
Chapter 7

Arrays

Computers get a lot of their power from working with data structures. A data
structure is an organized collection of related data. An object is a data structure, but this
type of data structure—consisting of a fairly small number of named instance variables—is just
the beginning. In many cases, programmers build complicated data structures by hand, by
linking objects together. We’ll look at these custom-built data structures in Chapter 9. But
there is one type of data structure that is so important and so basic that it is built into every
programming language: the array.

An array is a data structure consisting of a numbered list of items, where all the items are
of the same type. In Java, the items in an array are always numbered from zero up to some
maximum value, which is set when the array is created. For example, an array might contain
100 integers, numbered from zero to 99. The items in an array can belong to one of Java’s
primitive types. They can also be references to objects, so that you could, for example, make
an array containing all the buttons in a GUI program.

This chapter discusses how arrays are created and used in Java. It also covers the standard
class java.util.ArrayList. An object of type ArrayList is very similar to an array of Objects,
but it can grow to hold any number of items.

7.1 Creating and Using Arrays

When a number of data items are chunked together into a unit, the result is a data
structure. Data structures can be very complex, but in many applications, the appropriate
data structure consists simply of a sequence of data items. Data structures of this simple variety
can be either arrays or records.

The term “record” is not used in Java. A record is essentially the same as a Java object
that has instance variables only, but no instance methods. Some other languages, which do not
support objects in general, nevertheless do support records. The C programming language, for
example, is not object-oriented, but it has records, which in C go by the name “struct.” The
data items in a record—in Java, an object’s instance variables—are called the fields of the
record. Each item is referred to using a field name . In Java, field names are just the names
of the instance variables. The distinguishing characteristics of a record are that the data items
in the record are referred to by name and that different fields in a record are allowed to be of
different types. For example, if the class Person is defined as:

class Person {

String name;

313

314 CHAPTER 7. ARRAYS

int id number;

Date birthday;

int age;

}

then an object of class Person could be considered to be a record with four fields. The field
names are name, id number, birthday, and age. Note that the fields are of various types:
String, int, and Date.

Because records are just a special type of object, I will not discuss them further.

7.1.1 Arrays

Like a record, an array is a sequence of items. However, where items in a record are referred
to by name, the items in an array are numbered, and individual items are referred to by their
position number. Furthermore, all the items in an array must be of the same type. The
definition of an array is: a numbered sequence of items, which are all of the same type. The
number of items in an array is called the length of the array. The position number of an item
in an array is called the index of that item. The type of the individual items in an array is
called the base type of the array.

The base type of an array can be any Java type, that is, one of the primitive types, or a class
name, or an interface name. If the base type of an array is int, it is referred to as an “array of
ints.” An array with base type String is referred to as an “array of Strings.” However, an array
is not, properly speaking, a list of integers or strings or other values. It is better thought of as
a list of variables of type int, or of type String, or of some other type. As always, there is some
potential for confusion between the two uses of a variable: as a name for a memory location
and as a name for the value stored in that memory location. Each position in an array acts as
a variable. Each position can hold a value of a specified type (the base type of the array). The
value can be changed at any time. Values are stored in an array. The array is the container,
not the values.

The items in an array—really, the individual variables that make up the array—are more
often referred to as the elements of the array. In Java, the elements in an array are always
numbered starting from zero. That is, the index of the first element in the array is zero. If the
length of the array is N, then the index of the last element in the array is N-1. Once an array
has been created, its length cannot be changed.

Java arrays are objects. This has several consequences. Arrays are created using a form of
the new operator. No variable can ever hold an array; a variable can only refer to an array.
Any variable that can refer to an array can also hold the value null, meaning that it doesn’t
at the moment refer to anything. Like any object, an array belongs to a class, which like all
classes is a subclass of the class Object. The elements of the array are, essentially, instance
variables in the array object, except that they are referred to by number rather than by name.

Nevertheless, even though arrays are objects, there are differences between arrays and other
kinds of objects, and there are a number of special language features in Java for creating and
using arrays.

7.1.2 Using Arrays

Suppose that A is a variable that refers to an array. Then the element at index k in A is referred
to as A[k]. The first element is A[0], the second is A[1], and so forth. “A[k]” is really a
variable, and it can be used just like any other variable. You can assign values to it, you can

7.1. CREATING AND USING ARRAYS 315

use it in expressions, and you can pass it as a parameter to a subroutine. All of this will be
discussed in more detail below. For now, just keep in mind the syntax

〈array-variable〉 [〈integer-expression〉]

for referring to an element of an array.
Although every array, as an object, belongs to some class, array classes never have to be

defined. Once a type exists, the corresponding array class exists automatically. If the name
of the type is BaseType, then the name of the associated array class is BaseType[]. That is
to say, an object belonging to the class BaseType[] is an array of items, where each item is a
variable of type BaseType. The brackets, “[]”, are meant to recall the syntax for referring to
the individual items in the array. “BaseType[]” is read as “array of BaseType” or “BaseType
array.” It might be worth mentioning here that if ClassA is a subclass of ClassB, then the class
ClassA[] is automatically a subclass of ClassB[].

The base type of an array can be any legal Java type. From the primitive type int, the
array type int[] is derived. Each element in an array of type int[] is a variable of type int, which
holds a value of type int. From a class named Shape, the array type Shape[] is derived. Each
item in an array of type Shape[] is a variable of type Shape, which holds a value of type Shape.
This value can be either null or a reference to an object belonging to the class Shape. (This
includes objects belonging to subclasses of Shape.)

∗ ∗ ∗

Let’s try to get a little more concrete about all this, using arrays of integers as our first
example. Since int[] is a class, it can be used to declare variables. For example,

int[] list;

creates a variable named list of type int[]. This variable is capable of referring to an array
of ints, but initially its value is null (if list is a member variable in a class) or undefined (if
list is a local variable in a method). The new operator is used to create a new array object,
which can then be assigned to list. The syntax for using new with arrays is different from the
syntax you learned previously. As an example,

list = new int[5];

creates an array of five integers. More generally, the constructor “new BaseType[N]” is used to
create an array belonging to the class BaseType[]. The value N in brackets specifies the length
of the array, that is, the number of elements that it contains. Note that the array “knows”
how long it is. The length of the array is an instance variable in the array object. In fact, the
length of an array, list, can be referred to as list.length. (However, you are not allowed to
change the value of list.length, so it’s really a “final” instance variable, that is, one whose
value cannot be changed after it has been initialized.)

The situation produced by the statement “list = new int[5];” can be pictured like this:l i s t : (5) l i s t . l e n g t hl i s t [0]0 l i s t [1]0 l i s t [2]0 l i s t [3]0 l i s t [4]0T h e s t a t e m e n t" l i s t = n e w i n t [5] ; "c r e a t e s a n a r r a yt h a t c a n h o l d fi v ei n t s , a n d s e t s l i s tt o r e f e r t o i t .
T h e a r r a y o b j e c t c o n t a i n sfi v e i n t e g e r s , w h i c h a r er e f e r r e d t o a s l i s t [0] , l i s t [1] ,a n d s o o n . I t a l s o c o n t a i n sl i s t . l e n g t h , w h i c h g i v e s t h en u m b e r o f i t e m s i n t h e a r r a y .l i s t . l e n g t h c a n ' t b e c h a n g e d .

316 CHAPTER 7. ARRAYS

Note that the newly created array of integers is automatically filled with zeros. In Java, a
newly created array is always filled with a known, default value: zero for numbers, false for
boolean, the character with Unicode number zero for char, and null for objects.

The elements in the array, list, are referred to as list[0], list[1], list[2], list[3],
and list[4]. (Note again that the index for the last item is one less than list.length.)
However, array references can be much more general than this. The brackets in an array
reference can contain any expression whose value is an integer. For example if indx is a
variable of type int, then list[indx] and list[2*indx+7] are syntactically correct references
to elements of the array list. Thus, the following loop would print all the integers in the array,
list, to standard output:

for (int i = 0; i < list.length; i++) {

System.out.println(list[i]);

}

The first time through the loop, i is 0, and list[i] refers to list[0]. So, it is the value
stored in the variable list[0] that is printed. The second time through the loop, i is 1, and
the value stored in list[1] is printed. The loop ends after printing the value of list[4],
when i becomes equal to 5 and the continuation condition “i < list.length” is no longer
true. This is a typical example of using a loop to process an array. I’ll discuss more examples
of array processing throughout this chapter.

Every use of a variable in a program specifies a memory location. Think for a moment
about what the computer does when it encounters a reference to an array element, list[k],
while it is executing a program. The computer must determine which memory location is being
referred to. To the computer, list[k] means something like this: “Get the pointer that is
stored in the variable, list. Follow this pointer to find an array object. Get the value of k.
Go to the k-th position in the array, and that’s the memory location you want.” There are two
things that can go wrong here. Suppose that the value of list is null. If that is the case,
then list doesn’t even refer to an array. The attempt to refer to an element of an array that
doesn’t exist is an error that will cause an exception of type NullPointerException to be thrown.
The second possible error occurs if list does refer to an array, but the value of k is outside the
legal range of indices for that array. This will happen if k < 0 or if k >= list.length. This
is called an “array index out of bounds” error. When an error of this type occurs, an exception
of type ArrayIndexOutOfBoundsException is thrown. When you use arrays in a program, you
should be mindful that both types of errors are possible. However, array index out of bounds
errors are by far the most common error when working with arrays.

7.1.3 Array Initialization

For an array variable, just as for any variable, you can declare the variable and initialize it in
a single step. For example,

int[] list = new int[5];

If list is a local variable in a subroutine, then this is exactly equivalent to the two statements:

int[] list;

list = new int[5];

(If list is an instance variable, then of course you can’t simply replace “int[] list = new

int[5];” with “int[] list; list = new int[5];” since the assignment statement “list =

new int[5];” is only legal inside a subroutine.)

7.1. CREATING AND USING ARRAYS 317

The new array is filled with the default value appropriate for the base type of the array—zero
for int and null for class types, for example. However, Java also provides a way to initialize an
array variable with a new array filled with a specified list of values. In a declaration statement
that creates a new array, this is done with an array initializer . For example,

int[] list = { 1, 4, 9, 16, 25, 36, 49 };

creates a new array containing the seven values 1, 4, 9, 16, 25, 36, and 49, and sets list to
refer to that new array. The value of list[0] will be 1, the value of list[1] will be 4, and so
forth. The length of list is seven, since seven values are provided in the initializer.

An array initializer takes the form of a list of values, separated by commas and enclosed
between braces. The length of the array does not have to be specified, because it is implicit in
the list of values. The items in an array initializer don’t have to be constants. They can be
variables or arbitrary expressions, provided that their values are of the appropriate type. For
example, the following declaration creates an array of eight Colors. Some of the colors are given
by expressions of the form “new Color(r,g,b)” instead of by constants:

Color[] palette = {

Color.BLACK,

Color.RED,

Color.PINK,

new Color(0,180,0), // dark green

Color.GREEN,

Color.BLUE,

new Color(180,180,255), // light blue

Color.WHITE

};

A list initializer of this form can be used only in a declaration statement, to give an
initial value to a newly declared array variable. It cannot be used in an assignment statement
to assign a value to a variable that has been previously declared. However, there is another,
similar notation for creating a new array that can be used in an assignment statement or passed
as a parameter to a subroutine. The notation uses another form of the new operator to both
create and initialize a new array object at the same time. (The rather odd syntax is similar to
the syntax for anonymous classes, which were discussed in Subsection 5.7.3.) For example to
assign a new value to an array variable, list, that was declared previously, you could use:

list = new int[] { 1, 8, 27, 64, 125, 216, 343 };

The general syntax for this form of the new operator is

new 〈base-type 〉 [] { 〈list-of-values〉 }

This is actually an expression whose value is a reference to a newly created array object. This
means that it can be used in any context where an object of type 〈base-type〉[] is expected.
For example, if makeButtons is a method that takes an array of Strings as a parameter, you
could say:

makeButtons(new String[] { "Stop", "Go", "Next", "Previous" });

Being able to create and use an array “in place” in this way can be very convenient, in the
same way that anonymous nested classes are convenient.

By the way, it is perfectly legal to use the “new BaseType[] { ... }” syntax instead of
the array initializer syntax in the declaration of an array variable. For example, instead of
saying:

318 CHAPTER 7. ARRAYS

int[] primes = { 2, 3, 5, 7, 11, 13, 17, 19 };

you can say, equivalently,

int[] primes = new int[] { 2, 3, 5, 7, 11, 17, 19 };

In fact, rather than use a special notation that works only in the context of declaration state-
ments, I prefer to use the second form.

∗ ∗ ∗

One final note: For historical reasons, an array declaration such as

int[] list;

can also be written as

int list[];

which is a syntax used in the languages C and C++. However, this alternative syntax does not
really make much sense in the context of Java, and it is probably best avoided. After all, the
intent is to declare a variable of a certain type, and the name of that type is “int[]”. It makes
sense to follow the “〈type-name〉 〈variable-name〉;” syntax for such declarations.

7.2 Programming With Arrays

Arrays are the most basic and the most important type of data structure, and tech-
niques for processing arrays are among the most important programming techniques you can
learn. Two fundamental array processing techniques—searching and sorting—will be covered
in Section 7.4. This section introduces some of the basic ideas of array processing in general.

7.2.1 Arrays and for Loops

In many cases, processing an array means applying the same operation to each item in the
array. This is commonly done with a for loop. A loop for processing all the elements of an
array A has the form:

// do any necessary initialization

for (int i = 0; i < A.length; i++) {

. . . // process A[i]

}

Suppose, for example, that A is an array of type double[]. Suppose that the goal is to add
up all the numbers in the array. An informal algorithm for doing this would be:

Start with 0;

Add A[0]; (process the first item in A)

Add A[1]; (process the second item in A)

.

.

.

Add A[A.length - 1]; (process the last item in A)

Putting the obvious repetition into a loop and giving a name to the sum, this becomes:

7.2. PROGRAMMING WITH ARRAYS 319

double sum; // The sum of the numbers in A.

sum = 0; // Start with 0.

for (int i = 0; i < A.length; i++)

sum += A[i]; // add A[i] to the sum, for

// i = 0, 1, ..., A.length - 1

Note that the continuation condition, “i < A.length”, implies that the last value of i that
is actually processed is A.length-1, which is the index of the final item in the array. It’s
important to use “<” here, not “<=”, since “<=” would give an array index out of bounds error.
There is no element at position A.length in A.

Eventually, you should just about be able to write loops similar to this one in your sleep.
I will give a few more simple examples. Here is a loop that will count the number of items in
the array A which are less than zero:

int count; // For counting the items.

count = 0; // Start with 0 items counted.

for (int i = 0; i < A.length; i++) {

if (A[i] < 0.0) // if this item is less than zero...

count++; // ...then count it

}

// At this point, the value of count is the number

// of items that have passed the test of being < 0

Replace the test “A[i] < 0.0”, if you want to count the number of items in an array that
satisfy some other property. Here is a variation on the same theme. Suppose you want to count
the number of times that an item in the array A is equal to the item that follows it. The item
that follows A[i] in the array is A[i+1], so the test in this case is “if (A[i] == A[i+1])”.
But there is a catch: This test cannot be applied when A[i] is the last item in the array, since
then there is no such item as A[i+1]. The result of trying to apply the test in this case would
be an ArrayIndexOutOfBoundsException. This just means that we have to stop one item short
of the final item:

int count = 0;

for (int i = 0; i < A.length - 1; i++) {

if (A[i] == A[i+1])

count++;

}

Another typical problem is to find the largest number in A. The strategy is to go through
the array, keeping track of the largest number found so far. We’ll store the largest number
found so far in a variable called max. As we look through the array, whenever we find a number
larger than the current value of max, we change the value of max to that larger value. After the
whole array has been processed, max is the largest item in the array overall. The only question
is, what should the original value of max be? One possibility is to start with max equal to A[0],
and then to look through the rest of the array, starting from A[1], for larger items:

double max = A[0];

for (int i = 1; i < A.length; i++) {

if (A[i] > max)

max = A[i];

}

// at this point, max is the largest item in A

320 CHAPTER 7. ARRAYS

(There is one subtle problem here. It’s possible in Java for an array to have length zero. In
that case, A[0] doesn’t exist, and the reference to A[0] in the first line gives an array index out
of bounds error. However, zero-length arrays are normally something that you want to avoid
in real problems. Anyway, what would it mean to ask for the largest item in an array that
contains no items at all?)

As a final example of basic array operations, consider the problem of copying an array. To
make a copy of our sample array A, it is not sufficient to say

double[] B = A;

since this does not create a new array object. All it does is declare a new array variable and
make it refer to the same object to which A refers. (So that, for example, a change to A[i] will
automatically change B[i] as well.) To make a new array that is a copy of A, it is necessary to
make a new array object and to copy each of the individual items from A into the new array:

double[] B = new double[A.length]; // Make a new array object,

// the same size as A.

for (int i = 0; i < A.length; i++)

B[i] = A[i]; // Copy each item from A to B.

Copying values from one array to another is such a common operation that Java has a
predefined subroutine to do it. The subroutine, System.arraycopy(), is a static member
subroutine in the standard System class. Its declaration has the form

public static void arraycopy(Object sourceArray, int sourceStartIndex,

Object destArray, int destStartIndex, int count)

where sourceArray and destArray can be arrays with any base type. Values are copied from
sourceArray to destArray. The count tells how many elements to copy. Values are taken from
sourceArray starting at position sourceStartIndex and are stored in destArray starting at
position destStartIndex. For example, to make a copy of the array, A, using this subroutine,
you would say:

double B = new double[A.length];

System.arraycopy(A, 0, B, 0, A.length);

7.2.2 Arrays and for-each Loops

Java 5.0 introduced a new form of the for loop, the “for-each loop” that was introduced in
Subsection 3.4.4. The for-each loop is meant specifically for processing all the values in a data
structure. When used to process an array, a for-each loop can be used to perform the same
operation on each value that is stored in the array. If anArray is an array of type BaseType[],
then a for-each loop for anArray has the form:

for (BaseType item : anArray) {

.

. // process the item

.

}

In this loop, item is the loop control variable. It is being declared as a variable of type BaseType,
where BaseType is the base type of the array. (In a for-each loop, the loop control variable must

be declared in the loop.) When this loop is executed, each value from the array is assigned
to item in turn and the body of the loop is executed for each value. Thus, the above loop is
exactly equivalent to:

7.2. PROGRAMMING WITH ARRAYS 321

for (int index = 0; index < anArray.length; index++) {

BaseType item;

item = anArray[index]; // Get one of the values from the array

.

. // process the item

.

}

For example, if A is an array of type int[], then we could print all the values from A with
the for-each loop:

for (int item : A)

System.out.println(item);

and we could add up all the positive integers in A with:

int sum = 0; // This will be the sum of all the positive numbers in A

for (int item : A) {

if (item > 0)

sum = sum + item;

}

The for-each loop is not always appropriate. For example, there is no simple way to use it
to process the items in just a part of an array. However, it does make it a little easier to process
all the values in an array, since it eliminates any need to use array indices.

It’s important to note that a for-each loop processes the values in the array, not the
elements (where an element means the actual memory location that is part of the array). For
example, consider the following incorrect attempt to fill an array of integers with 17’s:

int[] intList = new int[10];

for (int item : intList) { // INCORRECT! DOES NOT MODIFY THE ARRAY!

item = 17;

}

The assignment statement item = 17 assigns the value 17 to the loop control variable, item.
However, this has nothing to do with the array. When the body of the loop is executed, the
value from one of the elements of the array is copied into item. The statement item = 17

replaces that copied value but has no effect on the array element from which it was copied; the
value in the array is not changed.

7.2.3 Array Types in Subroutines

Any array type, such as double[], is a full-fledged Java type, so it can be used in all the ways
that any other Java type can be used. In particular, it can be used as the type of a formal
parameter in a subroutine. It can even be the return type of a function. For example, it might
be useful to have a function that makes a copy of an array of double:

/**

* Create a new array of doubles that is a copy of a given array.

* @param source the array that is to be copied; the value can be null

* @return a copy of source; if source is null, then the return value is also null

*/

public static double[] copy(double[] source) {

if (source == null)

322 CHAPTER 7. ARRAYS

return null;

double[] cpy; // A copy of the source array.

cpy = new double[source.length];

System.arraycopy(source, 0, cpy, 0, source.length);

return cpy;

}

The main() routine of a program has a parameter of type String[]. You’ve seen this used
since all the way back in Section 2.1, but I haven’t really been able to explain it until now.
The parameter to the main() routine is an array of Strings. When the system calls the main()

routine, the strings in this array are the command-line arguments from the command that
was used to run the program. When using a command-line interface, the user types a command
to tell the system to execute a program. The user can include extra input in this command,
beyond the name of the program. This extra input becomes the command-line arguments. For
example, if the name of the class that contains the main() routine is myProg, then the user
can type “java myProg” to execute the program. In this case, there are no command-line
arguments. But if the user types the command

java myProg one two three

then the command-line arguments are the strings “one”, “two”, and “three”. The system puts
these strings into an array of Strings and passes that array as a parameter to the main() routine.
Here, for example, is a short program that simply prints out any command line arguments
entered by the user:

public class CLDemo {

public static void main(String[] args) {

System.out.println("You entered " + args.length

+ " command-line arguments");

if (args.length > 0) {

System.out.println("They were:");

for (int i = 0; i < args.length; i++)

System.out.println(" " + args[i]);

}

} // end main()

} // end class CLDemo

Note that the parameter, args, is never null when main() is called by the system, but it might
be an array of length zero.

In practice, command-line arguments are often the names of files to be processed by the
program. I will give some examples of this in Chapter 11, when I discuss file processing.

7.2.4 Random Access

So far, all my examples of array processing have used sequential access. That is, the elements
of the array were processed one after the other in the sequence in which they occur in the array.
But one of the big advantages of arrays is that they allow random access. That is, every
element of the array is equally accessible at any given time.

As an example, let’s look at a well-known problem called the birthday problem: Suppose
that there are N people in a room. What’s the chance that there are two people in the room
who have the same birthday? (That is, they were born on the same day in the same month,
but not necessarily in the same year.) Most people severely underestimate the probability. We

7.2. PROGRAMMING WITH ARRAYS 323

will actually look at a different version of the question: Suppose you choose people at random
and check their birthdays. How many people will you check before you find one who has the
same birthday as someone you’ve already checked? Of course, the answer in a particular case
depends on random factors, but we can simulate the experiment with a computer program and
run the program several times to get an idea of how many people need to be checked on average.

To simulate the experiment, we need to keep track of each birthday that we find. There are
365 different possible birthdays. (We’ll ignore leap years.) For each possible birthday, we need
to keep track of whether or not we have already found a person who has that birthday. The
answer to this question is a boolean value, true or false. To hold the data for all 365 possible
birthdays, we can use an array of 365 boolean values:

boolean[] used;

used = new boolean[365];

The days of the year are numbered from 0 to 364. The value of used[i] is true if someone
has been selected whose birthday is day number i. Initially, all the values in the array, used,
are false. When we select someone whose birthday is day number i, we first check whether
used[i] is true. If so, then this is the second person with that birthday. We are done. If
used[i] is false, we set used[i] to be true to record the fact that we’ve encountered someone
with that birthday, and we go on to the next person. Here is a subroutine that carries out
the simulated experiment (of course, in the subroutine, there are no simulated people, only
simulated birthdays):

/**

* Simulate choosing people at random and checking the day of the year they

* were born on. If the birthday is the same as one that was seen previously,

* stop, and output the number of people who were checked.

*/

private static void birthdayProblem() {

boolean[] used; // For recording the possible birthdays

// that have been seen so far. A value

// of true in used[i] means that a person

// whose birthday is the i-th day of the

// year has been found.

int count; // The number of people who have been checked.

used = new boolean[365]; // Initially, all entries are false.

count = 0;

while (true) {

// Select a birthday at random, from 0 to 364.

// If the birthday has already been used, quit.

// Otherwise, record the birthday as used.

int birthday; // The selected birthday.

birthday = (int)(Math.random()*365);

count++;

if (used[birthday]) // This day was found before; It’s a duplicate.

break;

used[birthday] = true;

}

System.out.println("A duplicate birthday was found after "

324 CHAPTER 7. ARRAYS

+ count + " tries.");

} // end birthdayProblem()

This subroutine makes essential use of the fact that every element in a newly created array of
boolean is set to be false. If we wanted to reuse the same array in a second simulation, we
would have to reset all the elements in it to be false with a for loop:

for (int i = 0; i < 365; i++)

used[i] = false;

The program that uses this subroutine is BirthdayProblemDemo.java. An applet version of
the program can be found in the online version of this section.

7.2.5 Arrays of Objects

One of the examples in Subsection 6.4.2 was an applet that shows multiple copies of a message
in random positions, colors, and fonts. When the user clicks on the applet, the positions, colors,
and fonts are changed to new random values. Like several other examples from that chapter,
the applet had a flaw: It didn’t have any way of storing the data that would be necessary to
redraw itself. Arrays provide us with one possible solution to this problem. We can write a new
version of the RandomStrings applet that uses an array to store the position, font, and color of
each string. When the content pane of the applet is painted, this information is used to draw
the strings, so the applet will paint itself correctly whenever it has to be redrawn. When the
user clicks on the applet, the array is filled with new random values and the applet is repainted
using the new data. So, the only time that the picture will change is in response to a mouse
click.

In this applet, the number of copies of the message is given by a named constant,
MESSAGE COUNT. One way to store the position, color, and font of MESSAGE COUNT strings would
be to use four arrays:

int[] x = new int[MESSAGE COUNT];

int[] y = new int[MESSAGE COUNT];

Color[] color = new Color[MESSAGE COUNT];

Font[] font = new Font[MESSAGE COUNT];

These arrays would be filled with random values. In the paintComponent() method, the i-th
copy of the string would be drawn at the point (x[i],y[i]). Its color would be given by
color[i]. And it would be drawn in the font font[i]. This would be accomplished by the
paintComponent() method

public void paintComponent(Graphics g) {

super.paintComponent(); // (Fill with background color.)

for (int i = 0; i < MESSAGE COUNT; i++) {

g.setColor(color[i]);

g.setFont(font[i]);

g.drawString(message, x[i], y[i]);

}

}

This approach is said to use parallel arrays. The data for a given copy of the message is
spread out across several arrays. If you think of the arrays as laid out in parallel columns—
array x in the first column, array y in the second, array color in the third, and array font

in the fourth—then the data for the i-th string can be found along the the i-th row. There

7.2. PROGRAMMING WITH ARRAYS 325

is nothing wrong with using parallel arrays in this simple example, but it does go against the
object-oriented philosophy of keeping related data in one object. If we follow this rule, then we
don’t have to imagine the relationship among the data, because all the data for one copy of
the message is physically in one place. So, when I wrote the applet, I made a simple class to
represent all the data that is needed for one copy of the message:

/**

* An object of this type holds the position, color, and font

* of one copy of the string.

*/

private static class StringData {

int x, y; // The coordinates of the left end of baseline of string.

Color color; // The color in which the string is drawn.

Font font; // The font that is used to draw the string.

}

(This class is actually defined as a static nested class in the main applet class.) To store the data
for multiple copies of the message, I use an array of type StringData[]. The array is declared
as an instance variable, with the name stringData:

StringData[] stringData;

Of course, the value of stringData is null until an actual array is created and assigned to it.
This is done in the init() method of the applet with the statement

stringData = new StringData[MESSAGE COUNT];

The base type of this array is StringData, which is a class. We say that stringData is an array
of objects. This means that the elements of the array are variables of type StringData. Like
any object variable, each element of the array can either be null or can hold a reference to an
object. (Note that the term “array of objects” is a little misleading, since the objects are not
in the array; the array can only contain references to objects.) When the stringData array is
first created, the value of each element in the array is null.

The data needed by the RandomStrings program will be stored in objects of type StringData,
but no such objects exist yet. All we have so far is an array of variables that are capable of
referring to such objects. I decided to create the StringData objects in the applet’s init method.
(It could be done in other places—just so long as we avoid trying to use an object that doesn’t
exist. This is important: Remember that a newly created array whose base type is an object
type is always filled with null elements. There are no objects in the array until you put them
there.) The objects are created with the for loop

for (int i = 0; i < MESSAGE COUNT; i++)

stringData[i] = new StringData();

For the RandomStrings applet, the idea is to store data for the i-th copy of the
message in the variables stringData[i].x, stringData[i].y, stringData[i].color, and
stringData[i].font. Make sure that you understand the notation here: stringData[i]

refers to an object. That object contains instance variables. The notation stringData[i].x

tells the computer: “Find your way to the object that is referred to by stringData[i]. Then
go to the instance variable named x in that object.” Variable names can get even more com-
plicated than this, so it is important to learn how to read them. Using the array, stringData,
the paintComponent() method for the applet could be written

326 CHAPTER 7. ARRAYS

public void paintComponent(Graphics g) {

super.paintComponent(g); // (Fill with background color.)

for (int i = 0; i < MESSAGE COUNT; i++) {

g.setColor(stringData[i].color);

g.setFont(stringData[i].font);

g.drawString(message, stringData[i].x, stringData[i].y);

}

}

However, since the for loop is processing every value in the array, an alternative would be to
use a for-each loop:

public void paintComponent(Graphics g) {

super.paintComponent(g);

for (StringData data : stringData) {

// Draw a copy of the message in the position, color,

// and font stored in data.

g.setColor(data.color);

g.setFont(data.font);

g.drawString(message, data.x, data.y);

}

}

In the loop, the loop control variable, data, holds a copy of one of the values from the array.
That value is a reference to an object of type StringData, which has instance variables named
color, font, x, and y. Once again, the use of a for-each loop has eliminated the need to work
with array indices.

There is still the matter of filling the array, data, with random values. If you are interested,
you can look at the source code for the applet, RandomStringsWithArray.java.

∗ ∗ ∗

The RandomStrings applet uses one other array of objects. The font for a given copy of
the message is chosen at random from a set of five possible fonts. In the original version of the
applet, there were five variables of type Font to represent the fonts. The variables were named
font1, font2, font3, font4, and font5. To select one of these fonts at random, a switch

statement could be used:

Font randomFont; // One of the 5 fonts, chosen at random.

int rand; // A random integer in the range 0 to 4.

rand = (int)(Math.random() * 5);

switch (rand) {

case 0:

randomFont = font1;

break;

case 1:

randomFont = font2;

break;

case 2:

randomFont = font3;

break;

case 3:

randomFont = font4;

break;

case 4:

7.2. PROGRAMMING WITH ARRAYS 327

randomFont = font5;

break;

}

In the new version of the applet, the five fonts are stored in an array, which is named fonts.
This array is declared as an instance variable of type Font[]

Font[] fonts;

The array is created in the init() method of the applet, and each element of the array is set
to refer to a new Font object:

fonts = new Font[5]; // Create the array to hold the five fonts.

fonts[0] = new Font("Serif", Font.BOLD, 14);

fonts[1] = new Font("SansSerif", Font.BOLD + Font.ITALIC, 24);

fonts[2] = new Font("Monospaced", Font.PLAIN, 20);

fonts[3] = new Font("Dialog", Font.PLAIN, 30);

fonts[4] = new Font("Serif", Font.ITALIC, 36);

This makes it much easier to select one of the fonts at random. It can be done with the
statements

Font randomFont; // One of the 5 fonts, chosen at random.

int fontIndex; // A random number in the range 0 to 4.

fontIndex = (int)(Math.random() * 5);

randomFont = fonts[fontIndex];

The switch statement has been replaced by a single line of code. In fact, the preceding four
lines could be replaced by the single line:

Font randomFont = fonts[(int)(Math.random() * 5)];

This is a very typical application of arrays. Note that this example uses the random access
property of arrays: We can pick an array index at random and go directly to the array element
at that index.

Here is another example of the same sort of thing. Months are often stored as numbers 1, 2,
3, . . . , 12. Sometimes, however, these numbers have to be translated into the names January,
February, . . . , December. The translation can be done with an array. The array can be declared
and initialized as

static String[] monthName = { "January", "February", "March",

"April", "May", "June",

"July", "August", "September",

"October", "November", "December" };

If mnth is a variable that holds one of the integers 1 through 12, then monthName[mnth-1] is the
name of the corresponding month. We need the “-1” because months are numbered starting
from 1, while array elements are numbered starting from 0. Simple array indexing does the
translation for us!

7.2.6 Variable Arity Methods

Arrays are used in the implementation of one of the new features in Java 5.0. Before version 5.0,
every method in Java had a fixed arity. (The arity of a subroutine is defined as the number of
parameters in a call to the method.) In a fixed arity method, the number of parameters must
be the same in every call to the method. Java 5.0 introduced variable arity methods. In a

328 CHAPTER 7. ARRAYS

variable arity method, different calls to the method can have different numbers of parameters.
For example, the formatted output method System.out.printf, which was introduced in Sub-
section 2.4.4, is a variable arity method. The first parameter of System.out.printf must be
a String, but it can have any number of additional parameters, of any types.

Calling a variable arity method is no different from calling any other sort of method, but
writing one requires some new syntax. As an example, consider a method that can compute
the average of any number of values of type double. The definition of such a method could
begin with:

public static double average(double... numbers) {

Here, the ... after the type name, double, indicates that any number of values of type
double can be provided when the subroutine is called, so that for example average(1,2,3),
average(3.14,2.17), average(0.375), and even average() are all legal calls to this method.
Note that actual parameters of type int can be passed to average. The integers will, as usual,
be automatically converted to real numbers.

When the method is called, the values of all the actual parameters that correspond to the
variable arity parameter are placed into an array, and it is this array that is actually passed to
the method. That is, in the body of a method, a variable arity parameter of type T actually
looks like an ordinary parameter of type T[]. The length of the array tells you how many
actual parameters were provided in the method call. In the average example, the body of the
method would see an array named numbers of type double[]. The number of actual parameters
in the method call would be numbers.length, and the values of the actual parameters would
be numbers[0], numbers[1], and so on. A complete definition of the method would be:

public static double average(double... numbers) {

double sum; // The sum of all the actual parameters.

double average; // The average of all the actual parameters.

sum = 0;

for (int i = 0; i < numbers.length; i++) {

sum = sum + numbers[i]; // Add one of the actual parameters to the sum.

}

average = sum / numbers.length;

return average;

}

Note that the “...” can be applied only to the last formal parameter in a method definition.
Note also that it is possible to pass an actual array to the method, instead of a list of individual
values. For example, if salesData is a variable of type double[], then it would be legal to call
average(salesData), and this would compute the average of all the numbers in the array.

As another example, consider a method that can draw a polygon through any number of
points. The points are given as values of type Point, where an object of type Point has two
instance variables, x and y, of type int. In this case, the method has one ordinary parameter—
the graphics context that will be used to draw the polygon—in addition to the variable arity
parameter:

public static void drawPolygon(Graphics g, Point... points) {

if (points.length > 1) { // (Need at least 2 points to draw anything.)

for (int i = 0; i < points.length - 1; i++) {

// Draw a line from i-th point to (i+1)-th point

g.drawline(points[i].x, points[i].y, points[i+1].x, points[i+1].y);

}

7.3. DYNAMIC ARRAYS AND ARRAYLISTS 329

// Now, draw a line back to the starting point.

g.drawLine(points[points.length-1].x, points[points.length-1].y,

points[0].x, points[0].y);

}

}

Because of automatic type conversion, a variable arity parameter of type “Object...” can
take actual parameters of any type whatsoever. Even primitive type values are allowed, because
of autoboxing. (A primitive type value belonging to a type such as int is converted to an object
belonging to a “wrapper” class such as Integer. See Subsection 5.3.2.) For example, the method
definition for System.out.printf could begin:

public void printf(String format, Object... values) {

This allows the printf method to output values of any type. Similarly, we could write a method
that strings together the string representations of all its parameters into one long string:

public static String concat(Object... values) {

String str = ""; // Start with an empty string.

for (Object obj : values) { // A "for each" loop for processing the values.

if (obj == null)

str = str + "null"; // Represent null values by "null".

else

str = str + obj.toString();

}

}

7.3 Dynamic Arrays and ArrayLists

The size of an array is fixed when it is created. In many cases, however, the number of data
items that are actually stored in the array varies with time. Consider the following examples:
An array that stores the lines of text in a word-processing program. An array that holds the list
of computers that are currently downloading a page from a Web site. An array that contains
the shapes that have been added to the screen by the user of a drawing program. Clearly, we
need some way to deal with cases where the number of data items in an array is not fixed.

7.3.1 Partially Full Arrays

Consider an application where the number of items that we want to store in an array changes
as the program runs. Since the size of the array can’t actually be changed, a separate counter
variable must be used to keep track of how many spaces in the array are in use. (Of course,
every space in the array has to contain something; the question is, how many spaces contain
useful or valid items?)

Consider, for example, a program that reads positive integers entered by the user and stores
them for later processing. The program stops reading when the user inputs a number that is
less than or equal to zero. The input numbers can be kept in an array, numbers, of type int[].
Let’s say that no more than 100 numbers will be input. Then the size of the array can be fixed
at 100. But the program must keep track of how many numbers have actually been read and
stored in the array. For this, it can use an integer variable, numCount. Each time a number
is stored in the array, numCount must be incremented by one. As a rather silly example, let’s
write a program that will read the numbers input by the user and then print them in reverse

330 CHAPTER 7. ARRAYS

order. (This is, at least, a processing task that requires that the numbers be saved in an array.
Remember that many types of processing, such as finding the sum or average or maximum of
the numbers, can be done without saving the individual numbers.)

public class ReverseInputNumbers {

public static void main(String[] args) {

int[] numbers; // An array for storing the input values.

int numCount; // The number of numbers saved in the array.

int num; // One of the numbers input by the user.

numbers = new int[100]; // Space for 100 ints.

numCount = 0; // No numbers have been saved yet.

TextIO.putln("Enter up to 100 positive integers; enter 0 to end.");

while (true) { // Get the numbers and put them in the array.

TextIO.put("? ");

num = TextIO.getlnInt();

if (num <= 0)

break;

numbers[numCount] = num;

numCount++;

}

TextIO.putln("\nYour numbers in reverse order are:\n");

for (int i = numCount - 1; i >= 0; i--) {

TextIO.putln(numbers[i]);

}

} // end main();

} // end class ReverseInputNumbers

It is especially important to note that the variable numCount plays a dual role. It is the
number of items that have been entered into the array. But it is also the index of the next
available spot in the array. For example, if 4 numbers have been stored in the array, they occupy
locations number 0, 1, 2, and 3. The next available spot is location 4. When the time comes to
print out the numbers in the array, the last occupied spot in the array is location numCount -

1, so the for loop prints out values starting from location numCount - 1 and going down to 0.

Let’s look at another, more realistic example. Suppose that you write a game program, and
that players can join the game and leave the game as it progresses. As a good object-oriented
programmer, you probably have a class named Player to represent the individual players in
the game. A list of all players who are currently in the game could be stored in an array,
playerList, of type Player[]. Since the number of players can change, you will also need a
variable, playerCt, to record the number of players currently in the game. Assuming that there
will never be more than 10 players in the game, you could declare the variables as:

Player[] playerList = new Player[10]; // Up to 10 players.

int playerCt = 0; // At the start, there are no players.

After some players have joined the game, playerCt will be greater than 0, and
the player objects representing the players will be stored in the array elements
playerList[0], playerList[1], . . . , playerList[playerCt-1]. Note that the array element

7.3. DYNAMIC ARRAYS AND ARRAYLISTS 331

playerList[playerCt] is not in use. The procedure for adding a new player, newPlayer, to
the game is simple:

playerList[playerCt] = newPlayer; // Put new player in next

// available spot.

playerCt++; // And increment playerCt to count the new player.

Deleting a player from the game is a little harder, since you don’t want to leave a “hole”
in the array. Suppose you want to delete the player at index k in playerList. If you are not
worried about keeping the players in any particular order, then one way to do this is to move
the player from the last occupied position in the array into position k and then to decrement
the value of playerCt:

playerList[k] = playerList[playerCt - 1];

playerCt--;

The player previously in position k is no longer in the array. The player previously in position
playerCt - 1 is now in the array twice. But it’s only in the occupied or valid part of the array
once, since playerCt has decreased by one. Remember that every element of the array has to
hold some value, but only the values in positions 0 through playerCt - 1 will be looked at or
processed in any way. (By the way, you should think about what happens if the player that
is being deleted is in the last position in the list. The code does still work in this case. What
exactly happens?)

Suppose that when deleting the player in position k, you’d like to keep the remaining players
in the same order. (Maybe because they take turns in the order in which they are stored in the
array.) To do this, all the players in positions k+1 and above must move down one position in
the array. Player k+1 replaces player k, who is out of the game. Player k+2 fills the spot left
open when player k+1 is moved. And so on. The code for this is

for (int i = k+1; i < playerCt; i++) {

playerList[i-1] = playerList[i];

}

playerCt--;

∗ ∗ ∗

It’s worth emphasizing that the Player example deals with an array whose base type is a
class. An item in the array is either null or is a reference to an object belonging to the class,
Player. The Player objects themselves are not really stored in the array, only references to
them. Note that because of the rules for assignment in Java, the objects can actually belong to
subclasses of Player. Thus there could be different classes of players such as computer players,
regular human players, players who are wizards, . . . , all represented by different subclasses of
Player.

As another example, suppose that a class Shape represents the general idea of a shape
drawn on a screen, and that it has subclasses to represent specific types of shapes such as
lines, rectangles, rounded rectangles, ovals, filled-in ovals, and so forth. (Shape itself would be
an abstract class, as discussed in Subsection 5.5.5.) Then an array of type Shape[] can hold
references to objects belonging to the subclasses of Shape. For example, the situation created
by the statements

Shape[] shapes = new Shape[100]; // Array to hold up to 100 shapes.

shapes[0] = new Rect(); // Put some objects in the array.

shapes[1] = new Line();

shapes[2] = new FilledOval();

int shapeCt = 3; // Keep track of number of objects in array.

332 CHAPTER 7. ARRAYS

could be illustrated as:s h a p e ss h a p e s . l e n g t hs h a p e s [0]s h a p e s [1]s h a p e s [2]s h a p e s [3]s h a p e s [4]
Such an array would be useful in a drawing program. The array could be used to hold a list

of shapes to be displayed. If the Shape class includes a method, “void redraw(Graphics g)”,
for drawing the shape in a graphics context g, then all the shapes in the array could be redrawn
with a simple for loop:

for (int i = 0; i < shapeCt; i++)

shapes[i].redraw(g);

The statement “shapes[i].redraw(g);” calls the redraw() method belonging to the partic-
ular shape at index i in the array. Each object knows how to redraw itself, so that repeated
executions of the statement can produce a variety of different shapes on the screen. This is nice
example both of polymorphism and of array processing.

7.3.2 Dynamic Arrays

In each of the above examples, an arbitrary limit was set on the number of items—100 ints, 10
Players, 100 Shapes. Since the size of an array is fixed, a given array can only hold a certain
maximum number of items. In many cases, such an arbitrary limit is undesirable. Why should
a program work for 100 data values, but not for 101? The obvious alternative of making an
array that’s so big that it will work in any practical case is not usually a good solution to the
problem. It means that in most cases, a lot of computer memory will be wasted on unused space
in the array. That memory might be better used for something else. And what if someone is
using a computer that could handle as many data values as the user actually wants to process,
but doesn’t have enough memory to accommodate all the extra space that you’ve allocated for
your huge array?

Clearly, it would be nice if we could increase the size of an array at will. This is not possible,
but what is possible is almost as good. Remember that an array variable does not actually
hold an array. It just holds a reference to an array object. We can’t make the array bigger,
but we can make a new, bigger array object and change the value of the array variable so that
it refers to the bigger array. Of course, we also have to copy the contents of the old array into
the new array. The array variable then refers to an array object that contains all the data of
the old array, with room for additional data. The old array will be garbage collected, since it
is no longer in use.

Let’s look back at the game example, in which playerList is an array of type Player[] and
playerCt is the number of spaces that have been used in the array. Suppose that we don’t
want to put a pre-set limit on the number of players. If a new player joins the game and the

7.3. DYNAMIC ARRAYS AND ARRAYLISTS 333

current array is full, we just make a new, bigger one. The same variable, playerList, will refer
to the new array. Note that after this is done, playerList[0] will refer to a different memory
location, but the value stored in playerList[0] will still be the same as it was before. Here is
some code that will do this:

// Add a new player, even if the current array is full.

if (playerCt == playerList.length) {

// Array is full. Make a new, bigger array,

// copy the contents of the old array into it,

// and set playerList to refer to the new array.

int newSize = 2 * playerList.length; // Size of new array.

Player[] temp = new Player[newSize]; // The new array.

System.arraycopy(playerList, 0, temp, 0, playerList.length);

playerList = temp; // Set playerList to refer to new array.

}

// At this point, we KNOW there is room in the array.

playerList[playerCt] = newPlayer; // Add the new player...

playerCt++; // ...and count it.

If we are going to be doing things like this regularly, it would be nice to define a reusable
class to handle the details. An array-like object that changes size to accommodate the amount
of data that it actually contains is called a dynamic array . A dynamic array supports the
same operations as an array: putting a value at a given position and getting the value that is
stored at a given position. But there is no upper limit on the positions that can be used (except
those imposed by the size of the computer’s memory). In a dynamic array class, the put and
get operations must be implemented as instance methods. Here, for example, is a class that
implements a dynamic array of ints:

/**

* An object of type DynamicArrayOfInt acts like an array of int

* of unlimited size. The notation A.get(i) must be used instead

* of A[i], and A.set(i,v) must be used instead of A[i] = v.

*/

public class DynamicArrayOfInt {

private int[] data; // An array to hold the data.

/**

* Constructor creates an array with an initial size of 1,

* but the array size will be increased whenever a reference

* is made to an array position that does not yet exist.

*/

public DynamicArrayOfInt() {

data = new int[1];

}

/**

* Get the value from the specified position in the array.

* Since all array elements are initialized to zero, when the

* specified position lies outside the actual physical size

* of the data array, a value of 0 is returned. Note that

* a negative value of position will still produce an

* ArrayIndexOutOfBoundsException.

334 CHAPTER 7. ARRAYS

*/

public int get(int position) {

if (position >= data.length)

return 0;

else

return data[position];

}

/**

* Store the value in the specified position in the array.

* The data array will increase in size to include this

* position, if necessary.

*/

public void put(int position, int value) {

if (position >= data.length) {

// The specified position is outside the actual size of

// the data array. Double the size, or if that still does

// not include the specified position, set the new size

// to 2*position.

int newSize = 2 * data.length;

if (position >= newSize)

newSize = 2 * position;

int[] newData = new int[newSize];

System.arraycopy(data, 0, newData, 0, data.length);

data = newData;

// The following line is for demonstration purposes only !!

System.out.println("Size of dynamic array increased to " + newSize);

}

data[position] = value;

}

} // end class DynamicArrayOfInt

The data in a DynamicArrayOfInt object is actually stored in a regular array, but that array
is discarded and replaced by a bigger array whenever necessary. If numbers is a variable of
type DynamicArrayOfInt, then the command numbers.put(pos,val) stores the value val at
position number pos in the dynamic array. The function numbers.get(pos) returns the value
stored at position number pos.

The first example in this section used an array to store positive integers input by the
user. We can rewrite that example to use a DynamicArrayOfInt. A reference to numbers[i]

is replaced by numbers.get(i). The statement “numbers[numCount] = num;” is replaced by
“numbers.put(numCount,num);”. Here’s the program:

public class ReverseWithDynamicArray {

public static void main(String[] args) {

DynamicArrayOfInt numbers; // To hold the input numbers.

int numCount; // The number of numbers stored in the array.

int num; // One of the numbers input by the user.

numbers = new DynamicArrayOfInt();

numCount = 0;

TextIO.putln("Enter some positive integers; Enter 0 to end");

while (true) { // Get numbers and put them in the dynamic array.

7.3. DYNAMIC ARRAYS AND ARRAYLISTS 335

TextIO.put("? ");

num = TextIO.getlnInt();

if (num <= 0)

break;

numbers.put(numCount, num); // Store num in the dynamic array.

numCount++;

}

TextIO.putln("\nYour numbers in reverse order are:\n");

for (int i = numCount - 1; i >= 0; i--) {

TextIO.putln(numbers.get(i)); // Print the i-th number.

}

} // end main();

} // end class ReverseWithDynamicArray

7.3.3 ArrrayLists

The DynamicArrayOfInt class could be used in any situation where an array of int with no preset
limit on the size is needed. However, if we want to store Shapes instead of ints, we would have
to define a new class to do it. That class, probably named “DynamicArrayOfShape”, would look
exactly the same as the DynamicArrayOfInt class except that everywhere the type “int” appears,
it would be replaced by the type “Shape”. Similarly, we could define a DynamicArrayOfDouble
class, a DynamicArrayOfPlayer class, and so on. But there is something a little silly about this,
since all these classes are close to being identical. It would be nice to be able to write some
kind of source code, once and for all, that could be used to generate any of these classes on
demand, given the type of value that we want to store. This would be an example of generic
programming . Some programming languages, including C++, have had support for generic
programming for some time. With version 5.0, Java introduced true generic programming,
but even before that it had something that was very similar: One can come close to generic
programming in Java by working with data structures that contain elements of type Object.
We will first consider the almost-generic programming that has been available in Java from
the beginning, and then we will look at the change that was introduced in Java 5.0. A full
discussion of generic programming will be given in Chapter 10.

In Java, every class is a subclass of the class named Object. This means that every object can
be assigned to a variable of type Object. Any object can be put into an array of type Object[].
If we defined a DynamicArrayOfObject class, then we could store objects of any type. This is not
true generic programming, and it doesn’t apply to the primitive types such as int and double.
But it does come close. In fact, there is no need for us to define a DynamicArrayOfObject class.
Java already has a standard class named ArrayList that serves much the same purpose. The
ArrayList class is in the package java.util, so if you want to use it in a program, you should
put the directive “import java.util.ArrayList;” at the beginning of your source code file.

The ArrayList class differs from my DynamicArrayOfInt class in that an ArrayList object
always has a definite size, and it is illegal to refer to a position in the ArrayList that lies outside
its size. In this, an ArrayList is more like a regular array. However, the size of an ArrayList can
be increased at will. The ArrayList class defines many instance methods. I’ll describe some of
the most useful. Suppose that list is a variable of type ArrayList. Then we have:

336 CHAPTER 7. ARRAYS

• list.size() — This function returns the current size of the ArrayList. The only valid
positions in the list are numbers in the range 0 to list.size()-1. Note that the size can
be zero. A call to the default constructor new ArrayList() creates an ArrayList of size
zero.

• list.add(obj) — Adds an object onto the end of the list, increasing the size by 1. The
parameter, obj, can refer to an object of any type, or it can be null.

• list.get(N) — This function returns the value stored at position N in the ArrayList. N

must be an integer in the range 0 to list.size()-1. If N is outside this range, an error
of type IndexOutOfBoundsException occurs. Calling this function is similar to referring
to A[N] for an array, A, except that you can’t use list.get(N) on the left side of an
assignment statement.

• list.set(N, obj) — Assigns the object, obj, to position N in the ArrayList, replacing
the item previously stored at position N. The integer N must be in the range from 0 to
list.size()-1. A call to this function is equivalent to the command A[N] = obj for an
array A.

• list.remove(obj) — If the specified object occurs somewhere in the ArrayList, it is
removed from the list. Any items in the list that come after the removed item are moved
down one position. The size of the ArrayList decreases by 1. If obj occurs more than once
in the list, only the first copy is removed.

• list.remove(N) — For an integer, N, this removes the N-th item in the ArrayList. N must
be in the range 0 to list.size()-1. Any items in the list that come after the removed
item are moved down one position. The size of the ArrayList decreases by 1.

• list.indexOf(obj) — A function that searches for the object, obj, in the ArrayList. If
the object is found in the list, then the position number where it is found is returned. If
the object is not found, then -1 is returned.

For example, suppose again that players in a game are represented by objects of type Player.
The players currently in the game could be stored in an ArrayList named players. This variable
would be declared as

ArrayList players;

and initialized to refer to a new, empty ArrayList object with

players = new ArrayList();

If newPlayer is a variable that refers to a Player object, the new player would be added to the
ArrayList and to the game by saying

players.add(newPlayer);

and if player number i leaves the game, it is only necessary to say

players.remove(i);

Or, if player is a variable that refers to the Player that is to be removed, you could say

players.remove(player);

All this works very nicely. The only slight difficulty arises when you use the function
players.get(i) to get the value stored at position i in the ArrayList. The return type of
this function is Object. In this case the object that is returned by the function is actually of
type Player. In order to do anything useful with the returned value, it’s usually necessary to
type-cast it to type Player :

7.3. DYNAMIC ARRAYS AND ARRAYLISTS 337

Player plr = (Player)players.get(i);

For example, if the Player class includes an instance method makeMove() that is called to allow
a player to make a move in the game, then the code for letting every player make a move is

for (int i = 0; i < players.size(); i++) {

Player plr = (Player)players.get(i);

plr.makeMove();

}

The two lines inside the for loop can be combined to a single line:

((Player)players.get(i)).makeMove();

This gets an item from the list, type-casts it, and then calls the makeMove() method on the
resulting Player. The parentheses around “(Player)players.get(i)” are required because
of Java’s precedence rules. The parentheses force the type-cast to be performed before the
makeMove() method is called.

For-each loops work for ArrayLists just as they do for arrays. But note that since the items
in an ArrayList are only known to be Objects, the type of the loop control variable must be
Object. For example, the for loop used above to let each Player make a move could be written
as the for-each loop

for (Object plrObj : players) {

Player plr = (Player)plrObj;

plr.makeMove();

}

In the body of the loop, the value of the loop control variable, plrObj, is one of the objects
from the list, players. This object must be type-cast to type Player before it can be used.

∗ ∗ ∗

In Subsection 5.5.5, I discussed a program, ShapeDraw, that uses ArrayLists. Here is another
version of the same idea, simplified to make it easier to see how ArrayList is being used. The
program supports the following operations: Click the large white drawing area to add a colored
rectangle. (The color of the rectangle is given by a “rainbow palette” along the bottom of the
applet; click the palette to select a new color.) Drag rectangles using the right mouse button.
Hold down the Alt key and click on a rectangle to delete it. Shift-click a rectangle to move it
out in front of all the other rectangles. You can try an applet version of the program in the
on-line version of this section.

Source code for the main panel for this program can be found in SimpleDrawRects.java.
You should be able to follow the source code in its entirety. (You can also take a look at the
file RainbowPalette.java, which defines the color palette shown at the bottom of the applet, if
you like.) Here, I just want to look at the parts of the program that use an ArrayList.

The applet uses a variable named rects, of type ArrayList, to hold information about the
rectangles that have been added to the drawing area. The objects that are stored in the list
belong to a static nested class, ColoredRect, that is defined as

/**

* An object of type ColoredRect holds the data for one colored rectangle.

*/

private static class ColoredRect {

int x,y; // Upper left corner of the rectangle.

int width,height; // Size of the rectangle.

Color color; // Color of the rectangle.

}

338 CHAPTER 7. ARRAYS

If g is a variable of type Graphics, then the following code draws all the rectangles that
are stored in the list rects (with a black outline around each rectangle):

for (int i = 0; i < rects.size(); i++) {

ColoredRect rect = (ColoredRect)rects.get(i);

g.setColor(rect.color);

g.fillRect(rect.x, rect.y, rect.width, rect.height);

g.setColor(Color.BLACK);

g.drawRect(rect.x, rect.y, rect.width - 1, rect.height - 1);

}

The i-th rectangle in the list is obtained by calling rects.get(i). Since this method returns
a value of type Object, the return value must be typecast to its actual type, ColoredRect, to get
access to the data that it contains.

To implement the mouse operations, it must be possible to find the rectangle, if any, that
contains the point where the user clicked the mouse. To do this, I wrote the function

/**

* Find the topmost rect that contains the point (x,y). Return null

* if no rect contains that point. The rects in the ArrayList are

* considered in reverse order so that if one lies on top of another,

* the one on top is seen first and is returned.

*/

ColoredRect findRect(int x, int y) {

for (int i = rects.size() - 1; i >= 0; i--) {

ColoredRect rect = (ColoredRect)rects.get(i);

if (x >= rect.x && x < rect.x + rect.width

&& y >= rect.y && y < rect.y + rect.height)

return rect; // (x,y) is inside this rect.

}

return null; // No rect containing (x,y) was found.

}

The code for removing a ColoredRect, rect, from the drawing area is simply
rects.remove(rect) (followed by a repaint()). Bringing a given rectangle out in front of
all the other rectangles is just a little harder. Since the rectangles are drawn in the order in
which they occur in the ArrayList, the rectangle that is in the last position in the list is in front
of all the other rectangles on the screen. So we need to move the selected rectangle to the
last position in the list. This can most easily be done in a slightly tricky way using built-in
ArrayList operations: The rectangle is simply removed from its current position in the list and
then added back at the end of the list:

void bringToFront(ColoredRect rect) {

if (rect != null) {

rects.remove(rect); // Remove rect from the list.

rects.add(rect); // Add it back; it will be placed in the last position.

repaint();

}

}

This should be enough to give you the basic idea. You can look in the source code for more
details.

7.3. DYNAMIC ARRAYS AND ARRAYLISTS 339

7.3.4 Parameterized Types

The main difference between true generic programming and the ArrayList examples in the
previous subsection is the use of the type Object as the basic type for objects that are stored
in a list. This has at least two unfortunate consequences: First, it makes it necessary to use
type-casting in almost every case when an element is retrieved from that list. Second, since
any type of object can legally be added to the list, there is no way for the compiler to detect
an attempt to add the wrong type of object to the list; the error will be detected only at run
time when the object is retrieved from the list and the attempt to type-cast the object fails.
Compare this to arrays. An array of type BaseType[] can only hold objects of type BaseType.
An attempt to store an object of the wrong type in the array will be detected by the compiler,
and there is no need to type-cast items that are retrieved from the array back to type BaseType.

To address this problem, Java 5.0 introduced parameterized types. ArrayList is an ex-
ample: Instead of using the plain “ArrayList” type, it is possible to use ArrayList<BaseType>,
where BaseType is any object type, that is, the name of a class or of an interface. (BaseType
cannot be one of the primitive types.) ArrayList<BaseType> can be used to create lists that
can hold only objects of type BaseType. For example,

ArrayList<ColoredRect> rects;

declares a variable named rects of type ArrayList<ColoredRect>, and

rects = new ArrayList<ColoredRect>();

sets rects to refer to a newly created list that can only hold objects belonging to the class
ColoredRect (or to a subclass). The funny-looking name “ArrayList<ColoredRect>” is being
used here in exactly the same way as an ordinary class name—don’t let the “<ColoredRect>”
confuse you; it’s just part of the name of the type. When a statement such as rects.add(x);
occurs in the program, the compiler can check whether x is in fact of type ColoredRect. If not,
the compiler will report a syntax error. When an object is retrieved from the list, the compiler
knows that the object must be of type ColoredRect, so no type-cast is necessary. You can say
simply:

ColoredRect rect = rects.get(i)

You can even refer directly to an instance variable in the object, such as rects.get(i).color.
This makes using ArrayList<ColoredRect> very similar to using ColoredRect[] with the added
advantage that the list can grow to any size. Note that if a for-each loop is used to process the
items in rects, the type of the loop control variable can be ColoredRect, and no type-cast is
necessary. For example, when using ArrayList<ColoredRect> as the type for the list rects, the
code for drawing all the rectangles in the list could be rewritten as:

for (ColoredRect rect : rects) {

g.setColor(rect.color);

g.fillRect(rect.x, rect.y, rect.width, rect.height);

g.setColor(Color.BLACK);

g.drawRect(rect.x, rect.y, rect.width - 1, rect.height - 1);

}

You can use ArrayList<ColoredRect> anyplace where you could use a normal type: to declare
variables, as the type of a formal parameter in a subroutine, or as the return type of a subroutine.
You can even create a subclass of ArrayList<ColoredRect>! (Nevertheless, technically speaking,
ArrayList<ColoredRect> is not considered to be a separate class from ArrayList. An object of

340 CHAPTER 7. ARRAYS

type ArrayList<ColoredRect> actually belongs to the class ArrayList, but the compiler restricts
the type of objects that can be added to the list.)

The only drawback to using parameterized types is that the base type cannot be a primitive
type. For example, there is no such thing as “ArrayList<int>”. However, this is not such a
big drawback as it might seem at first, because of the “wrapper types” and “autoboxing” that
were introduced in Subsection 5.3.2. A wrapper type such as Double or Integer can be used as
a base type for a parameterized type. An object of type ArrayList<Double> can hold objects of
type Double. Since each object of type Double holds a value of type double, it’s almost like
having a list of doubles. If numlist is declared to be of type ArrayList<Double> and if x is of
type double, then the value of x can be added to the list by saying:

numlist.add(new Double(x));

Furthermore, because of autoboxing, the compiler will automatically do double-to-Double and
Double-to-double type conversions when necessary. This means that the compiler will treat
“numlist.add(x)” as being equivalent to “numlist.add(new Double(x))”. So, behind the
scenes, “numlist.add(x)” is actually adding an object to the list, but it looks a lot as if you
are working with a list of doubles.

∗ ∗ ∗

The sample program SimplePaint2.java demonstrates the use of parameterized types. In
this program, the user can sketch curves in a drawing area by clicking and dragging with the
mouse. The curves can be of any color, and the user can select the drawing color using a menu.
The background color of the drawing area can also be selected using a menu. And there is a
“Control” menu that contains several commands: An “Undo” command, which removes the
most recently drawn curve from the screen, a “Clear” command that removes all the curves,
and a “Use Symmetry” command that turns a symmetry feature on and off. Curves that are
drawn by the user when the symmetry option is on are reflected horizontally and vertically
to produce a symmetric pattern. You can try an applet version of the program in the on-line
version of this section.

Unlike the original SimplePaint program in Subsection 6.4.4, this new version uses a data
structure to store information about the picture that has been drawn by the user. This data
is used in the paintComponent() method to redraw the picture whenever necessary. Thus, the
picture doesn’t disappear when, for example, the picture is covered and then uncovered. The
data structure is implemented using ArrayLists.

The main data for a curve consists of a list of the points on the curve. This data can be stored
in an object of type ArrayList<Point>, where java.awt.Point is one of Java’s standard classes.
(A Point object contains two public integer variables x and y that represent the coordinates of
a point.) However, to redraw the curve, we also need to know its color, and we need to know
whether the symmetry option should be applied to the curve. All the data that is needed to
redraw the curve can be grouped into an object of type CurveData that is defined as

private static class CurveData {

Color color; // The color of the curve.

boolean symmetric; // Are horizontal and vertical reflections also drawn?

ArrayList<Point> points; // The points on the curve.

}

However, a picture can contain many curves, not just one, so to store all the data necessary to
redraw the entire picture, we need a list of objects of type CurveData. For this list, we can use
a variable curves declared as

7.3. DYNAMIC ARRAYS AND ARRAYLISTS 341

ArrayList<CurveData> curves = new ArrayList<CurveData>();

Here we have a list of objects, where each object contains a list of points as part of its data!
Let’s look at a few examples of processing this data structure. When the user clicks the mouse
on the drawing surface, it’s the start of a new curve, and a new CurveData object must be
created and added to the list of curves. The instance variables in the new CurveData object
must also be initialized. Here is the code from the mousePressed() routine that does this:

currentCurve = new CurveData(); // Create a new CurveData object.

currentCurve.color = currentColor; // The color of the curve is taken from an

// instance variable that represents the

// currently selected drawing color.

currentCurve.symmetric = useSymmetry; // The "symmetric" property of the curve

// is also copied from the current value

// of an instance variable, useSymmetry.

currentCurve.points = new ArrayList<Point>(); // Create a new point list object.

currentCurve.points.add(new Point(evt.getX(), evt.getY()));

// The point where the user pressed the mouse is the first point on

// the curve. A new Point object is created to hold the coordinates

// of that point and is added to the list of points for the curve.

curves.add(currentCurve); // Add the CurveData object to the list of curves.

As the user drags the mouse, new points are added to currentCurve, and repaint() is called.
When the picture is redrawn, the new point will be part of the picture.

The paintComponent() method has to use the data in curves to draw all the curves. The
basic structure is a for-each loop that processes the data for each individual curve in turn. This
has the form:

for (CurveData curve : curves) {

.

. // Draw the curve represented by the object, curve, of type CurveData.

.

}

In the body of this loop, curve.points is a variable of type ArrayList<Point> that holds the
list of points on the curve. The i-th point on the curve can be obtained by calling the get()

method of this list: curve.points.get(i). This returns a value of type Point which contains
instance variables named x and y. We can refer directly to the x-coordinate of the i-th point
as:

curve.points.get(i).x

This might seem rather complicated, but it’s a nice example of a complex name that specifies
a path to a desired piece of data: Go to the object, curve. Inside curve, go to points. Inside
points, get the i-th item. And from that item, get the instance variable named x. Here is the
complete definition of the paintComponent() method:

public void paintComponent(Graphics g) {

super.paintComponent(g);

for (CurveData curve : curves) {

g.setColor(curve.color);

for (int i = 1; i < curve.points.size(); i++) {

342 CHAPTER 7. ARRAYS

// Draw a line segment from point number i-1 to point number i.

int x1 = curve.points.get(i-1).x;

int y1 = curve.points.get(i-1).y;

int x2 = curve.points.get(i).x;

int y2 = curve.points.get(i).y;

g.drawLine(x1,y1,x2,y2);

if (curve.symmetric) {

// Also draw the horizontal and vertical reflections

// of the line segment.

int w = getWidth();

int h = getHeight();

g.drawLine(w-x1,y1,w-x2,y2);

g.drawLine(x1,h-y1,x2,h-y2);

g.drawLine(w-x1,h-y1,w-x2,h-y2);

}

}

}

} // end paintComponent()

I encourage you to read the full source code, SimplePaint2.java. In addition to serving as an
example of using parameterized types, it also serves as another example of creating and using
menus.

7.3.5 Vectors

The ArrayList class was introduced in Java version 1.2, as one of a group of classes designed
for working with collections of objects. We’ll look at these “collection classes” in Chapter 10.
Early versions of Java did not include ArrayList, but they did have a very similar class named
java.util.Vector. You can still see Vectors used in older code and in many of Java’s standard
classes, so it’s worth knowing about them. Using a Vector is similar to using an ArrayList, except
that different names are used for some commonly used instance methods, and some instance
methods in one class don’t correspond to any instance method in the other class.

Like an ArrayList, a Vector is similar to an array of Objects that can grow to be as large as
necessary. The default constructor, new Vector(), creates a vector with no elements. Suppose
that vec is a Vector. Then we have:

• vec.size() — a function that returns the number of elements currently in the vector.

• vec.elementAt(N) — returns the N-th element of the vector, for an integer N. N must be
in the range 0 to vec.size()-1. This is the same as get(N) for an ArrayList.

• vec.setElementAt(obj,N) — sets the N-th element in the vector to be obj. N must be
in the range 0 to vec.size()-1. This is the same as set(N,obj) for an ArrayList.

• vec.addElement(obj) — adds the Object, obj, to the end of the vector. This is the same
as the add() method of an ArrayList.

• vec.removeElement(obj) — removes obj from the vector, if it occurs. Only the first
occurrence is removed. This is the same as remove(obj) for an ArrayList.

• vec.removeElementAt(N) — removes the N-th element, for an integer N. N must be in
the range 0 to vec.size()-1. This is the same as remove(N) for an ArrayList.

• vec.setSize(N) — sets the size of the vector to N. If there were more than N elements in
vec, the extra elements are removed. If there were fewer than N elements, extra spaces are
filled with null. The ArrayList class, unfortunately, does not have a setSize() method.

7.4. SEARCHING AND SORTING 343

The Vector class includes many more methods, but these are probably the most commonly
used. Note that in Java 5.0, Vector can be used as a paramaterized type in exactly the same
way as ArrayList. That is, if BaseType is any class or interface name, then Vector<BaseType>
represents vectors that can hold only objects of type BaseType.

7.4 Searching and Sorting

Two array processing techniques that are particularly common are searching and sort-
ing . Searching here refers to finding an item in the array that meets some specified criterion.
Sorting refers to rearranging all the items in the array into increasing or decreasing order (where
the meaning of increasing and decreasing can depend on the context).

Sorting and searching are often discussed, in a theoretical sort of way, using an array of
numbers as an example. In practical situations, though, more interesting types of data are
usually involved. For example, the array might be a mailing list, and each element of the array
might be an object containing a name and address. Given the name of a person, you might
want to look up that person’s address. This is an example of searching, since you want to find
the object in the array that contains the given name. It would also be useful to be able to sort
the array according to various criteria. One example of sorting would be ordering the elements
of the array so that the names are in alphabetical order. Another example would be to order
the elements of the array according to zip code before printing a set of mailing labels. (This
kind of sorting can get you a cheaper postage rate on a large mailing.)

This example can be generalized to a more abstract situation in which we have an array
that contains objects, and we want to search or sort the array based on the value of one of the
instance variables in that array. We can use some terminology here that originated in work
with “databases,” which are just large, organized collections of data. We refer to each of the
objects in the array as a record . The instance variables in an object are then called fields of
the record. In the mailing list example, each record would contain a name and address. The
fields of the record might be the first name, last name, street address, state, city and zip code.
For the purpose of searching or sorting, one of the fields is designated to be the key field.
Searching then means finding a record in the array that has a specified value in its key field.
Sorting means moving the records around in the array so that the key fields of the record are
in increasing (or decreasing) order.

In this section, most of my examples follow the tradition of using arrays of numbers. But
I’ll also give a few examples using records and keys, to remind you of the more practical
applications.

7.4.1 Searching

There is an obvious algorithm for searching for a particular item in an array: Look at each
item in the array in turn, and check whether that item is the one you are looking for. If so,
the search is finished. If you look at every item without finding the one you want, then you
can be sure that the item is not in the array. It’s easy to write a subroutine to implement this
algorithm. Let’s say the array that you want to search is an array of ints. Here is a method
that will search the array for a specified integer. If the integer is found, the method returns
the index of the location in the array where it is found. If the integer is not in the array, the
method returns the value -1 as a signal that the integer could not be found:

/**

344 CHAPTER 7. ARRAYS

* Searches the array A for the integer N. If N is not in the array,

* then -1 is returned. If N is in the array, then return value is

* the first integer i that satisfies A[i] == N.

*/

static int find(int[] A, int N) {

for (int index = 0; index < A.length; index++) {

if (A[index] == N)

return index; // N has been found at this index!

}

// If we get this far, then N has not been found

// anywhere in the array. Return a value of -1.

return -1;

}

This method of searching an array by looking at each item in turn is called linear search .
If nothing is known about the order of the items in the array, then there is really no better
alternative algorithm. But if the elements in the array are known to be in increasing or decreas-
ing order, then a much faster search algorithm can be used. An array in which the elements are
in order is said to be sorted . Of course, it takes some work to sort an array, but if the array
is to be searched many times, then the work done in sorting it can really pay off.

Binary search is a method for searching for a given item in a sorted array. Although
the implementation is not trivial, the basic idea is simple: If you are searching for an item in
a sorted list, then it is possible to eliminate half of the items in the list by inspecting a single
item. For example, suppose that you are looking for the number 42 in a sorted array of 1000
integers. Let’s assume that the array is sorted into increasing order. Suppose you check item
number 500 in the array, and find that the item is 93. Since 42 is less than 93, and since the
elements in the array are in increasing order, we can conclude that if 42 occurs in the array
at all, then it must occur somewhere before location 500. All the locations numbered 500 or
above contain values that are greater than or equal to 93. These locations can be eliminated
as possible locations of the number 42.

The next obvious step is to check location 250. If the number at that location is, say, -21,
then you can eliminate locations before 250 and limit further search to locations between 251
and 499. The next test will limit the search to about 125 locations, and the one after that to
about 62. After just 10 steps, there is only one location left. This is a whole lot better than
looking through every element in the array. If there were a million items, it would still take
only 20 steps for binary search to search the array! (Mathematically, the number of steps is
approximately equal to the logarithm, in the base 2, of the number of items in the array.)

In order to make binary search into a Java subroutine that searches an array A for an item
N, we just have to keep track of the range of locations that could possibly contain N. At each
step, as we eliminate possibilities, we reduce the size of this range. The basic operation is to
look at the item in the middle of the range. If this item is greater than N, then the second
half of the range can be eliminated. If it is less than N, then the first half of the range can
be eliminated. If the number in the middle just happens to be N exactly, then the search is
finished. If the size of the range decreases to zero, then the number N does not occur in the
array. Here is a subroutine that returns the location of N in a sorted array A. If N cannot be
found in the array, then a value of -1 is returned instead:

/**

7.4. SEARCHING AND SORTING 345

* Searches the array A for the integer N.

* Precondition: A must be sorted into increasing order.

* Postcondition: If N is in the array, then the return value, i,

* satisfies A[i] == N. If N is not in the array, then the

* return value is -1.

*/

static int binarySearch(int[] A, int N) {

int lowestPossibleLoc = 0;

int highestPossibleLoc = A.length - 1;

while (highestPossibleLoc >= lowestPossibleLoc) {

int middle = (lowestPossibleLoc + highestPossibleLoc) / 2;

if (A[middle] == N) {

// N has been found at this index!

return middle;

}

else if (A[middle] > N) {

// eliminate locations >= middle

highestPossibleLoc = middle - 1;

}

else {

// eliminate locations <= middle

lowestPossibleLoc = middle + 1;

}

}

// At this point, highestPossibleLoc < LowestPossibleLoc,

// which means that N is known to be not in the array. Return

// a -1 to indicate that N could not be found in the array.

return -1;

}

7.4.2 Association Lists

One particularly common application of searching is with association lists. The standard
example of an association list is a dictionary. A dictionary associates definitions with words.
Given a word, you can use the dictionary to look up its definition. We can think of the dictionary
as being a list of pairs of the form (w,d), where w is a word and d is its definition. A general
association list is a list of pairs (k,v), where k is some “key” value, and v is a value associated
to that key. In general, we want to assume that no two pairs in the list have the same key.
There are two basic operations on association lists: Given a key, k, find the value v associated
with k, if any. And given a key, k, and a value v, add the pair (k,v) to the association list
(replacing the pair, if any, that had the same key value). The two operations are usually called
get and put .

Association lists are very widely used in computer science. For example, a compiler has
to keep track of the location in memory associated with each variable. It can do this with an
association list in which each key is a variable name and the associated value is the address of
that variable in memory. Another example would be a mailing list, if we think of it as associating
an address to each name on the list. As a related example, consider a phone directory that

346 CHAPTER 7. ARRAYS

associates a phone number to each name. The items in the list could be objects belonging to
the class:

class PhoneEntry {

String name;

String phoneNum;

}

The data for a phone directory consists of an array of type PhoneEntry[] and an integer
variable to keep track of how many entries are actually stored in the directory. The technique
of “dynamic arrays” (Subsection 7.3.2) can be used in order to avoid putting an arbitrary limit
on the number of entries that the phone directory can hold. Using an ArrayList would be another
possibility. A PhoneDirectory class should include instance methods that implement the “get”
and “put” operations. Here is one possible simple definition of the class:

/**

* A PhoneDirectory holds a list of names with a phone number for

* each name. It is possible to find the number associated with

* a given name, and to specify the phone number for a given name.

*/

public class PhoneDirectory {

/**

* An object of type PhoneEntry holds one name/number pair.

*/

private static class PhoneEntry {

String name; // The name.

String number; // The associated phone number.

}

private PhoneEntry[] data; // Array that holds the name/number pairs.

private int dataCount; // The number of pairs stored in the array.

/**

* Constructor creates an initially empty directory.

*/

public PhoneDirectory() {

data = new PhoneEntry[1];

dataCount = 0;

}

/**

* Looks for a name/number pair with a given name. If found, the index

* of the pair in the data array is returned. If no pair contains the

* given name, then the return value is -1.

*/

private int find(String name) {

for (int i = 0; i < dataCount; i++) {

if (data[i].name.equals(name))

return i; // The name has been found in position i.

}

return -1; // The name does not exist in the array.

}

/**

* Finds the phone number, if any, for a given name.

7.4. SEARCHING AND SORTING 347

* @return The phone number associated with the name; if the name does

* not occur in the phone directory, then the return value is null.

*/

public String getNumber(String name) {

int position = find(name);

if (position == -1)

return null; // There is no phone entry for the given name.

else

return data[position].number;

}

/**

* Associates a given name with a given phone number. If the name

* already exists in the phone directory, then the new number replaces

* the old one. Otherwise, a new name/number pair is added. The

* name and number should both be non-null. An IllegalArgumentException

* is thrown if this is not the case.

*/

public void putNumber(String name, String number) {

if (name == null || number == null)

throw new IllegalArgumentException("name and number cannot be null");

int i = find(name);

if (i >= 0) {

// The name already exists, in position i in the array.

// Just replace the old number at that position with the new.

data[i].number = number;

}

else {

// Add a new name/number pair to the array. If the array is

// already full, first create a new, larger array.

if (dataCount == data.length) {

PhoneEntry[] newData = new PhoneEntry[2*data.length];

System.arraycopy(newData,0,data,0,dataCount);

data = newData;

}

PhoneEntry newEntry = new PhoneEntry(); // Create a new pair.

newEntry.name = name;

newEntry.number = number;

data[dataCount] = newEntry; // Add the new pair to the array.

dataCount++;

}

}

} // end class PhoneDirectory

The class defines a private instance method, find(), that uses linear search to find the
position of a given name in the array of name/number pairs. The find() method is used
both in the getNumber() method and in the putNumber() method. Note in particular that
putNumber(name,number) has to check whether the name is in the phone directory. If so, it
just changes the number in the existing entry; if not, it has to create a new phone entry and
add it to the array.

This class could use a lot of improvement. For one thing, it would be nice to use binary
search instead of simple linear search in the getNumber method. However, we could only do
that if the list of PhoneEntries were sorted into alphabetical order according to name. In fact,

348 CHAPTER 7. ARRAYS

it’s really not all that hard to keep the list of entries in sorted order, as you’ll see in the next
subsection.

7.4.3 Insertion Sort

We’ve seen that there are good reasons for sorting arrays. There are many algorithms available
for doing so. One of the easiest to understand is the insertion sort algorithm. This method
is also applicable to the problem of keeping a list in sorted order as you add new items to the
list. Let’s consider that case first:

Suppose you have a sorted list and you want to add an item to that list. If you want to
make sure that the modified list is still sorted, then the item must be inserted into the right
location, with all the smaller items coming before it and all the bigger items after it. This will
mean moving each of the bigger items up one space to make room for the new item.

/*

* Precondition: itemsInArray is the number of items that are

* stored in A. These items must be in increasing order

* (A[0] <= A[1] <= ... <= A[itemsInArray-1]).

* The array size is at least one greater than itemsInArray.

* Postcondition: The number of items has increased by one,

* newItem has been added to the array, and all the items

* in the array are still in increasing order.

* Note: To complete the process of inserting an item in the

* array, the variable that counts the number of items

* in the array must be incremented, after calling this

* subroutine.

*/

static void insert(int[] A, int itemsInArray, int newItem) {

int loc = itemsInArray - 1; // Start at the end of the array.

/* Move items bigger than newItem up one space;

Stop when a smaller item is encountered or when the

beginning of the array (loc == 0) is reached. */

while (loc >= 0 && A[loc] > newItem) {

A[loc + 1] = A[loc]; // Bump item from A[loc] up to loc+1.

loc = loc - 1; // Go on to next location.

}

A[loc + 1] = newItem; // Put newItem in last vacated space.

}

Conceptually, this could be extended to a sorting method if we were to take all the items
out of an unsorted array, and then insert them back into the array one-by-one, keeping the list
in sorted order as we do so. Each insertion can be done using the insert routine given above.
In the actual algorithm, we don’t really take all the items from the array; we just remember
what part of the array has been sorted:

static void insertionSort(int[] A) {

// Sort the array A into increasing order.

int itemsSorted; // Number of items that have been sorted so far.

for (itemsSorted = 1; itemsSorted < A.length; itemsSorted++) {

7.4. SEARCHING AND SORTING 349

// Assume that items A[0], A[1], ... A[itemsSorted-1]

// have already been sorted. Insert A[itemsSorted]

// into the sorted part of the list.

int temp = A[itemsSorted]; // The item to be inserted.

int loc = itemsSorted - 1; // Start at end of list.

while (loc >= 0 && A[loc] > temp) {

A[loc + 1] = A[loc]; // Bump item from A[loc] up to loc+1.

loc = loc - 1; // Go on to next location.

}

A[loc + 1] = temp; // Put temp in last vacated space.

}

}

The following is an illustration of one stage in insertion sort. It shows what happens during
one execution of the for loop in the above method, when itemsSorted is 5:S t a r t w i t h a p a r t i a l l y s o r t e d l i s t o f i t e m s :S o r t e d I t e m s

I t e m s s t i l l t o b e s o r t e dS o r t e d I t e m s

I t e m s s t i l l t o b e s o r t e d

T e m p :
T e m p : C o p y n e x t u n s o r t e d i t e m i n t o T e m p ,l e a v i n g a " h o l e " i n t h e a r r a y .

M o v e i t e m s i n s o r t e d p a r t o fa r r a y t o m a k e r o o m f o r T e m p .
N o w , t h e s o r t e d p a r t o f t h e l i s t h a si n c r e a s e d i n s i z e b y o n e i t e m .

7.4.4 Selection Sort

Another typical sorting method uses the idea of finding the biggest item in the list and moving
it to the end—which is where it belongs if the list is to be in increasing order. Once the biggest
item is in its correct location, you can then apply the same idea to the remaining items. That is,
find the next-biggest item, and move it into the next-to-last space, and so forth. This algorithm
is called selection sort . It’s easy to write:

350 CHAPTER 7. ARRAYS

static void selectionSort(int[] A) {

// Sort A into increasing order, using selection sort

for (int lastPlace = A.length-1; lastPlace > 0; lastPlace--) {

// Find the largest item among A[0], A[1], ...,

// A[lastPlace], and move it into position lastPlace

// by swapping it with the number that is currently

// in position lastPlace.

int maxLoc = 0; // Location of largest item seen so far.

for (int j = 1; j <= lastPlace; j++) {

if (A[j] > A[maxLoc]) {

// Since A[j] is bigger than the maximum we’ve seen

// so far, j is the new location of the maximum value

// we’ve seen so far.

maxLoc = j;

}

}

int temp = A[maxLoc]; // Swap largest item with A[lastPlace].

A[maxLoc] = A[lastPlace];

A[lastPlace] = temp;

} // end of for loop

}

Insertion sort and selection sort are suitable for sorting fairly small arrays (up to a few hun-
dred elements, say). There are more complicated sorting algorithms that are much faster than
insertion sort and selection sort for large arrays. I’ll discuss one such algorithm in Chapter 9.

∗ ∗ ∗

A variation of selection sort is used in the Hand class that was introduced in Subsection 5.4.1.
(By the way, you are finally in a position to fully understand the source code for both the Hand
class and the Deck class from that section. See the source files Deck.java and Hand.java.)

In the Hand class, a hand of playing cards is represented by a Vector. This is older code,
which used Vector instead of ArrayList, and I have chosen not to modify it so that you would
see at least one example of using Vectors. See Subsection 7.3.5 for a discussion of Vectors.

The objects stored in the Vector are of type Card. A Card object contains instance methods
getSuit() and getValue() that can be used to determine the suit and value of the card. In
my sorting method, I actually create a new vector and move the cards one-by-one from the old
vector to the new vector. The cards are selected from the old vector in increasing order. In the
end, the new vector becomes the hand and the old vector is discarded. This is certainly not
the most efficient procedure! But hands of cards are so small that the inefficiency is negligible.
Here is the code for sorting cards by suit:

/**

* Sorts the cards in the hand so that cards of the same suit are

* grouped together, and within a suit the cards are sorted by value.

* Note that aces are considered to have the lowest value, 1.

*/

public void sortBySuit() {

Vector newHand = new Vector();

while (hand.size() > 0) {

7.4. SEARCHING AND SORTING 351

int pos = 0; // Position of minimal card found so far.

Card c = (Card)hand.elementAt(0); // The minimal card.

for (int i = 1; i < hand.size(); i++) {

Card c1 = (Card)hand.elementAt(i);

if (c1.getSuit() < c.getSuit() ||

(c1.getSuit() == c.getSuit() && c1.getValue() < c.getValue())) {

pos = i;

c = c1;

}

}

hand.removeElementAt(pos);

newHand.addElement(c);

}

hand = newHand;

}

This example illustrates the fact that comparing items in a list is not usually as simple as
using the operator “<”. In this case, we consider one card to be less than another if the suit
of the first card is less than the suit of the second, and also if the suits are the same and the
value of the second card is less than the value of the first. The second part of this test ensures
that cards with the same suit will end up sorted by value.

Sorting a list of Strings raises a similar problem: the “<” operator is not defined for strings.
However, the String class does define a compareTo method. If str1 and str2 are of type String,
then

str1.compareTo(str2)

returns an int that is 0 when str1 is equal to str2, is less than 0 when str1 preceeds str2,
and is greater than 0 when str1 follows str2. The definition of “succeeds” and “follows” for
strings uses what is called lexicographic ordering , which is based on the Unicode values of
the characters in the strings. Lexicographic ordering is not the same as alphabetical ordering,
even for strings that consist entirely of letters (because in lexicographic ordering, all the upper
case letters come before all the lower case letters). However, for words consisting strictly of
the 26 lower case letters in the English alphabet, lexicographic and alphabetic ordering are the
same. Thus, if str1 and str2 are strings containing only letters from the English alphabet,
then the test

str1.toLowerCase().compareTo(str2.toLowerCase()) < 0

is true if and only if str1 comes before str2 in alphabetical order.

7.4.5 Unsorting

I can’t resist ending this section on sorting with a related problem that is much less common,
but is a bit more fun. That is the problem of putting the elements of an array into a random
order. The typical case of this problem is shuffling a deck of cards. A good algorithm for
shuffling is similar to selection sort, except that instead of moving the biggest item to the end
of the list, an item is selected at random and moved to the end of the list. Here is a subroutine
to shuffle an array of ints:

/**

* Postcondition: The items in A have been rearranged into a random order.

*/

static void shuffle(int[] A) {

352 CHAPTER 7. ARRAYS

for (int lastPlace = A.length-1; lastPlace > 0; lastPlace--) {

// Choose a random location from among 0,1,...,lastPlace.

int randLoc = (int)(Math.random()*(lastPlace+1));

// Swap items in locations randLoc and lastPlace.

int temp = A[randLoc];

A[randLoc] = A[lastPlace];

A[lastPlace] = temp;

}

}

7.5 Multi-dimensional Arrays

Any type can be used as the base type of an array. You can have an array of ints, an
array of Strings, an array of Objects, and so on. In particular, since an array type is a first-class
Java type, you can have an array of arrays. For example, an array of ints has type int[]. This
means that there is automatically another type, int[][], which represents an “array of arrays of
ints”. Such an array is said to be a two-dimensional array . Of course once you have the
type int[][], there is nothing to stop you from forming the type int[][][], which represents a
three-dimensional array—and so on. There is no limit on the number of dimensions that an
array type can have. However, arrays of dimension three or higher are fairly uncommon, and
I concentrate here mainly on two-dimensional arrays. The type BaseType[][] is usually read
“two-dimensional array of BaseType” or “BaseType array array”.

7.5.1 Creating Two-dimensional Arrays

The declaration statement “int[][] A;” declares a variable named A of type int[][]. This
variable can hold a reference to an object of type int[][]. The assignment statement “A = new

int[3][4];” creates a new two-dimensional array object and sets A to point to the newly cre-
ated object. As usual, the declaration and assignment could be combined in a single declaration
statement “int[][] A = new int[3][4];”. The newly created object is an array of arrays-
of-ints. The notation int[3][4] indicates that there are 3 arrays-of-ints in the array A, and
that there are 4 ints in each array-of-ints. However, trying to think in such terms can get a bit
confusing—as you might have already noticed. So it is customary to think of a two-dimensional
array of items as a rectangular grid or matrix of items. The notation “new int[3][4]” can
then be taken to describe a grid of ints with 3 rows and 4 columns. The following picture
might help:

7.5. MULTI-DIMENSIONAL ARRAYS 353

1 0 1 2 ! 17 ! 3 2 5! 5 ! 2 2 ! 9

For the most part, you can ignore the reality and keep the picture of a grid in mind.
Sometimes, though, you will need to remember that each row in the grid is really an array in
itself. These arrays can be referred to as A[0], A[1], and A[2]. Each row is in fact a value of
type int[]. It could, for example, be passed to a subroutine that asks for a parameter of type
int[].

The notation A[1] refers to one of the rows of the array A. Since A[1] is itself an array of
ints, you can use another subscript to refer to one of the positions in that row. For example,
A[1][3] refers to item number 3 in row number 1. Keep in mind, of course, that both rows
and columns are numbered starting from zero. So, in the above example, A[1][3] is 5. More
generally, A[i][j] refers to the grid position in row number i and column number j. The 12
items in A are named as follows:

A[0][0] A[0][1] A[0][2] A[0][3]

A[1][0] A[1][1] A[1][2] A[1][3]

A[2][0] A[2][1] A[2][2] A[2][3]

A[i][j] is actually a variable of type int. You can assign integer values to it or use it in any
other context where an integer variable is allowed.

It might be worth noting that A.length gives the number of rows of A. To get the number
of columns in A, you have to ask how many ints there are in a row; this number would be
given by A[0].length, or equivalently by A[1].length or A[2].length. (There is actually
no rule that says that all the rows of an array must have the same length, and some advanced
applications of arrays use varying-sized rows. But if you use the new operator to create an array
in the manner described above, you’ll always get an array with equal-sized rows.)

Three-dimensional arrays are treated similarly. For example, a three-dimensional array of
ints could be created with the declaration statement “int[][][] B = new int[7][5][11];”.
It’s possible to visualize the value of B as a solid 7-by-5-by-11 block of cells. Each cell holds an
int and represents one position in the three-dimensional array. Individual positions in the array
can be referred to with variable names of the form B[i][j][k]. Higher-dimensional arrays

354 CHAPTER 7. ARRAYS

follow the same pattern, although for dimensions greater than three, there is no easy way to
visualize the structure of the array.

It’s possible to fill a multi-dimensional array with specified items at the time it is declared.
Recall that when an ordinary one-dimensional array variable is declared, it can be assigned
an “array initializer,” which is just a list of values enclosed between braces, { and }. Array
initializers can also be used when a multi-dimensional array is declared. An initializer for a
two-dimensional array consists of a list of one-dimensional array initializers, one for each row
in the two-dimensional array. For example, the array A shown in the picture above could be
created with:

int[][] A = { { 1, 0, 12, -1 },

{ 7, -3, 2, 5 },

{ -5, -2, 2, -9 }

};

If no initializer is provided for an array, then when the array is created it is automatically filled
with the appropriate value: zero for numbers, false for boolean, and null for objects.

7.5.2 Using Two-dimensional Arrays

Just as in the case of one-dimensional arrays, two-dimensional arrays are often processed using
for statements. To process all the items in a two-dimensional array, you have to use one for

statement nested inside another. If the array A is declared as

int[][] A = new int[3][4];

then you could store a zero into each location in A with:

for (int row = 0; row < 3; row++) {

for (int column = 0; column < 4; column++) {

A[row][column] = 0;

}

}

The first time the outer for loop executes (with row = 0), the inner for loop fills in the four
values in the first row of A, namely A[0][0] = 0, A[0][1] = 0, A[0][2] = 0, and A[0][3]

= 0. The next execution of the outer for loop fills in the second row of A. And the third and
final execution of the outer loop fills in the final row of A.

Similarly, you could add up all the items in A with:

int sum = 0;

for (int i = 0; i < 3; i++)

for (int j = 0; j < 4; j++)

sum = sum + A[i][j];

This could even be done with nested for-each loops. Keep in mind that the elements in A are
objects of type int[], while the elements in each row of A are of type int:

int sum = 0;

for (int[] row : A) { // For each row in A...

for (int item : row) // For each item in that row...

sum = sum + item; // Add item to the sum.

}

7.5. MULTI-DIMENSIONAL ARRAYS 355

To process a three-dimensional array, you would, of course, use triply nested for loops.

∗ ∗ ∗

A two-dimensional array can be used whenever the data that is being represented can be
arranged into rows and columns in a natural way. Often, the grid is built into the problem.
For example, a chess board is a grid with 8 rows and 8 columns. If a class named ChessPiece
is available to represent individual chess pieces, then the contents of a chess board could be
represented by a two-dimensional array:

ChessPiece[][] board = new ChessPiece[8][8];

Or consider the “mosaic” of colored rectangles used in an example in Subsection 4.6.2. The
mosaic is implemented by a class named MosaicCanvas.java. The data about the color of each
of the rectangles in the mosaic is stored in an instance variable named grid of type Color[][].
Each position in this grid is occupied by a value of type Color. There is one position in the grid
for each colored rectangle in the mosaic. The actual two-dimensional array is created by the
statement:

grid = new Color[ROWS][COLUMNS];

where ROWS is the number of rows of rectangles in the mosaic and COLUMNS is the number of
columns. The value of the Color variable grid[i][j] is the color of the rectangle in row number
i and column number j. When the color of that rectangle is changed to some color, c, the value
stored in grid[i][j] is changed with a statement of the form “grid[i][j] = c;”. When the
mosaic is redrawn, the values stored in the two-dimensional array are used to decide what color
to make each rectangle. Here is a simplified version of the code from the MosaicCanvas class
that draws all the colored rectangles in the grid. You can see how it uses the array:

int rowHeight = getHeight() / ROWS;

int colWidth = getWidth() / COLUMNS;

for (int row = 0; row < ROWS; row++) {

for (int col = 0; col < COLUMNS; col++) {

g.setColor(grid[row][col]); // Get color from array.

g.fillRect(col*colWidth, row*rowHeight,

colWidth, rowHeight);

}

}

Sometimes two-dimensional arrays are used in problems in which the grid is not so visually
obvious. Consider a company that owns 25 stores. Suppose that the company has data about
the profit earned at each store for each month in the year 2006. If the stores are numbered
from 0 to 24, and if the twelve months from January ’06 through December ’06 are numbered
from 0 to 11, then the profit data could be stored in an array, profit, constructed as follows:

double[][] profit = new double[25][12];

profit[3][2] would be the amount of profit earned at store number 3 in March, and
more generally, profit[storeNum][monthNum] would be the amount of profit earned in store
number storeNum in month number monthNum. In this example, the one-dimensional array
profit[storeNum] has a very useful meaning: It is just the profit data for one particular store
for the whole year.

Let’s assume that the profit array has already been filled with data. This data can be
processed in a lot of interesting ways. For example, the total profit for the company—for the
whole year from all its stores—can be calculated by adding up all the entries in the array:

356 CHAPTER 7. ARRAYS

double totalProfit; // Company’s total profit in 2006.

totalProfit = 0;

for (int store = 0; store < 25; store++) {

for (int month = 0; month < 12; month++)

totalProfit += profit[store][month];

}

Sometimes it is necessary to process a single row or a single column of an array, not the
entire array. For example, to compute the total profit earned by the company in December,
that is, in month number 11, you could use the loop:

double decemberProfit = 0.0;

for (storeNum = 0; storeNum < 25; storeNum++)

decemberProfit += profit[storeNum][11];

Let’s extend this idea to create a one-dimensional array that contains the total profit for each
month of the year:

double[] monthlyProfit; // Holds profit for each month.

monthlyProfit = new double[12];

for (int month = 0; month < 12; month++) {

// compute the total profit from all stores in this month.

monthlyProfit[month] = 0.0;

for (int store = 0; store < 25; store++) {

// Add the profit from this store in this month

// into the total profit figure for the month.

monthlyProfit[month] += profit[store][month];

}

}

As a final example of processing the profit array, suppose that we wanted to know which
store generated the most profit over the course of the year. To do this, we have to add up the
monthly profits for each store. In array terms, this means that we want to find the sum of each
row in the array. As we do this, we need to keep track of which row produces the largest total.

double maxProfit; // Maximum profit earned by a store.

int bestStore; // The number of the store with the

// maximum profit.

double total = 0.0; // Total profit for one store.

// First compute the profit from store number 0.

for (int month = 0; month < 12; month++)

total += profit[0][month];

bestStore = 0; // Start by assuming that the best

maxProfit = total; // store is store number 0.

// Now, go through the other stores, and whenever we

// find one with a bigger profit than maxProfit, revise

// the assumptions about bestStore and maxProfit.

for (store = 1; store < 25; store++) {

// Compute this store’s profit for the year.

total = 0.0;

7.5. MULTI-DIMENSIONAL ARRAYS 357

for (month = 0; month < 12; month++)

total += profit[store][month];

// Compare this store’s profits with the highest

// profit we have seen among the preceding stores.

if (total > maxProfit) {

maxProfit = total; // Best profit seen so far!

bestStore = store; // It came from this store.

}

} // end for

// At this point, maxProfit is the best profit of any

// of the 25 stores, and bestStore is a store that

// generated that profit. (Note that there could also be

// other stores that generated exactly the same profit.)

7.5.3 Example: Checkers

For the rest of this section, we’ll look at a more substantial example. We look at a program that
lets two users play checkers against each other. A player moves by clicking on the piece to be
moved and then on the empty square to which it is to be moved. The squares that the current
player can legally click are hilited. The square containing a piece that has been selected to be
moved is surrounded by a white border. Other pieces that can legally be moved are surrounded
by a cyan-colored border. If a piece has been selected, each empty square that it can legally
move to is hilited with a green border. The game enforces the rule that if the current player can
jump one of the opponent’s pieces, then the player must jump. When a player’s piece becomes
a king, by reaching the opposite end of the board, a big white “K” is drawn on the piece. You
can try an applet version of the program in the on-line version of this section. Here is what it
looks like:

I will only cover a part of the programming of this applet. I encourage you to read the
complete source code, Checkers.java. At over 750 lines, this is a more substantial example
than anything you’ve seen before in this course, but it’s an excellent example of state-based,
event-driven programming.

The data about the pieces on the board are stored in a two-dimensional array. Because of
the complexity of the program, I wanted to divide it into several classes. In addition to the

358 CHAPTER 7. ARRAYS

main class, there are several nested classes. One of these classes is CheckersData, which handles
the data for the board. It is mainly this class that I want to talk about.

The CheckersData class has an instance variable named board of type int[][]. The value
of board is set to “new int[8][8]”, an 8-by-8 grid of integers. The values stored in the grid
are defined as constants representing the possible contents of a square on a checkerboard:

static final int

EMPTY = 0, // Value representing an empty square.

RED = 1, // A regular red piece.

RED KING = 2, // A red king.

BLACK = 3, // A regular black piece.

BLACK KING = 4; // A black king.

The constants RED and BLACK are also used in my program (or, perhaps, misused) to represent
the two players in the game. When a game is started, the values in the variable, board, are set
to represent the initial state of the board. The grid of values looks likeB L A C K E M P T Y B L A C K E M P T Y B L A C K E M P T Y B L A C K E M P T Y0 B L A C KE M P T Y B L A C K E M P T Y B L A C K E M P T Y B L A C K E M P T Y1 B L A C K E M P T Y B L A C K E M P T Y B L A C K E M P T Y B L A C K E M P T Y2 E M P T Y E M P T Y E M P T Y E M P T Y3 E M P T Y E M P T Y E M P T Y E M P T YE M P T Y E M P T Y E M P T Y E M P T Y4 E M P T Y E M P T Y E M P T Y E M P T Y5 R E D6 R E D E M P T Y E M P T Y E M P T Y E M P T Y7 R E D R E D R E DE M P T Y E M P T Y E M P T Y E M P T YR E D R E D R E D

0 1 2 3 4 5 6 7
R E DE M P T Y E M P T Y E M P T Y E M P T YR E D R E D R E D

A black piece can only move “down” the grid. That is, the row number of the square it
moves to must be greater than the row number of the square it comes from. A red piece can
only move up the grid. Kings of either color, of course, can move in both directions.

One function of the CheckersData class is to take care of all the details of making moves
on the board. An instance method named makeMove() is provided to do this. When a player
moves a piece from one square to another, the values stored at two positions in the array are
changed. But that’s not all. If the move is a jump, then the piece that was jumped is removed
from the board. (The method checks whether the move is a jump by checking if the square to
which the piece is moving is two rows away from the square where it starts.) Furthermore, a
RED piece that moves to row 0 or a BLACK piece that moves to row 7 becomes a king. This is
good programming: the rest of the program doesn’t have to worry about any of these details.
It just calls this makeMove() method:

/**

* Make the move from (fromRow,fromCol) to (toRow,toCol). It is

* ASSUMED that this move is legal! If the move is a jump, the

* jumped piece is removed from the board. If a piece moves

* to the last row on the opponent’s side of the board, the

* piece becomes a king.

*/

void makeMove(int fromRow, int fromCol, int toRow, int toCol) {

7.5. MULTI-DIMENSIONAL ARRAYS 359

board[toRow][toCol] = board[fromRow][fromCol]; // Move the piece.

board[fromRow][fromCol] = EMPTY;

if (fromRow - toRow == 2 || fromRow - toRow == -2) {

// The move is a jump. Remove the jumped piece from the board.

int jumpRow = (fromRow + toRow) / 2; // Row of the jumped piece.

int jumpCol = (fromCol + toCol) / 2; // Column of the jumped piece.

board[jumpRow][jumpCol] = EMPTY;

}

if (toRow == 0 && board[toRow][toCol] == RED)

board[toRow][toCol] = RED KING; // Red piece becomes a king.

if (toRow == 7 && board[toRow][toCol] == BLACK)

board[toRow][toCol] = BLACK KING; // Black piece becomes a king.

} // end makeMove()

An even more important function of the CheckersData class is to find legal moves on the
board. In my program, a move in a Checkers game is represented by an object belonging to
the following class:

/**

* A CheckersMove object represents a move in the game of

* Checkers. It holds the row and column of the piece that is

* to be moved and the row and column of the square to which

* it is to be moved. (This class makes no guarantee that

* the move is legal.)

*/

private static class CheckersMove {

int fromRow, fromCol; // Position of piece to be moved.

int toRow, toCol; // Square it is to move to.

CheckersMove(int r1, int c1, int r2, int c2) {

// Constructor. Set the values of the instance variables.

fromRow = r1;

fromCol = c1;

toRow = r2;

toCol = c2;

}

boolean isJump() {

// Test whether this move is a jump. It is assumed that

// the move is legal. In a jump, the piece moves two

// rows. (In a regular move, it only moves one row.)

return (fromRow - toRow == 2 || fromRow - toRow == -2);

}

} // end class CheckersMove.

The CheckersData class has an instance method which finds all the legal moves that are
currently available for a specified player. This method is a function that returns an array
of type CheckersMove[]. The array contains all the legal moves, represented as CheckersMove
objects. The specification for this method reads

360 CHAPTER 7. ARRAYS

/**

* Return an array containing all the legal CheckersMoves

* for the specified player on the current board. If the player

* has no legal moves, null is returned. The value of player

* should be one of the constants RED or BLACK; if not, null

* is returned. If the returned value is non-null, it consists

* entirely of jump moves or entirely of regular moves, since

* if the player can jump, only jumps are legal moves.

*/

CheckersMove[] getLegalMoves(int player)

A brief pseudocode algorithm for the method is

Start with an empty list of moves

Find any legal jumps and add them to the list

if there are no jumps:

Find any other legal moves and add them to the list

if the list is empty:

return null

else:

return the list

Now, what is this “list”? We have to return the legal moves in an array. But since an array has
a fixed size, we can’t create the array until we know how many moves there are, and we don’t
know that until near the end of the method, after we’ve already made the list! A neat solution
is to use an ArrayList instead of an array to hold the moves as we find them. In fact, I use an
object defined by the parameterized type ArrayList<CheckersMove> so that the list is restricted
to holding objects of type CheckersMove. As we add moves to the list, it will grow just as large
as necessary. At the end of the method, we can create the array that we really want and copy
the data into it:

Let "moves" be an empty ArrayList<CheckerMove>

Find any legal jumps and add them to moves

if moves.size() is 0:

Find any other legal moves and add them to moves

if moves.size() is 0:

return null

else:

Let moveArray be an array of CheckersMoves of length moves.size()

Copy the contents of moves into moveArray

return moveArray

Now, how do we find the legal jumps or the legal moves? The information we need is in the
board array, but it takes some work to extract it. We have to look through all the positions
in the array and find the pieces that belong to the current player. For each piece, we have to
check each square that it could conceivably move to, and check whether that would be a legal
move. There are four squares to consider. For a jump, we want to look at squares that are two
rows and two columns away from the piece. Thus, the line in the algorithm that says “Find
any legal jumps and add them to moves” expands to:

For each row of the board:

For each column of the board:

if one of the player’s pieces is at this location:

if it is legal to jump to row + 2, column + 2

add this move to moves

7.5. MULTI-DIMENSIONAL ARRAYS 361

if it is legal to jump to row - 2, column + 2

add this move to moves

if it is legal to jump to row + 2, column - 2

add this move to moves

if it is legal to jump to row - 2, column - 2

add this move to moves

The line that says “Find any other legal moves and add them to moves” expands to some-
thing similar, except that we have to look at the four squares that are one column and one
row away from the piece. Testing whether a player can legally move from one given square to
another given square is itself non-trivial. The square the player is moving to must actually be
on the board, and it must be empty. Furthermore, regular red and black pieces can only move
in one direction. I wrote the following utility method to check whether a player can make a
given non-jump move:

/**

* This is called by the getLegalMoves() method to determine

* whether the player can legally move from (r1,c1) to (r2,c2).

* It is ASSUMED that (r1,c1) contains one of the player’s

* pieces and that (r2,c2) is a neighboring square.

*/

private boolean canMove(int player, int r1, int c1, int r2, int c2) {

if (r2 < 0 || r2 >= 8 || c2 < 0 || c2 >= 8)

return false; // (r2,c2) is off the board.

if (board[r2][c2] != EMPTY)

return false; // (r2,c2) already contains a piece.

if (player == RED) {

if (board[r1][c1] == RED && r2 > r1)

return false; // Regular red piece can only move down.

return true; // The move is legal.

}

else {

if (board[r1][c1] == BLACK && r2 < r1)

return false; // Regular black piece can only move up.

return true; // The move is legal.

}

} // end canMove()

This method is called by my getLegalMoves() method to check whether one of the possible
moves that it has found is actually legal. I have a similar method that is called to check whether
a jump is legal. In this case, I pass to the method the square containing the player’s piece,
the square that the player might move to, and the square between those two, which the player
would be jumping over. The square that is being jumped must contain one of the opponent’s
pieces. This method has the specification:

/**

* This is called by other methods to check whether

* the player can legally jump from (r1,c1) to (r3,c3).

* It is assumed that the player has a piece at (r1,c1), that

* (r3,c3) is a position that is 2 rows and 2 columns distant

* from (r1,c1) and that (r2,c2) is the square between (r1,c1)

* and (r3,c3).

362 CHAPTER 7. ARRAYS

*/

private boolean canJump(int player, int r1, int c1,

int r2, int c2, int r3, int c3) { . . .

Given all this, you should be in a position to understand the complete getLegalMoves()

method. It’s a nice way to finish off this chapter, since it combines several topics that we’ve
looked at: one-dimensional arrays, ArrayLists, and two-dimensional arrays:

CheckersMove[] getLegalMoves(int player) {

if (player != RED && player != BLACK)

return null;

int playerKing; // The constant for a King belonging to the player.

if (player == RED)

playerKing = RED KING;

else

playerKing = BLACK KING;

ArrayList<ChecherMove> moves = new ArrayList<CheckerMove>();

// Moves will be stored in this list.

/* First, check for any possible jumps. Look at each square on

the board. If that square contains one of the player’s pieces,

look at a possible jump in each of the four directions from that

square. If there is a legal jump in that direction, put it in

the moves ArrayList.

*/

for (int row = 0; row < 8; row++) {

for (int col = 0; col < 8; col++) {

if (board[row][col] == player || board[row][col] == playerKing) {

if (canJump(player, row, col, row+1, col+1, row+2, col+2))

moves.add(new CheckersMove(row, col, row+2, col+2));

if (canJump(player, row, col, row-1, col+1, row-2, col+2))

moves.add(new CheckersMove(row, col, row-2, col+2));

if (canJump(player, row, col, row+1, col-1, row+2, col-2))

moves.add(new CheckersMove(row, col, row+2, col-2));

if (canJump(player, row, col, row-1, col-1, row-2, col-2))

moves.add(new CheckersMove(row, col, row-2, col-2));

}

}

}

/* If any jump moves were found, then the user must jump, so we

don’t add any regular moves. However, if no jumps were found,

check for any legal regular moves. Look at each square on

the board. If that square contains one of the player’s pieces,

look at a possible move in each of the four directions from

that square. If there is a legal move in that direction,

put it in the moves ArrayList.

*/

if (moves.size() == 0) {

for (int row = 0; row < 8; row++) {

for (int col = 0; col < 8; col++) {

if (board[row][col] == player || board[row][col] == playerKing) {

7.5. MULTI-DIMENSIONAL ARRAYS 363

if (canMove(player,row,col,row+1,col+1))

moves.add(new CheckersMove(row,col,row+1,col+1));

if (canMove(player,row,col,row-1,col+1))

moves.add(new CheckersMove(row,col,row-1,col+1));

if (canMove(player,row,col,row+1,col-1))

moves.add(new CheckersMove(row,col,row+1,col-1));

if (canMove(player,row,col,row-1,col-1))

moves.add(new CheckersMove(row,col,row-1,col-1));

}

}

}

}

/* If no legal moves have been found, return null. Otherwise, create

an array just big enough to hold all the legal moves, copy the

legal moves from the ArrayList into the array, and return the array.

*/

if (moves.size() == 0)

return null;

else {

CheckersMove[] moveArray = new CheckersMove[moves.size()];

for (int i = 0; i < moves.size(); i++)

moveArray[i] = moves.get(i);

return moveArray;

}

} // end getLegalMoves

364 CHAPTER 7. ARRAYS

Exercises for Chapter 7

1. An example in Subsection 7.2.4 tried to answer the question, How many random people do
you have to select before you find a duplicate birthday? The source code for that program
can be found in the file BirthdayProblemDemo.java. Here are some related questions:

• How many random people do you have to select before you find three people who
share the same birthday? (That is, all three people were born on the same day in
the same month, but not necessarily in the same year.)

• Suppose you choose 365 people at random. How many different birthdays will they
have? (The number could theoretically be anywhere from 1 to 365).

• How many different people do you have to check before you’ve found at least one
person with a birthday on each of the 365 days of the year?

Write three programs to answer these questions. Each of your programs should sim-
ulate choosing people at random and checking their birthdays. (In each case, ignore the
possibility of leap years.)

2. Write a program that will read a sequence of positive real numbers entered by the user
and will print the same numbers in sorted order from smallest to largest. The user will
input a zero to mark the end of the input. Assume that at most 100 positive numbers will
be entered.

3. A polygon is a geometric figure made up of a sequence of connected line segments. The
points where the line segments meet are called the vertices of the polygon. The Graph-
ics class includes commands for drawing and filling polygons. For these commands, the
coordinates of the vertices of the polygon are stored in arrays. If g is a variable of type
Graphics then

• g.drawPolygon(xCoords, yCoords, pointCt) will draw the outline of the polygon
with vertices at the points (xCoords[0],yCoords[0]), (xCoords[1],yCoords[1]),
. . . , (xCoords[pointCt-1],yCoords[pointCt-1]). The third parameter, pointCt,
is an int that specifies the number of vertices of the polygon. Its value
should be 3 or greater. The first two parameters are arrays of type
int[]. Note that the polygon automatically includes a line from the last
point, (xCoords[pointCt-1],yCoords[pointCt-1]), back to the starting point
(xCoords[0],yCoords[0]).

• g.fillPolygon(xCoords, yCoords, pointCt) fills the interior of the polygon with
the current drawing color. The parameters have the same meaning as in the
drawPolygon() method. Note that it is OK for the sides of the polygon to cross
each other, but the interior of a polygon with self-intersections might not be exactly
what you expect.

Write a panel class that lets the user draw polygons, and use your panel as the content
pane in an applet (or standalone application). As the user clicks a sequence of points,
count them and store their x- and y-coordinates in two arrays. These points will be the
vertices of the polygon. Also, draw a line between each consecutive pair of points to give
the user some visual feedback. When the user clicks near the starting point, draw the

Exercises 365

complete polygon. Draw it with a red interior and a black border. The user should then
be able to start drawing a new polygon. When the user shift-clicks on the applet, clear it.

For this exercise, there is no need to store information about the contents of the applet.
Do the drawing directly in the mousePressed() routine, and use the getGraphics()

method to get a Graphics object that you can use to draw the line. (Remember, though,
that this is considered to be bad style.) You will not need a paintComponent() method,
since the default action of filling the panel with its background color is good enough.

Here is a picture of my solution after the user has drawn a few polygons:

4. For this problem, you will need to use an array of objects. The objects belong to the class
MovingBall, which I have already written. You can find the source code for this class in
the file MovingBall.java. A MovingBall represents a circle that has an associated color,
radius, direction, and speed. It is restricted to moving in a rectangle in the (x,y) plane.
It will “bounce back” when it hits one of the sides of this rectangle. A MovingBall does not
actually move by itself. It’s just a collection of data. You have to call instance methods to
tell it to update its position and to draw itself. The constructor for the MovingBall class
takes the form

new MovingBall(xmin, xmax, ymin, ymax)

where the parameters are integers that specify the limits on the x and y coordinates of
the ball. In this exercise, you will want balls to bounce off the sides of the applet, so you
will create them with the constructor call

new MovingBall(0, getWidth(), 0, getHeight())

The constructor creates a ball that initially is colored red, has a radius of 5 pixels, is
located at the center of its range, has a random speed between 4 and 12, and is headed in
a random direction. There is one problem here: You can’t use this constructor until the
width and height of the component are known. It would be OK to use it in the init()

method of an applet, but not in the constructor of an applet or panel class. If you are using
a panel class to display the ball, one slightly messy solution is to create the MovingBall
objects in the panel’s paintComponent() method the first time that method is called. You
can be sure that the size of the panel has been determined before paintComponent() is
called. This is what I did in my own solution to this exercise.

366 CHAPTER 7. ARRAYS

If ball is a variable of type MovingBall, then the following methods are available:

• ball.draw(g) — draw the ball in a graphics context. The parameter, g, must be of
type Graphics. (The drawing color in g will be changed to the color of the ball.)

• ball.travel() — change the (x,y)-coordinates of the ball by an amount equal to
its speed. The ball has a certain direction of motion, and the ball is moved in that
direction. Ordinarily, you will call this once for each frame of an animation, so the
speed is given in terms of “pixels per frame”. Calling this routine does not move
the ball on the screen. It just changes the values of some instance variables in the
object. The next time the object’s draw() method is called, the ball will be drawn
in the new position.

• ball.headTowards(x,y) — change the direction of motion of the ball so that it is
headed towards the point (x,y). This does not affect the speed.

These are the methods that you will need for this exercise. There are also methods for
setting various properties of the ball, such as ball.setColor(color) for changing the
color and ball.setRadius(radius) for changing its size. See the source code for more
information.

For this exercise, you should create an applet that shows an animation of balls bouncing
around on a black background. Use a Timer to drive the animation. (See Subsection 6.5.1.)
Use an array of type MovingBall[] to hold the data for the balls. In addition, your
program should listen for mouse and mouse motion events. When the user presses the
mouse or drags the mouse, call each of the ball’s headTowards() methods to make the
balls head towards the mouse’s location. My solution uses 50 balls and a time delay of 50
milliseconds for the timer.

5. The sample program RandomArtPanel.java from Subsection 6.5.1 shows a different ran-
dom “artwork” every four seconds. There are three types of “art”, one made from lines,
one from circles, and one from filled squares. However, the program does not save the data
for the picture that is shown on the screen. As a result, the picture cannot be redrawn
when necessary. In fact, every time paintComponent() is called, a new picture is drawn.

Write a new version of RandomArtPanel.java that saves the data needed to redraw its
pictures. The paintComponent() method should simply use the data to draw the picture.
New data should be recomputed only every four seconds, in response to an event from the
timer that drives the program.

To make this interesting, write a separate class for each of the three different types of
art. Also write an abstract class to serve as the common base class for the three classes.
Since all three types of art use a random gray background, the background color can be
defined in their superclass. The superclass also contains a draw() method that draws the
picture; this is an abstract method because its implementation depends on the particular
type of art that is being drawn. The abstract class can be defined as:

private abstract class ArtData {

Color backgroundColor; // The background color for the art.

ArtData() { // Constructor sets background color to be a random gray.

int x = (int)(256*Math.random());

backgroundColor = new Color(x, x, x,);

}

abstract void draw(Graphics g); // Draws this artwork.

}

Exercises 367

Each of the three subclasses of ArtData must define its own draw() method. It must
also define instance variables to hold the data necessary to draw the picture. I suggest
that you should create random data for the picture in the constructor of the class, so that
constructing the object will automatically create the data for a random artwork. (One
problem with this is that you can’t create the data until you know the size of the panel,
so you can’t create an artdata object in the constructor of the panel. One solution is to
create an artdata object at the beginning of the paintComponent() method, if the object
has not already been created.) In all three subclasses, you will need to use several arrays
to store the data.

The file RandomArtPanel.java only defines a panel class. A main program that uses
this panel can be found in RandomArt.java, and an applet that uses it can be found in
RandomArtApplet.java.

6. Write a program that will read a text file selected by the user, and will make an alphabetical
list of all the different words in that file. All words should be converted to lower case, and
duplicates should be eliminated from the list. The list should be written to an output file
selected by the user. As discussed in Subsection 2.4.5, you can use TextIO to read and write
files. Use a variable of type ArrayList<String> to store the words. (See Subsection 7.3.4.)
It is not easy to separate a file into words as you are reading it. You can use the following
method:

/**

* Read the next word from TextIO, if there is one. First, skip past

* any non-letters in the input. If an end-of-file is encountered before

* a word is found, return null. Otherwise, read and return the word.

* A word is defined as a sequence of letters. Also, a word can include

* an apostrophe if the apostrophe is surrounded by letters on each side.

* @return the next word from TextIO, or null if an end-of-file is

* encountered

*/

private static String readNextWord() {

char ch = TextIO.peek(); // Look at next character in input.

while (ch != TextIO.EOF && ! Character.isLetter(ch)) {

TextIO.getAnyChar(); // Read the character.

ch = TextIO.peek(); // Look at the next character.

}

if (ch == TextIO.EOF) // Encountered end-of-file

return null;

// At this point, we know the next character is a letter, so read a word.

String word = ""; // This will be the word that is read.

while (true) {

word += TextIO.getAnyChar(); // Append the letter onto word.

ch = TextIO.peek(); // Look at next character.

if (ch == ’\’’) {

// The next character is an apostrophe. Read it, and

// if the following character is a letter, add both the

// apostrophe and the letter onto the word and continue

// reading the word. If the character after the apostrophe

// is not a letter, the word is done, so break out of the loop.

TextIO.getAnyChar(); // Read the apostrophe.

ch = TextIO.peek(); // Look at char that follows apostrophe.

if (Character.isLetter(ch)) {

368 CHAPTER 7. ARRAYS

word += "\’" + TextIO.getAnyChar();

ch = TextIO.peek(); // Look at next char.

}

else

break;

}

if (! Character.isLetter(ch)) {

// If the next character is not a letter, the word is

// finished, so break out of the loop.

break;

}

// If we haven’t broken out of the loop, next char is a letter.

}

return word; // Return the word that has been read.

}

Note that this method will return null when the file has been entirely read. You can use
this as a signal to stop processing the input file.

7. The game of Go Moku (also known as Pente or Five Stones) is similar to Tic-Tac-Toe,
except that it played on a much larger board and the object is to get five squares in a row
rather than three. Players take turns placing pieces on a board. A piece can be placed
in any empty square. The first player to get five pieces in a row—horizontally, vertically,
or diagonally—wins. If all squares are filled before either player wins, then the game is a
draw. Write a program that lets two players play Go Moku against each other.

Your program will be simpler than the Checkers program from Subsection 7.5.3. Play
alternates strictly between the two players, and there is no need to hilite the legal moves.
You will only need two classes, a short panel class to set up the interface and a Board
class to draw the board and do all the work of the game. Nevertheless, you will probably
want to look at the source code for the checkers program, Checkers.java, for ideas about
the general outline of the program.

The hardest part of the program is checking whether the move that a player makes is
a winning move. To do this, you have to look in each of the four possible directions from
the square where the user has placed a piece. You have to count how many pieces that
player has in a row in that direction. If the number is five or more in any direction, then
that player wins. As a hint, here is part of the code from my applet. This code counts
the number of pieces that the user has in a row in a specified direction. The direction is
specified by two integers, dirX and dirY. The values of these variables are 0, 1, or -1, and
at least one of them is non-zero. For example, to look in the horizontal direction, dirX is
1 and dirY is 0.

int ct = 1; // Number of pieces in a row belonging to the player.

int r, c; // A row and column to be examined

r = row + dirX; // Look at square in specified direction.

c = col + dirY;

while (r >= 0 && r < 13 && c >= 0 && c < 13

&& board[r][c] == player) {

// Square is on the board, and it

// contains one of the players’s pieces.

ct++;

Exercises 369

r += dirX; // Go on to next square in this direction.

c += dirY;

}

r = row - dirX; // Now, look in the opposite direction.

c = col - dirY;

while (r >= 0 && r < 13 && c >= 0 && c < 13

&& board[r][c] == player) {

ct++;

r -= dirX; // Go on to next square in this direction.

c -= dirY;

}

Here is a picture of my program It uses a 13-by-13 board. You can do the same or use
a normal 8-by-8 checkerboard.

370 CHAPTER 7. ARRAYS

Quiz on Chapter 7

1. What does the computer do when it executes the following statement? Try to give as
complete an answer as possible.

Color[] palette = new Color[12];

2. What is meant by the basetype of an array?

3. What does it mean to sort an array?

4. What is the main advantage of binary search over linear search? What is the main
disadvantage?

5. What is meant by a dynamic array? What is the advantage of a dynamic array over a
regular array?

6. Suppose that a variable strlst has been declared as

ArrayList<String> strlst = new ArrayList<String>();

Assume that the list is not empty and that all the items in the list are non-null. Write a
code segment that will find and print the string in the list that comes first in lexicographic
order. How would your answer change if strlst were declared to be of type ArrayList
instead of ArrayList<String>?

7. What is the purpose of the following subroutine? What is the meaning of the value that
it returns, in terms of the value of its parameter?

static String concat(String[] str) {

if (str == null)

return "";

String ans = "";

for (int i = 0; i < str.length; i++) {

ans = ans + str[i];

return ans;

}

8. Show the exact output produced by the following code segment.

char[][] pic = new char[6][6];

for (int i = 0; i < 6; i++)

for (int j = 0; j < 6; j++) {

if (i == j || i == 0 || i == 5)

pic[i][j] = ’*’;

else

pic[i][j] = ’.’;

}

for (int i = 0; i < 6; i++) {

for (int j = 0; j < 6; j++)

System.out.print(pic[i][j]);

System.out.println();

}

Quiz 371

9. Write a complete subroutine that finds the largest value in an array of ints. The subrou-
tine should have one parameter, which is an array of type int[]. The largest number in
the array should be returned as the value of the subroutine.

10. Suppose that temperature measurements were made on each day of 1999 in each of 100
cities. The measurements have been stored in an array

int[][] temps = new int[100][365];

where temps[c][d] holds the measurement for city number c on the dth day of the year.
Write a code segment that will print out the average temperature, over the course of the
whole year, for each city. The average temperature for a city can be obtained by adding
up all 365 measurements for that city and dividing the answer by 365.0.

11. Suppose that a class, Employee, is defined as follows:

class Employee {

String lastName;

String firstName;

double hourlyWage;

int yearsWithCompany;

}

Suppose that data about 100 employees is already stored in an array:

Employee[] employeeData = new Employee[100];

Write a code segment that will output the first name, last name, and hourly wage of each
employee who has been with the company for 20 years or more.

12. Suppose that A has been declared and initialized with the statement

double[] A = new double[20];

and suppose that A has already been filled with 20 values. Write a program segment that
will find the average of all the non-zero numbers in the array. (The average is the sum
of the numbers, divided by the number of numbers. Note that you will have to count the
number of non-zero entries in the array.) Declare any variables that you use.

372 CHAPTER 7. ARRAYS

