used as the test condition in
an if, while, for or do..while statement.

(It is also legal to use a function call as a stand-alone statement, just as if it were a reg-
ular subroutine. In this case, the computer ignores the value computed by the subroutine.
Sometimes this makes sense. For example, the function TextIO.getln(), with a return type
of String, reads and returns a line of input typed in by the user. Usually, the line that is
returned is assigned to a variable to be used later in the program, as in the statement “name
= TextIO.getln();”. However, this function is also useful as a subroutine call statement
“TextIO.getln();”, which still reads all input up to and including the next carriage return.
Since the return value is not assigned to a variable or used in an expression, it is simply dis-
carded. So, the effect of the subroutine call is to read and discard some input. Sometimes,
discarding unwanted input is exactly what you need to do.)

4.4.1 The return statement

You’ve already seen how functions such as Math.sqrt() and TextIO.getInt() can be used.
What you haven’t seen is how to write functions of your own. A function takes the same form
as a regular subroutine, except that you have to specify the value that is to be returned by the
subroutine. This is done with a return statement , which has the following syntax:

return 〈expression 〉 ;

Such a return statement can only occur inside the definition of a function, and the type
of the 〈expression〉 must match the return type that was specified for the function. (More
exactly, it must be legal to assign the expression to a variable whose type is specified by the

4.4. RETURN VALUES 135

return type.) When the computer executes this return statement, it evaluates the expression,
terminates execution of the function, and uses the value of the expression as the returned value
of the function.

For example, consider the function definition

static double pythagoras(double x, double y) {

// Computes the length of the hypotenuse of a right

// triangle, where the sides of the triangle are x and y.

return Math.sqrt(x*x + y*y);

}

Suppose the computer executes the statement “totalLength = 17 + pythagoras(12,5);”.
When it gets to the term pythagoras(12,5), it assigns the actual parameters 12 and 5 to
the formal parameters x and y in the function. In the body of the function, it evaluates
Math.sqrt(12.0*12.0 + 5.0*5.0), which works out to 13.0. This value is “returned” by the
function, so the 13.0 essentially replaces the function call in the statement “totalLength =

17 + pythagoras(12,5);”. The return value is added to 17, and the result, 30.0, is stored in
the variable, totalLength. The effect is the same as if the statement had been “totalLength
= 17 + 13.0;”.

Note that a return statement does not have to be the last statement in the function
definition. At any point in the function where you know the value that you want to return, you
can return it. Returning a value will end the function immediately, skipping any subsequent
statements in the function. However, it must be the case that the function definitely does return
some value, no matter what path the execution of the function takes through the code.

You can use a return statement inside an ordinary subroutine, one with declared return
type “void”. Since a void subroutine does not return a value, the return statement does not
include an expression; it simply takes the form “return;”. The effect of this statement is to
terminate execution of the subroutine and return control back to the point in the program from
which the subroutine was called. This can be convenient if you want to terminate execution
somewhere in the middle of the subroutine, but return statements are optional in non-function
subroutines. In a function, on the other hand, a return statement, with expression, is always
required.

4.4.2 Function Examples

Here is a very simple function that could be used in a program to compute 3N+1 sequences.
(The 3N+1 sequence problem is one we’ve looked at several times already, including in the
previous section). Given one term in a 3N+1 sequence, this function computes the next term
of the sequence:

static int nextN(int currentN) {

if (currentN % 2 == 1) // test if current N is odd

return 3*currentN + 1; // if so, return this value

else

return currentN / 2; // if not, return this instead

}

This function has two return statements. Exactly one of the two return statements is executed
to give the value of the function. Some people prefer to use a single return statement at the
very end of the function when possible. This allows the reader to find the return statement
easily. You might choose to write nextN() like this, for example:

136 CHAPTER 4. SUBROUTINES

static int nextN(int currentN) {

int answer; // answer will be the value returned

if (currentN % 2 == 1) // test if current N is odd

answer = 3*currentN+1; // if so, this is the answer

else

answer = currentN / 2; // if not, this is the answer

return answer; // (Don’t forget to return the answer!)

}

Here is a subroutine that uses this nextN function. In this case, the improvement from the
version of this subroutine in Section 4.3 is not great, but if nextN() were a long function that
performed a complex computation, then it would make a lot of sense to hide that complexity
inside a function:

static void print3NSequence(int startingValue) {

int N; // One of the terms in the sequence.

int count; // The number of terms found.

N = startingValue; // Start the sequence with startingValue.

count = 1;

TextIO.putln("The 3N+1 sequence starting from " + N);

TextIO.putln();

TextIO.putln(N); // print initial term of sequence

while (N > 1) {

N = nextN(N); // Compute next term, using the function nextN.

count++; // Count this term.

TextIO.putln(N); // Print this term.

}

TextIO.putln();

TextIO.putln("There were " + count + " terms in the sequence.");

}

∗ ∗ ∗

Here are a few more examples of functions. The first one computes a letter grade corre-
sponding to a given numerical grade, on a typical grading scale:

/**

* Returns the letter grade corresponding to the numerical

* grade that is passed to this function as a parameter.

*/

static char letterGrade(int numGrade) {

if (numGrade >= 90)

return ’A’; // 90 or above gets an A

else if (numGrade >= 80)

return ’B’; // 80 to 89 gets a B

else if (numGrade >= 65)

return ’C’; // 65 to 79 gets a C

else if (numGrade >= 50)

return ’D’; // 50 to 64 gets a D

else

4.4. RETURN VALUES 137

return ’F’; // anything else gets an F

} // end of function letterGrade

The type of the return value of letterGrade() is char. Functions can return values of any
type at all. Here’s a function whose return value is of type boolean. It demonstrates some
interesting programming points, so you should read the comments:

/**

* The function returns true if N is a prime number. A prime number

* is an integer greater than 1 that is not divisible by any positive

* integer, except itself and 1. If N has any divisor, D, in the range

* 1 < D < N, then it has a divisor in the range 2 to Math.sqrt(N), namely

* either D itself or N/D. So we only test possible divisors from 2 to

* Math.sqrt(N).

*/

static boolean isPrime(int N) {

int divisor; // A number we will test to see whether it evenly divides N.

if (N <= 1)

return false; // No number <= 1 is a prime.

int maxToTry; // The largest divisor that we need to test.

maxToTry = (int)Math.sqrt(N);

// We will try to divide N by numbers between 2 and maxToTry.

// If N is not evenly divisible by any of these numbers, then

// N is prime. (Note that since Math.sqrt(N) is defined to

// return a value of type double, the value must be typecast

// to type int before it can be assigned to maxToTry.)

for (divisor = 2; divisor <= maxToTry; divisor++) {

if (N % divisor == 0) // Test if divisor evenly divides N.

return false; // If so, we know N is not prime.

// No need to continue testing!

}

// If we get to this point, N must be prime. Otherwise,

// the function would already have been terminated by

// a return statement in the previous loop.

return true; // Yes, N is prime.

} // end of function isPrime

Finally, here is a function with return type String. This function has a String as parameter.
The returned value is a reversed copy of the parameter. For example, the reverse of “Hello
World” is “dlroW olleH”. The algorithm for computing the reverse of a string, str, is to
start with an empty string and then to append each character from str, starting from the last
character of str and working backwards to the first:

static String reverse(String str) {

String copy; // The reversed copy.

int i; // One of the positions in str,

// from str.length() - 1 down to 0.

copy = ""; // Start with an empty string.

for (i = str.length() - 1; i >= 0; i--) {

138 CHAPTER 4. SUBROUTINES

// Append i-th char of str to copy.

copy = copy + str.charAt(i);

}

return copy;

}

A palindrome is a string that reads the same backwards and forwards, such as “radar”. The
reverse() function could be used to check whether a string, word, is a palindrome by testing
“if (word.equals(reverse(word)))”.

By the way, a typical beginner’s error in writing functions is to print out the answer, instead
of returning it. This represents a fundamental misunderstanding. The task of a function is to
compute a value and return it to the point in the program where the function was called. That’s
where the value is used. Maybe it will be printed out. Maybe it will be assigned to a variable.
Maybe it will be used in an expression. But it’s not for the function to decide.

4.4.3 3N+1 Revisited

I’ll finish this section with a complete new version of the 3N+1 program. This will give me a
chance to show the function nextN(), which was defined above, used in a complete program.
I’ll also take the opportunity to improve the program by getting it to print the terms of the
sequence in columns, with five terms on each line. This will make the output more presentable.
This idea is this: Keep track of how many terms have been printed on the current line; when
that number gets up to 5, start a new line of output. To make the terms line up into neat
columns, I use formatted output.

/**

* A program that computes and displays several 3N+1 sequences. Starting

* values for the sequences are input by the user. Terms in the sequence

* are printed in columns, with five terms on each line of output.

* After a sequence has been displayed, the number of terms in that

* sequence is reported to the user.

*/

public class ThreeN2 {

public static void main(String[] args) {

TextIO.putln("This program will print out 3N+1 sequences");

TextIO.putln("for starting values that you specify.");

TextIO.putln();

int K; // Starting point for sequence, specified by the user.

do {

TextIO.putln("Enter a starting value;");

TextIO.put("To end the program, enter 0: ");

K = TextIO.getInt(); // get starting value from user

if (K > 0) // print sequence, but only if K is > 0

print3NSequence(K);

} while (K > 0); // continue only if K > 0

} // end main

/**

* print3NSequence prints a 3N+1 sequence to standard output, using

4.4. RETURN VALUES 139

* startingValue as the initial value of N. It also prints the number

* of terms in the sequence. The value of the parameter, startingValue,

* must be a positive integer.

*/

static void print3NSequence(int startingValue) {

int N; // One of the terms in the sequence.

int count; // The number of terms found.

int onLine; // The number of terms that have been output

// so far on the current line.

N = startingValue; // Start the sequence with startingValue;

count = 1; // We have one term so far.

TextIO.putln("The 3N+1 sequence starting from " + N);

TextIO.putln();

TextIO.put(N, 8); // Print initial term, using 8 characters.

onLine = 1; // There’s now 1 term on current output line.

while (N > 1) {

N = nextN(N); // compute next term

count++; // count this term

if (onLine == 5) { // If current output line is full

TextIO.putln(); // ...then output a carriage return

onLine = 0; // ...and note that there are no terms

// on the new line.

}

TextIO.putf("%8d", N); // Print this term in an 8-char column.

onLine++; // Add 1 to the number of terms on this line.

}

TextIO.putln(); // end current line of output

TextIO.putln(); // and then add a blank line

TextIO.putln("There were " + count + " terms in the sequence.");

} // end of Print3NSequence

/**

* nextN computes and returns the next term in a 3N+1 sequence,

* given that the current term is currentN.

*/

static int nextN(int currentN) {

if (currentN % 2 == 1)

return 3 * currentN + 1;

else

return currentN / 2;

} // end of nextN()

} // end of class ThreeN2

You should read this program carefully and try to understand how it works. (Try using 27 for
the starting value!)

140 CHAPTER 4. SUBROUTINES

4.5 APIs, Packages, and Javadoc

As computers and their user interfaces have become easier to use, they have also
become more complex for programmers to deal with. You can write programs for a simple
console-style user interface using just a few subroutines that write output to the console and
read the user’s typed replies. A modern graphical user interface, with windows, buttons, scroll
bars, menus, text-input boxes, and so on, might make things easier for the user, but it forces
the programmer to cope with a hugely expanded array of possibilities. The programmer sees
this increased complexity in the form of great numbers of subroutines that are provided for
managing the user interface, as well as for other purposes.

4.5.1 Toolboxes

Someone who wants to program for Macintosh computers—and to produce programs that look
and behave the way users expect them to—must deal with the Macintosh Toolbox, a collection of
well over a thousand different subroutines. There are routines for opening and closing windows,
for drawing geometric figures and text to windows, for adding buttons to windows, and for
responding to mouse clicks on the window. There are other routines for creating menus and
for reacting to user selections from menus. Aside from the user interface, there are routines
for opening files and reading data from them, for communicating over a network, for sending
output to a printer, for handling communication between programs, and in general for doing
all the standard things that a computer has to do. Microsoft Windows provides its own set
of subroutines for programmers to use, and they are quite a bit different from the subroutines
used on the Mac. Linux has several different GUI toolboxes for the programmer to choose from.

The analogy of a “toolbox” is a good one to keep in mind. Every programming project
involves a mixture of innovation and reuse of existing tools. A programmer is given a set of
tools to work with, starting with the set of basic tools that are built into the language: things
like variables, assignment statements, if statements, and loops. To these, the programmer can
add existing toolboxes full of routines that have already been written for performing certain
tasks. These tools, if they are well-designed, can be used as true black boxes: They can be called
to perform their assigned tasks without worrying about the particular steps they go through to
accomplish those tasks. The innovative part of programming is to take all these tools and apply
them to some particular project or problem (word-processing, keeping track of bank accounts,
processing image data from a space probe, Web browsing, computer games, . . .). This is called
applications programming .

A software toolbox is a kind of black box, and it presents a certain interface to the program-
mer. This interface is a specification of what routines are in the toolbox, what parameters they
use, and what tasks they perform. This information constitutes the API , or Applications
Programming Interface , associated with the toolbox. The Macintosh API is a specification
of all the routines available in the Macintosh Toolbox. A company that makes some hard-
ware device—say a card for connecting a computer to a network—might publish an API for
that device consisting of a list of routines that programmers can call in order to communicate
with and control the device. Scientists who write a set of routines for doing some kind of
complex computation—such as solving “differential equations,” say—would provide an API to
allow others to use those routines without understanding the details of the computations they
perform.

∗ ∗ ∗

4.5. APIS, PACKAGES, AND JAVADOC 141

The Java programming language is supplemented by a large, standard API. You’ve seen
part of this API already, in the form of mathematical subroutines such as Math.sqrt(), the
String data type and its associated routines, and the System.out.print() routines. The
standard Java API includes routines for working with graphical user interfaces, for network
communication, for reading and writing files, and more. It’s tempting to think of these routines
as being built into the Java language, but they are technically subroutines that have been
written and made available for use in Java programs.

Java is platform-independent. That is, the same program can run on platforms as diverse as
Macintosh, Windows, Linux, and others. The same Java API must work on all these platforms.
But notice that it is the interface that is platform-independent; the implementation varies
from one platform to another. A Java system on a particular computer includes implementations
of all the standard API routines. A Java program includes only calls to those routines. When
the Java interpreter executes a program and encounters a call to one of the standard routines,
it will pull up and execute the implementation of that routine which is appropriate for the
particular platform on which it is running. This is a very powerful idea. It means that you only
need to learn one API to program for a wide variety of platforms.

4.5.2 Java’s Standard Packages

Like all subroutines in Java, the routines in the standard API are grouped into classes. To
provide larger-scale organization, classes in Java can be grouped into packages, which were
introduced briefly in Subsection 2.6.4. You can have even higher levels of grouping, since
packages can also contain other packages. In fact, the entire standard Java API is implemented
in several packages. One of these, which is named “java”, contains several non-GUI packages
as well as the original AWT graphics user interface classes. Another package, “javax”, was
added in Java version 1.2 and contains the classes used by the Swing graphical user interface
and other additions to the API.

A package can contain both classes and other packages. A package that is contained in
another package is sometimes called a “sub-package.” Both the java package and the javax

package contain sub-packages. One of the sub-packages of java, for example, is called “awt”.
Since awt is contained within java, its full name is actually java.awt. This package con-
tains classes that represent GUI components such as buttons and menus in the AWT, the
older of the two Java GUI toolboxes, which is no longer widely used. However, java.awt also
contains a number of classes that form the foundation for all GUI programming, such as the
Graphics class which provides routines for drawing on the screen, the Color class which repre-
sents colors, and the Font class which represents the fonts that are used to display characters
on the screen. Since these classes are contained in the package java.awt, their full names
are actually java.awt.Graphics, java.awt.Color, and java.awt.Font. (I hope that by now
you’ve gotten the hang of how this naming thing works in Java.) Similarly, javax contains
a sub-package named javax.swing, which includes such classes as javax.swing.JButton,
javax.swing.JMenu, and javax.swing.JFrame. The GUI classes in javax.swing, together
with the foundational classes in java.awt, are all part of the API that makes it possible to
program graphical user interfaces in Java.

The java package includes several other sub-packages, such as java.io, which provides fa-
cilities for input/output, java.net, which deals with network communication, and java.util,
which provides a variety of “utility” classes. The most basic package is called java.lang. This
package contains fundamental classes such as String, Math, Integer, and Double.

It might be helpful to look at a graphical representation of the levels of nesting in the

142 CHAPTER 4. SUBROUTINES

java package, its sub-packages, the classes in those sub-packages, and the subroutines in those
classes. This is not a complete picture, since it shows only a very few of the many items in each
element: j a v a l a n g a w t u t i lM a t h G r a p h i c ss q r t ()r a n d o m () d r a w R e c t ()s e t C o l o r ()S t r i n g F o n tI n t e g e r C o l o r

S u b r o u t i n e s n e s t e d i n c l a s s e s n e s t e d i n t w o l a y e r s o f p a c k a g e s .T h e f u l l n a m e o f s q r t () i s j a v a . l a n g . M a t h . s q r t ()
The official documentation for the standard Java 5.0 API lists 165 different packages, in-

cluding sub-packages, and it lists 3278 classes in these packages. Many of these are rather
obscure or very specialized, but you might want to browse through the documentation to see
what is available. As I write this, the documentation for the complete API can be found at

http://java.sun.com/j2se/1.5.0/docs/api/index.html

Even an expert programmer won’t be familiar with the entire API, or even a majority of it. In
this book, you’ll only encounter several dozen classes, and those will be sufficient for writing a
wide variety of programs.

4.5.3 Using Classes from Packages

Let’s say that you want to use the class java.awt.Color in a program that you are writing.
Like any class, java.awt.Color is a type, which means that you can use it to declare variables
and parameters and to specify the return type of a function. One way to do this is to use the
full name of the class as the name of the type. For example, suppose that you want to declare
a variable named rectColor of type java.awt.Color. You could say:

java.awt.Color rectColor;

This is just an ordinary variable declaration of the form “〈type-name〉 〈variable-name〉;”. Of
course, using the full name of every class can get tiresome, so Java makes it possible to avoid
using the full name of a class by importing the class. If you put

import java.awt.Color;

at the beginning of a Java source code file, then, in the rest of the file, you can abbreviate the
full name java.awt.Color to just the simple name of the class, Color. Note that the import

4.5. APIS, PACKAGES, AND JAVADOC 143

line comes at the start of a file and is not inside any class. Although it is sometimes referred
to as a statement, it is more properly called an import directive since it is not a statement
in the usual sense. Using this import directive would allow you to say

Color rectColor;

to declare the variable. Note that the only effect of the import directive is to allow you to use
simple class names instead of full “package.class” names; you aren’t really importing anything
substantial. If you leave out the import directive, you can still access the class—you just have
to use its full name. There is a shortcut for importing all the classes from a given package. You
can import all the classes from java.awt by saying

import java.awt.*;

The “*” is a wildcard that matches every class in the package. (However, it does not match
sub-packages; you cannot import the entire contents of all the sub-packages of the java package
by saying import java.*.)

Some programmers think that using a wildcard in an import statement is bad style, since
it can make a large number of class names available that you are not going to use and might
not even know about. They think it is better to explicitly import each individual class that
you want to use. In my own programming, I often use wildcards to import all the classes from
the most relevant packages, and use individual imports when I am using just one or two classes
from a given package.

In fact, any Java program that uses a graphical user interface is likely to use many
classes from the java.awt and javax.swing packages as well as from another package named
java.awt.event, and I usually begin such programs with

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

A program that works with networking might include the line “import java.net.*;”, while
one that reads or writes files might use “import java.io.*;”. (But when you start importing
lots of packages in this way, you have to be careful about one thing: It’s possible for two classes
that are in different packages to have the same name. For example, both the java.awt package
and the java.util package contain classes named List. If you import both java.awt.* and
java.util.*, the simple name List will be ambiguous. If you try to declare a variable of type
List, you will get a compiler error message about an ambiguous class name. The solution is
simple: Use the full name of the class, either java.awt.List or java.util.List. Another
solution, of course, is to use import to import the individual classes you need, instead of
importing entire packages.)

Because the package java.lang is so fundamental, all the classes in java.lang are auto-

matically imported into every program. It’s as if every program began with the statement
“import java.lang.*;”. This is why we have been able to use the class name String instead
of java.lang.String, and Math.sqrt() instead of java.lang.Math.sqrt(). It would still,
however, be perfectly legal to use the longer forms of the names.

Programmers can create new packages. Suppose that you want some classes that you are
writing to be in a package named utilities. Then the source code file that defines those
classes must begin with the line

package utilities;

144 CHAPTER 4. SUBROUTINES

This would come even before any import directive in that file. Furthermore, as mentioned in
Subsection 2.6.4, the source code file would be placed in a folder with the same name as the
package. A class that is in a package automatically has access to other classes in the same
package; that is, a class doesn’t have to import the package in which it is defined.

In projects that define large numbers of classes, it makes sense to organize those classes
into packages. It also makes sense for programmers to create new packages as toolboxes that
provide functionality and APIs for dealing with areas not covered in the standard Java API.
(And in fact such “toolmaking” programmers often have more prestige than the applications
programmers who use their tools.)

However, I will not be creating any packages in this textbook. For the purposes of this
book, you need to know about packages mainly so that you will be able to import the standard
packages. These packages are always available to the programs that you write. You might
wonder where the standard classes are actually located. Again, that can depend to some extent
on the version of Java that you are using, but in the standard Java 5.0, they are stored in jar
files in a subdirectory of the main Java installation directory. A jar (or “Java archive”) file
is a single file that can contain many classes. Most of the standard classes can be found in a
jar file named classes.jar. In fact, Java programs are generally distributed in the form of jar
files, instead of as individual class files.

Although we won’t be creating packages explicitly, every class is actually part of a package.
If a class is not specifically placed in a package, then it is put in something called the default
package , which has no name. All the examples that you see in this book are in the default
package.

4.5.4 Javadoc

To use an API effectively, you need good documentation for it. The documentation for most
Java APIs is prepared using a system called Javadoc. For example, this system is used to
prepare the documentation for Java’s standard packages. And almost everyone who creates a
toolbox in Java publishes Javadoc documentation for it.

Javadoc documentation is prepared from special comments that are placed in the Java
source code file. Recall that one type of Java comment begins with /* and ends with */. A
Javadoc comment takes the same form, but it begins with /** rather than simply /*. You
have already seen comments of this form in some of the examples in this book, such as this
subroutine from Section 4.3:

/**

* This subroutine prints a 3N+1 sequence to standard output, using

* startingValue as the initial value of N. It also prints the number

* of terms in the sequence. The value of the parameter, startingValue,

* must be a positive integer.

*/

static void print3NSequence(int startingValue) { ...

Note that the Javadoc comment is placed just before the subroutine that it is commenting
on. This rule is always followed. You can have Javadoc comments for subroutines, for member
variables, and for classes. The Javadoc comment always immediately precedes the thing it is
commenting on.

Like any comment, a Javadoc comment is ignored by the computer when the file is compiled.
But there is a tool called javadoc that reads Java source code files, extracts any Javadoc

4.5. APIS, PACKAGES, AND JAVADOC 145

comments that it finds, and creates a set of Web pages containing the comments in a nicely
formatted, interlinked form. By default, javadoc will only collect information about public

classes, subroutines, and member variables, but it allows the option of creating documentation
for non-public things as well. If javadoc doesn’t find any Javadoc comment for something, it
will construct one, but the comment will contain only basic information such as the name and
type of a member variable or the name, return type, and parameter list of a subroutine. This
is syntactic information. To add information about semantics and pragmatics, you have to
write a Javadoc comment.

As an example, you can look at the documentation Web page for TextIO. The documentation
page was created by applying the javadoc tool to the source code file, TextIO.java. If you
have downloaded the on-line version of this book, the documentation can be found in the
TextIO Javadoc directory, or you can find a link to it in the on-line version of this section.

In a Javadoc comment, the *’s at the start of each line are optional. The javadoc tool
will remove them. In addition to normal text, the comment can contain certain special codes.
For one thing, the comment can contain HTML mark-up commands. HTML is the language
that is used to create web pages, and Javadoc comments are meant to be shown on web pages.
The javadoc tool will copy any HTML commands in the comments to the web pages that it
creates. You’ll learn some basic HTML in Section 6.2, but as an example, you can add <p> to
indicate the start of a new paragraph. (Generally, in the absence of HTML commands, blank
lines and extra spaces in the comment are ignored.)

In addition to HTML commands, Javadoc comments can include doc tags, which are
processed as commands by the javadoc tool. A doc tag has a name that begins with the
character @. I will only discuss three tags: @param, @return, and @throws. These tags are used
in Javadoc comments for subroutines to provide information about its parameters, its return
value, and the exceptions that it might throw. These tags are always placed at the end of the
comment, after any description of the subroutine itself. The syntax for using them is:

@param 〈parameter-name〉 〈description-of-parameter〉

@return 〈description-of-return-value〉

@throws 〈exception-class-name〉 〈description-of-exception〉

The 〈descriptions〉 can extend over several lines. The description ends at the next tag or at the
end of the comment. You can include a @param tag for every parameter of the subroutine and a
@throws for as many types of exception as you want to document. You should have a @return

tag only for a non-void subroutine. These tags do not have to be given in any particular order.
Here is an example that doesn’t do anything exciting but that does use all three types of

doc tag:

/**

* This subroutine computes the area of a rectangle, given its width

* and its height. The length and the width should be positive numbers.

* @param width the length of one side of the rectangle

* @param height the length the second side of the rectangle

* @return the area of the rectangle

* @throws IllegalArgumentException if either the width or the height

* is a negative number.

*/

public static double areaOfRectangle(double length, double width) {

if (width < 0 || height < 0)

throw new IllegalArgumentException("Sides must have positive length.");

146 CHAPTER 4. SUBROUTINES

double area;

area = width * height;

return area;

}

I will use Javadoc comments for some of my examples. I encourage you to use them in your
own code, even if you don’t plan to generate Web page documentation of your work, since it’s
a standard format that other Java programmers will be familiar with.

If you do want to create Web-page documentation, you need to run the javadoc tool. This
tool is available as a command in the Java Development Kit that was discussed in Section 2.6.
You can use javadoc in a command line interface similarly to the way that the javac and
java commands are used. Javadoc can also be applied in the Eclipse integrated development
environment that was also discussed in Section 2.6: Just right-click the class or package that
you want to document in the Package Explorer, select “Export,” and select “Javadoc” in the
window that pops up. I won’t go into any of the details here; see the documentation.

4.6 More on Program Design

Understanding how programs work is one thing. Designing a program to perform some
particular task is another thing altogether. In Section 3.2, I discussed how pseudocode and
stepwise refinement can be used to methodically develop an algorithm. We can now see how
subroutines can fit into the process.

Stepwise refinement is inherently a top-down process, but the process does have a “bottom,”
that is, a point at which you stop refining the pseudocode algorithm and translate what you have
directly into proper programming language. In the absence of subroutines, the process would
not bottom out until you get down to the level of assignment statements and very primitive
input/output operations. But if you have subroutines lying around to perform certain useful
tasks, you can stop refining as soon as you’ve managed to express your algorithm in terms of
those tasks.

This allows you to add a bottom-up element to the top-down approach of stepwise re-
finement. Given a problem, you might start by writing some subroutines that perform tasks
relevant to the problem domain. The subroutines become a toolbox of ready-made tools that
you can integrate into your algorithm as you develop it. (Alternatively, you might be able to
buy or find a software toolbox written by someone else, containing subroutines that you can
use in your project as black boxes.)

Subroutines can also be helpful even in a strict top-down approach. As you refine your
algorithm, you are free at any point to take any sub-task in the algorithm and make it into a
subroutine. Developing that subroutine then becomes a separate problem, which you can work
on separately. Your main algorithm will merely call the subroutine. This, of course, is just
a way of breaking your problem down into separate, smaller problems. It is still a top-down
approach because the top-down analysis of the problem tells you what subroutines to write.
In the bottom-up approach, you start by writing or obtaining subroutines that are relevant to
the problem domain, and you build your solution to the problem on top of that foundation of
subroutines.

4.6.1 Preconditions and Postconditions

When working with subroutines as building blocks, it is important to be clear about how a
subroutine interacts with the rest of the program. This interaction is specified by the contract

4.6. MORE ON PROGRAM DESIGN 147

of the subroutine, as discussed in Section 4.1. A convenient way to express the contract of a
subroutine is in terms of preconditions and postconditions.

The precondition of a subroutine is something that must be true when the subroutine
is called, if the subroutine is to work correctly. For example, for the built-in function
Math.sqrt(x), a precondition is that the parameter, x, is greater than or equal to zero, since it
is not possible to take the square root of a negative number. In terms of a contract, a precon-
dition represents an obligation of the caller of the subroutine. If you call a subroutine without
meeting its precondition, then there is no reason to expect it to work properly. The program
might crash or give incorrect results, but you can only blame yourself, not the subroutine.

A postcondition of a subroutine represents the other side of the contract. It is something
that will be true after the subroutine has run (assuming that its preconditions were met—and
that there are no bugs in the subroutine). The postcondition of the function Math.sqrt() is
that the square of the value that is returned by this function is equal to the parameter that is
provided when the subroutine is called. Of course, this will only be true if the precondition—
that the parameter is greater than or equal to zero—is met. A postcondition of the built-in
subroutine System.out.print() is that the value of the parameter has been displayed on the
screen.

Preconditions most often give restrictions on the acceptable values of parameters, as in the
example of Math.sqrt(x). However, they can also refer to global variables that are used in
the subroutine. The postcondition of a subroutine specifies the task that it performs. For a
function, the postcondition should specify the value that the function returns.

Subroutines are often described by comments that explicitly specify their preconditions and
postconditions. When you are given a pre-written subroutine, a statement of its preconditions
and postconditions tells you how to use it and what it does. When you are assigned to write
a subroutine, the preconditions and postconditions give you an exact specification of what the
subroutine is expected to do. I will use this approach in the example that constitutes the rest
of this section. The comments are given in the form of Javadoc comments, but I will explicitly
label the preconditions and postconditions. (Many computer scientists think that new doc
tags @precondition and @postcondition should be added to the Javadoc system for explicit
labeling of preconditions and postconditions, but that has not yet been done.)

4.6.2 A Design Example

Let’s work through an example of program design using subroutines. In this example, we will
use prewritten subroutines as building blocks and we will also design new subroutines that we
need to complete the project.

Suppose that I have found an already-written class called Mosaic. This class allows a
program to work with a window that displays little colored rectangles arranged in rows and
columns. The window can be opened, closed, and otherwise manipulated with static member
subroutines defined in the Mosaic class. In fact, the class defines a toolbox or API that can be
used for working with such windows. Here are some of the available routines in the API, with
Javadoc-style comments:

/**

* Opens a "mosaic" window on the screen.

*

* Precondition: The parameters rows, cols, w, and h are positive integers.

* Postcondition: A window is open on the screen that can display rows and

* columns of colored rectangles. Each rectangle is w pixels

148 CHAPTER 4. SUBROUTINES

* wide and h pixels high. The number of rows is given by

* the first parameter and the number of columns by the

* second. Initially, all rectangles are black.

* Note: The rows are numbered from 0 to rows - 1, and the columns are

* numbered from 0 to cols - 1.

*/

public static void open(int rows, int cols, int w, int h)

/**

* Sets the color of one of the rectangles in the window.

*

* Precondition: row and col are in the valid range of row and column numbers,

* and r, g, and b are in the range 0 to 255, inclusive.

* Postcondition: The color of the rectangle in row number row and column

* number col has been set to the color specified by r, g,

* and b. r gives the amount of red in the color with 0

* representing no red and 255 representing the maximum

* possible amount of red. The larger the value of r, the

* more red in the color. g and b work similarly for the

* green and blue color components.

*/

public static void setColor(int row, int col, int r, int g, int b)

/**

* Gets the red component of the color of one of the rectangles.

*

* Precondition: row and col are in the valid range of row and column numbers.

* Postcondition: The red component of the color of the specified rectangle is

* returned as an integer in the range 0 to 255 inclusive.

*/

public static int getRed(int row, int col)

/**

* Like getRed, but returns the green component of the color.

*/

public static int getGreen(int row, int col)

/**

* Like getRed, but returns the blue component of the color.

*/

public static int getBlue(int row, int col)

/**

* Tests whether the mosaic window is currently open.

*

* Precondition: None.

* Postcondition: The return value is true if the window is open when this

* function is called, and it is false if the window is

* closed.

*/

public static boolean isOpen()

/**

4.6. MORE ON PROGRAM DESIGN 149

* Inserts a delay in the program (to regulate the speed at which the colors

* are changed, for example).

*

* Precondition: milliseconds is a positive integer.

* Postcondition: The program has paused for at least the specified number

* of milliseconds, where one second is equal to 1000

* milliseconds.

*/

public static void delay(int milliseconds)

Remember that these subroutines are members of the Mosaic class, so when they are called
from outside Mosaic, the name of the class must be included as part of the name of the routine.
For example, we’ll have to use the name Mosaic.isOpen() rather than simply isOpen().

∗ ∗ ∗

My idea is to use the Mosaic class as the basis for a neat animation. I want to fill the
window with randomly colored squares, and then randomly change the colors in a loop that
continues as long as the window is open. “Randomly change the colors” could mean a lot
of different things, but after thinking for a while, I decide it would be interesting to have a
“disturbance” that wanders randomly around the window, changing the color of each square
that it encounters. Here’s a picture showing what the contents of the window might look like
at one point in time:

With basic routines for manipulating the window as a foundation, I can turn to the specific
problem at hand. A basic outline for my program is

Open a Mosaic window

Fill window with random colors;

Move around, changing squares at random.

Filling the window with random colors seems like a nice coherent task that I can work on
separately, so let’s decide to write a separate subroutine to do it. The third step can be
expanded a bit more, into the steps: Start in the middle of the window, then keep moving to a
new square and changing the color of that square. This should continue as long as the mosaic
window is still open. Thus we can refine the algorithm to:

Open a Mosaic window

Fill window with random colors;

Set the current position to the middle square in the window;

As long as the mosaic window is open:

Randomly change color of the square at the current position;

Move current position up, down, left, or right, at random;

150 CHAPTER 4. SUBROUTINES

I need to represent the current position in some way. That can be done with two int variables
named currentRow and currentColumn that hold the row number and the column number of
the square where the disturbance is currently located. I’ll use 10 rows and 20 columns of squares
in my mosaic, so setting the current position to be in the center means setting currentRow to 5
and currentColumn to 10. I already have a subroutine, Mosaic.open(), to open the window,
and I have a function, Mosaic.isOpen(), to test whether the window is open. To keep the
main routine simple, I decide that I will write two more subroutines of my own to carry out
the two tasks in the while loop. The algorithm can then be written in Java as:

Mosaic.open(10,20,10,10)

fillWithRandomColors();

currentRow = 5; // Middle row, halfway down the window.

currentColumn = 10; // Middle column.

while (Mosaic.isOpen()) {

changeToRandomColor(currentRow, currentColumn);

randomMove();

}

With the proper wrapper, this is essentially the main() routine of my program. It turns out I
have to make one small modification: To prevent the animation from running too fast, the line
“Mosaic.delay(20);” is added to the while loop.

The main() routine is taken care of, but to complete the program, I still have to write the
subroutines fillWithRandomColors(), changeToRandomColor(int,int), and randomMove().
Writing each of these subroutines is a separate, small task. The fillWithRandomColors()

routine is defined by the postcondition that “each of the rectangles in the mosaic has been
changed to a random color.” Pseudocode for an algorithm to accomplish this task can be given
as:

For each row:

For each column:

set the square in that row and column to a random color

“For each row” and “for each column” can be implemented as for loops. We’ve already planned
to write a subroutine changeToRandomColor that can be used to set the color. (The possi-
bility of reusing subroutines in several places is one of the big payoffs of using them!) So,
fillWithRandomColors() can be written in proper Java as:

static void fillWithRandomColors() {

for (int row = 0; row < 10; row++)

for (int column = 0; column < 20; column++)

changeToRandomColor(row,column);

}

Turning to the changeToRandomColor subroutine, we already have a method in the Mosaic

class, Mosaic.setColor(), that can be used to change the color of a square. If we want a ran-
dom color, we just have to choose random values for r, g, and b. According to the precondition
of the Mosaic.setColor() subroutine, these random values must be integers in the range from
0 to 255. A formula for randomly selecting such an integer is “(int)(256*Math.random())”.
So the random color subroutine becomes:

static void changeToRandomColor(int rowNum, int colNum) {

int red = (int)(256*Math.random());

int green = (int)(256*Math.random());

int blue = (int)(256*Math.random());

4.6. MORE ON PROGRAM DESIGN 151

mosaic.setColor(rowNum,colNum,red,green,blue);

}

Finally, consider the randomMove subroutine, which is supposed to randomly move the
disturbance up, down, left, or right. To make a random choice among four directions, we
can choose a random integer in the range 0 to 3. If the integer is 0, move in one direction;
if it is 1, move in another direction; and so on. The position of the disturbance is given
by the variables currentRow and currentColumn. To “move up” means to subtract 1 from
currentRow. This leaves open the question of what to do if currentRow becomes -1, which
would put the disturbance above the window. Rather than let this happen, I decide to move
the disturbance to the opposite edge of the applet by setting currentRow to 9. (Remember
that the 10 rows are numbered from 0 to 9.) Moving the disturbance down, left, or right is
handled similarly. If we use a switch statement to decide which direction to move, the code
for randomMove becomes:

int directionNum;

directionNum = (int)(4*Math.random());

switch (directionNum) {

case 0: // move up

currentRow--;

if (currentRow < 0) // CurrentRow is outside the mosaic;

currentRow = 9; // move it to the opposite edge.

break;

case 1: // move right

currentColumn++;

if (currentColumn >= 20)

currentColumn = 0;

break;

case 2: // move down

currentRow++;

if (currentRow >= 10)

currentRow = 0;

break;

case 3: // move left

currentColumn--;

if (currentColumn < 0)

currentColumn = 19;

break;

}

4.6.3 The Program

Putting this all together, we get the following complete program. Note that I’ve added Javadoc-
style comments for the class itself and for each of the subroutines. The variables currentRow

and currentColumn are defined as static members of the class, rather than local variables,
because each of them is used in several different subroutines. This program actually depends
on two other classes, Mosaic and another class called MosaicCanvas that is used by Mosaic.
If you want to compile and run this program, both of these classes must be available to the
program.

152 CHAPTER 4. SUBROUTINES

/**

* This program opens a window full of randomly colored squares. A "disturbance"

* moves randomly around in the window, randomly changing the color of each

* square that it visits. The program runs until the user closes the window.

*/

public class RandomMosaicWalk {

static int currentRow; // Row currently containing the disturbance.

static int currentColumn; // Column currently containing disturbance.

/**

* The main program creates the window, fills it with random colors,

* and then moves the disturbances in a random walk around the window

* as long as the window is open.

*/

public static void main(String[] args) {

Mosaic.open(10,20,10,10);

fillWithRandomColors();

currentRow = 5; // start at center of window

currentColumn = 10;

while (Mosaic.isOpen()) {

changeToRandomColor(currentRow, currentColumn);

randomMove();

Mosaic.delay(20);

}

} // end main

/**

* Fills the window with randomly colored squares.

* Precondition: The mosaic window is open.

* Postcondition: Each square has been set to a random color.

*/

static void fillWithRandomColors() {

for (int row=0; row < 10; row++) {

for (int column=0; column < 20; column++) {

changeToRandomColor(row, column);

}

}

} // end fillWithRandomColors

/**

* Changes one square to a new randomly selected color.

* Precondition: The specified rowNum and colNum are in the valid range

* of row and column numbers.

* Postcondition: The square in the specified row and column has

* been set to a random color.

* @param rowNum the row number of the square, counting rows down

* from 0 at the top

* @param colNum the column number of the square, counting columns over

* from 0 at the left

*/

static void changeToRandomColor(int rowNum, int colNum) {

int red = (int)(256*Math.random()); // Choose random levels in range

int green = (int)(256*Math.random()); // 0 to 255 for red, green,

int blue = (int)(256*Math.random()); // and blue color components.

4.7. THE TRUTH ABOUT DECLARATIONS 153

Mosaic.setColor(rowNum,colNum,red,green,blue);

} // end of changeToRandomColor()

/**

* Move the disturbance.

* Precondition: The global variables currentRow and currentColumn

* are within the legal range of row and column numbers.

* Postcondition: currentRow or currentColumn is changed to one of the

* neighboring positions in the grid -- up, down, left, or

* right from the current position. If this moves the

* position outside of the grid, then it is moved to the

* opposite edge of the grid.

*/

static void randomMove() {

int directionNum; // Randomly set to 0, 1, 2, or 3 to choose direction.

directionNum = (int)(4*Math.random());

switch (directionNum) {

case 0: // move up

currentRow--;

if (currentRow < 0)

currentRow = 9;

break;

case 1: // move right

currentColumn++;

if (currentColumn >= 20)

currentColumn = 0;

break;

case 2: // move down

currentRow++;

if (currentRow >= 10)

currentRow = 0;

break;

case 3: // move left

currentColumn--;

if (currentColumn < 0)

currentColumn = 19;

break;

}

} // end randomMove

} // end class RandomMosaicWalk

4.7 The Truth About Declarations

Names are fundamental to programming, as I said a few chapters ago. There are a lot
of details involved in declaring and using names. I have been avoiding some of those details.
In this section, I’ll reveal most of the truth (although still not the full truth) about declaring
and using variables in Java. The material in the subsections “Initialization in Declarations”
and “Named Constants” is particularly important, since I will be using it regularly in future
chapters.

154 CHAPTER 4. SUBROUTINES

4.7.1 Initialization in Declarations

When a variable declaration is executed, memory is allocated for the variable. This memory
must be initialized to contain some definite value before the variable can be used in an expres-
sion. In the case of a local variable, the declaration is often followed closely by an assignment
statement that does the initialization. For example,

int count; // Declare a variable named count.

count = 0; // Give count its initial value.

However, the truth about declaration statements is that it is legal to include the initializa-
tion of the variable in the declaration statement. The two statements above can therefore be
abbreviated as

int count = 0; // Declare count and give it an initial value.

The computer still executes this statement in two steps: Declare the variable count, then assign
the value 0 to the newly created variable. The initial value does not have to be a constant. It
can be any expression. It is legal to initialize several variables in one declaration statement.
For example,

char firstInitial = ’D’, secondInitial = ’E’;

int x, y = 1; // OK, but only y has been initialized!

int N = 3, M = N+2; // OK, N is initialized

// before its value is used.

This feature is especially common in for loops, since it makes it possible to declare a loop control
variable at the same point in the loop where it is initialized. Since the loop control variable
generally has nothing to do with the rest of the program outside the loop, it’s reasonable to
have its declaration in the part of the program where it’s actually used. For example:

for (int i = 0; i < 10; i++) {

System.out.println(i);

}

Again, you should remember that this is simply an abbreviation for the following, where I’ve
added an extra pair of braces to show that i is considered to be local to the for statement and
no longer exists after the for loop ends:

{

int i;

for (i = 0; i < 10; i++) {

System.out.println(i);

}

}

(You might recall, by the way, that for “for-each” loops, the special type of for statement
that is used with enumerated types, declaring the variable in the for is required. See Subsec-
tion 3.4.4.)

A member variable can also be initialized at the point where it is declared, just as for a
local variable. For example:

public class Bank {

static double interestRate = 0.05;

static int maxWithdrawal = 200;

4.7. THE TRUTH ABOUT DECLARATIONS 155

.

. // More variables and subroutines.

.

}

A static member variable is created as soon as the class is loaded by the Java interpreter, and
the initialization is also done at that time. In the case of member variables, this is not simply
an abbreviation for a declaration followed by an assignment statement. Declaration statements
are the only type of statement that can occur outside of a subroutine. Assignment statements
cannot, so the following is illegal:

public class Bank {

static double interestRate;

interestRate = 0.05; // ILLEGAL:

. // Can’t be outside a subroutine!:

.

.

Because of this, declarations of member variables often include initial values. In fact, as
mentioned in Subsection 4.2.4, if no initial value is provided for a member variable, then a
default initial value is used. For example, when declaring an integer member variable, count,
“static int count;” is equivalent to “static int count = 0;”.

4.7.2 Named Constants

Sometimes, the value of a variable is not supposed to change after it is initialized. For example,
in the above example where interestRate is initialized to the value 0.05, it’s quite possible
that that is meant to be the value throughout the entire program. In this case, the programmer
is probably defining the variable, interestRate, to give a meaningful name to the otherwise
meaningless number, 0.05. It’s easier to understand what’s going on when a program says
“principal += principal*interestRate;” rather than “principal += principal*0.05;”.

In Java, the modifier “final” can be applied to a variable declaration to ensure that the
value stored in the variable cannot be changed after the variable has been initialized. For
example, if the member variable interestRate is declared with

final static double interestRate = 0.05;

then it would be impossible for the value of interestRate to change anywhere else in the
program. Any assignment statement that tries to assign a value to interestRate will be
rejected by the computer as a syntax error when the program is compiled.

It is legal to apply the final modifier to local variables and even to formal parameters,
but it is most useful for member variables. I will often refer to a static member variable that
is declared to be final as a named constant , since its value remains constant for the whole
time that the program is running. The readability of a program can be greatly enhanced by
using named constants to give meaningful names to important quantities in the program. A
recommended style rule for named constants is to give them names that consist entirely of
upper case letters, with underscore characters to separate words if necessary. For example, the
preferred style for the interest rate constant would be

final static double INTEREST RATE = 0.05;

This is the style that is generally used in Java’s standard classes, which define many named
constants. For example, we have already seen that the Math class contains a variable Math.PI.
This variable is declared in the Math class as a “public final static” variable of type double.

156 CHAPTER 4. SUBROUTINES

Similarly, the Color class contains named constants such as Color.RED and Color.YELLOW

which are public final static variables of type Color. Many named constants are created just to
give meaningful names to be used as parameters in subroutine calls. For example, the standard
class named Font contains named constants Font.PLAIN, Font.BOLD, and Font.ITALIC. These
constants are used for specifying different styles of text when calling various subroutines in the
Font class.

Enumerated type constants (See Subsection 2.3.3.) are also examples of named constants.
The enumerated type definition

enum Alignment { LEFT, RIGHT, CENTER }

defines the constants Alignment.LEFT, Alignment.RIGHT, and Alignment.CENTER. Technically,
Alignment is a class, and the three constants are public final static members of that class.
Defining the enumerated type is similar to defining three constants of type, say, int:

public static final int ALIGNMENT LEFT = 0;

public static final int ALIGNMNENT RIGHT = 1;

public static final int ALIGNMENT CENTER = 2;

In fact, this is how things were generally done before the introduction of enumerated types in
Java 5.0, and it is what is done with the constants Font.PLAIN, Font.BOLD, and Font.ITALIC

mentioned above. Using the integer constants, you could define a variable of type int and assign
it the values ALIGNMENT LEFT, ALIGNMENT RIGHT, or ALIGNMENT CENTER to represent different
types of alignment. The only problem with this is that the computer has no way of knowing
that you intend the value of the variable to represent an alignment, and it will not raise any
objection if the value that is assigned to the variable is not one of the three valid alignment
values.

With the enumerated type, on the other hand, the only values that can be assigned to
a variable of type Alignment are the constant values that are listed in the definition of the
enumerated type. Any attempt to assign an invalid value to the variable is a syntax error
which the computer will detect when the program is compiled. This extra safety is one of the
major advantages of enumerated types.

∗ ∗ ∗

Curiously enough, one of the major reasons to use named constants is that it’s easy to
change the value of a named constant. Of course, the value can’t change while the program
is running. But between runs of the program, it’s easy to change the value in the source code
and recompile the program. Consider the interest rate example. It’s quite possible that the
value of the interest rate is used many times throughout the program. Suppose that the bank
changes the interest rate and the program has to be modified. If the literal number 0.05 were
used throughout the program, the programmer would have to track down each place where
the interest rate is used in the program and change the rate to the new value. (This is made
even harder by the fact that the number 0.05 might occur in the program with other meanings
besides the interest rate, as well as by the fact that someone might have used 0.025 to represent
half the interest rate.) On the other hand, if the named constant INTEREST RATE is declared
and used consistently throughout the program, then only the single line where the constant is
initialized needs to be changed.

As an extended example, I will give a new version of the RandomMosaicWalk program from
the previous section. This version uses named constants to represent the number of rows in
the mosaic, the number of columns, and the size of each little square. The three constants are
declared as final static member variables with the lines:

4.7. THE TRUTH ABOUT DECLARATIONS 157

final static int ROWS = 30; // Number of rows in mosaic.

final static int COLUMNS = 30; // Number of columns in mosaic.

final static int SQUARE SIZE = 15; // Size of each square in mosaic.

The rest of the program is carefully modified to use the named constants. For example, in
the new version of the program, the Mosaic window is opened with the statement

Mosaic.open(ROWS, COLUMNS, SQUARE SIZE, SQUARE SIZE);

Sometimes, it’s not easy to find all the places where a named constant needs to be used. If
you don’t use the named constant consistently, you’ve more or less defeated the purpose. It’s
always a good idea to run a program using several different values for any named constants, to
test that it works properly in all cases.

Here is the complete new program, RandomMosaicWalk2, with all modifications from the
previous version shown in italic. I’ve left out some of the comments to save space.

public class RandomMosaicWalk2 {

final static int ROWS = 30; // Number of rows in mosaic.

final static int COLUMNS = 30; // Number of columns in mosaic.

final static int SQUARE SIZE = 15; // Size of each square in mosaic.

static int currentRow; // Row currently containing the disturbance.

static int currentColumn; // Column currently containing disturbance.

public static void main(String[] args) {

Mosaic.open(ROWS, COLUMNS, SQUARE SIZE, SQUARE SIZE);

fillWithRandomColors();

currentRow = ROWS / 2; // start at center of window

currentColumn = COLUMNS / 2;

while (Mosaic.isOpen()) {

changeToRandomColor(currentRow, currentColumn);

randomMove();

Mosaic.delay(20);

}

} // end main

static void fillWithRandomColors() {

for (int row=0; row < ROWS; row++) {

for (int column=0; column < COLUMNS; column++) {

changeToRandomColor(row, column);

}

}

} // end fillWithRandomColors

static void changeToRandomColor(int rowNum, int colNum) {

int red = (int)(256*Math.random()); // Choose random levels in range

int green = (int)(256*Math.random()); // 0 to 255 for red, green,

int blue = (int)(256*Math.random()); // and blue color components.

Mosaic.setColor(rowNum,colNum,red,green,blue);

} // end changeToRandomColor

static void randomMove() {

int directionNum; // Randomly set to 0, 1, 2, or 3 to choose direction.

directionNum = (int)(4*Math.random());

switch (directionNum) {

case 0: // move up

158 CHAPTER 4. SUBROUTINES

currentRow--;

if (currentRow < 0)

currentRow = ROWS - 1;

break;

case 1: // move right

currentColumn++;

if (currentColumn >= COLUMNS)

currentColumn = 0;

break;

case 2: // move down

currentRow ++;

if (currentRow >= ROWS)

currentRow = 0;

break;

case 3: // move left

currentColumn--;

if (currentColumn < 0)

currentColumn = COLUMNS - 1;

break;

}

} // end randomMove

} // end class RandomMosaicWalk2

4.7.3 Naming and Scope Rules

When a variable declaration is executed, memory is allocated for that variable. The variable
name can be used in at least some part of the program source code to refer to that memory or
to the data that is stored in the memory. The portion of the program source code where the
variable name is valid is called the scope of the variable. Similarly, we can refer to the scope
of subroutine names and formal parameter names.

For static member subroutines, scope is straightforward. The scope of a static subroutine
is the entire source code of the class in which it is defined. That is, it is possible to call the
subroutine from any point in the class, including at a point in the source code before the point
where the definition of the subroutine appears. It is even possible to call a subroutine from
within itself. This is an example of something called “recursion,” a fairly advanced topic that
we will return to later.

For a variable that is declared as a static member variable in a class, the situation is similar,
but with one complication. It is legal to have a local variable or a formal parameter that has
the same name as a member variable. In that case, within the scope of the local variable or
parameter, the member variable is hidden . Consider, for example, a class named Game that
has the form:

public class Game {

static int count; // member variable

static void playGame() {

int count; // local variable

.

. // Some statements to define playGame()

.

}

4.7. THE TRUTH ABOUT DECLARATIONS 159

.

. // More variables and subroutines.

.

} // end Game

In the statements that make up the body of the playGame() subroutine, the name “count”
refers to the local variable. In the rest of the Game class, “count” refers to the member vari-
able, unless hidden by other local variables or parameters named count. However, there is
one further complication. The member variable named count can also be referred to by the
full name Game.count. Usually, the full name is only used outside the class where count is
defined. However, there is no rule against using it inside the class. The full name, Game.count,
can be used inside the playGame() subroutine to refer to the member variable. So, the full
scope rule is that the scope of a static member variable includes the entire class in which it
is defined, but where the simple name of the member variable is hidden by a local variable
or formal parameter name, the member variable must be referred to by its full name of the
form 〈className〉.〈variableName〉. (Scope rules for non-static members are similar to those
for static members, except that, as we shall see, non-static members cannot be used in static
subroutines.)

The scope of a formal parameter of a subroutine is the block that makes up the body of the
subroutine. The scope of a local variable extends from the declaration statement that defines
the variable to the end of the block in which the declaration occurs. As noted above, it is
possible to declare a loop control variable of a for loop in the for statement, as in “for (int

i=0; i < 10; i++)”. The scope of such a declaration is considered as a special case: It is
valid only within the for statement and does not extend to the remainder of the block that
contains the for statement.

It is not legal to redefine the name of a formal parameter or local variable within its scope,
even in a nested block. For example, this is not allowed:

void badSub(int y) {

int x;

while (y > 0) {

int x; // ERROR: x is already defined.

.

.

.

}

}

In many languages, this would be legal; the declaration of x in the while loop would hide
the original declaration. It is not legal in Java; however, once the block in which a variable is
declared ends, its name does become available for reuse in Java. For example:

void goodSub(int y) {

while (y > 10) {

int x;

.

.

.

// The scope of x ends here.

}

while (y > 0) {

160 CHAPTER 4. SUBROUTINES

int x; // OK: Previous declaration of x has expired.

.

.

.

}

}

You might wonder whether local variable names can hide subroutine names. This can’t
happen, for a reason that might be surprising. There is no rule that variables and subroutines
have to have different names. The computer can always tell whether a name refers to a variable
or to a subroutine, because a subroutine name is always followed by a left parenthesis. It’s
perfectly legal to have a variable called count and a subroutine called count in the same class.
(This is one reason why I often write subroutine names with parentheses, as when I talk about
the main() routine. It’s a good idea to think of the parentheses as part of the name.) Even
more is true: It’s legal to reuse class names to name variables and subroutines. The syntax
rules of Java guarantee that the computer can always tell when a name is being used as a class
name. A class name is a type, and so it can be used to declare variables and formal parameters
and to specify the return type of a function. This means that you could legally have a class
called Insanity in which you declare a function

static Insanity Insanity(Insanity Insanity) { ... }

The first Insanity is the return type of the function. The second is the function name, the
third is the type of the formal parameter, and the fourth is a formal parameter name. However,
please remember that not everything that is possible is a good idea!

Exercises 161

Exercises for Chapter 4

1. To “capitalize” a string means to change the first letter of each word in the string to upper
case (if it is not already upper case). For example, a capitalized version of “Now is the time
to act!” is “Now Is The Time To Act!”. Write a subroutine named printCapitalized

that will print a capitalized version of a string to standard output. The string to be printed
should be a parameter to the subroutine. Test your subroutine with a main() routine that
gets a line of input from the user and applies the subroutine to it.

Note that a letter is the first letter of a word if it is not immediately preceded in
the string by another letter. Recall that there is a standard boolean-valued function
Character.isLetter(char) that can be used to test whether its parameter is a letter.
There is another standard char-valued function, Character.toUpperCase(char), that
returns a capitalized version of the single character passed to it as a parameter. That is,
if the parameter is a letter, it returns the upper-case version. If the parameter is not a
letter, it just returns a copy of the parameter.

2. The hexadecimal digits are the ordinary, base-10 digits ’0’ through ’9’ plus the letters ’A’
through ’F’. In the hexadecimal system, these digits represent the values 0 through 15,
respectively. Write a function named hexValue that uses a switch statement to find the
hexadecimal value of a given character. The character is a parameter to the function, and
its hexadecimal value is the return value of the function. You should count lower case
letters ’a’ through ’f’ as having the same value as the corresponding upper case letters.
If the parameter is not one of the legal hexadecimal digits, return -1 as the value of the
function.

A hexadecimal integer is a sequence of hexadecimal digits, such as 34A7, FF8, 174204,
or FADE. If str is a string containing a hexadecimal integer, then the corresponding
base-10 integer can be computed as follows:

value = 0;

for (i = 0; i < str.length(); i++)

value = value*16 + hexValue(str.charAt(i));

Of course, this is not valid if str contains any characters that are not hexadecimal digits.
Write a program that reads a string from the user. If all the characters in the string are
hexadecimal digits, print out the corresponding base-10 value. If not, print out an error
message.

3. Write a function that simulates rolling a pair of dice until the total on the dice comes up
to be a given number. The number that you are rolling for is a parameter to the function.
The number of times you have to roll the dice is the return value of the function. The
parameter should be one of the possible totals: 2, 3, . . . , 12. The function should throw
an IllegalArgumentException if this is not the case. Use your function in a program that
computes and prints the number of rolls it takes to get snake eyes. (Snake eyes means
that the total showing on the dice is 2.)

4. This exercise builds on Exercise 4.3. Every time you roll the dice repeatedly, trying to
get a given total, the number of rolls it takes can be different. The question naturally
arises, what’s the average number of rolls to get a given total? Write a function that
performs the experiment of rolling to get a given total 10000 times. The desired total is

162 CHAPTER 4. SUBROUTINES

a parameter to the subroutine. The average number of rolls is the return value. Each
individual experiment should be done by calling the function you wrote for Exercise 4.3.
Now, write a main program that will call your function once for each of the possible totals
(2, 3, ..., 12). It should make a table of the results, something like:

Total On Dice Average Number of Rolls

------------- -----------------------

2 35.8382

3 18.0607

. .

. .

5. The sample program RandomMosaicWalk.java from Section 4.6 shows a “disturbance”
that wanders around a grid of colored squares. When the disturbance visits a square, the
color of that square is changed. The applet at the bottom of Section 4.7 in the on-line
version of this book shows a variation on this idea. In this applet, all the squares start
out with the default color, black. Every time the disturbance visits a square, a small
amount is added to the red component of the color of that square. Write a subroutine
that will add 25 to the red component of one of the squares in the mosaic. The row and
column numbers of the square should be passed as parameters to the subroutine. Recall
that you can discover the current red component of the square in row r and column c

with the function call Mosaic.getRed(r,c). Use your subroutine as a substitute for the
changeToRandomColor() subroutine in the program RandomMosaicWalk2.java. (This is
the improved version of the program from Section 4.7 that uses named constants for the
number of rows, number of columns, and square size.) Set the number of rows and the
number of columns to 80. Set the square size to 5.

6. For this exercise, you will write another program based on the non-standard Mosaic class
that was presented in Section 4.6. While the program does not do anything particularly
interesting, it’s interesting as a programming problem. An applet that does the same
thing as the program can be seen in the on-line version of this book. Here is a picture
showing what it looks like at several different times:

The program will show a rectangle that grows from the center of the applet to the edges,
getting brighter as it grows. The rectangle is made up of the little squares of the mosaic.
You should first write a subroutine that draws a rectangle on a Mosaic window. More
specifically, write a subroutine named rectangle such that the subroutine call statement

rectangle(top,left,height,width,r,g,b);

Exercises 163

will call Mosaic.setColor(row,col,r,g,b) for each little square that lies on the outline
of a rectangle. The topmost row of the rectangle is specified by top. The number of
rows in the rectangle is specified by height (so the bottommost row is top+height-1).
The leftmost column of the rectangle is specified by left. The number of columns in the
rectangle is specified by width (so the rightmost column is left+width-1.)

The animation loops through the same sequence of steps over and over. In each step,
a rectangle is drawn in gray (that is, with all three color components having the same
value). There is a pause of 200 milliseconds so the user can see the rectangle. Then the
very same rectangle is drawn in black, effectively erasing the gray rectangle. Finally, the
variables giving the top row, left column, size, and color level of the rectangle are adjusted
to get ready for the next step. In the applet, the color level starts at 50 and increases by
10 after each step. When the rectangle gets to the outer edge of the applet, the loop ends.
The animation then starts again at the beginning of the loop. You might want to make a
subroutine that does one loop through all the steps of the animation.

The main() routine simply opens a Mosaic window and then does the animation loop
over and over until the user closes the window. There is a 1000 millisecond delay between
one animation loop and the next. Use a Mosaic window that has 41 rows and 41 columns.
(I advise you not to used named constants for the numbers of rows and columns, since
the problem is complicated enough already.)

164 CHAPTER 4. SUBROUTINES

Quiz on Chapter 4

1. A “black box” has an interface and an implementation. Explain what is meant by the
terms interface and implementation.

2. A subroutine is said to have a contract. What is meant by the contract of a subroutine?
When you want to use a subroutine, why is it important to understand its contract? The
contract has both “syntactic” and “semantic” aspects. What is the syntactic aspect?
What is the semantic aspect?

3. Briefly explain how subroutines can be a useful tool in the top-down design of programs.

4. Discuss the concept of parameters. What are parameters for? What is the difference
between formal parameters and actual parameters?

5. Give two different reasons for using named constants (declared with the final modifier).

6. What is an API? Give an example.

7. Write a subroutine named “stars” that will output a line of stars to standard output. (A
star is the character “*”.) The number of stars should be given as a parameter to the
subroutine. Use a for loop. For example, the command “stars(20)” would output

8. Write a main() routine that uses the subroutine that you wrote for Question 7 to output
10 lines of stars with 1 star in the first line, 2 stars in the second line, and so on, as shown
below.

*

**

9. Write a function named countChars that has a String and a char as parameters. The
function should count the number of times the character occurs in the string, and it should
return the result as the value of the function.

10. Write a subroutine with three parameters of type int. The subroutine should determine
which of its parameters is smallest. The value of the smallest parameter should be returned
as the value of the subroutine.

Chapter 5

Programming in the Large II:
Objects and Classes

Whereas a subroutine represents a single task, an object can encapsulate both data (in
the form of instance variables) and a number of different tasks or “behaviors” related to that
data (in the form of instance methods). Therefore objects provide another, more sophisticated
type of structure that can be used to help manage the complexity of large programs.

This chapter covers the creation and use of objects in Java. Section 5.5 covers the central
ideas of object-oriented programming: inheritance and polymorphism. However, in this text-
book, we will generally use these ideas in a limited form, by creating independent classes and
building on existing classes rather than by designing entire hierarchies of classes from scratch.
Section 5.6 and Section 5.7 cover some of the many details of object oriented programming in
Java. Although these details are used occasionally later in the book, you might want to skim
through them now and return to them later when they are actually needed.

5.1 Objects, Instance Methods, and Instance Variables

Object-oriented programming (OOP) represents an attempt to make programs more
closely model the way people think about and deal with the world. In the older styles of
programming, a programmer who is faced with some problem must identify a computing task
that needs to be performed in order to solve the problem. Programming then consists of
finding a sequence of instructions that will accomplish that task. But at the heart of object-
oriented programming, instead of tasks we find objects—entities that have behaviors, that hold
information, and that can interact with one another. Programming consists of designing a set
of objects that somehow model the problem at hand. Software objects in the program can
represent real or abstract entities in the problem domain. This is supposed to make the design
of the program more natural and hence easier to get right and easier to understand.

To some extent, OOP is just a change in point of view. We can think of an object in standard
programming terms as nothing more than a set of variables together with some subroutines for
manipulating those variables. In fact, it is possible to use object-oriented techniques in any
programming language. However, there is a big difference between a language that makes OOP
possible and one that actively supports it. An object-oriented programming language such as
Java includes a number of features that make it very different from a standard language. In
order to make effective use of those features, you have to “orient” your thinking correctly.

165

166 CHAPTER 5. OBJECTS AND CLASSES

5.1.1 Objects, Classes, and Instances

Objects are closely related to classes. We have already been working with classes for several
chapters, and we have seen that a class can contain variables and subroutines. If an object is
also a collection of variables and subroutines, how do they differ from classes? And why does it
require a different type of thinking to understand and use them effectively? In the one section
where we worked with objects rather than classes, Section 3.8, it didn’t seem to make much
difference: We just left the word “static” out of the subroutine definitions!

I have said that classes “describe” objects, or more exactly that the non-static portions of
classes describe objects. But it’s probably not very clear what this means. The more usual
terminology is to say that objects belong to classes, but this might not be much clearer. (There
is a real shortage of English words to properly distinguish all the concepts involved. An object
certainly doesn’t “belong” to a class in the same way that a member variable “belongs” to a
class.) From the point of view of programming, it is more exact to say that classes are used
to create objects. A class is a kind of factory for constructing objects. The non-static parts of
the class specify, or describe, what variables and subroutines the objects will contain. This is
part of the explanation of how objects differ from classes: Objects are created and destroyed as
the program runs, and there can be many objects with the same structure, if they are created
using the same class.

Consider a simple class whose job is to group together a few static member variables. For
example, the following class could be used to store information about the person who is using
the program:

class UserData {

static String name;

static int age;

}

In a program that uses this class, there is only one copy of each of the variables UserData.name
and UserData.age. There can only be one “user,” since we only have memory space to store
data about one user. The class, UserData, and the variables it contains exist as long as the
program runs. Now, consider a similar class that includes non-static variables:

class PlayerData {

String name;

int age;

}

In this case, there is no such variable as PlayerData.name or PlayerData.age, since name and
age are not static members of PlayerData. So, there is nothing much in the class at all—
except the potential to create objects. But, it’s a lot of potential, since it can be used to create
any number of objects! Each object will have its own variables called name and age. There
can be many “players” because we can make new objects to represent new players on demand.
A program might use this class to store information about multiple players in a game. Each
player has a name and an age. When a player joins the game, a new PlayerData object can
be created to represent that player. If a player leaves the game, the PlayerData object that
represents that player can be destroyed. A system of objects in the program is being used to
dynamically model what is happening in the game. You can’t do this with “static” variables!

In Section 3.8, we worked with applets, which are objects. The reason they didn’t seem to
be any different from classes is because we were only working with one applet in each class that
we looked at. But one class can be used to make many applets. Think of an applet that scrolls

5.1. OBJECTS AND INSTANCE METHODS 167

a message across a Web page. There could be several such applets on the same page, all created
from the same class. If the scrolling message in the applet is stored in a non-static variable,
then each applet will have its own variable, and each applet can show a different message. The
situation is even clearer if you think about windows, which, like applets, are objects. As a
program runs, many windows might be opened and closed, but all those windows can belong
to the same class. Here again, we have a dynamic situation where multiple objects are created
and destroyed as a program runs.

∗ ∗ ∗

An object that belongs to a class is said to be an instance of that class. The variables that
the object contains are called instance variables. The subroutines that the object contains
are called instance methods. (Recall that in the context of object-oriented programming,
method is a synonym for “subroutine”. From now on, since we are doing object-oriented
programming, I will prefer the term “method.”) For example, if the PlayerData class, as
defined above, is used to create an object, then that object is an instance of the PlayerData

class, and name and age are instance variables in the object. It is important to remember that
the class of an object determines the types of the instance variables; however, the actual data
is contained inside the individual objects, not the class. Thus, each object has its own set of
data.

An applet that scrolls a message across a Web page might include a subroutine named
scroll(). Since the applet is an object, this subroutine is an instance method of the applet.
The source code for the method is in the class that is used to create the applet. Still, it’s better
to think of the instance method as belonging to the object, not to the class. The non-static
subroutines in the class merely specify the instance methods that every object created from the
class will contain. The scroll() methods in two different applets do the same thing in the
sense that they both scroll messages across the screen. But there is a real difference between
the two scroll() methods. The messages that they scroll can be different. You might say that
the method definition in the class specifies what type of behavior the objects will have, but
the specific behavior can vary from object to object, depending on the values of their instance
variables.

As you can see, the static and the non-static portions of a class are very different things and
serve very different purposes. Many classes contain only static members, or only non-static.
However, it is possible to mix static and non-static members in a single class, and we’ll see
a few examples later in this chapter where it is reasonable to do so. You should distiguish
between the source code for the class, and the class itself. The source code determines both
the class and the objects that are created from that class. The “static” definitions in the source
code specify the things that are part of the class itself, whereas the non-static definitions in the
source code specify things that will become part of every instance object that is created from
the class. By the way, static member variables and static member subroutines in a class are
sometimes called class variables and class methods, since they belong to the class itself,
rather than to instances of that class.

5.1.2 Fundamentals of Objects

So far, I’ve been talking mostly in generalities, and I haven’t given you much idea what you
have to put in a program if you want to work with objects. Let’s look at a specific example to
see how it works. Consider this extremely simplified version of a Student class, which could be
used to store information about students taking a course:

168 CHAPTER 5. OBJECTS AND CLASSES

public class Student {

public String name; // Student’s name.

public double test1, test2, test3; // Grades on three tests.

public double getAverage() { // compute average test grade

return (test1 + test2 + test3) / 3;

}

} // end of class Student

None of the members of this class are declared to be static, so the class exists only for
creating objects. This class definition says that any object that is an instance of the Student

class will include instance variables named name, test1, test2, and test3, and it will include an
instance method named getAverage(). The names and tests in different objects will generally
have different values. When called for a particular student, the method getAverage() will
compute an average using that student’s test grades. Different students can have different
averages. (Again, this is what it means to say that an instance method belongs to an individual
object, not to the class.)

In Java, a class is a type, similar to the built-in types such as int and boolean. So, a class
name can be used to specify the type of a variable in a declaration statement, the type of a
formal parameter, or the return type of a function. For example, a program could define a
variable named std of type Student with the statement

Student std;

However, declaring a variable does not create an object! This is an important point, which is
related to this Very Important Fact:

In Java, no variable can ever hold an object.

A variable can only hold a reference to an object.

You should think of objects as floating around independently in the computer’s memory. In
fact, there is a special portion of memory called the heap where objects live. Instead of holding
an object itself, a variable holds the information necessary to find the object in memory. This
information is called a reference or pointer to the object. In effect, a reference to an object
is the address of the memory location where the object is stored. When you use a variable of
class type, the computer uses the reference in the variable to find the actual object.

In a program, objects are created using an operator called new, which creates an object
and returns a reference to that object. For example, assuming that std is a variable of type
Student, declared as above, the assignment statement

std = new Student();

would create a new object which is an instance of the class Student, and it would store a
reference to that object in the variable std. The value of the variable is a reference to the
object, not the object itself. It is not quite true, then, to say that the object is the “value of
the variable std” (though sometimes it is hard to avoid using this terminology). It is certainly
not at all true to say that the object is “stored in the variable std.” The proper terminology
is that “the variable std refers to the object,” and I will try to stick to that terminology as
much as possible.

So, suppose that the variable std refers to an object belonging to the class Student. That
object has instance variables name, test1, test2, and test3. These instance variables can

5.1. OBJECTS AND INSTANCE METHODS 169

be referred to as std.name, std.test1, std.test2, and std.test3. This follows the usual
naming convention that when B is part of A, then the full name of B is A.B. For example, a
program might include the lines

System.out.println("Hello, " + std.name + ". Your test grades are:");

System.out.println(std.test1);

System.out.println(std.test2);

System.out.println(std.test3);

This would output the name and test grades from the object to which std refers. Simi-
larly, std can be used to call the getAverage() instance method in the object by saying
std.getAverage(). To print out the student’s average, you could say:

System.out.println("Your average is " + std.getAverage());

More generally, you could use std.name any place where a variable of type String is legal.
You can use it in expressions. You can assign a value to it. You can even use it to call subroutines
from the String class. For example, std.name.length() is the number of characters in the
student’s name.

It is possible for a variable like std, whose type is given by a class, to refer to no object at
all. We say in this case that std holds a null reference. The null reference is written in Java
as “null”. You can store a null reference in the variable std by saying

std = null;

and you could test whether the value of std is null by testing

if (std == null) . . .

If the value of a variable is null, then it is, of course, illegal to refer to instance variables
or instance methods through that variable—since there is no object, and hence no instance
variables to refer to. For example, if the value of the variable std is null, then it would be
illegal to refer to std.test1. If your program attempts to use a null reference illegally like this,
the result is an error called a null pointer exception .

Let’s look at a sequence of statements that work with objects:

Student std, std1, // Declare four variables of

std2, std3; // type Student.

std = new Student(); // Create a new object belonging

// to the class Student, and

// store a reference to that

// object in the variable std.

std1 = new Student(); // Create a second Student object

// and store a reference to

// it in the variable std1.

std2 = std1; // Copy the reference value in std1

// into the variable std2.

std3 = null; // Store a null reference in the

// variable std3.

std.name = "John Smith"; // Set values of some instance variables.

std1.name = "Mary Jones";

// (Other instance variables have default

// initial values of zero.)

170 CHAPTER 5. OBJECTS AND CLASSES

After the computer executes these statements, the situation in the computer’s memory looks
like this:

This picture shows variables as little boxes, labeled with the names of the variables. Objects
are shown as boxes with round corners. When a variable contains a reference to an object, the
value of that variable is shown as an arrow pointing to the object. The variable std3, with a
value of null, doesn’t point anywhere. The arrows from std1 and std2 both point to the same
object. This illustrates a Very Important Point:

When one object variable is assigned

to another, only a reference is copied.

The object referred to is not copied.

When the assignment “std2 = std1;” was executed, no new object was created. Instead, std2
was set to refer to the very same object that std1 refers to. This has some consequences that
might be surprising. For example, std1.name and std2.name are two different names for the
same variable, namely the instance variable in the object that both std1 and std2 refer to.
After the string "Mary Jones" is assigned to the variable std1.name, it is also true that the
value of std2.name is "Mary Jones". There is a potential for a lot of confusion here, but you
can help protect yourself from it if you keep telling yourself, “The object is not in the variable.
The variable just holds a pointer to the object.”

You can test objects for equality and inequality using the operators == and !=, but
here again, the semantics are different from what you are used to. When you make a test
“if (std1 == std2)”, you are testing whether the values stored in std1 and std2 are the
same. But the values are references to objects, not objects. So, you are testing whether
std1 and std2 refer to the same object, that is, whether they point to the same location

5.1. OBJECTS AND INSTANCE METHODS 171

in memory. This is fine, if its what you want to do. But sometimes, what you want to
check is whether the instance variables in the objects have the same values. To do that, you
would need to ask whether “std1.test1 == std2.test1 && std1.test2 == std2.test2 &&

std1.test3 == std2.test3 && std1.name.equals(std2.name)”.

I’ve remarked previously that Strings are objects, and I’ve shown the strings "Mary Jones"

and "John Smith" as objects in the above illustration. A variable of type String can only hold
a reference to a string, not the string itself. It could also hold the value null, meaning that
it does not refer to any string at all. This explains why using the == operator to test strings
for equality is not a good idea. Suppose that greeting is a variable of type String, and that
the string it refers to is "Hello". Then would the test greeting == "Hello" be true? Well,
maybe, maybe not. The variable greeting and the String literal "Hello" each refer to a
string that contains the characters H-e-l-l-o. But the strings could still be different objects,
that just happen to contain the same characters. The function greeting.equals("Hello")

tests whether greeting and "Hello" contain the same characters, which is almost certainly
the question you want to ask. The expression greeting == "Hello" tests whether greeting

and "Hello" contain the same characters stored in the same memory location.

∗ ∗ ∗

The fact that variables hold references to objects, not objects themselves, has a couple of
other consequences that you should be aware of. They follow logically, if you just keep in mind
the basic fact that the object is not stored in the variable. The object is somewhere else; the
variable points to it.

Suppose that a variable that refers to an object is declared to be final. This means that
the value stored in the variable can never be changed, once the variable has been initialized.
The value stored in the variable is a reference to the object. So the variable will continue to
refer to the same object as long as the variable exists. However, this does not prevent the data
in the object from changing. The variable is final, not the object. It’s perfectly legal to say

final Student stu = new Student();

stu.name = "John Doe"; // Change data in the object;

// The value stored in stu is not changed!

// It still refers to the same object.

Next, suppose that obj is a variable that refers to an object. Let’s consider what happens
when obj is passed as an actual parameter to a subroutine. The value of obj is assigned to
a formal parameter in the subroutine, and the subroutine is executed. The subroutine has no
power to change the value stored in the variable, obj. It only has a copy of that value. However,
that value is a reference to an object. Since the subroutine has a reference to the object, it can
change the data stored in the object. After the subroutine ends, obj still points to the same
object, but the data stored in the object might have changed. Suppose x is a variable of type
int and stu is a variable of type Student. Compare:

void dontChange(int z) { void change(Student s) {

z = 42; s.name = "Fred";

} }

The lines: The lines:

x = 17; stu.name = "Jane";

dontChange(x); change(stu);

System.out.println(x); System.out.println(stu.name);

172 CHAPTER 5. OBJECTS AND CLASSES

output the value 17. output the value "Fred".

The value of x is not The value of stu is not

changed by the subroutine, changed, but stu.name is.

which is equivalent to This is equivalent to

z = x; s = stu;

z = 42; s.name = "Fred";

5.1.3 Getters and Setters

When writing new classes, it’s a good idea to pay attention to the issue of access control. Recall
that making a member of a class public makes it accessible from anywhere, including from
other classes. On the other hand, a private member can only be used in the class where it is
defined.

In the opinion of many programmers, almost all member variables should be declared
private. This gives you complete control over what can be done with the variable. Even
if the variable itself is private, you can allow other classes to find out what its value is by pro-
viding a public accessor method that returns the value of the variable. For example, if your
class contains a private member variable, title, of type String, you can provide a method

public String getTitle() {

return title;

}

that returns the value of title. By convention, the name of an accessor method for a variable
is obtained by capitalizing the name of variable and adding “get” in front of the name. So, for
the variable title, we get an accessor method named “get” + “Title”, or getTitle(). Because
of this naming convention, accessor methods are more often referred to as getter methods. A
getter method provides “read access” to a variable.

You might also want to allow “write access” to a private variable. That is, you might
want to make it possible for other classes to specify a new value for the variable. This is done
with a setter method . (If you don’t like simple, Anglo-Saxon words, you can use the fancier
term mutator method .) The name of a setter method should consist of “set” followed by a
capitalized copy of the variable’s name, and it should have a parameter with the same type as
the variable. A setter method for the variable title could be written

public void setTitle(String newTitle) {

title = newTitle;

}

It is actually very common to provide both a getter and a setter method for a private
member variable. Since this allows other classes both to see and to change the value of the
variable, you might wonder why not just make the variable public? The reason is that getters
and setters are not restricted to simply reading and writing the variable’s value. In fact, they
can take any action at all. For example, a getter method might keep track of the number of
times that the variable has been accessed:

public String getTitle() {

titleAccessCount++; // Increment member variable titleAccessCount.

return title;

}

and a setter method might check that the value that is being assigned to the variable is legal:

5.2. CONSTRUCTORS AND OBJECT INITIALIZATION 173

public void setTitle(String newTitle) {

if (newTitle == null) // Don’t allow null strings as titles!

title = "(Untitled)"; // Use an appropriate default value instead.

else

title = newTitle;

}

Even if you can’t think of any extra chores to do in a getter or setter method, you might change
your mind in the future when you redesign and improve your class. If you’ve used a getter and
setter from the beginning, you can make the modification to your class without affecting any of
the classes that use your class. The private member variable is not part of the public interface
of your class; only the public getter and setter methods are. If you haven’t used get and set
from the beginning, you’ll have to contact everyone who uses your class and tell them, “Sorry
guys, you’ll have to track down every use that you’ve made of this variable and change your
code to use my new get and set methods instead.”

A couple of final notes: Some advanced aspects of Java rely on the naming convention
for getter and setter methods, so it’s a good idea to follow the convention rigorously. And
though I’ve been talking about using getter and setter methods for a variable, you can define
get and set methods even if there is no variable. A getter and/or setter method defines a
property of the class, that might or might not correspond to a variable. For example, if a class
includes a public void instance method with signature setValue(double), then the class has
a “property” named value of type double, and it has this property whether or not the class
has a member variable named value.

5.2 Constructors and Object Initialization

Object types in Java are very different from the primitive types. Simply declaring a variable
whose type is given as a class does not automatically create an object of that class. Objects
must be explicitly constructed . For the computer, the process of constructing an object means,
first, finding some unused memory in the heap that can be used to hold the object and, second,
filling in the object’s instance variables. As a programmer, you don’t care where in memory
the object is stored, but you will usually want to exercise some control over what initial values
are stored in a new object’s instance variables. In many cases, you will also want to do more
complicated initialization or bookkeeping every time an object is created.

5.2.1 Initializing Instance Variables

An instance variable can be assigned an initial value in its declaration, just like any other
variable. For example, consider a class named PairOfDice. An object of this class will represent
a pair of dice. It will contain two instance variables to represent the numbers showing on the
dice and an instance method for rolling the dice:

public class PairOfDice {

public int die1 = 3; // Number showing on the first die.

public int die2 = 4; // Number showing on the second die.

public void roll() {

// Roll the dice by setting each of the dice to be

// a random number between 1 and 6.

die1 = (int)(Math.random()*6) + 1;

174 CHAPTER 5. OBJECTS AND CLASSES

die2 = (int)(Math.random()*6) + 1;

}

} // end class PairOfDice

The instance variables die1 and die2 are initialized to the values 3 and 4 respectively. These
initializations are executed whenever a PairOfDice object is constructed. It’s important to
understand when and how this happens. There can be many PairOfDice objects. Each time one
is created, it gets its own instance variables, and the assignments “die1 = 3” and “die2 = 4”
are executed to fill in the values of those variables. To make this clearer, consider a variation
of the PairOfDice class:

public class PairOfDice {

public int die1 = (int)(Math.random()*6) + 1;

public int die2 = (int)(Math.random()*6) + 1;

public void roll() {

die1 = (int)(Math.random()*6) + 1;

die2 = (int)(Math.random()*6) + 1;

}

} // end class PairOfDice

Here, the dice are initialized to random values, as if a new pair of dice were being thrown onto
the gaming table. Since the initialization is executed for each new object, a set of random initial
values will be computed for each new pair of dice. Different pairs of dice can have different
initial values. For initialization of static member variables, of course, the situation is quite
different. There is only one copy of a static variable, and initialization of that variable is
executed just once, when the class is first loaded.

If you don’t provide any initial value for an instance variable, a default initial value is pro-
vided automatically. Instance variables of numerical type (int, double, etc.) are automatically
initialized to zero if you provide no other values; boolean variables are initialized to false; and
char variables, to the Unicode character with code number zero. An instance variable can also
be a variable of object type. For such variables, the default initial value is null. (In particular,
since Strings are objects, the default initial value for String variables is null.)

5.2.2 Constructors

Objects are created with the operator, new. For example, a program that wants to use a
PairOfDice object could say:

PairOfDice dice; // Declare a variable of type PairOfDice.

dice = new PairOfDice(); // Construct a new object and store a

// reference to it in the variable.

In this example, “new PairOfDice()” is an expression that allocates memory for the object,
initializes the object’s instance variables, and then returns a reference to the object. This
reference is the value of the expression, and that value is stored by the assignment statement in
the variable, dice, so that after the assignment statement is executed, dice refers to the newly
created object. Part of this expression, “PairOfDice()”, looks like a subroutine call, and that
is no accident. It is, in fact, a call to a special type of subroutine called a constructor . This
might puzzle you, since there is no such subroutine in the class definition. However, every class
has at least one constructor. If the programmer doesn’t write a constructor definition in a class,

5.2. CONSTRUCTORS AND OBJECT INITIALIZATION 175

then the system will provide a default constructor for that class. This default constructor
does nothing beyond the basics: allocate memory and initialize instance variables. If you want
more than that to happen when an object is created, you can include one or more constructors
in the class definition.

The definition of a constructor looks much like the definition of any other subroutine, with
three exceptions. A constructor does not have any return type (not even void). The name of
the constructor must be the same as the name of the class in which it is defined. The only
modifiers that can be used on a constructor definition are the access modifiers public, private,
and protected. (In particular, a constructor can’t be declared static.)

However, a constructor does have a subroutine body of the usual form, a block of statements.
There are no restrictions on what statements can be used. And it can have a list of formal
parameters. In fact, the ability to include parameters is one of the main reasons for using
constructors. The parameters can provide data to be used in the construction of the object.
For example, a constructor for the PairOfDice class could provide the values that are initially
showing on the dice. Here is what the class would look like in that case:

public class PairOfDice {

public int die1; // Number showing on the first die.

public int die2; // Number showing on the second die.

public PairOfDice(int val1, int val2) {

// Constructor. Creates a pair of dice that

// are initially showing the values val1 and val2.

die1 = val1; // Assign specified values

die2 = val2; // to the instance variables.

}

public void roll() {

// Roll the dice by setting each of the dice to be

// a random number between 1 and 6.

die1 = (int)(Math.random()*6) + 1;

die2 = (int)(Math.random()*6) + 1;

}

} // end class PairOfDice

The constructor is declared as “public PairOfDice(int val1, int val2) ...”, with no
return type and with the same name as the name of the class. This is how the Java com-
piler recognizes a constructor. The constructor has two parameters, and values for these
parameters must be provided when the constructor is called. For example, the expression
“new PairOfDice(3,4)” would create a PairOfDice object in which the values of the instance
variables die1 and die2 are initially 3 and 4. Of course, in a program, the value returned by
the constructor should be used in some way, as in

PairOfDice dice; // Declare a variable of type PairOfDice.

dice = new PairOfDice(1,1); // Let dice refer to a new PairOfDice

// object that initially shows 1, 1.

Now that we’ve added a constructor to the PairOfDice class, we can no longer create
an object by saying “new PairOfDice()”! The system provides a default constructor for a
class only if the class definition does not already include a constructor, so there is only one
constructor in the class, and it requires two actual parameters. However, this is not a big

176 CHAPTER 5. OBJECTS AND CLASSES

problem, since we can add a second constructor to the class, one that has no parameters. In
fact, you can have as many different constructors as you want, as long as their signatures are
different, that is, as long as they have different numbers or types of formal parameters. In the
PairOfDice class, we might have a constructor with no parameters which produces a pair of
dice showing random numbers:

public class PairOfDice {

public int die1; // Number showing on the first die.

public int die2; // Number showing on the second die.

public PairOfDice() {

// Constructor. Rolls the dice, so that they initially

// show some random values.

roll(); // Call the roll() method to roll the dice.

}

public PairOfDice(int val1, int val2) {

// Constructor. Creates a pair of dice that

// are initially showing the values val1 and val2.

die1 = val1; // Assign specified values

die2 = val2; // to the instance variables.

}

public void roll() {

// Roll the dice by setting each of the dice to be

// a random number between 1 and 6.

die1 = (int)(Math.random()*6) + 1;

die2 = (int)(Math.random()*6) + 1;

}

} // end class PairOfDice

Now we have the option of constructing a PairOfDice object either with “new PairOfDice()”
or with “new PairOfDice(x,y)”, where x and y are int-valued expressions.

This class, once it is written, can be used in any program that needs to work with one
or more pairs of dice. None of those programs will ever have to use the obscure incantation
“(int)(Math.random()*6)+1”, because it’s done inside the PairOfDice class. And the pro-
grammer, having once gotten the dice-rolling thing straight will never have to worry about it
again. Here, for example, is a main program that uses the PairOfDice class to count how many
times two pairs of dice are rolled before the two pairs come up showing the same value. This
illustrates once again that you can create several instances of the same class:

public class RollTwoPairs {

public static void main(String[] args) {

PairOfDice firstDice; // Refers to the first pair of dice.

firstDice = new PairOfDice();

PairOfDice secondDice; // Refers to the second pair of dice.

secondDice = new PairOfDice();

int countRolls; // Counts how many times the two pairs of

// dice have been rolled.

int total1; // Total showing on first pair of dice.

int total2; // Total showing on second pair of dice.

5.2. CONSTRUCTORS AND OBJECT INITIALIZATION 177

countRolls = 0;

do { // Roll the two pairs of dice until totals are the same.

firstDice.roll(); // Roll the first pair of dice.

total1 = firstDice.die1 + firstDice.die2; // Get total.

System.out.println("First pair comes up " + total1);

secondDice.roll(); // Roll the second pair of dice.

total2 = secondDice.die1 + secondDice.die2; // Get total.

System.out.println("Second pair comes up " + total2);

countRolls++; // Count this roll.

System.out.println(); // Blank line.

} while (total1 != total2);

System.out.println("It took " + countRolls

+ " rolls until the totals were the same.");

} // end main()

} // end class RollTwoPairs

∗ ∗ ∗

Constructors are subroutines, but they are subroutines of a special type. They are certainly
not instance methods, since they don’t belong to objects. Since they are responsible for creating
objects, they exist before any objects have been created. They are more like static member
subroutines, but they are not and cannot be declared to be static. In fact, according to the
Java language specification, they are technically not members of the class at all! In particular,
constructors are not referred to as “methods.”

Unlike other subroutines, a constructor can only be called using the new operator, in an
expression that has the form

new 〈class-name 〉 (〈parameter-list〉)

where the 〈parameter-list〉 is possibly empty. I call this an expression because it computes and
returns a value, namely a reference to the object that is constructed. Most often, you will store
the returned reference in a variable, but it is also legal to use a constructor call in other ways,
for example as a parameter in a subroutine call or as part of a more complex expression. Of
course, if you don’t save the reference in a variable, you won’t have any way of referring to the
object that was just created.

A constructor call is more complicated than an ordinary subroutine or function call. It is
helpful to understand the exact steps that the computer goes through to execute a constructor
call:

1. First, the computer gets a block of unused memory in the heap, large enough to hold an
object of the specified type.

2. It initializes the instance variables of the object. If the declaration of an instance variable
specifies an initial value, then that value is computed and stored in the instance variable.
Otherwise, the default initial value is used.

3. The actual parameters in the constructor, if any, are evaluated, and the values are assigned
to the formal parameters of the constructor.

178 CHAPTER 5. OBJECTS AND CLASSES

4. The statements in the body of the constructor, if any, are executed.

5. A reference to the object is returned as the value of the constructor call.

The end result of this is that you have a reference to a newly constructed object. You can
use this reference to get at the instance variables in that object or to call its instance methods.

∗ ∗ ∗

For another example, let’s rewrite the Student class that was used in Section 1. I’ll add a
constructor, and I’ll also take the opportunity to make the instance variable, name, private.

public class Student {

private String name; // Student’s name.

public double test1, test2, test3; // Grades on three tests.

Student(String theName) {

// Constructor for Student objects;

// provides a name for the Student.

name = theName;

}

public String getName() {

// Getter method for reading the value of the private

// instance variable, name.

return name;

}

public double getAverage() {

// Compute average test grade.

return (test1 + test2 + test3) / 3;

}

} // end of class Student

An object of type Student contains information about some particular student. The con-
structor in this class has a parameter of type String, which specifies the name of that student.
Objects of type Student can be created with statements such as:

std = new Student("John Smith");

std1 = new Student("Mary Jones");

In the original version of this class, the value of name had to be assigned by a program after
it created the object of type Student. There was no guarantee that the programmer would
always remember to set the name properly. In the new version of the class, there is no way to
create a Student object except by calling the constructor, and that constructor automatically
sets the name. The programmer’s life is made easier, and whole hordes of frustrating bugs are
squashed before they even have a chance to be born.

Another type of guarantee is provided by the private modifier. Since the instance variable,
name, is private, there is no way for any part of the program outside the Student class to
get at the name directly. The program sets the value of name, indirectly, when it calls the
constructor. I’ve provided a function, getName(), that can be used from outside the class to
find out the name of the student. But I haven’t provided any setter method or other way to
change the name. Once a student object is created, it keeps the same name as long as it exists.

5.3. PROGRAMMING WITH OBJECTS 179

5.2.3 Garbage Collection

So far, this section has been about creating objects. What about destroying them? In Java,
the destruction of objects takes place automatically.

An object exists in the heap, and it can be accessed only through variables that hold
references to the object. What should be done with an object if there are no variables that
refer to it? Such things can happen. Consider the following two statements (though in reality,
you’d never do anything like this):

Student std = new Student("John Smith");

std = null;

In the first line, a reference to a newly created Student object is stored in the variable std.
But in the next line, the value of std is changed, and the reference to the Student object is
gone. In fact, there are now no references whatsoever to that object stored in any variable. So
there is no way for the program ever to use the object again. It might as well not exist. In fact,
the memory occupied by the object should be reclaimed to be used for another purpose.

Java uses a procedure called garbage collection to reclaim memory occupied by objects
that are no longer accessible to a program. It is the responsibility of the system, not the
programmer, to keep track of which objects are “garbage.” In the above example, it was very
easy to see that the Student object had become garbage. Usually, it’s much harder. If an
object has been used for a while, there might be several references to the object stored in several
variables. The object doesn’t become garbage until all those references have been dropped.

In many other programming languages, it’s the programmer’s responsibility to delete the
garbage. Unfortunately, keeping track of memory usage is very error-prone, and many serious
program bugs are caused by such errors. A programmer might accidently delete an object even
though there are still references to that object. This is called a dangling pointer error , and
it leads to problems when the program tries to access an object that is no longer there. Another
type of error is a memory leak , where a programmer neglects to delete objects that are no
longer in use. This can lead to filling memory with objects that are completely inaccessible,
and the program might run out of memory even though, in fact, large amounts of memory are
being wasted.

Because Java uses garbage collection, such errors are simply impossible. Garbage collection
is an old idea and has been used in some programming languages since the 1960s. You might
wonder why all languages don’t use garbage collection. In the past, it was considered too slow
and wasteful. However, research into garbage collection techniques combined with the incredible
speed of modern computers have combined to make garbage collection feasible. Programmers
should rejoice.

5.3 Programming with Objects

There are several ways in which object-oriented concepts can be applied to the process
of designing and writing programs. The broadest of these is object-oriented analysis and
design which applies an object-oriented methodology to the earliest stages of program devel-
opment, during which the overall design of a program is created. Here, the idea is to identify
things in the problem domain that can be modeled as objects. On another level, object-oriented
programming encourages programmers to produce generalized software components that
can be used in a wide variety of programming projects.

180 CHAPTER 5. OBJECTS AND CLASSES

Of course, for the most part, you will experience “generalized software components” by
using the standard classes that come along with Java. We begin this section by looking at some
built-in classes that are used for creating objects. At the end of the section, we will get back
to generalities.

5.3.1 Some Built-in Classes

Although the focus of object-oriented programming is generally on the design and implementa-
tion of new classes, it’s important not to forget that the designers of Java have already provided
a large number of reusable classes. Some of these classes are meant to be extended to produce
new classes, while others can be used directly to create useful objects. A true mastery of Java
requires familiarity with a large number of built-in classes—something that takes a lot of time
and experience to develop. In the next chapter, we will begin the study of Java’s GUI classes,
and you will encounter other built-in classes throughout the remainder of this book. But let’s
take a moment to look at a few built-in classes that you might find useful.

A string can be built up from smaller pieces using the + operator, but this is not very efficient.
If str is a String and ch is a character, then executing the command “str = str + ch;”
involves creating a whole new string that is a copy of str, with the value of ch appended
onto the end. Copying the string takes some time. Building up a long string letter by letter
would require a surprising amount of processing. The class StringBuffer makes it possible to be
efficient about building up a long string from a number of smaller pieces. To do this, you must
make an object belonging to the StringBuffer class. For example:

StringBuffer buffer = new StringBuffer();

(This statement both declares the variable buffer and initializes it to refer to a newly created
StringBuffer object. Combining declaration with initialization was covered in Subsection 4.7.1
and works for objects just as it does for primitive types.)

Like a String, a StringBuffer contains a sequence of characters. However, it is possible to
add new characters onto the end of a StringBuffer without making a copy of the data that
it already contains. If x is a value of any type and buffer is the variable defined above, then
the command buffer.append(x) will add x, converted into a string representation, onto the
end of the data that was already in the buffer. This command actually modifies the buffer,
rather than making a copy, and that can be done efficiently. A long string can be built up
in a StringBuffer using a sequence of append() commands. When the string is complete, the
function buffer.toString() will return a copy of the string in the buffer as an ordinary value
of type String. The StringBuffer class is in the standard package java.lang, so you can use its
simple name without importing it.

A number of useful classes are collected in the package java.util. For example, this package
contains classes for working with collections of objects. We will study these collection classes in
Chapter 10. Another class in this package, java.util.Date, is used to represent times. When
a Date object is constructed without parameters, the result represents the current date and
time, so an easy way to display this information is:

System.out.println(new Date());

Of course, to use the Date class in this way, you must make it available by importing it with one
of the statements “import java.util.Date;” or “import java.util.*;” at the beginning of
your program. (See Subsection 4.5.3 for a discussion of packages and import.)

I will also mention the class java.util.Random. An object belonging to this class is a
source of random numbers (or, more precisely pseudorandom numbers). The standard function

5.3. PROGRAMMING WITH OBJECTS 181

Math.random() uses one of these objects behind the scenes to generate its random numbers.
An object of type Random can generate random integers, as well as random real numbers. If
randGen is created with the command:

Random randGen = new Random();

and if N is a positive integer, then randGen.nextInt(N) generates a random integer in the range
from 0 to N-1. For example, this makes it a little easier to roll a pair of dice. Instead of say-
ing “die1 = (int)(6*Math.random())+1;”, one can say “die1 = randGen.nextInt(6)+1;”.
(Since you also have to import the class java.util.Random and create the Random object, you
might not agree that it is actually easier.) An object of type Random can also be used to generate
so-called Gaussian distributed random real numbers.

The main point here, again, is that many problems have already been solved, and the
solutions are available in Java’s standard classes. If you are faced with a task that looks like
it should be fairly common, it might be worth looking through a Java reference to see whether
someone has already written a class that you can use.

5.3.2 Wrapper Classes and Autoboxing

We have already encountered the classes Double and Integer in Subsection 2.5.7. These classes
contain the static methods Double.parseDouble and Integer.parseInteger that are used
to convert strings to numerical values. We have also encountered the Character class in some
examples, and static methods such as Character.isLetter, which can be used to test whether
a given value of type char is a letter. There is a similar class for each of the other primitive types,
Long, Short, Byte, Float, and Boolean. These classes are called wrapper classes. Although
they contain useful static members, they have another use as well: They are used for creating
objects that represent primitive type values.

Remember that the primitive types are not classes, and values of primitive type are not
objects. However, sometimes it’s useful to treat a primitive value as if it were an object. You
can’t do that literally, but you can “wrap” the primitive type value in an object belonging to
one of the wrapper classes.

For example, an object of type Double contains a single instance variable, of type double.
The object is a wrapper for the double value. For example, you can create an object that wraps
the double value 6.0221415e23 with

Double d = new Double(6.0221415e23);

The value of d contains the same information as the value of type double, but it is an object. If
you want to retrieve the double value that is wrapped in the object, you can call the function
d.doubleValue(). Similarly, you can wrap an int in an object of type Integer, a boolean value
in an object of type Boolean, and so on. (As an example of where this would be useful, the
collection classes that will be studied in Chapter 10 can only hold objects. If you want to add
a primitive type value to a collection, it has to be put into a wrapper object first.)

In Java 5.0, wrapper classes have become easier to use. Java 5.0 introduced automatic
conversion between a primitive type and the corresponding wrapper class. For example, if
you use a value of type int in a context that requires an object of type Integer, the int will
automatically be wrapped in an Integer object. For example, you can say

Integer answer = 42;

and the computer will silently read this as if it were

182 CHAPTER 5. OBJECTS AND CLASSES

Integer answer = new Integer(42);

This is called autoboxing . It works in the other direction, too. For example, if d refers to an
object of type Double, you can use d in a numerical expression such as 2*d. The double value
inside d is automatically unboxed and multiplied by 2. Autoboxing and unboxing also apply
to subroutine calls. For example, you can pass an actual parameter of type int to a subroutine
that has a formal parameter of type Integer. In fact, autoboxing and unboxing make it possible
in many circumstances to ignore the difference between primitive types and objects.

∗ ∗ ∗

The wrapper classes contain a few other things that deserve to be mentioned. Integer, for
example, contains constants Integer.MIN VALUE and Integer.MAX VALUE, which are equal to
the largest and smallest possible values of type int, that is, to -2147483648 and 2147483647
respectively. It’s certainly easier to remember the names than the numerical values. There are
similar named constants in Long, Short, and Byte. Double and Float also have constants named
MIN VALUE and MAX VALUE. MAX VALUE still gives the largest number that can be represented
in the given type, but MIN VALUE represents the smallest possible positive value. For type
double, Double.MIN VALUE is 4.9 times 10−324. Since double values have only a finite accuracy,
they can’t get arbitrarily close to zero. This is the closest they can get without actually being
equal to zero.

The class Double deserves special mention, since doubles are so much more complicated than
integers. The encoding of real numbers into values of type double has room for a few special val-
ues that are not real numbers at all in the mathematical sense. These values are given by named
constants in class Double: Double.POSITIVE INFINITY, Double.NEGATIVE INFINITY, and
Double.NaN. The infinite values can occur as the values of certain mathematical expressions. For
example, dividing a positive number by zero will give the result Double.POSITIVE INFINITY.
(It’s even more complicated than this, actually, because the double type includes a value
called “negative zero”, written -0.0. Dividing a positive number by negative zero gives
Double.NEGATIVE INFINITY.) You also get Double.POSITIVE INFINITY whenever the mathe-
matical value of an expression is greater than Double.MAX VALUE. For example, 1e200*1e200
is considered to be infinite. The value Double.NaN is even more interesting. “NaN” stands for
Not a Number , and it represents an undefined value such as the square root of a negative
number or the result of dividing zero by zero. Because of the existence of Double.NaN, no math-
ematical operation on real numbers will ever throw an exception; it simply gives Double.NaN

as the result.

You can test whether a value, x, of type double is infinite or undefined by calling the
boolean-valued static functions Double.isInfinite(x) and Double.isNaN(x). (It’s especially
important to use Double.isNaN() to test for undefined values, because Double.NaN has re-
ally weird behavior when used with relational operators such as ==. In fact, the values of
x == Double.NaN and x != Double.NaN are always both false—no matter what the value
of x is—so you can’t use these expressions to test whether x is Double.NaN.)

5.3.3 The class “Object”

We have already seen that one of the major features of object-oriented programming is the
ability to create subclasses of a class. The subclass inherits all the properties or behaviors of
the class, but can modify and add to what it inherits. In Section 5.5, you’ll learn how to create
subclasses. What you don’t know yet is that every class in Java (with just one exception) is
a subclass of some other class. If you create a class and don’t explicitly make it a subclass of

5.3. PROGRAMMING WITH OBJECTS 183

some other class, then it automatically becomes a subclass of the special class named Object.
(Object is the one class that is not a subclass of any other class.)

Class Object defines several instance methods that are inherited by every other class. These
methods can be used with any object whatsoever. I will mention just one of them here. You
will encounter more of them later in the book.

The instance method toString() in class Object returns a value of type String that is
supposed to be a string representation of the object. You’ve already used this method implicitly,
any time you’ve printed out an object or concatenated an object onto a string. When you use
an object in a context that requires a string, the object is automatically converted to type
String by calling its toString() method.

The version of toString that is defined in Object just returns the name of the class that
the object belongs to, concatenated with a code number called the hash code of the object;
this is not very useful. When you create a class, you can write a new toString() method for
it, which will replace the inherited version. For example, we might add the following method
to any of the PairOfDice classes from the previous section:

public String toString() {

// Return a String representation of a pair of dice, where die1

// and die2 are instance variables containing the numbers that are

// showing on the two dice.

if (die1 == die2)

return "double " + die1;

else

return die1 + " and " + die2;

}

If dice refers to a PairOfDice object, then dice.toString() will return strings such as
“3 and 6”, “5 and 1”, and “double 2”, depending on the numbers showing on the dice. This
method would be used automatically to convert dice to type String in a statement such as

System.out.println("The dice came up " + dice);

so this statement might output, “The dice came up 5 and 1” or “The dice came up double 2”.
You’ll see another example of a toString() method in the next section.

5.3.4 Object-oriented Analysis and Design

Every programmer builds up a stock of techniques and expertise expressed as snippets of code
that can be reused in new programs using the tried-and-true method of cut-and-paste: The old
code is physically copied into the new program and then edited to customize it as necessary.
The problem is that the editing is error-prone and time-consuming, and the whole enterprise is
dependent on the programmer’s ability to pull out that particular piece of code from last year’s
project that looks like it might be made to fit. (On the level of a corporation that wants to
save money by not reinventing the wheel for each new project, just keeping track of all the old
wheels becomes a major task.)

Well-designed classes are software components that can be reused without editing. A well-
designed class is not carefully crafted to do a particular job in a particular program. Instead,
it is crafted to model some particular type of object or a single coherent concept. Since objects
and concepts can recur in many problems, a well-designed class is likely to be reusable without
modification in a variety of projects.

184 CHAPTER 5. OBJECTS AND CLASSES

Furthermore, in an object-oriented programming language, it is possible to make subclasses
of an existing class. This makes classes even more reusable. If a class needs to be customized,
a subclass can be created, and additions or modifications can be made in the subclass without
making any changes to the original class. This can be done even if the programmer doesn’t
have access to the source code of the class and doesn’t know any details of its internal, hidden
implementation.

∗ ∗ ∗

The PairOfDice class in the previous section is already an example of a generalized software
component, although one that could certainly be improved. The class represents a single,
coherent concept, “a pair of dice.” The instance variables hold the data relevant to the state
of the dice, that is, the number showing on each of the dice. The instance method represents
the behavior of a pair of dice, that is, the ability to be rolled. This class would be reusable in
many different programming projects.

On the other hand, the Student class from the previous section is not very reusable. It
seems to be crafted to represent students in a particular course where the grade will be based
on three tests. If there are more tests or quizzes or papers, it’s useless. If there are two people
in the class who have the same name, we are in trouble (one reason why numerical student ID’s
are often used). Admittedly, it’s much more difficult to develop a general-purpose student class
than a general-purpose pair-of-dice class. But this particular Student class is good mostly as
an example in a programming textbook.

∗ ∗ ∗

A large programming project goes through a number of stages, starting with specification
of the problem to be solved, followed by analysis of the problem and design of a program
to solve it. Then comes coding , in which the program’s design is expressed in some actual
programming language. This is followed by testing and debugging of the program. After that
comes a long period of maintenance , which means fixing any new problems that are found
in the program and modifying it to adapt it to changing requirements. Together, these stages
form what is called the software life cycle. (In the real world, the ideal of consecutive stages
is seldom if ever achieved. During the analysis stage, it might turn out that the specifications
are incomplete or inconsistent. A problem found during testing requires at least a brief return
to the coding stage. If the problem is serious enough, it might even require a new design.
Maintenance usually involves redoing some of the work from previous stages. . . .)

Large, complex programming projects are only likely to succeed if a careful, systematic
approach is adopted during all stages of the software life cycle. The systematic approach to
programming, using accepted principles of good design, is called software engineering . The
software engineer tries to efficiently construct programs that verifiably meet their specifications
and that are easy to modify if necessary. There is a wide range of “methodologies” that can
be applied to help in the systematic design of programs. (Most of these methodologies seem to
involve drawing little boxes to represent program components, with labeled arrows to represent
relationships among the boxes.)

We have been discussing object orientation in programming languages, which is relevant to
the coding stage of program development. But there are also object-oriented methodologies for
analysis and design. The question in this stage of the software life cycle is, How can one discover
or invent the overall structure of a program? As an example of a rather simple object-oriented
approach to analysis and design, consider this advice: Write down a description of the problem.
Underline all the nouns in that description. The nouns should be considered as candidates for
becoming classes or objects in the program design. Similarly, underline all the verbs. These

5.4. PROGRAMMING EXAMPLE: CARD, HAND, DECK 185

are candidates for methods. This is your starting point. Further analysis might uncover the
need for more classes and methods, and it might reveal that subclassing can be used to take
advantage of similarities among classes.

This is perhaps a bit simple-minded, but the idea is clear and the general approach can be
effective: Analyze the problem to discover the concepts that are involved, and create classes to
represent those concepts. The design should arise from the problem itself, and you should end
up with a program whose structure reflects the structure of the problem in a natural way.

5.4 Programming Example: Card, Hand, Deck

In this section, we look at some specific examples of object-oriented design in a domain that
is simple enough that we have a chance of coming up with something reasonably reusable.
Consider card games that are played with a standard deck of playing cards (a so-called “poker”
deck, since it is used in the game of poker).

5.4.1 Designing the classes

In a typical card game, each player gets a hand of cards. The deck is shuffled and cards are
dealt one at a time from the deck and added to the players’ hands. In some games, cards can
be removed from a hand, and new cards can be added. The game is won or lost depending
on the value (ace, 2, . . . , king) and suit (spades, diamonds, clubs, hearts) of the cards that a
player receives. If we look for nouns in this description, there are several candidates for objects:
game, player, hand, card, deck, value, and suit. Of these, the value and the suit of a card are
simple values, and they will just be represented as instance variables in a Card object. In a
complete program, the other five nouns might be represented by classes. But let’s work on the
ones that are most obviously reusable: card, hand, and deck.

If we look for verbs in the description of a card game, we see that we can shuffle a deck and
deal a card from a deck. This gives use us two candidates for instance methods in a Deck class:
shuffle() and dealCard(). Cards can be added to and removed from hands. This gives two
candidates for instance methods in a Hand class: addCard() and removeCard(). Cards are
relatively passive things, but we need to be able to determine their suits and values. We will
discover more instance methods as we go along.

First, we’ll design the deck class in detail. When a deck of cards is first created, it contains
52 cards in some standard order. The Deck class will need a constructor to create a new deck.
The constructor needs no parameters because any new deck is the same as any other. There will
be an instance method called shuffle() that will rearrange the 52 cards into a random order.
The dealCard() instance method will get the next card from the deck. This will be a function
with a return type of Card, since the caller needs to know what card is being dealt. It has no
parameters—when you deal the next card from the deck, you don’t provide any information to
the deck; you just get the next card, whatever it is. What will happen if there are no more
cards in the deck when its dealCard() method is called? It should probably be considered an
error to try to deal a card from an empty deck, so the deck can throw an exception in that case.
But this raises another question: How will the rest of the program know whether the deck is
empty? Of course, the program could keep track of how many cards it has used. But the deck
itself should know how many cards it has left, so the program should just be able to ask the
deck object. We can make this possible by specifying another instance method, cardsLeft(),
that returns the number of cards remaining in the deck. This leads to a full specification of all

186 CHAPTER 5. OBJECTS AND CLASSES

the subroutines in the Deck class:

Constructor and instance methods in class Deck:

public Deck()

// Constructor. Create an unshuffled deck of cards.

public void shuffle()

// Put all the used cards back into the deck,

// and shuffle it into a random order.

public int cardsLeft()

// As cards are dealt from the deck, the number of

// cards left decreases. This function returns the

// number of cards that are still left in the deck.

public Card dealCard()

// Deals one card from the deck and returns it.

// Throws an exception if no more cards are left.

This is everything you need to know in order to use the Deck class. Of course, it doesn’t tell
us how to write the class. This has been an exercise in design, not in programming. In fact,
writing the class involves a programming technique, arrays, which will not be covered until
Chapter 7. Nevertheless, you can look at the source code, Deck.java, if you want. Even though
you won’t understand the implementation, the Javadoc comments give you all the information
that you need to understand the interface. With this information, you can use the class in your
programs without understanding the implementation.

We can do a similar analysis for the Hand class. When a hand object is first created, it
has no cards in it. An addCard() instance method will add a card to the hand. This method
needs a parameter of type Card to specify which card is being added. For the removeCard()

method, a parameter is needed to specify which card to remove. But should we specify the
card itself (“Remove the ace of spades”), or should we specify the card by its position in the
hand (“Remove the third card in the hand”)? Actually, we don’t have to decide, since we can
allow for both options. We’ll have two removeCard() instance methods, one with a parameter
of type Card specifying the card to be removed and one with a parameter of type int specifying
the position of the card in the hand. (Remember that you can have two methods in a class with
the same name, provided they have different types of parameters.) Since a hand can contain
a variable number of cards, it’s convenient to be able to ask a hand object how many cards it
contains. So, we need an instance method getCardCount() that returns the number of cards
in the hand. When I play cards, I like to arrange the cards in my hand so that cards of the
same value are next to each other. Since this is a generally useful thing to be able to do, we
can provide instance methods for sorting the cards in the hand. Here is a full specification for
a reusable Hand class:

Constructor and instance methods in class Hand:

public Hand() {

// Create a Hand object that is initially empty.

public void clear() {

// Discard all cards from the hand, making the hand empty.

public void addCard(Card c) {

// Add the card c to the hand. c should be non-null.

// If c is null, a NullPointerException is thrown.

5.4. PROGRAMMING EXAMPLE: CARD, HAND, DECK 187

public void removeCard(Card c) {

// If the specified card is in the hand, it is removed.

public void removeCard(int position) {

// Remove the card in the specified position from the

// hand. Cards are numbered counting from zero. If

// the specified position does not exist, then an

// exception is thrown.

public int getCardCount() {

// Return the number of cards in the hand.

public Card getCard(int position) {

// Get the card from the hand in given position, where

// positions are numbered starting from 0. If the

// specified position is not the position number of

// a card in the hand, an exception is thrown.

public void sortBySuit() {

// Sorts the cards in the hand so that cards of the same

// suit are grouped together, and within a suit the cards

// are sorted by value. Note that aces are considered

// to have the lowest value, 1.

public void sortByValue() {

// Sorts the cards in the hand so that cards are sorted into

// order of increasing value. Cards with the same value

// are sorted by suit. Note that aces are considered

// to have the lowest value.

Again, you don’t yet know enough to implement this class. But given the source code,
Hand.java, you can use the class in your own programming projects.

5.4.2 The Card Class

We have covered enough material to write a Card class. The class will have a constructor
that specifies the value and suit of the card that is being created. There are four suits, which
can be represented by the integers 0, 1, 2, and 3. It would be tough to remember which
number represents which suit, so I’ve defined named constants in the Card class to represent
the four possibilities. For example, Card.SPADES is a constant that represents the suit, spades.
(These constants are declared to be public final static ints. It might be better to use
an enumerated type, but for now we will stick to integer-valued constants. I’ll return to the
question of using enumerated types in this example at the end of the chapter.) The possible
values of a card are the numbers 1, 2, . . . , 13, with 1 standing for an ace, 11 for a jack, 12 for
a queen, and 13 for a king. Again, I’ve defined some named constants to represent the values
of aces and face cards. (When you read the Card class, you’ll see that I’ve also added support
for Jokers.)

A Card object can be constructed knowing the value and the suit of the card. For example,
we can call the constructor with statements such as:

card1 = new Card(Card.ACE, Card.SPADES); // Construct ace of spades.

card2 = new Card(10, Card.DIAMONDS); // Construct 10 of diamonds.

card3 = new Card(v, s); // This is OK, as long as v and s

// are integer expressions.

188 CHAPTER 5. OBJECTS AND CLASSES

A Card object needs instance variables to represent its value and suit. I’ve made these
private so that they cannot be changed from outside the class, and I’ve provided getter methods
getSuit() and getValue() so that it will be possible to discover the suit and value from outside
the class. The instance variables are initialized in the constructor, and are never changed after
that. In fact, I’ve declared the instance variables suit and value to be final, since they are
never changed after they are initialized. (An instance variable can be declared final provided
it is either given an initial value in its declaration or is initialized in every constructor in the
class.)

Finally, I’ve added a few convenience methods to the class to make it easier to print out
cards in a human-readable form. For example, I want to be able to print out the suit of a
card as the word “Diamonds”, rather than as the meaningless code number 2, which is used
in the class to represent diamonds. Since this is something that I’ll probably have to do in
many programs, it makes sense to include support for it in the class. So, I’ve provided instance
methods getSuitAsString() and getValueAsString() to return string representations of the
suit and value of a card. Finally, I’ve defined the instance method toString() to return a
string with both the value and suit, such as “Queen of Hearts”. Recall that this method will be
used whenever a Card needs to be converted into a String, such as when the card is concatenated
onto a string with the + operator. Thus, the statement

System.out.println("Your card is the " + card);

is equivalent to

System.out.println("Your card is the " + card.toString());

If the card is the queen of hearts, either of these will print out “Your card is the Queen of
Hearts”.

Here is the complete Card class. It is general enough to be highly reusable, so the work that
went into designing, writing, and testing it pays off handsomely in the long run.

/**

* An object of type Card represents a playing card from a

* standard Poker deck, including Jokers. The card has a suit, which

* can be spades, hearts, diamonds, clubs, or joker. A spade, heart,

* diamond, or club has one of the 13 values: ace, 2, 3, 4, 5, 6, 7,

* 8, 9, 10, jack, queen, or king. Note that "ace" is considered to be

* the smallest value. A joker can also have an associated value;

* this value can be anything and can be used to keep track of several

* different jokers.

*/

public class Card {

public final static int SPADES = 0; // Codes for the 4 suits, plus Joker.

public final static int HEARTS = 1;

public final static int DIAMONDS = 2;

public final static int CLUBS = 3;

public final static int JOKER = 4;

public final static int ACE = 1; // Codes for the non-numeric cards.

public final static int JACK = 11; // Cards 2 through 10 have their

public final static int QUEEN = 12; // numerical values for their codes.

public final static int KING = 13;

/**

5.4. PROGRAMMING EXAMPLE: CARD, HAND, DECK 189

* This card’s suit, one of the constants SPADES, HEARTS, DIAMONDS,

* CLUBS, or JOKER. The suit cannot be changed after the card is

* constructed.

*/

private final int suit;

/**

* The card’s value. For a normal cards, this is one of the values

* 1 through 13, with 1 representing ACE. For a JOKER, the value

* can be anything. The value cannot be changed after the card

* is constructed.

*/

private final int value;

/**

* Creates a Joker, with 1 as the associated value. (Note that

* "new Card()" is equivalent to "new Card(1,Card.JOKER)".)

*/

public Card() {

suit = JOKER;

value = 1;

}

/**

* Creates a card with a specified suit and value.

* @param theValue the value of the new card. For a regular card (non-joker),

* the value must be in the range 1 through 13, with 1 representing an Ace.

* You can use the constants Card.ACE, Card.JACK, Card.QUEEN, and Card.KING.

* For a Joker, the value can be anything.

* @param theSuit the suit of the new card. This must be one of the values

* Card.SPADES, Card.HEARTS, Card.DIAMONDS, Card.CLUBS, or Card.JOKER.

* @throws IllegalArgumentException if the parameter values are not in the

* permissible ranges

*/

public Card(int theValue, int theSuit) {

if (theSuit != SPADES && theSuit != HEARTS && theSuit != DIAMONDS &&

theSuit != CLUBS && theSuit != JOKER)

throw new IllegalArgumentException("Illegal playing card suit");

if (theSuit != JOKER && (theValue < 1 || theValue > 13))

throw new IllegalArgumentException("Illegal playing card value");

value = theValue;

suit = theSuit;

}

/**

* Returns the suit of this card.

* @returns the suit, which is one of the constants Card.SPADES,

* Card.HEARTS, Card.DIAMONDS, Card.CLUBS, or Card.JOKER

*/

public int getSuit() {

return suit;

}

/**

* Returns the value of this card.

* @return the value, which is one the numbers 1 through 13, inclusive for

190 CHAPTER 5. OBJECTS AND CLASSES

* a regular card, and which can be any value for a Joker.

*/

public int getValue() {

return value;

}

/**

* Returns a String representation of the card’s suit.

* @return one of the strings "Spades", "Hearts", "Diamonds", "Clubs"

* or "Joker".

*/

public String getSuitAsString() {

switch (suit) {

case SPADES: return "Spades";

case HEARTS: return "Hearts";

case DIAMONDS: return "Diamonds";

case CLUBS: return "Clubs";

default: return "Joker";

}

}

/**

* Returns a String representation of the card’s value.

* @return for a regular card, one of the strings "Ace", "2",

* "3", ..., "10", "Jack", "Queen", or "King". For a Joker, the

* string is always a numerical.

*/

public String getValueAsString() {

if (suit == JOKER)

return "" + value;

else {

switch (value) {

case 1: return "Ace";

case 2: return "2";

case 3: return "3";

case 4: return "4";

case 5: return "5";

case 6: return "6";

case 7: return "7";

case 8: return "8";

case 9: return "9";

case 10: return "10";

case 11: return "Jack";

case 12: return "Queen";

default: return "King";

}

}

}

/**

* Returns a string representation of this card, including both

* its suit and its value (except that for a Joker with value 1,

* the return value is just "Joker"). Sample return values

* are: "Queen of Hearts", "10 of Diamonds", "Ace of Spades",

* "Joker", "Joker #2"

5.4. PROGRAMMING EXAMPLE: CARD, HAND, DECK 191

*/

public String toString() {

if (suit == JOKER) {

if (value == 1)

return "Joker";

else

return "Joker #" + value;

}

else

return getValueAsString() + " of " + getSuitAsString();

}

} // end class Card

5.4.3 Example: A Simple Card Game

I will finish this section by presenting a complete program that uses the Card and Deck classes.
The program lets the user play a very simple card game called HighLow. A deck of cards is
shuffled, and one card is dealt from the deck and shown to the user. The user predicts whether
the next card from the deck will be higher or lower than the current card. If the user predicts
correctly, then the next card from the deck becomes the current card, and the user makes
another prediction. This continues until the user makes an incorrect prediction. The number
of correct predictions is the user’s score.

My program has a subroutine that plays one game of HighLow. This subroutine has a
return value that represents the user’s score in the game. The main() routine lets the user play
several games of HighLow. At the end, it reports the user’s average score.

I won’t go through the development of the algorithms used in this program, but I encourage
you to read it carefully and make sure that you understand how it works. Note in particular
that the subroutine that plays one game of HighLow returns the user’s score in the game as its
return value. This gets the score back to the main program, where it is needed. Here is the
program:

/**

* This program lets the user play HighLow, a simple card game

* that is described in the output statements at the beginning of

* the main() routine. After the user plays several games,

* the user’s average score is reported.

*/

public class HighLow {

public static void main(String[] args) {

System.out.println("This program lets you play the simple card game,");

System.out.println("HighLow. A card is dealt from a deck of cards.");

System.out.println("You have to predict whether the next card will be");

System.out.println("higher or lower. Your score in the game is the");

System.out.println("number of correct predictions you make before");

System.out.println("you guess wrong.");

System.out.println();

int gamesPlayed = 0; // Number of games user has played.

int sumOfScores = 0; // The sum of all the scores from

192 CHAPTER 5. OBJECTS AND CLASSES

// all the games played.

double averageScore; // Average score, computed by dividing

// sumOfScores by gamesPlayed.

boolean playAgain; // Record user’s response when user is

// asked whether he wants to play

// another game.

do {

int scoreThisGame; // Score for one game.

scoreThisGame = play(); // Play the game and get the score.

sumOfScores += scoreThisGame;

gamesPlayed++;

TextIO.put("Play again? ");

playAgain = TextIO.getlnBoolean();

} while (playAgain);

averageScore = ((double)sumOfScores) / gamesPlayed;

System.out.println();

System.out.println("You played " + gamesPlayed + " games.");

System.out.printf("Your average score was %1.3f.\n", averageScore);

} // end main()

/**

* Lets the user play one game of HighLow, and returns the

* user’s score on that game. The score is the number of

* correct guesses that the user makes.

*/

private static int play() {

Deck deck = new Deck(); // Get a new deck of cards, and

// store a reference to it in

// the variable, deck.

Card currentCard; // The current card, which the user sees.

Card nextCard; // The next card in the deck. The user tries

// to predict whether this is higher or lower

// than the current card.

int correctGuesses ; // The number of correct predictions the

// user has made. At the end of the game,

// this will be the user’s score.

char guess; // The user’s guess. ’H’ if the user predicts that

// the next card will be higher, ’L’ if the user

// predicts that it will be lower.

deck.shuffle(); // Shuffle the deck into a random order before

// starting the game.

correctGuesses = 0;

currentCard = deck.dealCard();

TextIO.putln("The first card is the " + currentCard);

while (true) { // Loop ends when user’s prediction is wrong.

/* Get the user’s prediction, ’H’ or ’L’ (or ’h’ or ’l’). */

5.4. PROGRAMMING EXAMPLE: CARD, HAND, DECK 193

TextIO.put("Will the next card be higher (H) or lower (L)? ");

do {

guess = TextIO.getlnChar();

guess = Character.toUpperCase(guess);

if (guess != ’H’ && guess != ’L’)

TextIO.put("Please respond with H or L: ");

} while (guess != ’H’ && guess != ’L’);

/* Get the next card and show it to the user. */

nextCard = deck.dealCard();

TextIO.putln("The next card is " + nextCard);

/* Check the user’s prediction. */

if (nextCard.getValue() == currentCard.getValue()) {

TextIO.putln("The value is the same as the previous card.");

TextIO.putln("You lose on ties. Sorry!");

break; // End the game.

}

else if (nextCard.getValue() > currentCard.getValue()) {

if (guess == ’H’) {

TextIO.putln("Your prediction was correct.");

correctGuesses++;

}

else {

TextIO.putln("Your prediction was incorrect.");

break; // End the game.

}

}

else { // nextCard is lower

if (guess == ’L’) {

TextIO.putln("Your prediction was correct.");

correctGuesses++;

}

else {

TextIO.putln("Your prediction was incorrect.");

break; // End the game.

}

}

/* To set up for the next iteration of the loop, the nextCard

becomes the currentCard, since the currentCard has to be

the card that the user sees, and the nextCard will be

set to the next card in the deck after the user makes

his prediction. */

currentCard = nextCard;

TextIO.putln();

TextIO.putln("The card is " + currentCard);

} // end of while loop

TextIO.putln();

TextIO.putln("The game is over.");

TextIO.putln("You made " + correctGuesses

194 CHAPTER 5. OBJECTS AND CLASSES

+ " correct predictions.");

TextIO.putln();

return correctGuesses;

} // end play()

} // end class

5.5 Inheritance, Polymorphism, and Abstract Classes

A class represents a set of objects which share the same structure and behaviors.
The class determines the structure of objects by specifying variables that are contained in each
instance of the class, and it determines behavior by providing the instance methods that express
the behavior of the objects. This is a powerful idea. However, something like this can be done
in most programming languages. The central new idea in object-oriented programming—the
idea that really distinguishes it from traditional programming—is to allow classes to express
the similarities among objects that share some, but not all, of their structure and behavior.
Such similarities can be expressed using inheritance and polymorphism .

5.5.1 Extending Existing Classes

The topics covered later in this section are relatively advanced aspects of object-oriented pro-
gramming. Any programmer should know what is meant by subclass, inheritance, and polymor-
phism. However, it will probably be a while before you actually do anything with inheritance
except for extending classes that already exist. In the first part of this section, we look at how
that is done.

In day-to-day programming, especially for programmers who are just beginning to work
with objects, subclassing is used mainly in one situation: There is an existing class that can be
adapted with a few changes or additions. This is much more common than designing groups of
classes and subclasses from scratch. The existing class can be extended to make a subclass.
The syntax for this is

public class 〈subclass-name 〉 extends 〈existing-class-name〉 {

.

. // Changes and additions.

.

}

As an example, suppose you want to write a program that plays the card game, Blackjack.
You can use the Card, Hand, and Deck classes developed in Section 5.4. However, a hand in the
game of Blackjack is a little different from a hand of cards in general, since it must be possible
to compute the “value” of a Blackjack hand according to the rules of the game. The rules are
as follows: The value of a hand is obtained by adding up the values of the cards in the hand.
The value of a numeric card such as a three or a ten is its numerical value. The value of a Jack,
Queen, or King is 10. The value of an Ace can be either 1 or 11. An Ace should be counted
as 11 unless doing so would put the total value of the hand over 21. Note that this means that
the second, third, or fourth Ace in the hand will always be counted as 1.

One way to handle this is to extend the existing Hand class by adding a method that
computes the Blackjack value of the hand. Here’s the definition of such a class:

5.5. INHERITANCE AND POLYMORPHISM 195

public class BlackjackHand extends Hand {

/**

* Computes and returns the value of this hand in the game

* of Blackjack.

*/

public int getBlackjackValue() {

int val; // The value computed for the hand.

boolean ace; // This will be set to true if the

// hand contains an ace.

int cards; // Number of cards in the hand.

val = 0;

ace = false;

cards = getCardCount();

for (int i = 0; i < cards; i++) {

// Add the value of the i-th card in the hand.

Card card; // The i-th card;

int cardVal; // The blackjack value of the i-th card.

card = getCard(i);

cardVal = card.getValue(); // The normal value, 1 to 13.

if (cardVal > 10) {

cardVal = 10; // For a Jack, Queen, or King.

}

if (cardVal == 1) {

ace = true; // There is at least one ace.

}

val = val + cardVal;

}

// Now, val is the value of the hand, counting any ace as 1.

// If there is an ace, and if changing its value from 1 to

// 11 would leave the score less than or equal to 21,

// then do so by adding the extra 10 points to val.

if (ace == true && val + 10 <= 21)

val = val + 10;

return val;

} // end getBlackjackValue()

} // end class BlackjackHand

Since BlackjackHand is a subclass of Hand, an object of type BlackjackHand contains
all the instance variables and instance methods defined in Hand, plus the new in-
stance method named getBlackjackValue(). For example, if bjh is a variable of type
BlackjackHand, then the following are all legal: bjh.getCardCount(), bjh.removeCard(0),
and bjh.getBlackjackValue(). The first two methods are defined in Hand, but are inherited
by BlackjackHand.

Inherited variables and methods from the Hand class can also be used in the definition
of BlackjackHand (except for any that are declared to be private, which prevents access
even by subclasses). The statement “cards = getCardCount();” in the above definition of
getBlackjackValue() calls the instance method getCardCount(), which was defined in Hand.

196 CHAPTER 5. OBJECTS AND CLASSES

Extending existing classes is an easy way to build on previous work. We’ll see that many
standard classes have been written specifically to be used as the basis for making subclasses.

∗ ∗ ∗

Access modifiers such as public and private are used to control access to members of a
class. There is one more access modifier, protected , that comes into the picture when subclasses
are taken into consideration. When protected is applied as an access modifier to a method or
member variable in a class, that member can be used in subclasses—direct or indirect—of the
class in which it is defined, but it cannot be used in non-subclasses. (There is one exception:
A protected member can also be accessed by any class in the same package as the class that
contains the protected member. Recall that using no access modifier makes a member accessible
to classes in the same package, and nowhere else. Using the protected modifier is strictly more
liberal than using no modifier at all: It allows access from classes in the same package and from
subclasses that are not in the same package.)

When you declare a method or member variable to be protected, you are saying that it
is part of the implementation of the class, rather than part of the public interface of the class.
However, you are allowing subclasses to use and modify that part of the implementation.

For example, consider a PairOfDice class that has instance variables die1 and die2 to
represent the numbers appearing on the two dice. We could make those variables private to
make it impossible to change their values from outside the class, while still allowing read access
through getter methods. However, if we think it possible that PairOfDice will be used to create
subclasses, we might want to make it possible for subclasses to change the numbers on the dice.
For example, a GraphicalDice subclass that draws the dice might want to change the numbers
at other times besides when the dice are rolled. In that case, we could make die1 and die2

protected, which would allow the subclass to change their values without making them public
to the rest of the world. (An even better idea would be to define protected setter methods for
the variables. A setter method could, for example, ensure that the value that is being assigned
to the variable is in the legal range 1 through 6.)

5.5.2 Inheritance and Class Hierarchy

The term inheritance refers to the fact that one class can inherit part or all of its structure
and behavior from another class. The class that does the inheriting is said to be a subclass of
the class from which it inherits. If class B is a subclass of class A, we also say that class A is a
superclass of class B. (Sometimes the terms derived class and base class are used instead
of subclass and superclass; this is the common terminology in C++.) A subclass can add to the
structure and behavior that it inherits. It can also replace or modify inherited behavior (though
not inherited structure). The relationship between subclass and superclass is sometimes shown
by a diagram in which the subclass is shown below, and connected to, its superclass, as shown
here on the left.

5.5. INHERITANCE AND POLYMORPHISM 197

In Java, to create a class named “B” as a subclass of a class named “A”, you would write

class B extends A {

.

. // additions to, and modifications of,

. // stuff inherited from class A

.

}

Several classes can be declared as subclasses of the same superclass. The subclasses, which
might be referred to as “sibling classes,” share some structures and behaviors—namely, the ones
they inherit from their common superclass. The superclass expresses these shared structures
and behaviors. In the diagram shown on the right, above, classes B, C, and D are sibling classes.
Inheritance can also extend over several “generations” of classes. This is shown in the diagram,
where class E is a subclass of class D which is itself a subclass of class A. In this case, class E
is considered to be a subclass of class A, even though it is not a direct subclass. This whole set
of classes forms a small class hierarchy .

5.5.3 Example: Vehicles

Let’s look at an example. Suppose that a program has to deal with motor vehicles, including
cars, trucks, and motorcycles. (This might be a program used by a Department of Motor
Vehicles to keep track of registrations.) The program could use a class named Vehicle to
represent all types of vehicles. Since cars, trucks, and motorcycles are types of vehicles, they
would be represented by subclasses of the Vehicle class, as shown in this class hierarchy diagram:

The Vehicle class would include instance variables such as registrationNumber and owner and
instance methods such as transferOwnership(). These are variables and methods common
to all vehicles. The three subclasses of Vehicle—Car, Truck, and Motorcycle—could then be
used to hold variables and methods specific to particular types of vehicles. The Car class
might add an instance variable numberOfDoors, the Truck class might have numberOfAxles,

198 CHAPTER 5. OBJECTS AND CLASSES

and the Motorcycle class could have a boolean variable hasSidecar. (Well, it could in theory
at least, even if it might give a chuckle to the people at the Department of Motor Vehicles.)
The declarations of these classes in a Java program would look, in outline, like this (although
in practice, they would probably be public classes, defined in separate files):

class Vehicle {

int registrationNumber;

Person owner; // (Assuming that a Person class has been defined!)

void transferOwnership(Person newOwner) {

. . .

}

. . .

}

class Car extends Vehicle {

int numberOfDoors;

. . .

}

class Truck extends Vehicle {

int numberOfAxles;

. . .

}

class Motorcycle extends Vehicle {

boolean hasSidecar;

. . .

}

Suppose that myCar is a variable of type Car that has been declared and initialized with the
statement

Car myCar = new Car();

Given this declaration, a program could refer to myCar.numberOfDoors, since numberOfDoors

is an instance variable in the class Car. But since class Car extends class Vehicle, a car also
has all the structure and behavior of a vehicle. This means that myCar.registrationNumber,
myCar.owner, and myCar.transferOwnership() also exist.

Now, in the real world, cars, trucks, and motorcycles are in fact vehicles. The same is true
in a program. That is, an object of type Car or Truck or Motorcycle is automatically an object
of type Vehicle too. This brings us to the following Important Fact:

A variable that can hold a reference

to an object of class A can also hold a reference

to an object belonging to any subclass of A.

The practical effect of this in our example is that an object of type Car can be assigned to a
variable of type Vehicle. That is, it would be legal to say

Vehicle myVehicle = myCar;

or even

Vehicle myVehicle = new Car();

5.5. INHERITANCE AND POLYMORPHISM 199

After either of these statements, the variable myVehicle holds a reference to a Vehicle object
that happens to be an instance of the subclass, Car. The object “remembers” that it is in fact
a Car, and not just a Vehicle. Information about the actual class of an object is stored as part
of that object. It is even possible to test whether a given object belongs to a given class, using
the instanceof operator. The test:

if (myVehicle instanceof Car) ...

determines whether the object referred to by myVehicle is in fact a car.

On the other hand, the assignment statement

myCar = myVehicle;

would be illegal because myVehicle could potentially refer to other types of vehicles that are
not cars. This is similar to a problem we saw previously in Subsection 2.5.6: The computer
will not allow you to assign an int value to a variable of type short, because not every int is a
short. Similarly, it will not allow you to assign a value of type Vehicle to a variable of type Car
because not every vehicle is a car. As in the case of ints and shorts, the solution here is to use
type-casting. If, for some reason, you happen to know that myVehicle does in fact refer to a
Car, you can use the type cast (Car)myVehicle to tell the computer to treat myVehicle as if
it were actually of type Car. So, you could say

myCar = (Car)myVehicle;

and you could even refer to ((Car)myVehicle).numberOfDoors. As an example of how this
could be used in a program, suppose that you want to print out relevant data about a vehicle.
You could say:

System.out.println("Vehicle Data:");

System.out.println("Registration number: "

+ myVehicle.registrationNumber);

if (myVehicle instanceof Car) {

System.out.println("Type of vehicle: Car");

Car c;

c = (Car)myVehicle;

System.out.println("Number of doors: " + c.numberOfDoors);

}

else if (myVehicle instanceof Truck) {

System.out.println("Type of vehicle: Truck");

Truck t;

t = (Truck)myVehicle;

System.out.println("Number of axles: " + t.numberOfAxles);

}

else if (myVehicle instanceof Motorcycle) {

System.out.println("Type of vehicle: Motorcycle");

Motorcycle m;

m = (Motorcycle)myVehicle;

System.out.println("Has a sidecar: " + m.hasSidecar);

}

Note that for object types, when the computer executes a program, it checks whether
type-casts are valid. So, for example, if myVehicle refers to an object of type Truck, then
the type cast (Car)myVehicle would be an error. When this happes, an exception of type
ClassCastException is thrown.

200 CHAPTER 5. OBJECTS AND CLASSES

5.5.4 Polymorphism

As another example, consider a program that deals with shapes drawn on the screen. Let’s say
that the shapes include rectangles, ovals, and roundrects of various colors. (A “roundrect” is
just a rectangle with rounded corners.)

Three classes, Rectangle, Oval, and RoundRect, could be used to represent the three types of
shapes. These three classes would have a common superclass, Shape, to represent features that
all three shapes have in common. The Shape class could include instance variables to represent
the color, position, and size of a shape, and it could include instance methods for changing the
color, position, and size. Changing the color, for example, might involve changing the value of
an instance variable, and then redrawing the shape in its new color:

class Shape {

Color color; // Color of the shape. (Recall that class Color

// is defined in package java.awt. Assume

// that this class has been imported.)

void setColor(Color newColor) {

// Method to change the color of the shape.

color = newColor; // change value of instance variable

redraw(); // redraw shape, which will appear in new color

}

void redraw() {

// method for drawing the shape

? ? ? // what commands should go here?

}

. . . // more instance variables and methods

} // end of class Shape

Now, you might see a problem here with the method redraw(). The problem is that each
different type of shape is drawn differently. The method setColor() can be called for any type
of shape. How does the computer know which shape to draw when it executes the redraw()?
Informally, we can answer the question like this: The computer executes redraw() by asking
the shape to redraw itself. Every shape object knows what it has to do to redraw itself.

In practice, this means that each of the specific shape classes has its own redraw() method:

class Rectangle extends Shape {

void redraw() {

. . . // commands for drawing a rectangle

5.5. INHERITANCE AND POLYMORPHISM 201

}

. . . // possibly, more methods and variables

}

class Oval extends Shape {

void redraw() {

. . . // commands for drawing an oval

}

. . . // possibly, more methods and variables

}

class RoundRect extends Shape {

void redraw() {

. . . // commands for drawing a rounded rectangle

}

. . . // possibly, more methods and variables

}

If oneShape is a variable of type Shape, it could refer to an object of any of the types,
Rectangle, Oval, or RoundRect. As a program executes, and the value of oneShape changes, it
could even refer to objects of different types at different times! Whenever the statement

oneShape.redraw();

is executed, the redraw method that is actually called is the one appropriate for the type of
object to which oneShape actually refers. There may be no way of telling, from looking at the
text of the program, what shape this statement will draw, since it depends on the value that
oneShape happens to have when the program is executed. Even more is true. Suppose the
statement is in a loop and gets executed many times. If the value of oneShape changes as the
loop is executed, it is possible that the very same statement “oneShape.redraw();” will call
different methods and draw different shapes as it is executed over and over. We say that the
redraw() method is polymorphic. A method is polymorphic if the action performed by the
method depends on the actual type of the object to which the method is applied. Polymorphism
is one of the major distinguishing features of object-oriented programming.

Perhaps this becomes more understandable if we change our terminology a bit: In object-
oriented programming, calling a method is often referred to as sending a message to an object.
The object responds to the message by executing the appropriate method. The statement
“oneShape.redraw();” is a message to the object referred to by oneShape. Since that object
knows what type of object it is, it knows how it should respond to the message. From this point
of view, the computer always executes “oneShape.redraw();” in the same way: by sending
a message. The response to the message depends, naturally, on who receives it. From this
point of view, objects are active entities that send and receive messages, and polymorphism is
a natural, even necessary, part of this view. Polymorphism just means that different objects
can respond to the same message in different ways.

One of the most beautiful things about polymorphism is that it lets code that you write do
things that you didn’t even conceive of, at the time you wrote it. Suppose that I decide to add
beveled rectangles to the types of shapes my program can deal with. A beveled rectangle has
a triangle cut off each corner:

202 CHAPTER 5. OBJECTS AND CLASSES

To implement beveled rectangles, I can write a new subclass, BeveledRect, of class Shape
and give it its own redraw() method. Automatically, code that I wrote previously—such as
the statement oneShape.redraw()—can now suddenly start drawing beveled rectangles, even
though the beveled rectangle class didn’t exist when I wrote the statement!

In the statement “oneShape.redraw();”, the redraw message is sent to the object
oneShape. Look back at the method from the Shape class for changing the color of a shape:

void setColor(Color newColor) {

color = newColor; // change value of instance variable

redraw(); // redraw shape, which will appear in new color

}

A redraw message is sent here, but which object is it sent to? Well, the setColor method
is itself a message that was sent to some object. The answer is that the redraw message is sent
to that same object, the one that received the setColor message. If that object is a rectangle,
then it is the redraw() method from the Rectangle class that is executed. If the object is an
oval, then it is the redraw() method from the Oval class. This is what you should expect, but
it means that the “redraw();” statement in the setColor() method does not necessarily call
the redraw() method in the Shape class! The redraw() method that is executed could be in
any subclass of Shape.

Again, this is not a real surprise if you think about it in the right way. Remember that
an instance method is always contained in an object. The class only contains the source code
for the method. When a Rectangle object is created, it contains a redraw() method. The
source code for that method is in the Rectangle class. The object also contains a setColor()

method. Since the Rectangle class does not define a setColor() method, the source code for
the rectangle’s setColor() method comes from the superclass, Shape, but the method itself

is in the object of type Rectangle. Even though the source codes for the two methods are in
different classes, the methods themselves are part of the same object. When the rectangle’s
setColor() method is executed and calls redraw(), the redraw() method that is executed is
the one in the same object.

5.5.5 Abstract Classes

Whenever a Rectangle, Oval, or RoundRect object has to draw itself, it is the redraw()method in
the appropriate class that is executed. This leaves open the question, What does the redraw()
method in the Shape class do? How should it be defined?

The answer may be surprising: We should leave it blank! The fact is that the class Shape
represents the abstract idea of a shape, and there is no way to draw such a thing. Only
particular, concrete shapes like rectangles and ovals can be drawn. So, why should there

5.5. INHERITANCE AND POLYMORPHISM 203

even be a redraw() method in the Shape class? Well, it has to be there, or it would be
illegal to call it in the setColor() method of the Shape class, and it would be illegal to write
“oneShape.redraw();”, where oneShape is a variable of type Shape. The compiler would
complain that oneShape is a variable of type Shape and there’s no redraw() method in the
Shape class.

Nevertheless the version of redraw() in the Shape class itself will never actually be called.
In fact, if you think about it, there can never be any reason to construct an actual object of
type Shape! You can have variables of type Shape, but the objects they refer to will always
belong to one of the subclasses of Shape. We say that Shape is an abstract class. An abstract
class is one that is not used to construct objects, but only as a basis for making subclasses. An
abstract class exists only to express the common properties of all its subclasses. A class that
is not abstract is said to be concrete . You can create objects belonging to a concrete class,
but not to an abstract class. A variable whose type is given by an abstract class can only refer
to objects that belong to concrete subclasses of the abstract class.

Similarly, we say that the redraw() method in class Shape is an abstract method , since
it is never meant to be called. In fact, there is nothing for it to do—any actual redrawing is
done by redraw() methods in the subclasses of Shape. The redraw() method in Shape has
to be there. But it is there only to tell the computer that all Shapes understand the redraw

message. As an abstract method, it exists merely to specify the common interface of all the
actual, concrete versions of redraw() in the subclasses of Shape. There is no reason for the
abstract redraw() in class Shape to contain any code at all.

Shape and its redraw() method are semantically abstract. You can also tell the computer,
syntactically, that they are abstract by adding the modifier “abstract” to their definitions.
For an abstract method, the block of code that gives the implementation of an ordinary method
is replaced by a semicolon. An implementation must be provided for the abstract method in
any concrete subclass of the abstract class. Here’s what the Shape class would look like as an
abstract class:

public abstract class Shape {

Color color; // color of shape.

void setColor(Color newColor) {

// method to change the color of the shape

color = newColor; // change value of instance variable

redraw(); // redraw shape, which will appear in new color

}

abstract void redraw();

// abstract method---must be defined in

// concrete subclasses

. . . // more instance variables and methods

} // end of class Shape

Once you have declared the class to be abstract, it becomes illegal to try to create actual
objects of type Shape, and the computer will report a syntax error if you try to do so.

∗ ∗ ∗

Recall from Subsection 5.3.3 that a class that is not explicitly declared to be a subclass of
some other class is automatically made a subclass of the standard class Object. That is, a class
declaration with no “extends” part such as

204 CHAPTER 5. OBJECTS AND CLASSES

public class myClass { . . .

is exactly equivalent to

public class myClass extends Object { . . .

This means that class Object is at the top of a huge class hierarchy that includes every
other class. (Semantially, Object is an abstract class, in fact the most abstract class of all.
Curiously, however, it is not declared to be abstract syntactially, which means that you can
create objects of type Object. What you would do with them, however, I have no idea.)

Since every class is a subclass of Object, a variable of type Object can refer to any object
whatsoever, of any type. Java has several standard data structures that are designed to hold
Objects, but since every object is an instance of class Object, these data structures can actually
hold any object whatsoever. One example is the “ArrayList” data structure, which is defined by
the class ArrayList in the package java.util. (ArrayList is discussed more fully in Section 7.3.)
An ArrayList is simply a list of Objects. This class is very convenient, because an ArrayList can
hold any number of objects, and it will grow, when necessary, as objects are added to it. Since
the items in the list are of type Object, the list can actually hold objects of any type.

A program that wants to keep track of various Shapes that have been drawn on the screen
can store those shapes in an ArrayList. Suppose that the ArrayList is named listOfShapes.
A shape, oneShape, can be added to the end of the list by calling the instance method
“listOfShapes.add(oneShape);”. The shape can be removed from the list with the instance
method “listOfShapes.remove(oneShape);”. The number of shapes in the list is given by
the function “listOfShapes.size()”. And it is possible to retrieve the i-th object from the
list with the function call “listOfShapes.get(i)”. (Items in the list are numbered from 0 to
listOfShapes.size() - 1.) However, note that this method returns an Object, not a Shape.
(Of course, the people who wrote the ArrayList class didn’t even know about Shapes, so the
method they wrote could hardly have a return type of Shape!) Since you know that the items
in the list are, in fact, Shapes and not just Objects, you can type-cast the Object returned by
listOfShapes.get(i) to be a value of type Shape:

oneShape = (Shape)listOfShapes.get(i);

Let’s say, for example, that you want to redraw all the shapes in the list. You could do
this with a simple for loop, which is lovely example of object-oriented programming and of
polymorphism:

for (int i = 0; i < listOfShapes.size(); i++) {

Shape s; // i-th element of the list, considered as a Shape

s = (Shape)listOfShapes.get(i);

s.redraw(); // What is drawn here depends on what type of shape s is!

}

∗ ∗ ∗

The sample source code file ShapeDraw.java uses an abstract Shape class and an ArrayList
to hold a list of shapes. The file defines an applet in which the user can add various shapes to
a drawing area. Once a shape is in the drawing area, the user can use the mouse to drag it
around.

You might want to look at this file, even though you won’t be able to understand all of it
at this time. Even the definitions of the shape classes are somewhat different from those that
I have described in this section. (For example, the draw() method has a parameter of type
Graphics. This parameter is required because of the way Java handles all drawing.) I’ll return

5.6. THIS AND SUPER 205

to this example in later chapters when you know more about GUI programming. However, it
would still be worthwhile to look at the definition of the Shape class and its subclasses in the
source code. You might also check how an ArrayList is used to hold the list of shapes.

In the applet the only time when the actual class of a shape is used is when that shape is
added to the screen. Once the shape has been created, it is manipulated entirely as an abstract
shape. The routine that implements dragging, for example, works only with variables of type
Shape. As the Shape is being dragged, the dragging routine just calls the Shape’s draw method
each time the shape has to be drawn, so it doesn’t have to know how to draw the shape or even
what type of shape it is. The object is responsible for drawing itself. If I wanted to add a new
type of shape to the program, I would define a new subclass of Shape, add another button to
the applet, and program the button to add the correct type of shape to the screen. No other
changes in the programming would be necessary.

If you want to try out the applet, you can find it at the end of the on-line version of this
section.

5.6 this and super

Although the basic ideas of object-oriented programming are reasonably simple and clear,
they are subtle, and they take time to get used to. And unfortunately, beyond the basic ideas
there are a lot of details. This section and the next cover more of those annoying details. You
should not necessarily master everything in these two sections the first time through, but you
should read it to be aware of what is possible. For the most part, when I need to use this
material later in the text, I will explain it again briefly, or I will refer you back to it. In this
section, we’ll look at two variables, this and super, that are automatically defined in any
instance method.

5.6.1 The Special Variable this

A static member of a class has a simple name, which can only be used inside the class defi-
nition. For use outside the class, it has a full name of the form 〈class-name〉.〈simple-name〉.
For example, “System.out” is a static member variable with simple name “out” in the class
“System”. It’s always legal to use the full name of a static member, even within the class
where it’s defined. Sometimes it’s even necessary, as when the simple name of a static member
variable is hidden by a local variable of the same name.

Instance variables and instance methods also have simple names. The simple name of such
an instance member can be used in instance methods in the class where the instance member
is defined. Instance members also have full names, but remember that instance variables and
methods are actually contained in objects, not classes. The full name of an instance member
has to contain a reference to the object that contains the instance member. To get at an
instance variable or method from outside the class definition, you need a variable that refers to
the object. Then the full name is of the form 〈variable-name〉.〈simple-name〉. But suppose you
are writing the definition of an instance method in some class. How can you get a reference to
the object that contains that instance method? You might need such a reference, for example,
if you want to use the full name of an instance variable, because the simple name of the instance
variable is hidden by a local variable or parameter.

Java provides a special, predefined variable named “this” that you can use for such pur-
poses. The variable, this, is used in the source code of an instance method to refer to the

206 CHAPTER 5. OBJECTS AND CLASSES

object that contains the method. This intent of the name, this, is to refer to “this object,” the
one right here that this very method is in. If x is an instance variable in the same object, then
this.x can be used as a full name for that variable. If otherMethod() is an instance method
in the same object, then this.otherMethod() could be used to call that method. Whenever
the computer executes an instance method, it automatically sets the variable, this, to refer to
the object that contains the method.

One common use of this is in constructors. For example:

public class Student {

private String name; // Name of the student.

public Student(String name) {

// Constructor. Create a student with specified name.

this.name = name;

}

.

. // More variables and methods.

.

}

In the constructor, the instance variable called name is hidden by a formal parameter. How-
ever, the instance variable can still be referred to by its full name, this.name. In the assign-
ment statement, the value of the formal parameter, name, is assigned to the instance variable,
this.name. This is considered to be acceptable style: There is no need to dream up cute new
names for formal parameters that are just used to initialize instance variables. You can use the
same name for the parameter as for the instance variable.

There are other uses for this. Sometimes, when you are writing an instance method, you
need to pass the object that contains the method to a subroutine, as an actual parameter. In
that case, you can use this as the actual parameter. For example, if you wanted to print out
a string representation of the object, you could say “System.out.println(this);”. Or you
could assign the value of this to another variable in an assignment statement. In fact, you can
do anything with this that you could do with any other variable, except change its value.

5.6.2 The Special Variable super

Java also defines another special variable, named “super”, for use in the definitions of instance
methods. The variable super is for use in a subclass. Like this, super refers to the object
that contains the method. But it’s forgetful. It forgets that the object belongs to the class you
are writing, and it remembers only that it belongs to the superclass of that class. The point is
that the class can contain additions and modifications to the superclass. super doesn’t know
about any of those additions and modifications; it can only be used to refer to methods and
variables in the superclass.

Let’s say that the class that you are writing contains an instance method named
doSomething(). Consider the subroutine call statement super.doSomething(). Now, super
doesn’t know anything about the doSomething() method in the subclass. It only knows
about things in the superclass, so it tries to execute a method named doSomething() from
the superclass. If there is none—if the doSomething() method was an addition rather than a
modification—you’ll get a syntax error.

The reason super exists is so you can get access to things in the superclass that are hidden

by things in the subclass. For example, super.x always refers to an instance variable named

5.6. THIS AND SUPER 207

x in the superclass. This can be useful for the following reason: If a class contains an instance
variable with the same name as an instance variable in its superclass, then an object of that
class will actually contain two variables with the same name: one defined as part of the class
itself and one defined as part of the superclass. The variable in the subclass does not replace

the variable of the same name in the superclass; it merely hides it. The variable from the
superclass can still be accessed, using super.

When you write a method in a subclass that has the same signature as a method in its
superclass, the method from the superclass is hidden in the same way. We say that the method
in the subclass overrides the method from the superclass. Again, however, super can be used
to access the method from the superclass.

The major use of super is to override a method with a new method that extends the
behavior of the inherited method, instead of replacing that behavior entirely. The new method
can use super to call the method from the superclass, and then it can add additional code to
provide additional behavior. As an example, suppose you have a PairOfDice class that includes
a roll() method. Suppose that you want a subclass, GraphicalDice, to represent a pair of
dice drawn on the computer screen. The roll() method in the GraphicalDice class should do
everything that the roll() method in the PairOfDice class does. We can express this with a
call to super.roll(), which calls the method in the superclass. But in addition to that, the
roll() method for a GraphicalDice object has to redraw the dice to show the new values. The
GraphicalDice class might look something like this:

public class GraphicalDice extends PairOfDice {

public void roll() {

// Roll the dice, and redraw them.

super.roll(); // Call the roll method from PairOfDice.

redraw(); // Call a method to draw the dice.

}

.

. // More stuff, including definition of redraw().

.

}

Note that this allows you to extend the behavior of the roll() method even if you don’t know
how the method is implemented in the superclass!

Here is a more complete example. The applet at the end of Section 4.7 in the on-line version
of this book shows a disturbance that moves around in a mosaic of little squares. As it moves,
each square that it visits becomes a brighter shade of red. The result looks interesting, but I
think it would be prettier if the pattern were symmetric. A symmetric version of the applet
is shown at the bottom of Section 5.7 (in the on-line version). The symmetric applet can be
programmed as an easy extension of the original applet.

In the symmetric version, each time a square is brightened, the squares that can be obtained
from that one by horizontal and vertical reflection through the center of the mosaic are also
brightened. This picture might make the symmetry idea clearer:

208 CHAPTER 5. OBJECTS AND CLASSES

The four red squares in the picture, for example, form a set of such symmetrically placed
squares, as do the purple squares and the green squares. (The blue square is at the center of
the mosaic, so reflecting it doesn’t produce any other squares; it’s its own reflection.)

The original applet is defined by the class RandomBrighten. In that class, the actual task
of brightening a square is done by a method called brighten(). If row and col are the row
and column numbers of a square, then “brighten(row,col);” increases the brightness of that
square. All we need is a subclass of RandomBrighten with a modified brighten() routine.
Instead of just brightening one square, the modified routine will also brighten the horizontal
and vertical reflections of that square. But how will it brighten each of the four individual
squares? By calling the brighten() method from the original class. It can do this by calling
super.brighten().

There is still the problem of computing the row and column numbers of the horizontal
and vertical reflections. To do this, you need to know the number of rows and the number
of columns. The RandomBrighten class has instance variables named ROWS and COLUMNS to
represent these quantities. Using these variables, it’s possible to come up with formulas for the
reflections, as shown in the definition of the brighten() method below.

Here’s the complete definition of the new class:

public class SymmetricBrighten extends RandomBrighten {

void brighten(int row, int col) {

// Brighten the specified square and its horizontal

// and vertical reflections. This overrides the brighten

// method from the RandomBrighten class, which just

// brightens one square.

super.brighten(row, col);

super.brighten(ROWS - 1 - row, col);

super.brighten(row, COLUMNS - 1 - col);

super.brighten(ROWS - 1 - row, COLUMNS - 1 - col);

}

} // end class SymmetricBrighten

This is the entire source code for the applet!

5.6.3 Constructors in Subclasses

Constructors are not inherited. That is, if you extend an existing class to make a subclass, the
constructors in the superclass do not become part of the subclass. If you want constructors in
the subclass, you have to define new ones from scratch. If you don’t define any constructors
in the subclass, then the computer will make up a default constructor, with no parameters, for
you.

5.7. INTERFACES, NESTED CLASSES, AND OTHER DETAILS 209

This could be a problem, if there is a constructor in the superclass that does a lot of
necessary work. It looks like you might have to repeat all that work in the subclass! This could
be a real problem if you don’t have the source code to the superclass, and don’t know how
it works, or if the constructor in the superclass initializes private member variables that you
don’t even have access to in the subclass!

Obviously, there has to be some fix for this, and there is. It involves the special variable,
super. As the very first statement in a constructor, you can use super to call a constructor
from the superclass. The notation for this is a bit ugly and misleading, and it can only be used
in this one particular circumstance: It looks like you are calling super as a subroutine (even
though super is not a subroutine and you can’t call constructors the same way you call other
subroutines anyway). As an example, assume that the PairOfDice class has a constructor that
takes two integers as parameters. Consider a subclass:

public class GraphicalDice extends PairOfDice {

public GraphicalDice() { // Constructor for this class.

super(3,4); // Call the constructor from the

// PairOfDice class, with parameters 3, 4.

initializeGraphics(); // Do some initialization specific

// to the GraphicalDice class.

}

.

. // More constructors, methods, variables...

.

}

The statement “super(3,4);” calls the constructor from the superclass. This call must
be the first line of the constructor in the subclass. Note that if you don’t explicitly call a
constructor from the superclass in this way, then the default constructor from the superclass,
the one with no parameters, will be called automatically.

This might seem rather technical, but unfortunately it is sometimes necessary. By the way,
you can use the special variable this in exactly the same way to call another constructor in the
same class. This can be useful since it can save you from repeating the same code in several
constructors.

5.7 Interfaces, Nested Classes, and Other Details

THIS SECTION simply pulls together a few more miscellaneous features of object oriented
programming in Java. Read it now, or just look through it and refer back to it later when you
need this material. (You will need to know about the first topic, interfaces, almost as soon as
we begin GUI programming.)

5.7.1 Interfaces

Some object-oriented programming languages, such as C++, allow a class to extend two or
more superclasses. This is called multiple inheritance. In the illustration below, for example,
class E is shown as having both class A and class B as direct superclasses, while class F has
three direct superclasses.

210 CHAPTER 5. OBJECTS AND CLASSES

Such multiple inheritance is not allowed in Java. The designers of Java wanted to keep the
language reasonably simple, and felt that the benefits of multiple inheritance were not worth the
cost in increased complexity. However, Java does have a feature that can be used to accomplish
many of the same goals as multiple inheritance: interfaces.

We’ve encountered the term “interface” before, in connection with black boxes in general and
subroutines in particular. The interface of a subroutine consists of the name of the subroutine,
its return type, and the number and types of its parameters. This is the information you need
to know if you want to call the subroutine. A subroutine also has an implementation: the block
of code which defines it and which is executed when the subroutine is called.

In Java, interface is a reserved word with an additional, technical meaning. An
“interface” in this sense consists of a set of instance method interfaces, without any as-
sociated implementations. (Actually, a Java interface can contain other things as well, but we
won’t discuss them here.) A class can implement an interface by providing an implemen-
tation for each of the methods specified by the interface. Here is an example of a very simple
Java interface:

public interface Drawable {

public void draw(Graphics g);

}

This looks much like a class definition, except that the implementation of the draw() method is
omitted. A class that implements the interface Drawable must provide an implementation for
this method. Of course, the class can also include other methods and variables. For example,

public class Line implements Drawable {

public void draw(Graphics g) {

. . . // do something---presumably, draw a line

}

. . . // other methods and variables

}

Note that to implement an interface, a class must do more than simply provide an implementa-
tion for each method in the interface; it must also state that it implements the interface, using
the reserved word implements as in this example: “public class Line implements Drawable”.
Any class that implements the Drawable interface defines a draw() instance method. Any ob-
ject created from such a class includes a draw() method. We say that an object implements

5.7. INTERFACES, NESTED CLASSES, AND OTHER DETAILS 211

an interface if it belongs to a class that implements the interface. For example, any object
of type Line implements the Drawable interface.

While a class can extend only one other class, it can implement any number of interfaces.
In fact, a class can both extend one other class and implement one or more interfaces. So, we
can have things like

class FilledCircle extends Circle

implements Drawable, Fillable {

. . .

}

The point of all this is that, although interfaces are not classes, they are something very
similar. An interface is very much like an abstract class, that is, a class that can never be used
for constructing objects, but can be used as a basis for making subclasses. The subroutines
in an interface are abstract methods, which must be implemented in any concrete class that
implements the interface. And as with abstract classes, even though you can’t construct an
object from an interface, you can declare a variable whose type is given by the interface. For
example, if Drawable is an interface, and if Line and FilledCircle are classes that implement
Drawable, then you could say:

Drawable figure; // Declare a variable of type Drawable. It can

// refer to any object that implements the

// Drawable interface.

figure = new Line(); // figure now refers to an object of class Line

figure.draw(g); // calls draw() method from class Line

figure = new FilledCircle(); // Now, figure refers to an object

// of class FilledCircle.

figure.draw(g); // calls draw() method from class FilledCircle

A variable of type Drawable can refer to any object of any class that implements the Drawable
interface. A statement like figure.draw(g), above, is legal because figure is of type Drawable,
and any Drawable object has a draw() method. So, whatever object figure refers to, that
object must have a draw() method.

Note that a type is something that can be used to declare variables. A type can also be
used to specify the type of a parameter in a subroutine, or the return type of a function. In
Java, a type can be either a class, an interface, or one of the eight built-in primitive types.
These are the only possibilities. Of these, however, only classes can be used to construct new
objects.

You are not likely to need to write your own interfaces until you get to the point of writing
fairly complex programs. However, there are a few interfaces that are used in important ways
in Java’s standard packages. You’ll learn about some of these standard interfaces in the next
few chapters.

5.7.2 Nested Classes

A class seems like it should be a pretty important thing. A class is a high-level building block
of a program, representing a potentially complex idea and its associated data and behaviors.
I’ve always felt a bit silly writing tiny little classes that exist only to group a few scraps of data
together. However, such trivial classes are often useful and even essential. Fortunately, in Java,
I can ease the embarrassment, because one class can be nested inside another class. My trivial

212 CHAPTER 5. OBJECTS AND CLASSES

little class doesn’t have to stand on its own. It becomes part of a larger more respectable class.
This is particularly useful when you want to create a little class specifically to support the work
of a larger class. And, more seriously, there are other good reasons for nesting the definition of
one class inside another class.

In Java, a nested class is any class whose definition is inside the definition of another
class. Nested classes can be either named or anonymous. I will come back to the topic of
anonymous classes later in this section. A named nested class, like most other things that occur
in classes, can be either static or non-static.

The definition of a static nested class looks just like the definition of any other class, except
that it is nested inside another class and it has the modifier static as part of its declaration.
A static nested class is part of the static structure of the containing class. It can be used inside
that class to create objects in the usual way. If it has not been declared private, then it can
also be used outside the containing class, but when it is used outside the class, its name must
indicate its membership in the containing class. This is similar to other static components of
a class: A static nested class is part of the class itself in the same way that static member
variables are parts of the class itself.

For example, suppose a class named WireFrameModel represents a set of lines in three-
dimensional space. (Such models are used to represent three-dimensional objects in graphics
programs.) Suppose that the WireFrameModel class contains a static nested class, Line, that
represents a single line. Then, outside of the class WireFrameModel, the Line class would be
referred to as WireFrameModel.Line. Of course, this just follows the normal naming convention
for static members of a class. The definition of the WireFrameModel class with its nested Line
class would look, in outline, like this:

public class WireFrameModel {

. . . // other members of the WireFrameModel class

static public class Line {

// Represents a line from the point (x1,y1,z1)

// to the point (x2,y2,z2) in 3-dimensional space.

double x1, y1, z1;

double x2, y2, z2;

} // end class Line

. . . // other members of the WireFrameModel class

} // end WireFrameModel

Inside the WireFrameModel class, a Line object would be created with the constructor “new
Line()”. Outside the class, “new WireFrameModel.Line()” would be used.

A static nested class has full access to the static members of the containing class, even to the
private members. Similarly, the containing class has full access to the members of the nested
class. This can be another motivation for declaring a nested class, since it lets you give one
class access to the private members of another class without making those members generally
available to other classes.

When you compile the above class definition, two class files will be created. Even though
the definition of Line is nested inside WireFrameModel, the compiled Line class is stored in a
separate file. The name of the class file for Line will be WireFrameModel$Line.class.

∗ ∗ ∗

5.7. INTERFACES, NESTED CLASSES, AND OTHER DETAILS 213

Non-static nested classes are referred to as inner classes. Inner classes are not, in practice,
very different from static nested classes, but a non-static nested class is actually associated with
an object rather than to the class in which it is nested. This can take some getting used to.

Any non-static member of a class is not really part of the class itself (although its source
code is contained in the class definition). This is true for inner classes, just as it is for any other
non-static part of a class. The non-static members of a class specify what will be contained in
objects that are created from that class. The same is true—at least logically—for inner classes.
It’s as if each object that belongs to the containing class has its own copy of the nested class.
This copy has access to all the instance methods and instance variables of the object, even to
those that are declared private. The two copies of the inner class in two different objects differ
because the instance variables and methods they refer to are in different objects. In fact, the
rule for deciding whether a nested class should be static or non-static is simple: If the nested
class needs to use any instance variable or instance method from the containing class, make the
nested class non-static. Otherwise, it might as well be static.

From outside the containing class, a non-static nested class has to be referred to using a
name of the form 〈variableName〉.〈NestedClassName〉, where 〈variableName〉 is a variable that
refers to the object that contains the class. This is actually rather rare, however. A non-static
nested class is generally used only inside the class in which it is nested, and there it can be
referred to by its simple name.

In order to create an object that belongs to an inner class, you must first have an object
that belongs to the containing class. (When working inside the class, the object “this” is used
implicitly.) The inner class object is permanently associated with the containing class object,
and it has complete access to the members of the containing class object. Looking at an example
will help, and will hopefully convince you that inner classes are really very natural. Consider
a class that represents poker games. This class might include a nested class to represent the
players of the game. This structure of the PokerGame class could be:

public class PokerGame { // Represents a game of poker.

private class Player { // Represents one of the players in this game.

.

.

.

} // end class Player

private Deck deck; // A deck of cards for playing the game.

private int pot; // The amount of money that has been bet.

.

.

.

} // end class PokerGame

If game is a variable of type PokerGame, then, conceptually, game contains its own copy of
the Player class. In an instance method of a PokerGame object, a new Player object would
be created by saying “new Player()”, just as for any other class. (A Player object could be
created outside the PokerGame class with an expression such as “game.new Player()”. Again,
however, this is very rare.) The Player object will have access to the deck and pot instance
variables in the PokerGame object. Each PokerGame object has its own deck and pot and
Players. Players of that poker game use the deck and pot for that game; players of another
poker game use the other game’s deck and pot. That’s the effect of making the Player class

214 CHAPTER 5. OBJECTS AND CLASSES

non-static. This is the most natural way for players to behave. A Player object represents a
player of one particular poker game. If Player were a static nested class, on the other hand, it
would represent the general idea of a poker player, independent of a particular poker game.

5.7.3 Anonymous Inner Classes

In some cases, you might find yourself writing an inner class and then using that class in just a
single line of your program. Is it worth creating such a class? Indeed, it can be, but for cases
like this you have the option of using an anonymous inner class. An anonymous class is
created with a variation of the new operator that has the form

new 〈superclass-or-interface〉 (〈parameter-list〉) {

〈methods-and-variables〉
}

This constructor defines a new class, without giving it a name, and it simultaneously creates
an object that belongs to that class. This form of the new operator can be used in any statement
where a regular “new” could be used. The intention of this expression is to create: “a new object
belonging to a class that is the same as 〈superclass-or-interface〉 but with these 〈methods-and-
variables〉 added.” The effect is to create a uniquely customized object, just at the point in
the program where you need it. Note that it is possible to base an anonymous class on an
interface, rather than a class. In this case, the anonymous class must implement the interface
by defining all the methods that are declared in the interface. If an interface is used as a base,
the 〈parameter-list〉 must be empty. Otherwise, it can contain parameters for a constructor in
the 〈superclass〉.

Anonymous classes are often used for handling events in graphical user interfaces, and we
will encounter them several times in the chapters on GUI programming. For now, we will look
at one not-very-plausible example. Consider the Drawable interface, which is defined earlier in
this section. Suppose that we want a Drawable object that draws a filled, red, 100-pixel square.
Rather than defining a new, separate class and then using that class to create the object, we
can use an anonymous class to create the object in one statement:

Drawable redSquare = new Drawable() {

void draw(Graphics g) {

g.setColor(Color.red);

g.fillRect(10,10,100,100);

}

};

The semicolon at the end of this statement is not part of the class definition. It’s the semicolon
that is required at the end of every declaration statement.

When a Java class is compiled, each anonymous nested class will produce a separate
class file. If the name of the main class is MainClass, for example, then the names of the
class files for the anonymous nested classes will be MainClass$1.class, MainClass$2.class,
MainClass$3.class, and so on.

5.7.4 Mixing Static and Non-static

Classes, as I’ve said, have two very distinct purposes. A class can be used to group together a
set of static member variables and static member subroutines. Or it can be used as a factory
for making objects. The non-static variables and subroutines in the class definition specify the

5.7. INTERFACES, NESTED CLASSES, AND OTHER DETAILS 215

instance variables and methods of the objects. In most cases, a class performs one or the other
of these roles, not both.

Sometimes, however, static and non-static members are mixed in a single class. In this case,
the class plays a dual role. Sometimes, these roles are completely separate. It is also possible
for the static and non-static parts of a class to interact. This happens when instance methods
use static member variables or call static member subroutines. An instance method belongs to
an object, not to the class itself, and there can be many objects with their own versions of the
instance method. But there is only one copy of a static member variable. So, effectively, we
have many objects sharing that one variable.

Suppose, for example, that we want to write a PairOfDice class that uses the Random class
mentioned in Section 5.3 for rolling the dice. To do this, a PairOfDice object needs access to
an object of type Random. But there is no need for each PairOfDice object to have a separate
Random object. (In fact, it would not even be a good idea: Because of the way random number
generators work, a program should, in general, use only one source of random numbers.) A
nice solution is to have a single Random variable as a static member of the PairOfDice class,
so that it can be shared by all PairOfDice objects. For example:

import java.util.Random;

public class PairOfDice {

private static Random randGen = new Random();

public int die1; // Number showing on the first die.

public int die2; // Number showing on the second die.

public PairOfDice() {

// Constructor. Creates a pair of dice that

// initially shows random values.

roll();

}

public void roll() {

// Roll the dice by setting each of the dice to be

// a random number between 1 and 6.

die1 = randGen.nextInt(6) + 1;

die2 = randGen.nextInt(6) + 1;

}

} // end class PairOfDice

As another example, let’s rewrite the Student class that was used in Section 5.2. I’ve added
an ID for each student and a static member called nextUniqueID. Although there is an ID

variable in each student object, there is only one nextUniqueID variable.

public class Student {

private String name; // Student’s name.

private int ID; // Unique ID number for this student.

public double test1, test2, test3; // Grades on three tests.

private static int nextUniqueID = 0;

// keep track of next available unique ID number

Student(String theName) {

// Constructor for Student objects; provides a name for the Student,

216 CHAPTER 5. OBJECTS AND CLASSES

// and assigns the student a unique ID number.

name = theName;

nextUniqueID++;

ID = nextUniqueID;

}

public String getName() {

// Accessor method for reading value of private

// instance variable, name.

return name;

}

public int getID() {

// Accessor method for reading value of ID.

return ID;

}

public double getAverage() {

// Compute average test grade.

return (test1 + test2 + test3) / 3;

}

} // end of class Student

The initialization “nextUniqueID = 0” is done only once, when the class is first loaded.
Whenever a Student object is constructed and the constructor says “nextUniqueID++;”, it’s
always the same static member variable that is being incremented. When the very first Student
object is created, nextUniqueID becomes 1. When the second object is created, nextUniqueID
becomes 2. After the third object, it becomes 3. And so on. The constructor stores the new
value of nextUniqueID in the ID variable of the object that is being created. Of course, ID is an
instance variable, so every object has its own individual ID variable. The class is constructed
so that each student will automatically get a different value for its ID variable. Furthermore,
the ID variable is private, so there is no way for this variable to be tampered with after the
object has been created. You are guaranteed, just by the way the class is designed, that every
student object will have its own permanent, unique identification number. Which is kind of
cool if you think about it.

5.7.5 Static Import

The import directive makes it possible to refer to a class such as java.awt.Color using its
simple name, Color. All you have to do is say import java.awt.Color or import java.awt.*.
But you still have to use compound names to refer to static member variables such as
System.out and to static methods such as Math.sqrt.

Java 5.0 introduced a new form of the import directive that can be used to import static
members of a class in the same way that the ordinary import directive imports classes from a
package. The new form of the directive is called a static import , and it has syntax

import static 〈package-name 〉.〈class-name 〉.〈static-member-name〉;

to import one static member name from a class, or

import static 〈package-name 〉.〈class-name 〉.*;

to import all the public static members from a class. For example, if you preface a class
definition with

5.7. INTERFACES, NESTED CLASSES, AND OTHER DETAILS 217

import static java.lang.System.out;

then you can use the simple name out instead of the compound name System.out. This means
you can use out.println instead of System.out.println. If you are going to work extensively
with the Math class, you can preface your class definition with

import static java.lang.Math.*;

This would allow you to say sqrt instead of Math.sqrt, log instead of Math.log, PI instead
of Math.PI, and so on.

Note that the static import directive requires a 〈package-name〉, even for classes in the
standard package java.lang. One consequence of this is that you can’t do a static import from
a class in the default package. In particular, it is not possible to do a static import from my
TextIO class—if you wanted to do that, you would have to move TextIO into a package.

5.7.6 Enums as Classes

Enumerated types were introduced in Subsection 2.3.3. Now that we have covered more material
on classes and objects, we can revisit the topic (although still not covering enumerated types
in their full complexity).

Enumerated types are actually classes, and each enumerated type constant is a public,
final, static member variable in that class (even though they are not declared with these
modifiers). The value of the variable is an object belonging to the enumerated type class. There
is one such object for each enumerated type constant, and these are the only objects of the
class that can ever be created. It is really these objects that represent the possible values of
the enumerated type. The enumerated type constants are actually variables that refer to these
objects.

When an enumerated type is defined inside another class, it is a nested class inside the
enclosing class. In fact, it is a static nested class, whether you declare it to be static or not.
But it can also be declared as a non-nested class, in a file of its own. For example, we could
define the following enumerated type in a file named Suit.java:

public enum Suit {

SPADES, HEARTS, DIAMONDS, CLUBS

}

This enumerated type represents the four possible suits for a playing card, and it could have
been used in the example Card.java from Subsection 5.4.2.

Furthermore, in addition to its list of values, an enumerated type can contain some of
the other things that a regular class can contain, including methods and additional member
variables. Just add a semicolon (;) at the end of the list of values, and then add definitions
of the methods and variables in the usual way. For example, we might make an enumerated
type to represent the possible values of a playing card. It might be useful to have a method
that returns the corresponding value in the game of Blackjack. As another example, suppose
that when we print out one of the values, we’d like to see something different from the default
string representation (the identifier that names the constant). In that case, we can override the
toString() method in the class to print out a different string representation. This would give
something like:

public enum CardValue {

218 CHAPTER 5. OBJECTS AND CLASSES

ACE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT,

NINE, TEN, JACK, QUEEN, KING;

/**

* Return the value of this CardValue in the game of Blackjack.

* Note that the value returned for an ace is 1.

*/

public int blackJackValue() {

if (this == JACK || this == QUEEN || this == KING)

return 10;

else

return 1 + ordinal();

}

/**

* Return a String representation of this CardValue, using numbers

* for the numerical cards and names for the ace and face cards.

*/

public String toString() {

switch (this) { // "this" is one of the enumerated type values

case ACE: // ordinal number of ACE

return "Ace";

case JACK: // ordinal number of JACK

return "Jack";

case QUEEN: // ordinal number of QUEEN

return "Queen";

case KING: // ordinal number of KING

return "King";

default: // it’s a numeric card value

int numericValue = 1 + ordinal();

return "" + numericValue;

}

} // end CardValue

The methods blackjackValue() and toString() are instance methods in Card-
Value. Since CardValue.JACK is an object belonging to that class, you can call
CardValue.JACK.blackjackValue(). Suppose that cardVal is declared to be a variable
of type CardValue, so that it can refer to any of the values in the enumerated type. We
can call cardVal.blackjackValue() to find the Blackjack value of the CardValue object to
which cardVal refers, and System.out.println(cardVal) will implicitly call the method
cardVal.toString() to obtain the print representation of that CardValue. (One other thing to
keep in mind is that since CardValue is a class, the value of cardVal can be null, which means
it does not refer to any object.)

Remember that ACE, TWO, . . . , KING are the only possible objects of type CardValue, so in an
instance method in that class, this will refer to one of those values. Recall that the instance
method ordinal() is defined in any enumerated type and gives the position of the enumerated
type value in the list of possible values, with counting starting from zero.

(If you find it annoying to use the class name as part of the name of every enumerated
type constant, you can use static import to make the simple names of the constants directly
available—but only if you put the enumerated type into a package. For example, if the enu-
merated type CardValue is defined in a package named cardgames, then you could place

import static cardgames.CardValue.*;

5.7. INTERFACES, NESTED CLASSES, AND OTHER DETAILS 219

at the beginning of a source code file. This would allow you, for example, to use the name JACK
in that file instead of CardValue.JACK.)

220 CHAPTER 5. OBJECTS AND CLASSES

Exercises for Chapter 5

1. In all versions of the PairOfDice class in Section 5.2, the instance variables die1 and die2

are declared to be public. They really should be private, so that they are protected from
being changed from outside the class. Write another version of the PairOfDice class in
which the instance variables die1 and die2 are private. Your class will need “getter”
methods that can be used to find out the values of die1 and die2. (The idea is to protect
their values from being changed from outside the class, but still to allow the values to be
read.) Include other improvements in the class, if you can think of any. Test your class
with a short program that counts how many times a pair of dice is rolled, before the total
of the two dice is equal to two.

2. A common programming task is computing statistics of a set of numbers. (A statistic is
a number that summarizes some property of a set of data.) Common statistics include
the mean (also known as the average) and the standard deviation (which tells how spread
out the data are from the mean). I have written a little class called StatCalc that can
be used to compute these statistics, as well as the sum of the items in the dataset and
the number of items in the dataset. You can read the source code for this class in the
file StatCalc.java. If calc is a variable of type StatCalc, then the following methods are
defined:

• calc.enter(item); where item is a number, adds the item to the dataset.

• calc.getCount() is a function that returns the number of items that have been
added to the dataset.

• calc.getSum() is a function that returns the sum of all the items that have been
added to the dataset.

• calc.getMean() is a function that returns the average of all the items.

• calc.getStandardDeviation() is a function that returns the standard deviation
of the items.

Typically, all the data are added one after the other by calling the enter() method
over and over, as the data become available. After all the data have been entered, any
of the other methods can be called to get statistical information about the data. The
methods getMean() and getStandardDeviation() should only be called if the number
of items is greater than zero.

Modify the current source code, StatCalc.java, to add instance methods getMax() and
getMin(). The getMax() method should return the largest of all the items that have been
added to the dataset, and getMin() should return the smallest. You will need to add two
new instance variables to keep track of the largest and smallest items that have been seen
so far.

Test your new class by using it in a program to compute statistics for a set of non-zero
numbers entered by the user. Start by creating an object of type StatCalc:

StatCalc calc; // Object to be used to process the data.

calc = new StatCalc();

Read numbers from the user and add them to the dataset. Use 0 as a sentinel value
(that is, stop reading numbers when the user enters 0). After all the user’s non-zero

Exercises 221

numbers have been entered, print out each of the six statistics that are available from
calc.

3. This problem uses the PairOfDice class from Exercise 5.1 and the StatCalc class from
Exercise 5.2.

The program in Exercise 4.4 performs the experiment of counting how many times a
pair of dice is rolled before a given total comes up. It repeats this experiment 10000 times
and then reports the average number of rolls. It does this whole process for each possible
total (2, 3, . . . , 12).

Redo that exercise. But instead of just reporting the average number of rolls, you
should also report the standard deviation and the maximum number of rolls. Use a
PairOfDice object to represent the dice. Use a StatCalc object to compute the statistics.
(You’ll need a new StatCalc object for each possible total, 2, 3, . . . , 12. You can use a
new pair of dice if you want, but it’s not necessary.)

4. The BlackjackHand class from Subsection 5.5.1 is an extension of the Hand class from Sec-
tion 5.4. The instance methods in the Hand class are discussed in that section. In addition
to those methods, BlackjackHand includes an instance method, getBlackjackValue(),
that returns the value of the hand for the game of Blackjack. For this exercise, you will
also need the Deck and Card classes from Section 5.4.

A Blackjack hand typically contains from two to six cards. Write a program to test the
BlackjackHand class. You should create a BlackjackHand object and a Deck object. Pick
a random number between 2 and 6. Deal that many cards from the deck and add them to
the hand. Print out all the cards in the hand, and then print out the value computed for
the hand by getBlackjackValue(). Repeat this as long as the user wants to continue.

In addition to TextIO.java, your program will depend on Card.java, Deck.java,
Hand.java, and BlackjackHand.java.

5. Write a program that lets the user play Blackjack. The game will be a simplified version
of Blackjack as it is played in a casino. The computer will act as the dealer. As in
the previous exercise, your program will need the classes defined in Card.java, Deck.java,
Hand.java, and BlackjackHand.java. (This is the longest and most complex program that
has come up so far in the exercises.)

You should first write a subroutine in which the user plays one game. The subroutine
should return a boolean value to indicate whether the user wins the game or not. Return
true if the user wins, false if the dealer wins. The program needs an object of class
Deck and two objects of type BlackjackHand, one for the dealer and one for the user.
The general object in Blackjack is to get a hand of cards whose value is as close to 21 as
possible, without going over. The game goes like this.

• First, two cards are dealt into each player’s hand. If the dealer’s hand has a value of
21 at this point, then the dealer wins. Otherwise, if the user has 21, then the user
wins. (This is called a “Blackjack”.) Note that the dealer wins on a tie, so if both
players have Blackjack, then the dealer wins.

• Now, if the game has not ended, the user gets a chance to add some cards to her
hand. In this phase, the user sees her own cards and sees one of the dealer’s two
cards. (In a casino, the dealer deals himself one card face up and one card face down.
All the user’s cards are dealt face up.) The user makes a decision whether to “Hit”,

222 CHAPTER 5. OBJECTS AND CLASSES

which means to add another card to her hand, or to “Stand”, which means to stop
taking cards.

• If the user Hits, there is a possibility that the user will go over 21. In that case, the
game is over and the user loses. If not, then the process continues. The user gets to
decide again whether to Hit or Stand.

• If the user Stands, the game will end, but first the dealer gets a chance to draw cards.
The dealer only follows rules, without any choice. The rule is that as long as the
value of the dealer’s hand is less than or equal to 16, the dealer Hits (that is, takes
another card). The user should see all the dealer’s cards at this point. Now, the
winner can be determined: If the dealer has gone over 21, the user wins. Otherwise,
if the dealer’s total is greater than or equal to the user’s total, then the dealer wins.
Otherwise, the user wins.

Two notes on programming: At any point in the subroutine, as soon as you know who
the winner is, you can say “return true;” or “return false;” to end the subroutine
and return to the main program. To avoid having an overabundance of variables in your
subroutine, remember that a function call such as userHand.getBlackjackValue() can
be used anywhere that a number could be used, including in an output statement or in
the condition of an if statement.

Write a main program that lets the user play several games of Blackjack. To make
things interesting, give the user 100 dollars, and let the user make bets on the game. If
the user loses, subtract the bet from the user’s money. If the user wins, add an amount
equal to the bet to the user’s money. End the program when the user wants to quit or
when she runs out of money.

An applet version of this program can be found in the on-line version of this exercise.
You might want to try it out before you work on the program.

6. Subsection 5.7.6 discusses the possibility of representing the suits and values of playing
cards as enumerated types. Rewrite the Card class from Subsection 5.4.2 to use these
enumerated types. Test your class with a program that prints out the 52 possible playing
cards. Suggestions: You can modify the source code file Card.java, but you should leave
out support for Jokers. In your main program, use nested for loops to generated cards of
all possible suits and values; the for loops will be “for-each” loops of the type discussed
in Subsection 3.4.4. It would be nice to add a toString() method to the Suit class from
Subsection 5.7.6, so that a suit prints out as “Spades” or “Hearts” instead of “SPADES”
or “HEARTS”.

Quiz 223

Quiz on Chapter 5

1. Object-oriented programming uses classes and objects. What are classes and what are
objects? What is the relationship between classes and objects?

2. Explain carefully what null means in Java, and why this special value is necessary.

3. What is a constructor? What is the purpose of a constructor in a class?

4. Suppose that Kumquat is the name of a class and that fruit is a variable of type Kumquat.
What is the meaning of the statement “fruit = new Kumquat();”? That is, what does
the computer do when it executes this statement? (Try to give a complete answer. The
computer does several things.)

5. What is meant by the terms instance variable and instance method?

6. Explain what is meant by the terms subclass and superclass.

7. Modify the following class so that the two instance variables are private and there is a
getter method and a setter method for each instance variable:

public class Player {

String name;

int score;

}

8. Explain why the class Player that is defined in the previous question has an instance
method named toString(), even though no definition of this method appears in the
definition of the class.

9. Explain the term polymorphism.

10. Java uses “garbage collection” for memory management. Explain what is meant here by
garbage collection. What is the alternative to garbage collection?

11. For this problem, you should write a very simple but complete class. The class represents
a counter that counts 0, 1, 2, 3, 4, The name of the class should be Counter. It has
one private instance variable representing the value of the counter. It has two instance
methods: increment() adds one to the counter value, and getValue() returns the current
counter value. Write a complete definition for the class, Counter.

12. This problem uses the Counter class from the previous question. The following program
segment is meant to simulate tossing a coin 100 times. It should use two Counter objects,
headCount and tailCount, to count the number of heads and the number of tails. Fill in
the blanks so that it will do so:

224 CHAPTER 5. OBJECTS AND CLASSES

Counter headCount, tailCount;

tailCount = new Counter();

headCount = new Counter();

for (int flip = 0; flip < 100; flip++) {

if (Math.random() < 0.5) // There’s a 50/50 chance that this is true.

; // Count a "head".

else

; // Count a "tail".

}

System.out.println("There were " + + " heads.");

System.out.println("There were " + + " tails.");

