
Chapter 9

Linked Data Structures and
Recursion

In this chapter, we look at two advanced programming techniques, recursion and linked data
structures, and some of their applications. Both of these techniques are related to the seemingly
paradoxical idea of defining something in terms of itself. This turns out to be a remarkably
powerful idea.

A subroutine is said to be recursive if it calls itself, either directly or indirectly. That is, the
subroutine is used in its own definition. Recursion can often be used to solve complex problems
by reducing them to simpler problems of the same type.

A reference to one object can be stored in an instance variable of another object. The
objects are then said to be “linked.” Complex data structures can be built by linking objects
together. An especially interesting case occurs when an object contains a link to another object
that belongs to the same class. In that case, the class is used in its own definition. Several
important types of data structures are built using classes of this kind.

9.1 Recursion

At one time or another, you’ve probably been told that you can’t define something in
terms of itself. Nevertheless, if it’s done right, defining something at least partially in terms of
itself can be a very powerful technique. A recursive definition is one that uses the concept
or thing that is being defined as part of the definition. For example: An “ancestor” is either
a parent or an ancestor of a parent. A “sentence” can be, among other things, two sentences
joined by a conjunction such as “and.” A “directory” is a part of a disk drive that can hold files
and directories. In mathematics, a “set” is a collection of elements, which can themselves be
sets. A “statement” in Java can be a while statement, which is made up of the word “while”,
a boolean-valued condition, and a statement.

Recursive definitions can describe very complex situations with just a few words. A def-
inition of the term “ancestor” without using recursion might go something like “a parent, or
a grandparent, or a great-grandparent, or a great-great-grandparent, and so on.” But saying
“and so on” is not very rigorous. (I’ve often thought that recursion is really just a rigorous
way of saying “and so on.”) You run into the same problem if you try to define a “directory”
as “a file that is a list of files, where some of the files can be lists of files, where some of those

files can be lists of files, and so on.” Trying to describe what a Java statement can look like,
without using recursion in the definition, would be difficult and probably pretty comical.

427

428 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

Recursion can be used as a programming technique. A recursive subroutine is one that
calls itself, either directly or indirectly. To say that a subroutine calls itself directly means
that its definition contains a subroutine call statement that calls the subroutine that is being
defined. To say that a subroutine calls itself indirectly means that it calls a second subroutine
which in turn calls the first subroutine (either directly or indirectly). A recursive subroutine
can define a complex task in just a few lines of code. In the rest of this section, we’ll look at a
variety of examples, and we’ll see other examples in the rest of the book.

9.1.1 Recursive Binary Search

Let’s start with an example that you’ve seen before: the binary search algorithm from Subsec-
tion 7.4.1. Binary search is used to find a specified value in a sorted list of items (or, if it does
not occur in the list, to determine that fact). The idea is to test the element in the middle of
the list. If that element is equal to the specified value, you are done. If the specified value is
less than the middle element of the list, then you should search for the value in the first half of
the list. Otherwise, you should search for the value in the second half of the list. The method
used to search for the value in the first or second half of the list is binary search. That is, you
look at the middle element in the half of the list that is still under consideration, and either
you’ve found the value you are looking for, or you have to apply binary search to one half of the
remaining elements. And so on! This is a recursive description, and we can write a recursive
subroutine to implement it.

Before we can do that, though, there are two considerations that we need to take into
account. Each of these illustrates an important general fact about recursive subroutines. First
of all, the binary search algorithm begins by looking at the “middle element of the list.” But
what if the list is empty? If there are no elements in the list, then it is impossible to look
at the middle element. In the terminology of Subsection 8.2.1, having a non-empty list is a
“precondition” for looking at the middle element, and this is a clue that we have to modify
the algorithm to take this precondition into account. What should we do if we find ourselves
searching for a specified value in an empty list? The answer is easy: If the list is empty, we can
be sure that the value does not occur in the list, so we can give the answer without any further
work. An empty list is a base case for the binary search algorithm. A base case for a recursive
algorithm is a case that is handled directly, rather than by applying the algorithm recursively.
The binary search algorithm actually has another type of base case: If we find the element we
are looking for in the middle of the list, we are done. There is no need for further recursion.

The second consideration has to do with the parameters to the subroutine. The problem is
phrased in terms of searching for a value in a list. In the original, non-recursive binary search
subroutine, the list was given as an array. However, in the recursive approach, we have to
able to apply the subroutine recursively to just a part of the original list. Where the original
subroutine was designed to search an entire array, the recursive subroutine must be able to
search part of an array. The parameters to the subroutine must tell it what part of the array
to search. This illustrates a general fact that in order to solve a problem recursively, it is often
necessary to generalize the problem slightly.

Here is a recursive binary search algorithm that searches for a given value in part of an
array of integers:

/**

* Search in the array A in positions numbered loIndex to hiIndex,

* inclusive, for the specified value. If the value is found, return

* the index in the array where it occurs. If the value is not found,

9.1. RECURSION 429

* return -1. Precondition: The array must be sorted into increasing

* order.

*/

static int binarySearch(int[] A, int loIndex, int hiIndex, int value) {

if (loIndex > hiIndex) {

// The starting position comes after the final index,

// so there are actually no elements in the specified

// range. The value does not occur in this empty list!

return -1;

}

else {

// Look at the middle position in the list. If the

// value occurs at that position, return that position.

// Otherwise, search recursively in either the first

// half or the second half of the list.

int middle = (loIndex + hiIndex) / 2;

if (value == A[middle])

return middle;

else if (value < A[middle])

return binarySearch(A, loIndex, middle - 1, value);

else // value must be > A[middle]

return binarySearch(A, middle + 1, hiIndex, value);

}

} // end binarySearch()

In this routine, the parameters loIndex and hiIndex specify the part of the array that is
to be searched. To search an entire array, it is only necessary to call binarySearch(A, 0,

A.length - 1, value). In the two base cases—when there are no elements in the specified
range of indices and when the value is found in the middle of the range—the subroutine can
return an answer immediately, without using recursion. In the other cases, it uses a recursive
call to compute the answer and returns that answer.

Most people find it difficult at first to convince themselves that recursion actually works.
The key is to note two things that must be true for recursion to work properly: There must
be one or more base cases, which can be handled without using recursion. And when recursion
is applied during the solution of a problem, it must be applied to a problem that is in some
sense smaller—that is, closer to the base cases—than the original problem. The idea is that
if you can solve small problems and if you can reduce big problems to smaller problems, then
you can solve problems of any size. Ultimately, of course, the big problems have to be reduced,
possibly in many, many steps, to the very smallest problems (the base cases). Doing so might
involve an immense amount of detailed bookkeeping. But the computer does that bookkeeping,
not you! As a programmer, you lay out the big picture: the base cases and the reduction of
big problems to smaller problems. The computer takes care of the details involved in reducing
a big problem, in many steps, all the way down to base cases. Trying to think through this
reduction in detail is likely to drive you crazy, and will probably make you think that recursion
is hard. Whereas in fact, recursion is an elegant and powerful method that is often the simplest
approach to solving a complex problem.

A common error in writing recursive subroutines is to violate one of the two rules: There
must be one or more base cases, and when the subroutine is applied recursively, it must be
applied to a problem that is smaller than the original problem. If these rules are violated, the

430 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

result can be an infinite recursion , where the subroutine keeps calling itself over and over,
without ever reaching a base case. Infinite recursion is similar to an infinite loop. However,
since each recursive call to the subroutine uses up some of the computer’s memory, a program
that is stuck in an infinite recursion will run out of memory and crash before long. (In Java,
the program will crash with an exception of type StackOverflowError.)

9.1.2 Towers of Hanoi

Binary search can be implemented with a while loop, instead of with recursion, as was done in
Subsection 7.4.1. Next, we turn to a problem that is easy to solve with recursion but difficult
to solve without it. This is a standard example known as “The Towers of Hanoi.” The problem
involves a stack of various-sized disks, piled up on a base in order of decreasing size. The object
is to move the stack from one base to another, subject to two rules: Only one disk can be moved
at a time, and no disk can ever be placed on top of a smaller disk. There is a third base that
can be used as a “spare.” The starting situation for a stack of ten disks is shown in the top
half of the following picture. The situation after a number of moves have been made is shown
in the bottom half of the picture. These pictures are from the applet at the end of Section 9.5,
which displays an animation of the step-by-step solution of the problem.

The problem is to move ten disks from Stack 0 to Stack 1, subject to certain rules. Stack
2 can be used as a spare location. Can we reduce this to smaller problems of the same type,
possibly generalizing the problem a bit to make this possible? It seems natural to consider the
size of the problem to be the number of disks to be moved. If there are N disks in Stack 0, we
know that we will eventually have to move the bottom disk from Stack 0 to Stack 1. But before
we can do that, according to the rules, the first N-1 disks must be on Stack 2. Once we’ve
moved the N-th disk to Stack 1, we must move the other N-1 disks from Stack 2 to Stack 1 to
complete the solution. But moving N-1 disks is the same type of problem as moving N disks,
except that it’s a smaller version of the problem. This is exactly what we need to do recursion!
The problem has to be generalized a bit, because the smaller problems involve moving disks
from Stack 0 to Stack 2 or from Stack 2 to Stack 1, instead of from Stack 0 to Stack 1. In the
recursive subroutine that solves the problem, the stacks that serve as the source and destination

9.1. RECURSION 431

of the disks have to be specified. It’s also convenient to specify the stack that is to be used as
a spare, even though we could figure that out from the other two parameters. The base case is
when there is only one disk to be moved. The solution in this case is trivial: Just move the disk
in one step. Here is a version of the subroutine that will print out step-by-step instructions for
solving the problem:

/**

* Solve the problem of moving the number of disks specified

* by the first parameter from the stack specified by the

* second parameter to the stack specified by the third

* parameter. The stack specified by the fourth parameter

* is available for use as a spare. Stacks are specified by

* number: 0, 1, or 2.

*/

static void TowersOfHanoi(int disks, int from, int to, int spare) {

if (disks == 1) {

// There is only one disk to be moved. Just move it.

System.out.println("Move a disk from stack number "

+ from + " to stack number " + to);

}

else {

// Move all but one disk to the spare stack, then

// move the bottom disk, then put all the other

// disks on top of it.

TowersOfHanoi(disks-1, from, spare, to);

System.out.println("Move a disk from stack number "

+ from + " to stack number " + to);

TowersOfHanoi(disks-1, spare, to, from);

}

}

This subroutine just expresses the natural recursive solution. The recursion works because
each recursive call involves a smaller number of disks, and the problem is trivial to solve in
the base case, when there is only one disk. To solve the “top level” problem of moving N disks
from Stack 0 to Stack 1, it should be called with the command TowersOfHanoi(N,0,1,2). The
subroutine is demonstrated by the sample program TowersOfHanoi.java.

Here, for example, is the output from the program when it is run with the number of disks
set equal to 3:

Move a disk from stack number 0 to stack number 2

Move a disk from stack number 0 to stack number 1

Move a disk from stack number 2 to stack number 1

Move a disk from stack number 0 to stack number 2

Move a disk from stack number 1 to stack number 0

Move a disk from stack number 1 to stack number 2

Move a disk from stack number 0 to stack number 2

Move a disk from stack number 0 to stack number 1

Move a disk from stack number 2 to stack number 1

Move a disk from stack number 2 to stack number 0

Move a disk from stack number 1 to stack number 0

Move a disk from stack number 2 to stack number 1

Move a disk from stack number 0 to stack number 2

Move a disk from stack number 0 to stack number 1

Move a disk from stack number 2 to stack number 1

432 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

The output of this program shows you a mass of detail that you don’t really want to think
about! The difficulty of following the details contrasts sharply with the simplicity and elegance
of the recursive solution. Of course, you really want to leave the details to the computer. It’s
much more interesting to watch the applet from Section 9.5, which shows the solution graph-
ically. That applet uses the same recursive subroutine, except that the System.out.println

statements are replaced by commands that show the image of the disk being moved from one
stack to another.

There is, by the way, a story that explains the name of this problem. According to this
story, on the first day of creation, a group of monks in an isolated tower near Hanoi were given
a stack of 64 disks and were assigned the task of moving one disk every day, according to the
rules of the Towers of Hanoi problem. On the day that they complete their task of moving all
the disks from one stack to another, the universe will come to an end. But don’t worry. The
number of steps required to solve the problem for N disks is 2N - 1, and 264 - 1 days is over
50,000,000,000,000 years. We have a long way to go.

(In the terminology of Section 8.6, the Towers of Hanoi algorithm has a run time that is
Θ(2n), where n is the number of disks that have to be moved. Since the exponential function
2n grows so quickly, the Towers of Hanoi problem can be solved in practice only for a small
number of disks.)

∗ ∗ ∗

By the way, in addtion to the graphical Towers of Hanoi applet at the end of this chapter,
there are two other end-of-chapter applets in the on-line version of this text that use recursion.
One is a maze-solving applet from the end of Section 11.5, and the other is a pentominos applet
from the end of Section 10.5.

The Maze applet first builds a random maze. It then tries to solve the maze by finding a
path through the maze from the upper left corner to the lower right corner. This problem is
actually very similar to a “blob-counting” problem that is considered later in this section. The
recursive maze-solving routine starts from a given square, and it visits each neighboring square
and calls itself recursively from there. The recursion ends if the routine finds itself at the lower
right corner of the maze.

The Pentominos applet is an implementation of a classic puzzle. A pentomino is a connected
figure made up of five equal-sized squares. There are exactly twelve figures that can be made
in this way, not counting all the possible rotations and reflections of the basic figures. The
problem is to place the twelve pentominos on an 8-by-8 board in which four of the squares
have already been marked as filled. The recursive solution looks at a board that has already
been partially filled with pentominos. The subroutine looks at each remaining piece in turn. It
tries to place that piece in the next available place on the board. If the piece fits, it calls itself
recursively to try to fill in the rest of the solution. If that fails, then the subroutine goes on to
the next piece. A generalized version of the pentominos applet with many more features can
be found at http://math.hws.edu/xJava/PentominosSolver/.

The Maze applet and the Pentominos applet are fun to watch, and they give nice visual
representations of recursion.

9.1.3 A Recursive Sorting Algorithm

Turning next to an application that is perhaps more practical, we’ll look at a recursive algorithm
for sorting an array. The selection sort and insertion sort algorithms, which were covered in
Section 7.4, are fairly simple, but they are rather slow when applied to large arrays. Faster

9.1. RECURSION 433

sorting algorithms are available. One of these is Quicksort , a recursive algorithm which turns
out to be the fastest sorting algorithm in most situations.

The Quicksort algorithm is based on a simple but clever idea: Given a list of items, select
any item from the list. This item is called the pivot . (In practice, I’ll just use the first item in
the list.) Move all the items that are smaller than the pivot to the beginning of the list, and
move all the items that are larger than the pivot to the end of the list. Now, put the pivot
between the two groups of items. This puts the pivot in the position that it will occupy in the
final, completely sorted array. It will not have to be moved again. We’ll refer to this procedure
as QuicksortStep.T o a p p l y Q u i c k s o r t S t e p t o a l i s t o f n u m b e r s , s e l e c t o n e o f t h en u m b e r s , 2 3 i n t h i s c a s e . A r r a n g e t h e n u m b e r s s o t h a t n u m b e r s l e s st h a n 2 3 l i e t o i t s l e f t a n d n u m b e r s g r e a t e r t h a n 2 3 l i e t o i t s r i g h t .

T o fi n i s h s o r t i n g t h e l i s t , s o r t t h e n u m b e r s t o t h e l e f t o f 2 3 ,a n d s o r t t h e n u m b e r s t o t h e r i g h t o f 2 3 . T h e n u b e r 2 3 i t s e l f i sa l r e a d y i n i t s fi n a l p o s i t i o n a n d d o e s n ' t h a v e t o b e m o v e d a g a i n
QuicksortStep is not recursive. It is used as a subroutine by Quicksort. The speed of

Quicksort depends on having a fast implementation of QuicksortStep. Since it’s not the main
point of this discussion, I present one without much comment.

/**

* Apply QuicksortStep to the list of items in locations lo through hi

* in the array A. The value returned by this routine is the final

* position of the pivot item in the array.

*/

static int quicksortStep(int[] A, int lo, int hi) {

int pivot = A[lo]; // Get the pivot value.

// The numbers hi and lo mark the endpoints of a range

// of numbers that have not yet been tested. Decrease hi

// and increase lo until they become equal, moving numbers

// bigger than pivot so that they lie above hi and moving

// numbers less than the pivot so that they lie below lo.

// When we begin, A[lo] is an available space, since it used

// to hold the pivot.

while (hi > lo) {

while (hi > lo && A[hi] > pivot) {

// Move hi down past numbers greater than pivot.

// These numbers do not have to be moved.

hi--;

}

if (hi == lo)

break;

434 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

// The number A[hi] is less than pivot. Move it into

// the available space at A[lo], leaving an available

// space at A[hi].

A[lo] = A[hi];

lo++;

while (hi > lo && A[lo] < pivot) {

// Move lo up past numbers less than pivot.

// These numbers do not have to be moved.

lo++;

}

if (hi == lo)

break;

// The number A[lo] is greater than pivot. Move it into

// the available space at A[hi], leaving an available

// space at A[lo].

A[hi] = A[lo];

hi--;

} // end while

// At this point, lo has become equal to hi, and there is

// an available space at that position. This position lies

// between numbers less than pivot and numbers greater than

// pivot. Put pivot in this space and return its location.

A[lo] = pivot;

return lo;

} // end QuicksortStep

With this subroutine in hand, Quicksort is easy. The Quicksort algorithm for sorting a list
consists of applying QuicksortStep to the list, then applying Quicksort recursively to the items
that lie to the left of the new position of the pivot and to the items that lie to the right of that
position. Of course, we need base cases. If the list has only one item, or no items, then the list
is already as sorted as it can ever be, so Quicksort doesn’t have to do anything in these cases.

/**

* Apply quicksort to put the array elements between

* position lo and position hi into increasing order.

*/

static void quicksort(int[] A, int lo, int hi) {

if (hi <= lo) {

// The list has length one or zero. Nothing needs

// to be done, so just return from the subroutine.

return;

}

else {

// Apply quicksortStep and get the new pivot position.

// Then apply quicksort to sort the items that

// precede the pivot and the items that follow it.

int pivotPosition = quicksortStep(A, lo, hi);

quicksort(A, lo, pivotPosition - 1);

quicksort(A, pivotPosition + 1, hi);

9.1. RECURSION 435

}

}

As usual, we had to generalize the problem. The original problem was to sort an array, but
the recursive algorithm is set up to sort a specified part of an array. To sort an entire array, A,
using the quickSort() subroutine, you would call quicksort(A, 0, A.length - 1).

Quicksort is an interesting example from the point of view of the analysis of algorithms
(Section 8.6), because its average case run time differs greatly from its worst case run time.
Here is a very informal analysis, starting with the average case: Note that an application of
quicksortStep divides a problem into two sub-problems. On the average, the subproblems will
be of approximately the same size. A problem of size n is divided into two problems that are
roughly of size n/2; these are then divided into four problems that are roughly of size n/4;
and so on. Since the problem size is divided by 2 on each level, there will be approximately
log(n) levels of subdivision. The amount of processing on each level is proportional to n. (On
the top level, each element in the array is looked at and possibly moved. On the second level,
where there are two subproblems, every element but one in the array is part of one of those
two subproblems and must be looked at and possibly moved, so there is a total of about n
steps in both subproblems combined. Similarly, on the third level, there are four subproblems
and a total of about n steps in all four subproblems combined on that level. . . .) With a total
of n steps on each level and approximately log(n) levels in the average case, the average case
run time for Quicksort is Θ(n*log(n)). This analysis assumes that quicksortStep divides a
problem into two approximately equal parts. However, in the worst case, each application of
quicksortStep divides a problem of size n into a problem of size 0 and a problem of size n-1.
This happens when the pivot element ends up at the beginning or end of the array. In this
worst case, there are n levels of subproblems, and the worst-case run time is Θ(n2). The worst
case is very rare—it depends on the items in the array being arranged in a very special way, so
the average performance of Quicksort can be very good even though it is not so good in certain
rare cases. There are sorting algorithms that have both an average case and a worst case run
time of Θ(n*log(n)). One example is MergeSort, which you can look up if you are interested.

9.1.4 Blob Counting

The program Blobs.java displays a grid of small white and gray squares. The gray squares are
considered to be “filled” and the white squares are “empty.” For the purposes of this example,
we define a “blob” to consist of a filled square and all the filled squares that can be reached
from it by moving up, down, left, and right through other filled squares. If the user clicks on
any filled square in the program, the computer will count the squares in the blob that contains
the clicked square, and it will change the color of those squares to red. The program has several
controls. There is a “New Blobs” button; clicking this button will create a new random pattern
in the grid. A pop-up menu specifies the approximate percentage of squares that will be filled
in the new pattern. The more filled squares, the larger the blobs. And a button labeled “Count
the Blobs” will tell you how many different blobs there are in the pattern. You can try an applet
version of the program in the on-line version of the book. Here is a picture of the program after
the user has clicked one of the filled squares:

436 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

Recursion is used in this program to count the number of squares in a blob. Without
recursion, this would be a very difficult thing to implement. Recursion makes it relatively easy,
but it still requires a new technique, which is also useful in a number of other applications.

The data for the grid of squares is stored in a two dimensional array of boolean values,

boolean[][] filled;

The value of filled[r][c] is true if the square in row r and in column c of the grid is
filled. The number of rows in the grid is stored in an instance variable named rows, and the
number of columns is stored in columns. The program uses a recursive instance method named
getBlobSize() to count the number of squares in the blob that contains the square in a given
row r and column c. If there is no filled square at position (r,c), then the answer is zero.
Otherwise, getBlobSize() has to count all the filled squares that can be reached from the
square at position (r,c). The idea is to use getBlobSize() recursively to get the number of
filled squares that can be reached from each of the neighboring positions, (r+1,c), (r-1,c),
(r,c+1), and (r,c-1). Add up these numbers, and add one to count the square at (r,c)

itself, and you get the total number of filled squares that can be reached from (r,c). Here is
an implementation of this algorithm, as stated. Unfortunately, it has a serious flaw: It leads to
an infinite recursion!

int getBlobSize(int r, int c) { // BUGGY, INCORRECT VERSION!!

// This INCORRECT method tries to count all the filled

// squares that can be reached from position (r,c) in the grid.

if (r < 0 || r >= rows || c < 0 || c >= columns) {

// This position is not in the grid, so there is

// no blob at this position. Return a blob size of zero.

return 0;

}

if (filled[r][c] == false) {

// This square is not part of a blob, so return zero.

return 0;

}

int size = 1; // Count the square at this position, then count the

9.1. RECURSION 437

// the blobs that are connected to this square

// horizontally or vertically.

size += getBlobSize(r-1,c);

size += getBlobSize(r+1,c);

size += getBlobSize(r,c-1);

size += getBlobSize(r,c+1);

return size;

} // end INCORRECT getBlobSize()

Unfortunately, this routine will count the same square more than once. In fact, it will try to
count each square infinitely often! Think of yourself standing at position (r,c) and trying to
follow these instructions. The first instruction tells you to move up one row. You do that, and
then you apply the same procedure. As one of the steps in that procedure, you have to move
down one row and apply the same procedure yet again. But that puts you back at position
(r,c)! From there, you move up one row, and from there you move down one row. . . . Back
and forth forever! We have to make sure that a square is only counted and processed once, so
we don’t end up going around in circles. The solution is to leave a trail of breadcrumbs—or on
the computer a trail of boolean values—to mark the squares that you’ve already visited. Once
a square is marked as visited, it won’t be processed again. The remaining, unvisited squares
are reduced in number, so definite progress has been made in reducing the size of the problem.
Infinite recursion is avoided!

A second boolean array, visited[r][c], is used to keep track of which squares have already
been visited and processed. It is assumed that all the values in this array are set to false before
getBlobSize() is called. As getBlobSize() encounters unvisited squares, it marks them as
visited by setting the corresponding entry in the visited array to true. When getBlobSize()

encounters a square that is already visited, it doesn’t count it or process it further. The
technique of “marking” items as they are encountered is one that used over and over in the
programming of recursive algorithms. Here is the corrected version of getBlobSize(), with
changes shown in italic:

/**

* Counts the squares in the blob at position (r,c) in the

* grid. Squares are only counted if they are filled and

* unvisited. If this routine is called for a position that

* has been visited, the return value will be zero.

*/

int getBlobSize(int r, int c) {

if (r < 0 || r >= rows || c < 0 || c >= columns) {

// This position is not in the grid, so there is

// no blob at this position. Return a blob size of zero.

return 0;

}

if (filled[r][c] == false || visited[r][c] == true) {

// This square is not part of a blob, or else it has

// already been counted, so return zero.

return 0;

}

visited[r][c] = true; // Mark the square as visited so that

// we won’t count it again during the

// following recursive calls.

int size = 1; // Count the square at this position, then count the

// the blobs that are connected to this square

438 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

// horizontally or vertically.

size += getBlobSize(r-1,c);

size += getBlobSize(r+1,c);

size += getBlobSize(r,c-1);

size += getBlobSize(r,c+1);

return size;

} // end getBlobSize()

In the program, this method is used to determine the size of a blob when the user clicks
on a square. After getBlobSize() has performed its task, all the squares in the blob are still
marked as visited. The paintComponent() method draws visited squares in red, which makes
the blob visible. The getBlobSize() method is also used for counting blobs. This is done by
the following method, which includes comments to explain how it works:

/**

* When the user clicks the "Count the Blobs" button, find the

* number of blobs in the grid and report the number in the

* message label.

*/

void countBlobs() {

int count = 0; // Number of blobs.

/* First clear out the visited array. The getBlobSize() method

will mark every filled square that it finds by setting the

corresponding element of the array to true. Once a square

has been marked as visited, it will stay marked until all the

blobs have been counted. This will prevent the same blob from

being counted more than once. */

for (int r = 0; r < rows; r++)

for (int c = 0; c < columns; c++)

visited[r][c] = false;

/* For each position in the grid, call getBlobSize() to get the

size of the blob at that position. If the size is not zero,

count a blob. Note that if we come to a position that was part

of a previously counted blob, getBlobSize() will return 0 and

the blob will not be counted again. */

for (int r = 0; r < rows; r++)

for (int c = 0; c < columns; c++) {

if (getBlobSize(r,c) > 0)

count++;

}

repaint(); // Note that all the filled squares will be red,

// since they have all now been visited.

message.setText("The number of blobs is " + count);

} // end countBlobs()

9.2. LINKED DATA STRUCTURES 439

9.2 Linked Data Structures

Every useful object contains instance variables. When the type of an instance variable is
given by a class or interface name, the variable can hold a reference to another object. Such
a reference is also called a pointer, and we say that the variable points to the object. (Of
course, any variable that can contain a reference to an object can also contain the special value
null, which points to nowhere.) When one object contains an instance variable that points to
another object, we think of the objects as being “linked” by the pointer. Data structures of
great complexity can be constructed by linking objects together.

9.2.1 Recursive Linking

Something interesting happens when an object contains an instance variable that can refer to
another object of the same type. In that case, the definition of the object’s class is recursive.
Such recursion arises naturally in many cases. For example, consider a class designed to repre-
sent employees at a company. Suppose that every employee except the boss has a supervisor,
who is another employee of the company. Then the Employee class would naturally contain an
instance variable of type Employee that points to the employee’s supervisor:

/**

* An object of type Employee holds data about one employee.

*/

public class Employee {

String name; // Name of the employee.

Employee supervisor; // The employee’s supervisor.

.

. // (Other instance variables and methods.)

.

} // end class Employee

If emp is a variable of type Employee, then emp.supervisor is another variable of type
Employee. If emp refers to the boss, then the value of emp.supervisor should be null to
indicate the fact that the boss has no supervisor. If we wanted to print out the name of the
employee’s supervisor, for example, we could use the following Java statement:

if (emp.supervisor == null) {

System.out.println(emp.name + " is the boss and has no supervisor!");

}

else {

System.out.print("The supervisor of " + emp.name + " is ");

System.out.println(emp.supervisor.name);

}

Now, suppose that we want to know how many levels of supervisors there are between a
given employee and the boss. We just have to follow the chain of command through a series of
supervisor links, and count how many steps it takes to get to the boss:

if (emp.supervisor == null) {

System.out.println(emp.name + " is the boss!");

}

else {

440 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

Employee runner; // For "running" up the chain of command.

runner = emp.supervisor;

if (runner.supervisor == null) {

System.out.println(emp.name + " reports directly to the boss.");

}

else {

int count = 0;

while (runner.supervisor != null) {

count++; // Count the supervisor on this level.

runner = runner.supervisor; // Move up to the next level.

}

System.out.println("There are " + count

+ " supervisors between " + emp.name

+ " and the boss.");

}

}

As the while loop is executed, runner points in turn to the original employee, emp, then
to emp’s supervisor, then to the supervisor of emp’s supervisor, and so on. The count

variable is incremented each time runner “visits” a new employee. The loop ends when
runner.supervisor is null, which indicates that runner has reached the boss. At that point,
count has counted the number of steps between emp and the boss.

In this example, the supervisor variable is quite natural and useful. In fact, data structures
that are built by linking objects together are so useful that they are a major topic of study
in computer science. We’ll be looking at a few typical examples. In this section and the
next, we’ll be looking at linked lists. A linked list consists of a chain of objects of the same
type, linked together by pointers from one object to the next. This is much like the chain of
supervisors between emp and the boss in the above example. It’s also possible to have more
complex situations, in which one object can contain links to several other objects. We’ll look
at an example of this in Section 9.4. n u l lW h e n a n o b j e c t c o n t a i n s a r e f e r e n c e t o a n o b j e c t o f t h es a m e t y p e , t h e n s e v e r a l o b j e c t s c a n b e l i n k e d t o g e t h e ri n t o a l i s t . E a c h o b j e c t r e f e r s t o t h e n e x t o b j e c t .n u l l n u l l n u l l n u l ln u l ln u l ln u l ln u l ln u l l

T h i n g s g e t e v e n m o r e i n t e r e s t i n gw h e n a n o b j e c t c o n t a i n s t w or e f e r e n c e s t o o b j e c t s o f t h es a m e t y p e . I n t h a t c a s e ,m o r e c o m p l i c a t e d d a t as t r u c t u r e s c a n b ec o n s t r u c t e d .

9.2. LINKED DATA STRUCTURES 441

9.2.2 Linked Lists

For most of the examples in the rest of this section, linked lists will be constructed out of objects
belonging to the class Node which is defined as follows:

class Node {

String item;

Node next;

}

The term node is often used to refer to one of the objects in a linked data structure. Objects
of type Node can be chained together as shown in the top part of the above picture. Each node
holds a String and a pointer to the next node in the list (if any). The last node in such a list can
always be identified by the fact that the instance variable next in the last node holds the value
null instead of a pointer to another node. The purpose of the chain of nodes is to represent a
list of strings. The first string in the list is stored in the first node, the second string is stored in
the second node, and so on. The pointers and the node objects are used to build the structure,
but the data that we are interested in representing is the list of strings. Of course, we could
just as easily represent a list of integers or a list of JButtons or a list of any other type of data
by changing the type of the item that is stored in each node.

Although the Nodes in this example are very simple, we can use them to illustrate the
common operations on linked lists. Typical operations include deleting nodes from the list,
inserting new nodes into the list, and searching for a specified String among the items in the
list. We will look at subroutines to perform all of these operations, among others.

For a linked list to be used in a program, that program needs a variable that refers to the
first node in the list. It only needs a pointer to the first node since all the other nodes in the list
can be accessed by starting at the first node and following links along the list from one node to
the next. In my examples, I will always use a variable named head, of type Node, that points
to the first node in the linked list. When the list is empty, the value of head is null.

n u l l" b i l l " " f r e d " " m a r y "" j a n e "h e a d : F o r a l i s t t o b e u s e f u l , t h e r e m u s t b e a v a r i a b l et h a t p o i n t s t o t h e fi r s t n o d e i n t h e l i s t . H e r e ,t h e v a r i a b l e h e a d s e r v e s t h i s p u r p o s e .
9.2.3 Basic Linked List Processing

It is very common to want to process all the items in a linked list in some way. The common
pattern is to start at the head of the list, then move from each node to the next by by following
the pointer in the node, stopping when the null that marks the end of the list is reached. If
head is a variable of type Node that points to the first node in the list, then the general form
of the code is:

Node runner; // A pointer that will be used to traverse the list.

runner = head; // Start with runner pointing to the head of the list.

while (runner != null) { // Continue until null is encountered.

process(runner.item); // Do something with the item in the current node.

442 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

runner = runner.next; // Move on to the next node in the list.

}

Our only access to the list is through the variable head, so we start by getting a copy of the
value in head with the assignment statement runner = head. We need a copy of head because
we are going to change the value of runner. We can’t change the value of head, or we would
lose our only access to the list! The variable runner will point to each node of the list in turn.
When runner points to one of the nodes in the list, runner.next is a pointer to the next node
in the list, so the assignment statement runner = runner.next moves the pointer along the
list from each node to the next. We know that we’ve reached the end of the list when runner

becomes equal to null. Note that our list-processing code works even for an empty list, since
for an empty list the value of head is null and the body of the while loop is not executed at
all. As an example, we can print all the strings in a list of Strings by saying:

Node runner = head;

while (runner != null) {

System.out.println(runner.item);

runner = runner.next;

}

The while loop can, by the way, be rewritten as a for loop. Remember that even though the
loop control variable in a for loop is often numerical, that is not a requirement. Here is a for

loop that is equivalent to the above while loop:

for (Node runner = head; runner != null; runner = runner.next) {

System.out.println(runner.item);

}

Similarly, we can traverse a list of integers to add up all the numbers in the list. A linked
list of integers can be constructed using the class

public class IntNode {

int item; // One of the integers in the list.

IntNode next; // Pointer to the next node in the list.

}

If head is a variable of type IntNode that points to a linked list of integers, we can find the sum
of the integers in the list using:

int sum = 0;

IntNode runner = head;

while (runner != null) {

sum = sum + runner.item; // Add current item to the sum.

runner = runner.next;

}

System.out.println("The sum of the list items is " + sum);

It is also possible to use recursion to process a linked list. Recursion is rarely the natural
way to process a list, since it’s so easy to use a loop to traverse the list. However, understanding
how to apply recursion to lists can help with understanding the recursive processing of more
complex data structures. A non-empty linked list can be thought of as consisting of two parts:
the head of the list, which is just the first node in the list, and the tail of the list, which
consists of the remainder of the list after the head. Note that the tail is itself a linked list and
that it is shorter than the original list (by one node). This is a natural setup for recursion,
where the problem of processing a list can be divided into processing the head and recursively

9.2. LINKED DATA STRUCTURES 443

processing the tail. The base case occurs in the case of an empty list (or sometimes in the case
of a list of length one). For example, here is a recursive algorithm for adding up the numbers
in a linked list of integers:

if the list is empty then

return 0 (since there are no numbers to be added up)

otherwise

let listsum = the number in the head node

let tailsum be the sum of the numbers in the tail list (recursively)

add tailsum to listsum

return listsum

One remaining question is, how do we get the tail of a non-empty linked list? If head is a
variable that points to the head node of the list, then head.next is a variable that points to
the second node of the list—and that node is in fact the first node of the tail. So, we can view
head.next as a pointer to the tail of the list. One special case is when the original list consists
of a single node. In that case, the tail of the list is empty, and head.next is null. Since an
empty list is represented by a null pointer, head.next represents the tail of the list even in this
special case. This allows us to write a recursive list-summing function in Java as

/**

* Compute the sum of all the integers in a linked list of integers.

* @param head a pointer to the first node in the linked list

*/

public static int addItemsInList(IntNode head) {

if (head == null) {

// Base case: The list is empty, so the sum is zero.

return 0;

}

else {

// Recursive case: The list is non-empty. Find the sum of

// the tail list, and add that to the item in the head node.

// (Note that this case could be written simply as

// return head.item + addItemsInList(head.next);)

int listsum = head.item;

int tailsum = addItemsInList(head.next);

listsum = listsum + tailsum;

return listsum;

}

}

I will finish by presenting a list-processing problem that is easy to solve with recursion, but
quite tricky to solve without it. The problem is to print out all the strings in a linked list of
strings in the reverse of the order in which they occur in the list. Note that when we do this,
the item in the head of a list is printed out after all the items in the tail of the list. This leads
to the following recursive routine. You should convince yourself that it works, and you should
think about trying to do the same thing without using recursion:

public static void printReversed(Node head) {

if (head == null) {

// Base case: The list is empty, and there is nothing to print.

return;

}

else {

444 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

// Recursive case: The list is non-empty.

printReversed(head.next); // Print strings in tail, in reverse order.

System.out.println(head.item); // Print string in head node.

}

}

∗ ∗ ∗

In the rest of this section, we’ll look at a few more advanced operations on a linked list
of strings. The subroutines that we consider are instance methods in a class, StringList. An
object of type StringList represents a linked list of nodes. The class has a private instance
variable named head of type Node that points to the first node in the list, or is null if the list is
empty. Instance methods in class StringList access head as a global variable. The source code
for StringList is in the file StringList.java, and it is used in the sample program ListDemo.java.

Suppose we want to know whether a specified string, searchItem, occurs somewhere in a
list of strings. We have to compare searchItem to each item in the list. This is an example of
basic list traversal and processing. However, in this case, we can stop processing if we find the
item that we are looking for.

/**

* Searches the list for a specified item.

* @param searchItem the item that is to be searched for

* @return true if searchItem is one of the items in the list or false if

* searchItem does not occur in the list.

*/

public boolean find(String searchItem) {

Node runner; // A pointer for traversing the list.

runner = head; // Start by looking at the head of the list.

// (head is an instance variable!)

while (runner != null) {

// Go through the list looking at the string in each

// node. If the string is the one we are looking for,

// return true, since the string has been found in the list.

if (runner.item.equals(searchItem))

return true;

runner = runner.next; // Move on to the next node.

}

// At this point, we have looked at all the items in the list

// without finding searchItem. Return false to indicate that

// the item does not exist in the list.

return false;

} // end find()

It is possible that the list is empty, that is, that the value of head is null. We should be
careful that this case is handled properly. In the above code, if head is null, then the body
of the while loop is never executed at all, so no nodes are processed and the return value is
false. This is exactly what we want when the list is empty, since the searchItem can’t occur
in an empty list.

9.2. LINKED DATA STRUCTURES 445

9.2.4 Inserting into a Linked List

The problem of inserting a new item into a linked list is more difficult, at least in the case
where the item is inserted into the middle of the list. (In fact, it’s probably the most difficult
operation on linked data structures that you’ll encounter in this chapter.) In the StringList
class, the items in the nodes of the linked list are kept in increasing order. When a new item
is inserted into the list, it must be inserted at the correct position according to this ordering.
This means that, usually, we will have to insert the new item somewhere in the middle of the
list, between two existing nodes. To do this, it’s convenient to have two variables of type Node,
which refer to the existing nodes that will lie on either side of the new node. In the following
illustration, these variables are previous and runner. Another variable, newNode, refers to the
new node. In order to do the insertion, the link from previous to runner must be “broken,”
and new links from previous to newNode and from newNode to runner must be added:p r e v i o u s :

n e w N o d e :
r u n n e r :

I n s e r t i n g a n e w n o d ei n t o t h e m i d d l e o f a l i s t
Once we have previous and runner pointing to the right nodes, the command

“previous.next = newNode;” can be used to make previous.next point to the new node,
instead of to the node indicated by runner. And the command “newNode.next = runner” will
set newNode.next to point to the correct place. However, before we can use these commands,
we need to set up runner and previous as shown in the illustration. The idea is to start at
the first node of the list, and then move along the list past all the items that are less than the
new item. While doing this, we have to be aware of the danger of “falling off the end of the
list.” That is, we can’t continue if runner reaches the end of the list and becomes null. If
insertItem is the item that is to be inserted, and if we assume that it does, in fact, belong
somewhere in the middle of the list, then the following code would correctly position previous

and runner:

Node runner, previous;

previous = head; // Start at the beginning of the list.

runner = head.next;

while (runner != null && runner.item.compareTo(insertItem) < 0) {

previous = runner; // "previous = previous.next" would also work

runner = runner.next;

}

446 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

(This uses the compareTo() instance method from the String class to test whether the item in
the node is less than the item that is being inserted. See Subsection 2.3.2.)

This is fine, except that the assumption that the new node is inserted into the middle of
the list is not always valid. It might be that insertItem is less than the first item of the list.
In that case, the new node must be inserted at the head of the list. This can be done with the
instructions

newNode.next = head; // Make newNode.next point to the old head.

head = newNode; // Make newNode the new head of the list.

It is also possible that the list is empty. In that case, newNode will become the first and only
node in the list. This can be accomplished simply by setting head = newNode. The following
insert() method from the StringList class covers all of these possibilities:

/**

* Insert a specified item to the list, keeping the list in order.

* @param insertItem the item that is to be inserted.

*/

public void insert(String insertItem) {

Node newNode; // A Node to contain the new item.

newNode = new Node();

newNode.item = insertItem; // (N.B. newNode.next is null.)

if (head == null) {

// The new item is the first (and only) one in the list.

// Set head to point to it.

head = newNode;

}

else if (head.item.compareTo(insertItem) >= 0) {

// The new item is less than the first item in the list,

// so it has to be inserted at the head of the list.

newNode.next = head;

head = newNode;

}

else {

// The new item belongs somewhere after the first item

// in the list. Search for its proper position and insert it.

Node runner; // A node for traversing the list.

Node previous; // Always points to the node preceding runner.

runner = head.next; // Start by looking at the SECOND position.

previous = head;

while (runner != null && runner.item.compareTo(insertItem) < 0) {

// Move previous and runner along the list until runner

// falls off the end or hits a list element that is

// greater than or equal to insertItem. When this

// loop ends, runner indicates the position where

// insertItem must be inserted.

previous = runner;

runner = runner.next;

}

newNode.next = runner; // Insert newNode after previous.

previous.next = newNode;

}

} // end insert()

9.2. LINKED DATA STRUCTURES 447

If you were paying close attention to the above discussion, you might have noticed that
there is one special case which is not mentioned. What happens if the new node has to be
inserted at the end of the list? This will happen if all the items in the list are less than the new
item. In fact, this case is already handled correctly by the subroutine, in the last part of the
if statement. If insertItem is greater than all the items in the list, then the while loop will
end when runner has traversed the entire list and become null. However, when that happens,
previous will be left pointing to the last node in the list. Setting previous.next = newNode

adds newNode onto the end of the list. Since runner is null, the command newNode.next =

runner sets newNode.next to null, which is the correct value that is needed to mark the end
of the list.

9.2.5 Deleting from a Linked List

The delete operation is similar to insert, although a little simpler. There are still special cases
to consider. When the first node in the list is to be deleted, then the value of head has to be
changed to point to what was previously the second node in the list. Since head.next refers to
the second node in the list, this can be done by setting head = head.next. (Once again, you
should check that this works when head.next is null, that is, when there is no second node in
the list. In that case, the list becomes empty.)

If the node that is being deleted is in the middle of the list, then we can set up previous and
runnerwith runner pointing to the node that is to be deleted and with previous pointing to the
node that precedes that node in the list. Once that is done, the command “previous.next =

runner.next;” will delete the node. The deleted node will be garbage collected. I encourage
you to draw a picture for yourself to illustrate this operation. Here is the complete code for the
delete() method:

/**

* Delete a specified item from the list, if that item is present.

* If multiple copies of the item are present in the list, only

* the one that comes first in the list is deleted.

* @param deleteItem the item to be deleted

* @return true if the item was found and deleted, or false if the item

* was not in the list.

*/

public boolean delete(String deleteItem) {

if (head == null) {

// The list is empty, so it certainly doesn’t contain deleteString.

return false;

}

else if (head.item.equals(deleteItem)) {

// The string is the first item of the list. Remove it.

head = head.next;

return true;

}

else {

// The string, if it occurs at all, is somewhere beyond the

// first element of the list. Search the list.

Node runner; // A node for traversing the list.

Node previous; // Always points to the node preceding runner.

runner = head.next; // Start by looking at the SECOND list node.

previous = head;

448 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

while (runner != null && runner.item.compareTo(deleteItem) < 0) {

// Move previous and runner along the list until runner

// falls off the end or hits a list element that is

// greater than or equal to deleteItem. When this

// loop ends, runner indicates the position where

// deleteItem must be, if it is in the list.

previous = runner;

runner = runner.next;

}

if (runner != null && runner.item.equals(deleteItem)) {

// Runner points to the node that is to be deleted.

// Remove it by changing the pointer in the previous node.

previous.next = runner.next;

return true;

}

else {

// The item does not exist in the list.

return false;

}

}

} // end delete()

9.3 Stacks, Queues, and ADTs

A linked list is a particular type of data structure, made up of objects linked together by
pointers. In the previous section, we used a linked list to store an ordered list of Strings, and
we implemented insert, delete, and find operations on that list. However, we could easily
have stored the list of Strings in an array or ArrayList, instead of in a linked list. We could still
have implemented the same operations on the list. The implementations of these operations
would have been different, but their interfaces and logical behavior would still be the same.

The term abstract data type , or ADT , refers to a set of possible values and a set of
operations on those values, without any specification of how the values are to be represented
or how the operations are to be implemented. An “ordered list of strings” can be defined as an
abstract data type. Any sequence of Strings that is arranged in increasing order is a possible
value of this data type. The operations on the data type include inserting a new string, deleting
a string, and finding a string in the list. There are often several different ways to implement the
same abstract data type. For example, the “ordered list of strings” ADT can be implemented
as a linked list or as an array. A program that only depends on the abstract definition of the
ADT can use either implementation, interchangeably. In particular, the implementation of the
ADT can be changed without affecting the program as a whole. This can make the program
easier to debug and maintain, so ADTs are an important tool in software engineering.

In this section, we’ll look at two common abstract data types, stacks and queues. Both
stacks and queues are often implemented as linked lists, but that is not the only possible
implementation. You should think of the rest of this section partly as a discussion of stacks
and queues and partly as a case study in ADTs.

9.3. STACKS, QUEUES, AND ADTS 449

9.3.1 Stacks

A stack consists of a sequence of items, which should be thought of as piled one on top of
the other like a physical stack of boxes or cafeteria trays. Only the top item on the stack is
accessible at any given time. It can be removed from the stack with an operation called pop.
An item lower down on the stack can only be removed after all the items on top of it have been
popped off the stack. A new item can be added to the top of the stack with an operation called
push . We can make a stack of any type of items. If, for example, the items are values of type
int, then the push and pop operations can be implemented as instance methods

• void push (int newItem) — Add newItem to top of stack.

• int pop() — Remove the top int from the stack and return it.

It is an error to try to pop an item from an empty stack, so it is important to be able to tell
whether a stack is empty. We need another stack operation to do the test, implemented as an
instance method

• boolean isEmpty() — Returns true if the stack is empty.

This defines a “stack of ints” as an abstract data type. This ADT can be implemented in several
ways, but however it is implemented, its behavior must correspond to the abstract mental image
of a stack.

In the linked list implementation of a stack, the top of the stack is actually the node at the
head of the list. It is easy to add and remove nodes at the front of a linked list—much easier
than inserting and deleting nodes in the middle of the list. Here is a class that implements the
“stack of ints” ADT using a linked list. (It uses a static nested class to represent the nodes of
the linked list. If the nesting bothers you, you could replace it with a separate Node class.)

public class StackOfInts {

/**

* An object of type Node holds one of the items in the linked list

* that represents the stack.

*/

450 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

private static class Node {

int item;

Node next;

}

private Node top; // Pointer to the Node that is at the top of

// of the stack. If top == null, then the

// stack is empty.

/**

* Add N to the top of the stack.

*/

public void push(int N) {

Node newTop; // A Node to hold the new item.

newTop = new Node();

newTop.item = N; // Store N in the new Node.

newTop.next = top; // The new Node points to the old top.

top = newTop; // The new item is now on top.

}

/**

* Remove the top item from the stack, and return it.

* Throws an IllegalStateException if the stack is empty when

* this method is called.

*/

public int pop() {

if (top == null)

throw new IllegalStateException("Can’t pop from an empty stack.");

int topItem = top.item; // The item that is being popped.

top = top.next; // The previous second item is now on top.

return topItem;

}

/**

* Returns true if the stack is empty. Returns false

* if there are one or more items on the stack.

*/

public boolean isEmpty() {

return (top == null);

}

} // end class StackOfInts

You should make sure that you understand how the push and pop operations operate on the
linked list. Drawing some pictures might help. Note that the linked list is part of the private

implementation of the StackOfInts class. A program that uses this class doesn’t even need to
know that a linked list is being used.

Now, it’s pretty easy to implement a stack as an array instead of as a linked list. Since the
number of items on the stack varies with time, a counter is needed to keep track of how many
spaces in the array are actually in use. If this counter is called top, then the items on the stack
are stored in positions 0, 1, . . . , top-1 in the array. The item in position 0 is on the bottom
of the stack, and the item in position top-1 is on the top of the stack. Pushing an item onto
the stack is easy: Put the item in position top and add 1 to the value of top. If we don’t want
to put a limit on the number of items that the stack can hold, we can use the dynamic array
techniques from Subsection 7.3.2. Note that the typical picture of the array would show the

9.3. STACKS, QUEUES, AND ADTS 451

stack “upside down”, with the top of the stack at the bottom of the array. This doesn’t matter.
The array is just an implementation of the abstract idea of a stack, and as long as the stack
operations work the way they are supposed to, we are OK. Here is a second implementation of
the StackOfInts class, using a dynamic array:

public class StackOfInts { // (alternate version, using an array)

private int[] items = new int[10]; // Holds the items on the stack.

private int top = 0; // The number of items currently on the stack.

/**

* Add N to the top of the stack.

*/

public void push(int N) {

if (top == items.length) {

// The array is full, so make a new, larger array and

// copy the current stack items into it.

int[] newArray = new int[2*items.length];

System.arraycopy(items, 0, newArray, 0, items.length);

items = newArray;

}

items[top] = N; // Put N in next available spot.

top++; // Number of items goes up by one.

}

/**

* Remove the top item from the stack, and return it.

* Throws an IllegalStateException if the stack is empty when

* this method is called.

*/

public int pop() {

if (top == 0)

throw new IllegalStateException("Can’t pop from an empty stack.");

int topItem = items[top - 1] // Top item in the stack.

top--; // Number of items on the stack goes down by one.

return topItem;

}

/**

* Returns true if the stack is empty. Returns false

* if there are one or more items on the stack.

*/

public boolean isEmpty() {

return (top == 0);

}

} // end class StackOfInts

Once again, the implementation of the stack (as an array) is private to the class. The two
versions of the StackOfInts class can be used interchangeably, since their public interfaces are
identical.

∗ ∗ ∗

It’s interesting to look at the run time analysis of stack operations. (See Section 8.6). We
can measure the size of the problem by the number of items that are on the stack. For the

452 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

linked list implementation of a stack, the worst case run time both for the push and for the pop
operation is Θ(1). This just means that the run time is less than some constant, independent
of the number of items on the stack. This is easy to see if you look at the code. The operations
are implemented with a few simple assignment statements, and the number of items on the
stack has no effect.

For the array implementation, on the other hand, a special case occurs in the push operation
when the array is full. In that case, a new array is created and all the stack items are copied
into the new array. This takes an amount of time that is proportional to the number of items
on the stack. So, although the run time for push is usually Θ(1), the worst case run time is
Θ(n), where n is the number of items on the stack.

9.3.2 Queues

Queues are similar to stacks in that a queue consists of a sequence of items, and there are
restrictions about how items can be added to and removed from the list. However, a queue
has two ends, called the front and the back of the queue. Items are always added to the queue
at the back and removed from the queue at the front. The operations of adding and removing
items are called enqueue and dequeue . An item that is added to the back of the queue will
remain on the queue until all the items in front of it have been removed. This should sound
familiar. A queue is like a “line” or “queue” of customers waiting for service. Customers are
serviced in the order in which they arrive on the queue.I n a q u e u e , a l l o p e r a t i o n s t a k e p l a c e a t o n e e n d o f t h e q u e u eo r t h e o t h e r . T h e " e n q u e u e " o p e r a t i o n a d d s a n i t e m t o t h e" b a c k " o f t h e q u e u e . T h e " d e q u e u e " o p e r a t i o n r e m o v e s t h ei t e m a t t h e " f r o n t " o f t h e q u e u e a n d r e t u r n s i t .4 6 1 2 5 8 2 2 1 7F r o n t B a c k

1 2 5 8 2 2 1 7 8 3
1 2 5 8 2 2 1 7I t e m s e n t e r q u e u e a t b a c k a n d l e a v e f r o m f r o n t

A f t e r d e q u e u e ()A f t e r e n q u e u e (8 3)
A queue can hold items of any type. For a queue of ints, the enqueue and dequeue

operations can be implemented as instance methods in a “QueueOfInts” class. We also need an
instance method for checking whether the queue is empty:

• void enqueue(int N) — Add N to the back of the queue.

• int dequeue() — Remove the item at the front and return it.

• boolean isEmpty() — Return true if the queue is empty.

9.3. STACKS, QUEUES, AND ADTS 453

A queue can be implemented as a linked list or as an array. An efficient array implementation
is a little trickier than the array implementation of a stack, so I won’t give it here. In the linked
list implementation, the first item of the list is at the front of the queue. Dequeueing an item
from the front of the queue is just like popping an item off a stack. The back of the queue is
at the end of the list. Enqueueing an item involves setting a pointer in the last node of the
current list to point to a new node that contains the item. To do this, we’ll need a command
like “tail.next = newNode;”, where tail is a pointer to the last node in the list. If head is
a pointer to the first node of the list, it would always be possible to get a pointer to the last
node of the list by saying:

Node tail; // This will point to the last node in the list.

tail = head; // Start at the first node.

while (tail.next != null) {

tail = tail.next; // Move to next node.

}

// At this point, tail.next is null, so tail points to

// the last node in the list.

However, it would be very inefficient to do this over and over every time an item is enqueued.
For the sake of efficiency, we’ll keep a pointer to the last node in an instance variable. This
complicates the class somewhat; we have to be careful to update the value of this variable
whenever a new node is added to the end of the list. Given all this, writing the QueueOfInts
class is not all that difficult:

public class QueueOfInts {

/**

* An object of type Node holds one of the items

* in the linked list that represents the queue.

*/

private static class Node {

int item;

Node next;

}

private Node head = null; // Points to first Node in the queue.

// The queue is empty when head is null.

private Node tail = null; // Points to last Node in the queue.

/**

* Add N to the back of the queue.

*/

public void enqueue(int N) {

Node newTail = new Node(); // A Node to hold the new item.

newTail.item = N;

if (head == null) {

// The queue was empty. The new Node becomes

// the only node in the list. Since it is both

// the first and last node, both head and tail

// point to it.

head = newTail;

tail = newTail;

}

else {

454 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

// The new node becomes the new tail of the list.

// (The head of the list is unaffected.)

tail.next = newTail;

tail = newTail;

}

}

/**

* Remove and return the front item in the queue.

* Throws an IllegalStateException if the queue is empty.

*/

public int dequeue() {

if (head == null)

throw new IllegalStateException("Can’t dequeue from an empty queue.");

int firstItem = head.item;

head = head.next; // The previous second item is now first.

if (head == null) {

// The queue has become empty. The Node that was

// deleted was the tail as well as the head of the

// list, so now there is no tail. (Actually, the

// class would work fine without this step.)

tail = null;

}

return firstItem;

}

/**

* Return true if the queue is empty.

*/

boolean isEmpty() {

return (head == null);

}

} // end class QueueOfInts

Queues are typically used in a computer (as in real life) when only one item can be processed
at a time, but several items can be waiting for processing. For example:

• In a Java program that has multiple threads, the threads that want processing time on
the CPU are kept in a queue. When a new thread is started, it is added to the back of the
queue. A thread is removed from the front of the queue, given some processing time, and
then—if it has not terminated—is sent to the back of the queue to wait for another turn.

• Events such as keystrokes and mouse clicks are stored in a queue called the “event queue”.
A program removes events from the event queue and processes them. It’s possible for
several more events to occur while one event is being processed, but since the events are
stored in a queue, they will always be processed in the order in which they occurred.

• A web server is a progam that receives requests from web browsers for “pages.” It is easy
for new requests to arrive while the web server is still fulfilling a previous request. Requests
that arrive while the web server is busy are placed into a queue to await processing. Using
a queue ensures that requests will be processed in the order in which they were received.

Queues are said to implement a FIFO policy: First In, First Out. Or, as it is more
commonly expressed, first come, first served. Stacks, on the other hand implement a LIFO
policy: Last In, First Out. The item that comes out of the stack is the last one that was put

9.3. STACKS, QUEUES, AND ADTS 455

in. Just like queues, stacks can be used to hold items that are waiting for processing (although
in applications where queues are typically used, a stack would be considered “unfair”).

∗ ∗ ∗

To get a better handle on the difference between stacks and queues, consider the sample
program DepthBreadth.java. I suggest that you run the program or try the applet version
that can be found in the on-line version of this section. The program shows a grid of squares.
Initially, all the squares are white. When you click on a white square, the program will gradually
mark all the squares in the grid, starting from the one where you click. To understand how the
program does this, think of yourself in the place of the program. When the user clicks a square,
you are handed an index card. The location of the square—its row and column—is written on
the card. You put the card in a pile, which then contains just that one card. Then, you repeat
the following: If the pile is empty, you are done. Otherwise, take an index card from the pile.
The index card specifies a square. Look at each horizontal and vertical neighbor of that square.
If the neighbor has not already been encountered, write its location on a new index card and
put the card in the pile.

While a square is in the pile, waiting to be processed, it is colored red; that is, red squares
have been encountered but not yet processed. When a square is taken from the pile and
processed, its color changes to gray. Once a square has been colored gray, its color won’t
change again. Eventually, all the squares have been processed, and the procedure ends. In the
index card analogy, the pile of cards has been emptied.

The program can use your choice of three methods: Stack, Queue, and Random. In each
case, the same general procedure is used. The only difference is how the “pile of index cards” is
managed. For a stack, cards are added and removed at the top of the pile. For a queue, cards
are added to the bottom of the pile and removed from the top. In the random case, the card to
be processed is picked at random from among all the cards in the pile. The order of processing
is very different in these three cases.

You should experiment with the program to see how it all works. Try to understand how
stacks and queues are being used. Try starting from one of the corner squares. While the process
is going on, you can click on other white squares, and they will be added to the pile. When you
do this with a stack, you should notice that the square you click is processed immediately, and
all the red squares that were already waiting for processing have to wait. On the other hand, if
you do this with a queue, the square that you click will wait its turn until all the squares that
were already in the pile have been processed.

∗ ∗ ∗

Queues seem very natural because they occur so often in real life, but there are times when
stacks are appropriate and even essential. For example, consider what happens when a routine
calls a subroutine. The first routine is suspended while the subroutine is executed, and it will
continue only when the subroutine returns. Now, suppose that the subroutine calls a second
subroutine, and the second subroutine calls a third, and so on. Each subroutine is suspended
while the subsequent subroutines are executed. The computer has to keep track of all the
subroutines that are suspended. It does this with a stack.

When a subroutine is called, an activation record is created for that subroutine. The
activation record contains information relevant to the execution of the subroutine, such as its
local variables and parameters. The activation record for the subroutine is placed on a stack.
It will be removed from the stack and destroyed when the subroutine returns. If the subroutine
calls another subroutine, the activation record of the second subroutine is pushed onto the

456 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

stack, on top of the activation record of the first subroutine. The stack can continue to grow
as more subroutines are called, and it shrinks as those subroutines return.

9.3.3 Postfix Expressions

As another example, stacks can be used to evaluate postfix expressions. An ordinary mathe-
matical expression such as 2+(15-12)*17 is called an infix expression . In an infix expression,
an operator comes in between its two operands, as in “2 + 2”. In a postfix expression, an oper-
ator comes after its two operands, as in “2 2 +”. The infix expression “2+(15-12)*17” would
be written in postfix form as “2 15 12 - 17 * +”. The “-” operator in this expression applies
to the two operands that precede it, namely “15” and “12”. The “*” operator applies to the
two operands that precede it, namely “15 12 -” and “17”. And the “+” operator applies to
“2” and “15 12 - 17 *”. These are the same computations that are done in the original infix
expression.

Now, suppose that we want to process the expression “2 15 12 - 17 * +”, from left to
right and find its value. The first item we encounter is the 2, but what can we do with it?
At this point, we don’t know what operator, if any, will be applied to the 2 or what the other
operand might be. We have to remember the 2 for later processing. We do this by pushing
it onto a stack. Moving on to the next item, we see a 15, which is pushed onto the stack on
top of the 2. Then the 12 is added to the stack. Now, we come to the operator, “-”. This
operation applies to the two operands that preceded it in the expression. We have saved those
two operands on the stack. So, to process the “-” operator, we pop two numbers from the
stack, 12 and 15, and compute 15 - 12 to get the answer 3. This 3 must be remembered to be
used in later processing, so we push it onto the stack, on top of the 2 that is still waiting there.
The next item in the expression is a 17, which is processed by pushing it onto the stack, on top
of the 3. To process the next item, “*”, we pop two numbers from the stack. The numbers are
17 and the 3 that represents the value of “15 12 -”. These numbers are multiplied, and the
result, 51 is pushed onto the stack. The next item in the expression is a “+” operator, which is
processed by popping 51 and 2 from the stack, adding them, and pushing the result, 53, onto
the stack. Finally, we’ve come to the end of the expression. The number on the stack is the
value of the entire expression, so all we have to do is pop the answer from the stack, and we
are done! The value of the expression is 53.

Although it’s easier for people to work with infix expressions, postfix expressions have some
advantages. For one thing, postfix expressions don’t require parentheses or precedence rules.
The order in which operators are applied is determined entirely by the order in which they
occur in the expression. This allows the algorithm for evaluating postfix expressions to be
fairly straightforward:

Start with an empty stack

for each item in the expression:

if the item is a number:

Push the number onto the stack

else if the item is an operator:

Pop the operands from the stack // Can generate an error

Apply the operator to the operands

Push the result onto the stack

else

There is an error in the expression

Pop a number from the stack // Can generate an error

if the stack is not empty:

9.3. STACKS, QUEUES, AND ADTS 457

There is an error in the expression

else:

The last number that was popped is the value of the expression

Errors in an expression can be detected easily. For example, in the expression “2 3 + *”,
there are not enough operands for the “*” operation. This will be detected in the algorithm
when an attempt is made to pop the second operand for “*” from the stack, since the stack
will be empty. The opposite problem occurs in “2 3 4 +”. There are not enough operators for
all the numbers. This will be detected when the 2 is left still sitting in the stack at the end of
the algorithm.

This algorithm is demonstrated in the sample program PostfixEval.java. This program lets
you type in postfix expressions made up of non-negative real numbers and the operators “+”,
“-”, “*”, “/”, and ”^”. The “^” represents exponentiation. That is, “2 3 ^” is evaluated as
23. The program prints out a message as it processes each item in the expression. The stack
class that is used in the program is defined in the file StackOfDouble.java. The StackOfDouble
class is identical to the first StackOfInts class, given above, except that it has been modified to
store values of type double instead of values of type int.

The only interesting aspect of this program is the method that implements the postfix
evaluation algorithm. It is a direct implementation of the pseudocode algorithm given above:

/**

* Read one line of input and process it as a postfix expression.

* If the input is not a legal postfix expression, then an error

* message is displayed. Otherwise, the value of the expression

* is displayed. It is assumed that the first character on

* the input line is a non-blank.

*/

private static void readAndEvaluate() {

StackOfDouble stack; // For evaluating the expression.

stack = new StackOfDouble(); // Make a new, empty stack.

TextIO.putln();

while (TextIO.peek() != ’\n’) {

if (Character.isDigit(TextIO.peek())) {

// The next item in input is a number. Read it and

// save it on the stack.

double num = TextIO.getDouble();

stack.push(num);

TextIO.putln(" Pushed constant " + num);

}

else {

// Since the next item is not a number, the only thing

// it can legally be is an operator. Get the operator

// and perform the operation.

char op; // The operator, which must be +, -, *, /, or ^.

double x,y; // The operands, from the stack, for the operation.

double answer; // The result, to be pushed onto the stack.

op = TextIO.getChar();

if (op != ’+’ && op != ’-’ && op != ’*’ && op != ’/’ && op != ’^’) {

// The character is not one of the acceptable operations.

TextIO.putln("\nIllegal operator found in input: " + op);

458 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

return;

}

if (stack.isEmpty()) {

TextIO.putln(" Stack is empty while trying to evaluate " + op);

TextIO.putln("\nNot enough numbers in expression!");

return;

}

y = stack.pop();

if (stack.isEmpty()) {

TextIO.putln(" Stack is empty while trying to evaluate " + op);

TextIO.putln("\nNot enough numbers in expression!");

return;

}

x = stack.pop();

switch (op) {

case ’+’:

answer = x + y;

break;

case ’-’:

answer = x - y;

break;

case ’*’:

answer = x * y;

break;

case ’/’:

answer = x / y;

break;

default:

answer = Math.pow(x,y); // (op must be ’^’.)

}

stack.push(answer);

TextIO.putln(" Evaluated " + op + " and pushed " + answer);

}

TextIO.skipBlanks();

} // end while

// If we get to this point, the input has been read successfully.

// If the expression was legal, then the value of the expression is

// on the stack, and it is the only thing on the stack.

if (stack.isEmpty()) { // Impossible if the input is really non-empty.

TextIO.putln("No expression provided.");

return;

}

double value = stack.pop(); // Value of the expression.

TextIO.putln(" Popped " + value + " at end of expression.");

if (stack.isEmpty() == false) {

TextIO.putln(" Stack is not empty.");

TextIO.putln("\nNot enough operators for all the numbers!");

return;

}

TextIO.putln("\nValue = " + value);

9.4. BINARY TREES 459

} // end readAndEvaluate()

Postfix expressions are often used internally by computers. In fact, the Java virtual machine
is a “stack machine” which uses the stack-based approach to expression evaluation that we have
been discussing. The algorithm can easily be extended to handle variables, as well as constants.
When a variable is encountered in the expression, the value of the variable is pushed onto the
stack. It also works for operators with more or fewer than two operands. As many operands as
are needed are popped from the stack and the result is pushed back on to the stack. For example,
the unary minus operator, which is used in the expression “-x”, has a single operand. We
will continue to look at expressions and expression evaluation in the next two sections.

9.4 Binary Trees

We have seen in the two previous sections how objects can be linked into lists. When an
object contains two pointers to objects of the same type, structures can be created that are
much more complicated than linked lists. In this section, we’ll look at one of the most basic and
useful structures of this type: binary trees. Each of the objects in a binary tree contains two
pointers, typically called left and right. In addition to these pointers, of course, the nodes
can contain other types of data. For example, a binary tree of integers could be made up of
objects of the following type:

class TreeNode {

int item; // The data in this node.

TreeNode left; // Pointer to the left subtree.

TreeNode right; // Pointer to the right subtree.

}

The left and right pointers in a TreeNode can be null or can point to other objects of
type TreeNode. A node that points to another node is said to be the parent of that node, and
the node it points to is called a child . In the picture below, for example, node 3 is the parent
of node 6, and nodes 4 and 5 are children of node 2. Not every linked structure made up of
tree nodes is a binary tree. A binary tree must have the following properties: There is exactly
one node in the tree which has no parent. This node is called the root of the tree. Every other
node in the tree has exactly one parent. Finally, there can be no loops in a binary tree. That
is, it is not possible to follow a chain of pointers starting at some node and arriving back at the
same node.

460 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

1
6n u l ln u l l5n u l ln u l l4n u l ln u l l

2 3n u l l
R o o t N o d e

L e a f N o d e s
A node that has no children is called a leaf . A leaf node can be recognized by the fact that

both the left and right pointers in the node are null. In the standard picture of a binary tree,
the root node is shown at the top and the leaf nodes at the bottom—which doesn’t show much
respect for the analogy to real trees. But at least you can see the branching, tree-like structure
that gives a binary tree its name.

9.4.1 Tree Traversal

Consider any node in a binary tree. Look at that node together with all its descendents (that
is, its children, the children of its children, and so on). This set of nodes forms a binary tree,
which is called a subtree of the original tree. For example, in the picture, nodes 2, 4, and 5
form a subtree. This subtree is called the left subtree of the root. Similarly, nodes 3 and 6
make up the right subtree of the root. We can consider any non-empty binary tree to be made
up of a root node, a left subtree, and a right subtree. Either or both of the subtrees can be
empty. This is a recursive definition, matching the recursive definition of the TreeNode class.
So it should not be a surprise that recursive subroutines are often used to process trees.

Consider the problem of counting the nodes in a binary tree. (As an exercise, you might
try to come up with a non-recursive algorithm to do the counting, but you shouldn’t expect to
find one.) The heart of problem is keeping track of which nodes remain to be counted. It’s not
so easy to do this, and in fact it’s not even possible without an auxiliary data structure such
as a stack or queue. With recursion, however, the algorithm is almost trivial. Either the tree
is empty or it consists of a root and two subtrees. If the tree is empty, the number of nodes is
zero. (This is the base case of the recursion.) Otherwise, use recursion to count the nodes in
each subtree. Add the results from the subtrees together, and add one to count the root. This
gives the total number of nodes in the tree. Written out in Java:

/**

* Count the nodes in the binary tree to which root points, and

* return the answer. If root is null, the answer is zero.

*/

static int countNodes(TreeNode root) {

if (root == null)

9.4. BINARY TREES 461

return 0; // The tree is empty. It contains no nodes.

else {

int count = 1; // Start by counting the root.

count += countNodes(root.left); // Add the number of nodes

// in the left subtree.

count += countNodes(root.right); // Add the number of nodes

// in the right subtree.

return count; // Return the total.

}

} // end countNodes()

Or, consider the problem of printing the items in a binary tree. If the tree is empty, there
is nothing to do. If the tree is non-empty, then it consists of a root and two subtrees. Print the
item in the root and use recursion to print the items in the subtrees. Here is a subroutine that
prints all the items on one line of output:

/**

* Print all the items in the tree to which root points.

* The item in the root is printed first, followed by the

* items in the left subtree and then the items in the

* right subtree.

*/

static void preorderPrint(TreeNode root) {

if (root != null) { // (Otherwise, there’s nothing to print.)

System.out.print(root.item + " "); // Print the root item.

preorderPrint(root.left); // Print items in left subtree.

preorderPrint(root.right); // Print items in right subtree.

}

} // end preorderPrint()

This routine is called “preorderPrint” because it uses a preorder traversal of the tree.
In a preorder traversal, the root node of the tree is processed first, then the left subtree is
traversed, then the right subtree. In a postorder traversal , the left subtree is traversed, then
the right subtree, and then the root node is processed. And in an inorder traversal , the left
subtree is traversed first, then the root node is processed, then the right subtree is traversed.
Printing subroutines that use postorder and inorder traversal differ from preorderPrint only
in the placement of the statement that outputs the root item:

/**

* Print all the items in the tree to which root points.

* The item in the left subtree printed first, followed

* by the items in the right subtree and then the item

* in the root node.

*/

static void postorderPrint(TreeNode root) {

if (root != null) { // (Otherwise, there’s nothing to print.)

postorderPrint(root.left); // Print items in left subtree.

postorderPrint(root.right); // Print items in right subtree.

System.out.print(root.item + " "); // Print the root item.

}

} // end postorderPrint()

/**

* Print all the items in the tree to which root points.

462 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

* The item in the left subtree printed first, followed

* by the item in the root node and then the items

* in the right subtree.

*/

static void inorderPrint(TreeNode root) {

if (root != null) { // (Otherwise, there’s nothing to print.)

inorderPrint(root.left); // Print items in left subtree.

System.out.print(root.item + " "); // Print the root item.

inorderPrint(root.right); // Print items in right subtree.

}

} // end inorderPrint()

Each of these subroutines can be applied to the binary tree shown in the illustration at the
beginning of this section. The order in which the items are printed differs in each case:

preorderPrint outputs: 1 2 4 5 3 6

postorderPrint outputs: 4 5 2 6 3 1

inorderPrint outputs: 4 2 5 1 3 6

In preorderPrint, for example, the item at the root of the tree, 1, is output before anything
else. But the preorder printing also applies to each of the subtrees of the root. The root item
of the left subtree, 2, is printed before the other items in that subtree, 4 and 5. As for the right
subtree of the root, 3 is output before 6. A preorder traversal applies at all levels in the tree.
The other two traversal orders can be analyzed similarly.

9.4.2 Binary Sort Trees

One of the examples in Section 9.2 was a linked list of strings, in which the strings were kept
in increasing order. While a linked list works well for a small number of strings, it becomes
inefficient for a large number of items. When inserting an item into the list, searching for that
item’s position requires looking at, on average, half the items in the list. Finding an item in the
list requires a similar amount of time. If the strings are stored in a sorted array instead of in a
linked list, then searching becomes more efficient because binary search can be used. However,
inserting a new item into the array is still inefficient since it means moving, on average, half of
the items in the array to make a space for the new item. A binary tree can be used to store
an ordered list of strings, or other items, in a way that makes both searching and insertion
efficient. A binary tree used in this way is called a binary sort tree.

A binary sort tree is a binary tree with the following property: For every node in the tree,
the item in that node is greater than every item in the left subtree of that node, and it is less
than or equal to all the items in the right subtree of that node. Here for example is a binary
sort tree containing items of type String. (In this picture, I haven’t bothered to draw all the
pointer variables. Non-null pointers are shown as arrows.)

9.4. BINARY TREES 463

a l i c e
j u d yb i l l m a r yf r e dd a v e j a n e j o e

t o m
r o o t :

Binary sort trees have this useful property: An inorder traversal of the tree will process the
items in increasing order. In fact, this is really just another way of expressing the definition.
For example, if an inorder traversal is used to print the items in the tree shown above, then the
items will be in alphabetical order. The definition of an inorder traversal guarantees that all
the items in the left subtree of “judy” are printed before “judy”, and all the items in the right
subtree of “judy” are printed after “judy”. But the binary sort tree property guarantees that
the items in the left subtree of “judy” are precisely those that precede “judy” in alphabetical
order, and all the items in the right subtree follow “judy” in alphabetical order. So, we know
that “judy” is output in its proper alphabetical position. But the same argument applies to
the subtrees. “Bill” will be output after “alice” and before “fred” and its descendents. “Fred”
will be output after “dave” and before “jane” and “joe”. And so on.

Suppose that we want to search for a given item in a binary search tree. Compare that item
to the root item of the tree. If they are equal, we’re done. If the item we are looking for is
less than the root item, then we need to search the left subtree of the root—the right subtree
can be eliminated because it only contains items that are greater than or equal to the root.
Similarly, if the item we are looking for is greater than the item in the root, then we only need
to look in the right subtree. In either case, the same procedure can then be applied to search
the subtree. Inserting a new item is similar: Start by searching the tree for the position where
the new item belongs. When that position is found, create a new node and attach it to the tree
at that position.

Searching and inserting are efficient operations on a binary search tree, provided that the
tree is close to being balanced . A binary tree is balanced if for each node, the left subtree of
that node contains approximately the same number of nodes as the right subtree. In a perfectly
balanced tree, the two numbers differ by at most one. Not all binary trees are balanced, but if
the tree is created by inserting items in a random order, there is a high probability that the tree
is approximately balanced. (If the order of insertion is not random, however, it’s quite possible
for the tree to be very unbalanced.) During a search of any binary sort tree, every comparison
eliminates one of two subtrees from further consideration. If the tree is balanced, that means
cutting the number of items still under consideration in half. This is exactly the same as the
binary search algorithm, and the result, is a similarly efficient algorithm.

In terms of asymptotic analysis (Section 8.6), searching, inserting, and deleting in a binary

464 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

search tree have average case run time Θ(log(n)). The problem size, n, is the number of items
in the tree, and the average is taken over all the different orders in which the items could have
been inserted into the tree. As long the actual insertion order is random, the actual run time
can be expected to be close to the average. However, the worst case run time for binary search
tree operations is Θ(n), which is much worse than Θ(log(n)). The worst case occurs for certain
particular insertion orders. For example, if the items are inserted into the tree in order of
increasing size, then every item that is inserted moves always to the right as it moves down
the tree. The result is a “tree” that looks more like a linked list, since it consists of a linear
string of nodes strung together by their right child pointers. Operations on such a tree have
the same performance as operations on a linked list. Now, there are data structures that are
similar to simple binary sort trees, except that insertion and deletion of nodes are implemented
in a way that will always keep the tree balanced, or almost balanced. For these data structures,
searching, inserting, and deleting have both average case and worst case run times that are
Θ(log(n)). Here, however, we will look at only the simple versions of inserting and searching.

The sample program SortTreeDemo.java is a demonstration of binary sort trees. The pro-
gram includes subroutines that implement inorder traversal, searching, and insertion. We’ll
look at the latter two subroutines below. The main() routine tests the subroutines by letting
you type in strings to be inserted into the tree.

In this program, nodes in the binary tree are represented using the following static nested
class, including a simple constructor that makes creating nodes easier:

/**

* An object of type TreeNode represents one node in a binary tree of strings.

*/

private static class TreeNode {

String item; // The data in this node.

TreeNode left; // Pointer to left subtree.

TreeNode right; // Pointer to right subtree.

TreeNode(String str) {

// Constructor. Make a node containing str.

item = str;

}

} // end class TreeNode

A static member variable of type TreeNode points to the binary sort tree that is used by the
program:

private static TreeNode root; // Pointer to the root node in the tree.

// When the tree is empty, root is null.

A recursive subroutine named treeContains is used to search for a given item in the tree. This
routine implements the search algorithm for binary trees that was outlined above:

/**

* Return true if item is one of the items in the binary

* sort tree to which root points. Return false if not.

*/

static boolean treeContains(TreeNode root, String item) {

if (root == null) {

// Tree is empty, so it certainly doesn’t contain item.

return false;

}

else if (item.equals(root.item)) {

9.4. BINARY TREES 465

// Yes, the item has been found in the root node.

return true;

}

else if (item.compareTo(root.item) < 0) {

// If the item occurs, it must be in the left subtree.

return treeContains(root.left, item);

}

else {

// If the item occurs, it must be in the right subtree.

return treeContains(root.right, item);

}

} // end treeContains()

When this routine is called in the main() routine, the first parameter is the static member
variable root, which points to the root of the entire binary sort tree.

It’s worth noting that recursion is not really essential in this case. A simple, non-recursive
algorithm for searching a binary sort tree follows the rule: Start at the root and move down the
tree until you find the item or reach a null pointer. Since the search follows a single path down
the tree, it can be implemented as a while loop. Here is non-recursive version of the search
routine:

private static boolean treeContainsNR(TreeNode root, String item) {

TreeNode runner; // For "running" down the tree.

runner = root; // Start at the root node.

while (true) {

if (runner == null) {

// We’ve fallen off the tree without finding item.

return false;

}

else if (item.equals(node.item)) {

// We’ve found the item.

return true;

}

else if (item.compareTo(node.item) < 0) {

// If the item occurs, it must be in the left subtree,

// So, advance the runner down one level to the left.

runner = runner.left;

}

else {

// If the item occurs, it must be in the right subtree.

// So, advance the runner down one level to the right.

runner = runner.right;

}

} // end while

} // end treeContainsNR();

The subroutine for inserting a new item into the tree turns out to be more similar to the
non-recursive search routine than to the recursive. The insertion routine has to handle the case
where the tree is empty. In that case, the value of root must be changed to point to a node
that contains the new item:

root = new TreeNode(newItem);

466 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

But this means, effectively, that the root can’t be passed as a parameter to the subroutine,
because it is impossible for a subroutine to change the value stored in an actual parameter.
(I should note that this is something that is possible in other languages.) Recursion uses
parameters in an essential way. There are ways to work around the problem, but the easiest
thing is just to use a non-recursive insertion routine that accesses the static member variable
root directly. One difference between inserting an item and searching for an item is that we
have to be careful not to fall off the tree. That is, we have to stop searching just before runner

becomes null. When we get to an empty spot in the tree, that’s where we have to insert the
new node:

/**

* Add the item to the binary sort tree to which the global variable

* "root" refers. (Note that root can’t be passed as a parameter to

* this routine because the value of root might change, and a change

* in the value of a formal parameter does not change the actual parameter.)

*/

private static void treeInsert(String newItem) {

if (root == null) {

// The tree is empty. Set root to point to a new node containing

// the new item. This becomes the only node in the tree.

root = new TreeNode(newItem);

return;

}

TreeNode runner; // Runs down the tree to find a place for newItem.

runner = root; // Start at the root.

while (true) {

if (newItem.compareTo(runner.item) < 0) {

// Since the new item is less than the item in runner,

// it belongs in the left subtree of runner. If there

// is an open space at runner.left, add a new node there.

// Otherwise, advance runner down one level to the left.

if (runner.left == null) {

runner.left = new TreeNode(newItem);

return; // New item has been added to the tree.

}

else

runner = runner.left;

}

else {

// Since the new item is greater than or equal to the item in

// runner, it belongs in the right subtree of runner. If there

// is an open space at runner.right, add a new node there.

// Otherwise, advance runner down one level to the right.

if (runner.right == null) {

runner.right = new TreeNode(newItem);

return; // New item has been added to the tree.

}

else

runner = runner.right;

}

} // end while

} // end treeInsert()

9.4. BINARY TREES 467

9.4.3 Expression Trees

Another application of trees is to store mathematical expressions such as 15*(x+y) or
sqrt(42)+7 in a convenient form. Let’s stick for the moment to expressions made up of num-
bers and the operators +, -, *, and /. Consider the expression 3*((7+1)/4)+(17-5). This
expression is made up of two subexpressions, 3*((7+1)/4) and (17-5), combined with the
operator “+”. When the expression is represented as a binary tree, the root node holds the
operator +, while the subtrees of the root node represent the subexpressions 3*((7+1)/4) and
(17-5). Every node in the tree holds either a number or an operator. A node that holds a
number is a leaf node of the tree. A node that holds an operator has two subtrees representing
the operands to which the operator applies. The tree is shown in the illustration below. I will
refer to a tree of this type as an expression tree.

Given an expression tree, it’s easy to find the value of the expression that it represents. Each
node in the tree has an associated value. If the node is a leaf node, then its value is simply the
number that the node contains. If the node contains an operator, then the associated value is
computed by first finding the values of its child nodes and then applying the operator to those
values. The process is shown by the upward-directed arrows in the illustration. The value
computed for the root node is the value of the expression as a whole. There are other uses for
expression trees. For example, a postorder traversal of the tree will output the postfix form of
the expression.

1 73 47 1
5

6 1 23 417
1 7 5

1 8 a n s w e rA t r e e t h a t r e p r e s e n t st h e e x p r e s s i o n3 * ((7 + 1) / 4) + (1 7 ¢ 5)T h e u p w a r d p o i n t i n ga r r o w s s h o w h o w t h ev a l u e o f t h e e x p r e s s i o nc a n b e c o m p u t e d .
8 2

An expression tree contains two types of nodes: nodes that contain numbers and nodes that
contain operators. Furthermore, we might want to add other types of nodes to make the trees
more useful, such as nodes that contain variables. If we want to work with expression trees in
Java, how can we deal with this variety of nodes? One way—which will be frowned upon by
object-oriented purists—is to include an instance variable in each node object to record which
type of node it is:

enum NodeType { NUMBER, OPERATOR } // Possible kinds of node.

468 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

class ExpNode { // A node in an expression tree.

NodeType kind; // Which type of node is this?

double number; // The value in a node of type NUMBER.

char op; // The operator in a node of type OPERATOR.

ExpNode left; // Pointers to subtrees,

ExpNode right; // in a node of type OPERATOR.

ExpNode(double val) {

// Constructor for making a node of type NUMBER.

kind = NodeType.NUMBER;

number = val;

}

ExpNode(char op, ExpNode left, ExpNode right) {

// Constructor for making a node of type OPERATOR.

kind = NodeType.OPERATOR;

this.op = op;

this.left = left;

this.right = right;

}

} // end class ExpNode

Given this definition, the following recursive subroutine will find the value of an expression tree:

static double getValue(ExpNode node) {

// Return the value of the expression represented by

// the tree to which node refers. Node must be non-null.

if (node.kind == NodeType.NUMBER) {

// The value of a NUMBER node is the number it holds.

return node.number;

}

else { // The kind must be OPERATOR.

// Get the values of the operands and combine them

// using the operator.

double leftVal = getValue(node.left);

double rightVal = getValue(node.right);

switch (node.op) {

case ’+’: return leftVal + rightVal;

case ’-’: return leftVal - rightVal;

case ’*’: return leftVal * rightVal;

case ’/’: return leftVal / rightVal;

default: return Double.NaN; // Bad operator.

}

}

} // end getValue()

Although this approach works, a more object-oriented approach is to note that since there
are two types of nodes, there should be two classes to represent them, ConstNode and BinOpN-
ode. To represent the general idea of a node in an expression tree, we need another class,
ExpNode. Both ConstNode and BinOpNode will be subclasses of ExpNode. Since any actual
node will be either a ConstNode or a BinOpNode, ExpNode should be an abstract class. (See
Subsection 5.5.5.) Since one of the things we want to do with nodes is find their values, each
class should have an instance method for finding the value:

9.4. BINARY TREES 469

abstract class ExpNode {

// Represents a node of any type in an expression tree.

abstract double value(); // Return the value of this node.

} // end class ExpNode

class ConstNode extends ExpNode {

// Represents a node that holds a number.

double number; // The number in the node.

ConstNode(double val) {

// Constructor. Create a node to hold val.

number = val;

}

double value() {

// The value is just the number that the node holds.

return number;

}

} // end class ConstNode

class BinOpNode extends ExpNode {

// Represents a node that holds an operator.

char op; // The operator.

ExpNode left; // The left operand.

ExpNode right; // The right operand.

BinOpNode(char op, ExpNode left, ExpNode right) {

// Constructor. Create a node to hold the given data.

this.op = op;

this.left = left;

this.right = right;

}

double value() {

// To get the value, compute the value of the left and

// right operands, and combine them with the operator.

double leftVal = left.value();

double rightVal = right.value();

switch (op) {

case ’+’: return leftVal + rightVal;

case ’-’: return leftVal - rightVal;

case ’*’: return leftVal * rightVal;

case ’/’: return leftVal / rightVal;

default: return Double.NaN; // Bad operator.

}

}

} // end class BinOpNode

Note that the left and right operands of a BinOpNode are of type ExpNode, not BinOpNode.
This allows the operand to be either a ConstNode or another BinOpNode—or any other type of
ExpNode that we might eventually create. Since every ExpNode has a value() method, we can

470 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

call left.value() to compute the value of the left operand. If left is in fact a ConstNode,
this will call the value() method in the ConstNode class. If it is in fact a BinOpNode, then
left.value() will call the value() method in the BinOpNode class. Each node knows how to
compute its own value.

Although it might seem more complicated at first, the object-oriented approach has some
advantages. For one thing, it doesn’t waste memory. In the original ExpNode class, only some
of the instance variables in each node were actually used, and we needed an extra instance
variable to keep track of the type of node. More important, though, is the fact that new types
of nodes can be added more cleanly, since it can be done by creating a new subclass of ExpNode
rather than by modifying an existing class.

We’ll return to the topic of expression trees in the next section, where we’ll see how to
create an expression tree to represent a given expression.

9.5 A Simple Recursive Descent Parser

I have always been fascinated by language—both natural languages like English and the
artificial languages that are used by computers. There are many difficult questions about how
languages can convey information, how they are structured, and how they can be processed.
Natural and artificial languages are similar enough that the study of programming languages,
which are pretty well understood, can give some insight into the much more complex and
difficult natural languages. And programming languages raise more than enough interesting
issues to make them worth studying in their own right. How can it be, after all, that computers
can be made to “understand” even the relatively simple languages that are used to write
programs? Computers, after all, can only directly use instructions expressed in very simple
machine language. Higher level languages must be translated into machine language. But
the translation is done by a compiler, which is just a program. How could such a translation
program be written?

9.5.1 Backus-Naur Form

Natural and artificial languages are similar in that they have a structure known as grammar
or syntax. Syntax can be expressed by a set of rules that describe what it means to be a legal
sentence or program. For programming languages, syntax rules are often expressed in BNF
(Backus-Naur Form), a system that was developed by computer scientists John Backus and
Peter Naur in the late 1950s. Interestingly, an equivalent system was developed independently
at about the same time by linguist Noam Chomsky to describe the grammar of natural language.
BNF cannot express all possible syntax rules. For example, it can’t express the fact that a
variable must be defined before it is used. Furthermore, it says nothing about the meaning or
semantics of the langauge. The problem of specifying the semantics of a language—even of an
artificial programming langauge—is one that is still far from being completely solved. However,
BNF does express the basic structure of the language, and it plays a central role in the design
of translation programs.

In English, terms such as “noun”, “transitive verb,” and “prepositional phrase” are syntac-
tic categories that describe building blocks of sentences. Similarly, “statement”, “number,”
and “while loop” are syntactic categories that describe building blocks of Java programs. In
BNF, a syntactic category is written as a word enclosed between “<” and ”>”. For example:
<noun>, <verb-phrase>, or <while-loop>. A rule in BNF specifies the structure of an item

9.5. A SIMPLE RECURSIVE DESCENT PARSER 471

in a given syntactic category, in terms of other syntactic categories and/or basic symbols of the
language. For example, one BNF rule for the English language might be

<sentence> ::= <noun-phrase> <verb-phrase>

The symbol “::=” is read “can be”, so this rule says that a <sentence> can be a <noun-phrase>

followed by a <verb-phrase>. (The term is “can be” rather than “is” because there might be
other rules that specify other possible forms for a sentence.) This rule can be thought of as a
recipe for a sentence: If you want to make a sentence, make a noun-phrase and follow it by a
verb-phrase. Noun-phrase and verb-phrase must, in turn, be defined by other BNF rules.

In BNF, a choice between alternatives is represented by the symbol “|”, which is read “or”.
For example, the rule

<verb-phrase> ::= <intransitive-verb> |

(<transitive-verb> <noun-phrase>)

says that a <verb-phrase> can be an <intransitive-verb>, or a <transitive-verb> followed
by a <noun-phrase>. Note also that parentheses can be used for grouping. To express the fact
that an item is optional, it can be enclosed between “[” and “]”. An optional item that can
be repeated one or more times is enclosed between “[” and “]...”. And a symbol that is an
actual part of the language that is being described is enclosed in quotes. For example,

<noun-phrase> ::= <common-noun> ["that" <verb-phrase>] |

<common-noun> [<prepositional-phrase>]...

says that a <noun-phrase> can be a <common-noun>, optionally followed by the literal word
“that” and a <verb-phrase>, or it can be a <common-noun> followed by zero or more
<prepositional-phrase>’s. Obviously, we can describe very complex structures in this way.
The real power comes from the fact that BNF rules can be recursive. In fact, the two pre-
ceding rules, taken together, are recursive. A <noun-phrase> is defined partly in terms of
<verb-phrase>, while <verb-phrase> is defined partly in terms of <noun-phrase>. For ex-
ample, a <noun-phrase> might be “the rat that ate the cheese”, since “ate the cheese” is a
<verb-phrase>. But then we can, recursively, make the more complex <noun-phrase> “the cat
that caught the rat that ate the cheese” out of the <common-noun> “the cat”, the word “that”
and the <verb-phrase> “caught the rat that ate the cheese”. Building from there, we can make
the <noun-phrase> “the dog that chased the cat that caught the rat that ate the cheese”. The
recursive structure of language is one of the most fundamental properties of language, and the
ability of BNF to express this recursive structure is what makes it so useful.

BNF can be used to describe the syntax of a programming language such as Java in a formal
and precise way. For example, a <while-loop> can be defined as

<while-loop> ::= "while" "(" <condition> ")" <statement>

This says that a <while-loop> consists of the word “while”, followed by a left parenthesis,
followed by a <condition>, followed by a right parenthesis, followed by a <statement>. Of
course, it still remains to define what is meant by a condition and by a statement. Since a
statement can be, among other things, a while loop, we can already see the recursive structure
of the Java language. The exact specification of an if statement, which is hard to express
clearly in words, can be given as

<if-statement> ::=

"if" "(" <condition> ")" <statement>

["else" "if" "(" <condition> ")" <statement>]...

["else" <statement>]

472 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

This rule makes it clear that the “else” part is optional and that there can be, optionally, one
or more “else if” parts.

9.5.2 Recursive Descent Parsing

In the rest of this section, I will show how a BNF grammar for a language can be used as a guide
for constructing a parser. A parser is a program that determines the grammatical structure of a
phrase in the language. This is the first step to determining the meaning of the phrase—which
for a programming language means translating it into machine language. Although we will look
at only a simple example, I hope it will be enough to convince you that compilers can in fact
be written and understood by mortals and to give you some idea of how that can be done.

The parsing method that we will use is called recursive descent parsing . It is not the
only possible parsing method, or the most efficient, but it is the one most suited for writing
compilers by hand (rather than with the help of so called “parser generator” programs). In a
recursive descent parser, every rule of the BNF grammar is the model for a subroutine. Not
every BNF grammar is suitable for recursive descent parsing. The grammar must satisfy a
certain property. Essentially, while parsing a phrase, it must be possible to tell what syntactic
category is coming up next just by looking at the next item in the input. Many grammars are
designed with this property in mind.

I should also mention that many variations of BNF are in use. The one that I’ve described
here is one that is well-suited for recursive descent parsing.

∗ ∗ ∗

When we try to parse a phrase that contains a syntax error, we need some way to respond
to the error. A convenient way of doing this is to throw an exception. I’ll use an exception
class called ParseError, defined as follows:

/**

* An object of type ParseError represents a syntax error found in

* the user’s input.

*/

private static class ParseError extends Exception {

ParseError(String message) {

super(message);

}

} // end nested class ParseError

Another general point is that our BNF rules don’t say anything about spaces between items,
but in reality we want to be able to insert spaces between items at will. To allow for this, I’ll
always call the routine TextIO.skipBlanks() before trying to look ahead to see what’s coming
up next in input. TextIO.skipBlanks() skips past any whitespace, such as spaces and tabs,
in the input, and stops when the next character in the input is either a non-blank character or
the end-of-line character.

Let’s start with a very simple example. A “fully parenthesized expression” can be specified
in BNF by the rules

<expression> ::= <number> |

"(" <expression> <operator> <expression> ")"

<operator> ::= "+" | "-" | "*" | "/"

9.5. A SIMPLE RECURSIVE DESCENT PARSER 473

where <number> refers to any non-negative real number. An example of a fully parenthesized
expression is “(((34-17)*8)+(2*7))”. Since every operator corresponds to a pair of parenthe-
ses, there is no ambiguity about the order in which the operators are to be applied. Suppose
we want a program that will read and evaluate such expressions. We’ll read the expressions
from standard input, using TextIO. To apply recursive descent parsing, we need a subroutine
for each rule in the grammar. Corresponding to the rule for <operator>, we get a subroutine
that reads an operator. The operator can be a choice of any of four things. Any other input
will be an error.

/**

* If the next character in input is one of the legal operators,

* read it and return it. Otherwise, throw a ParseError.

*/

static char getOperator() throws ParseError {

TextIO.skipBlanks();

char op = TextIO.peek();

if (op == ’+’ || op == ’-’ || op == ’*’ || op == ’/’) {

TextIO.getAnyChar();

return op;

}

else if (op == ’\n’)

throw new ParseError("Missing operator at end of line.");

else

throw new ParseError("Missing operator. Found \"" +

op + "\" instead of +, -, *, or /.");

} // end getOperator()

I’ve tried to give a reasonable error message, depending on whether the next character is an
end-of-line or something else. I use TextIO.peek() to look ahead at the next character before I
read it, and I call TextIO.skipBlanks() before testing TextIO.peek() in order to ignore any
blanks that separate items. I will follow this same pattern in every case.

When we come to the subroutine for <expression>, things are a little more interesting. The
rule says that an expression can be either a number or an expression enclosed in parentheses.
We can tell which it is by looking ahead at the next character. If the character is a digit,
we have to read a number. If the character is a “(“, we have to read the “(“, followed by an
expression, followed by an operator, followed by another expression, followed by a “)”. If the
next character is anything else, there is an error. Note that we need recursion to read the
nested expressions. The routine doesn’t just read the expression. It also computes and returns
its value. This requires semantical information that is not specified in the BNF rule.

/**

* Read an expression from the current line of input and return its value.

* @throws ParseError if the input contains a syntax error

*/

private static double expressionValue() throws ParseError {

TextIO.skipBlanks();

if (Character.isDigit(TextIO.peek())) {

// The next item in input is a number, so the expression

// must consist of just that number. Read and return

// the number.

return TextIO.getDouble();

}

else if (TextIO.peek() == ’(’) {

474 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

// The expression must be of the form

// "(" <expression> <operator> <expression> ")"

// Read all these items, perform the operation, and

// return the result.

TextIO.getAnyChar(); // Read the "("

double leftVal = expressionValue(); // Read and evaluate first operand.

char op = getOperator(); // Read the operator.

double rightVal = expressionValue(); // Read and evaluate second operand.

TextIO.skipBlanks();

if (TextIO.peek() != ’)’) {

// According to the rule, there must be a ")" here.

// Since it’s missing, throw a ParseError.

throw new ParseError("Missing right parenthesis.");

}

TextIO.getAnyChar(); // Read the ")"

switch (op) { // Apply the operator and return the result.

case ’+’: return leftVal + rightVal;

case ’-’: return leftVal - rightVal;

case ’*’: return leftVal * rightVal;

case ’/’: return leftVal / rightVal;

default: return 0; // Can’t occur since op is one of the above.

// (But Java syntax requires a return value.)

}

}

else { // No other character can legally start an expression.

throw new ParseError("Encountered unexpected character, \"" +

TextIO.peek() + "\" in input.");

}

} // end expressionValue()

I hope that you can see how this routine corresponds to the BNF rule. Where the rule
uses “|” to give a choice between alternatives, there is an if statement in the routine to
determine which choice to take. Where the rule contains a sequence of items, “(“ <expression>

<operator> <expression> “)”, there is a sequence of statements in the subroutine to read each
item in turn.

When expressionValue() is called to evaluate the expression (((34-17)*8)+(2*7)), it
sees the “(“ at the beginning of the input, so the else part of the if statement is executed.
The “(“ is read. Then the first recursive call to expressionValue() reads and evaluates the
subexpression ((34-17)*8), the call to getOperator() reads the “+” operator, and the sec-
ond recursive call to expressionValue() reads and evaluates the second subexpression (2*7).
Finally, the “)” at the end of the expression is read. Of course, reading the first subexpression,
((34-17)*8), involves further recursive calls to the expressionValue() routine, but it’s better
not to think too deeply about that! Rely on the recursion to handle the details.

You’ll find a complete program that uses these routines in the file SimpleParser1.java.

∗ ∗ ∗

Fully parenthesized expressions aren’t very natural for people to use. But with ordinary
expressions, we have to worry about the question of operator precedence, which tells us, for
example, that the “*” in the expression “5+3*7” is applied before the “+”. The complex
expression “3*6+8*(7+1)/4-24” should be seen as made up of three “terms”, 3*6, 8*(7+1)/4,
and 24, combined with “+” and “-” operators. A term, on the other hand, can be made up
of several factors combined with “*” and “/” operators. For example, 8*(7+1)/4 contains the

9.5. A SIMPLE RECURSIVE DESCENT PARSER 475

factors 8, (7+1) and 4. This example also shows that a factor can be either a number or an
expression in parentheses. To complicate things a bit more, we allow for leading minus signs in
expressions, as in “-(3+4)” or “-7”. (Since a <number> is a positive number, this is the only
way we can get negative numbers. It’s done this way to avoid “3 * -7”, for example.) This
structure can be expressed by the BNF rules

<expression> ::= ["-"] <term> [("+" | "-") <term>]...

<term> ::= <factor> [("*" | "/") <factor>]...

<factor> ::= <number> | "(" <expression> ")"

The first rule uses the “[]...” notation, which says that the items that it encloses can
occur zero, one, two, or more times. This means that an <expression> can begin, optionally,
with a “-”. Then there must be a <term> which can optionally be followed by one of the
operators “+” or “-” and another <term>, optionally followed by another operator and <term>,
and so on. In a subroutine that reads and evaluates expressions, this repetition is handled by
a while loop. An if statement is used at the beginning of the loop to test whether a leading
minus sign is present:

/**

* Read an expression from the current line of input and return its value.

* @throws ParseError if the input contains a syntax error

*/

private static double expressionValue() throws ParseError {

TextIO.skipBlanks();

boolean negative; // True if there is a leading minus sign.

negative = false;

if (TextIO.peek() == ’-’) {

TextIO.getAnyChar(); // Read the minus sign.

negative = true;

}

double val; // Value of the expression.

val = termValue();

if (negative)

val = -val;

TextIO.skipBlanks();

while (TextIO.peek() == ’+’ || TextIO.peek() == ’-’) {

// Read the next term and add it to or subtract it from

// the value of previous terms in the expression.

char op = TextIO.getAnyChar(); // Read the operator.

double nextVal = termValue();

if (op == ’+’)

val += nextVal;

else

val -= nextVal;

TextIO.skipBlanks();

}

return val;

} // end expressionValue()

The subroutine for <term> is very similar to this, and the subroutine for <factor> is
similar to the example given above for fully parenthesized expressions. A complete program
that reads and evaluates expressions based on the above BNF rules can be found in the file
SimpleParser2.java.

476 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

9.5.3 Building an Expression Tree

Now, so far, we’ve only evaluated expressions. What does that have to do with translating
programs into machine language? Well, instead of actually evaluating the expression, it would
be almost as easy to generate the machine language instructions that are needed to evaluate
the expression. If we are working with a “stack machine”, these instructions would be stack
operations such as “push a number” or “apply a + operation”. The program SimpleParser3.java
can both evaluate the expression and print a list of stack machine operations for evaluating the
expression.

It’s quite a jump from this program to a recursive descent parser that can read a program
written in Java and generate the equivalent machine language code—but the conceptual leap
is not huge.

The SimpleParser3 program doesn’t actually generate the stack operations directly as it
parses an expression. Instead, it builds an expression tree, as discussed in Section 9.4, to repre-
sent the expression. The expression tree is then used to find the value and to generate the stack
operations. The tree is made up of nodes belonging to classes ConstNode and BinOpNode that
are similar to those given in Section 9.4. Another class, UnaryMinusNode, has been introduced
to represent the unary minus operation. I’ve added a method, printStackCommands(), to each
class. This method is responsible for printing out the stack operations that are necessary to
evaluate an expression. Here for example is the new BinOpNode class from SimpleParser3.java:

private static class BinOpNode extends ExpNode {

char op; // The operator.

ExpNode left; // The expression for its left operand.

ExpNode right; // The expression for its right operand.

BinOpNode(char op, ExpNode left, ExpNode right) {

// Construct a BinOpNode containing the specified data.

assert op == ’+’ || op == ’-’ || op == ’*’ || op == ’/’;

assert left != null && right != null;

this.op = op;

this.left = left;

this.right = right;

}

double value() {

// The value is obtained by evaluating the left and right

// operands and combining the values with the operator.

double x = left.value();

double y = right.value();

switch (op) {

case ’+’:

return x + y;

case ’-’:

return x - y;

case ’*’:

return x * y;

case ’/’:

return x / y;

default:

return Double.NaN; // Bad operator!

}

}

void printStackCommands() {

9.5. A SIMPLE RECURSIVE DESCENT PARSER 477

// To evaluate the expression on a stack machine, first do

// whatever is necessary to evaluate the left operand, leaving

// the answer on the stack. Then do the same thing for the

// second operand. Then apply the operator (which means popping

// the operands, applying the operator, and pushing the result).

left.printStackCommands();

right.printStackCommands();

TextIO.putln(" Operator " + op);

}

}

It’s also interesting to look at the new parsing subroutines. Instead of computing a value,
each subroutine builds an expression tree. For example, the subroutine corresponding to the
rule for <expression> becomes

static ExpNode expressionTree() throws ParseError {

// Read an expression from the current line of input and

// return an expression tree representing the expression.

TextIO.skipBlanks();

boolean negative; // True if there is a leading minus sign.

negative = false;

if (TextIO.peek() == ’-’) {

TextIO.getAnyChar();

negative = true;

}

ExpNode exp; // The expression tree for the expression.

exp = termTree(); // Start with a tree for first term.

if (negative) {

// Build the tree that corresponds to applying a

// unary minus operator to the term we’ve

// just read.

exp = new UnaryMinusNode(exp);

}

TextIO.skipBlanks();

while (TextIO.peek() == ’+’ || TextIO.peek() == ’-’) {

// Read the next term and combine it with the

// previous terms into a bigger expression tree.

char op = TextIO.getAnyChar();

ExpNode nextTerm = termTree();

// Create a tree that applies the binary operator

// to the previous tree and the term we just read.

exp = new BinOpNode(op, exp, nextTerm);

TextIO.skipBlanks();

}

return exp;

} // end expressionTree()

In some real compilers, the parser creates a tree to represent the program that is being
parsed. This tree is called a parse tree . Parse trees are somewhat different in form from
expression trees, but the purpose is the same. Once you have the tree, there are a number of
things you can do with it. For one thing, it can be used to generate machine language code. But
there are also techniques for examining the tree and detecting certain types of programming

478 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

errors, such as an attempt to reference a local variable before it has been assigned a value. (The
Java compiler, of course, will reject the program if it contains such an error.) It’s also possible
to manipulate the tree to optimize the program. In optimization, the tree is transformed to
make the program more efficient before the code is generated.

And so we are back where we started in Chapter 1, looking at programming languages,
compilers, and machine language. But looking at them, I hope, with a lot more understanding
and a much wider perspective.

Exercises 479

Exercises for Chapter 9

1. In many textbooks, the first examples of recursion are the mathematical functions factorial
and fibonacci. These functions are defined for non-negative integers using the following
recursive formulas:

factorial(0) = 1

factorial(N) = N*factorial(N-1) for N > 0

fibonacci(0) = 1

fibonacci(1) = 1

fibonacci(N) = fibonacci(N-1) + fibonacci(N-2) for N > 1

Write recursive functions to compute factorial(N) and fibonacci(N) for a given non-
negative integer N, and write a main() routine to test your functions.

(In fact, factorial and fibonacci are really not very good examples of recursion, since
the most natural way to compute them is to use simple for loops. Furthermore, fibonacci
is a particularly bad example, since the natural recursive approach to computing this
function is extremely inefficient.)

2. Exercise 7.6 asked you to read a file, make an alphabetical list of all the words that occur
in the file, and write the list to another file. In that exercise, you were asked to use an
ArrayList<String> to store the words. Write a new version of the same program that stores
the words in a binary sort tree instead of in an arraylist. You can use the binary sort tree
routines from SortTreeDemo.java, which was discussed in Subsection 9.4.2.

3. Suppose that linked lists of integers are made from objects belonging to the class

class ListNode {

int item; // An item in the list.

ListNode next; // Pointer to the next node in the list.

}

Write a subroutine that will make a copy of a list, with the order of the items of the list
reversed. The subroutine should have a parameter of type ListNode, and it should return
a value of type ListNode. The original list should not be modified.

You should also write a main() routine to test your subroutine.

4. Subsection 9.4.1 explains how to use recursion to print out the items in a binary tree in
various orders. That section also notes that a non-recursive subroutine can be used to
print the items, provided that a stack or queue is used as an auxiliary data structure.
Assuming that a queue is used, here is an algorithm for such a subroutine:

Add the root node to an empty queue

while the queue is not empty:

Get a node from the queue

Print the item in the node

if node.left is not null:

add it to the queue

if node.right is not null:

add it to the queue

480 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

Write a subroutine that implements this algorithm, and write a program to test the sub-
routine. Note that you will need a queue of TreeNodes, so you will need to write a class
to represent such queues.

(Note that the order in which items are printed by this algorithm is different from all
three of the orders considered in Subsection 9.4.1.)

5. In Subsection 9.4.2, I say that “if the [binary sort] tree is created by inserting items in a
random order, there is a high probability that the tree is approximately balanced.” For
this exercise, you will do an experiment to test whether that is true.

The depth of a node in a binary tree is the length of the path from the root of the tree
to that node. That is, the root has depth 0, its children have depth 1, its grandchildren
have depth 2, and so on. In a balanced tree, all the leaves in the tree are about the same
depth. For example, in a perfectly balanced tree with 1023 nodes, all the leaves are at
depth 9. In an approximately balanced tree with 1023 nodes, the average depth of all the
leaves should be not too much bigger than 9.

On the other hand, even if the tree is approximately balanced, there might be a few
leaves that have much larger depth than the average, so we might also want to look at the
maximum depth among all the leaves in a tree.

For this exercise, you should create a random binary sort tree with 1023 nodes. The
items in the tree can be real numbers, and you can create the tree by generating 1023
random real numbers and inserting them into the tree, using the usual treeInsert()
method for binary sort trees. Once you have the tree, you should compute and output the
average depth of all the leaves in the tree and the maximum depth of all the leaves. To
do this, you will need three recursive subroutines: one to count the leaves, one to find the
sum of the depths of all the leaves, and one to find the maximum depth. The latter two
subroutines should have an int-valued parameter, depth, that tells how deep in the tree
you’ve gone. When you call this routine from the main program, the depth parameter is
0; when you call the routine recursively, the parameter increases by 1.

6. The parsing programs in Section 9.5 work with expressions made up of numbers and
operators. We can make things a little more interesting by allowing the variable “x” to
occur. This would allow expression such as “3*(x-1)*(x+1)”, for example. Make a new
version of the sample program SimpleParser3.java that can work with such expressions.
In your program, the main() routine can’t simply print the value of the expression, since
the value of the expression now depends on the value of x. Instead, it should print the
value of the expression for x=0, x=1, x=2, and x=3.

The original program will have to be modified in several other ways. Currently, the
program uses classes ConstNode, BinOpNode, and UnaryMinusNode to represent nodes
in an expression tree. Since expressions can now include x, you will need a new class,
VariableNode, to represent an occurrence of x in the expression.

In the original program, each of the node classes has an instance method,
“double value()”, which returns the value of the node. But in your program, the
value can depend on x, so you should replace this method with one of the form
“double value(double xValue)”, where the parameter xValue is the value of x.

Finally, the parsing subroutines in your program will have to take into account the
fact that expressions can contain x. There is just one small change in the BNF rules for
the expressions: A <factor> is allowed to be the variable x:

<factor> ::= <number> | <x-variable> | "(" <expression> ")"

Exercises 481

where <x-variable> can be either a lower case or an upper case “X”. This change in the
BNF requires a change in the factorTree() subroutine.

7. This exercise builds on the previous exercise, Exercise 9.6. To understand it, you should
have some background in Calculus. The derivative of an expression that involves the
variable x can be defined by a few recursive rules:

• The derivative of a constant is 0.

• The derivative of x is 1.

• If A is an expression, let dA be the derivative of A. Then the derivative of -A is -dA.

• If A and B are expressions, let dA be the derivative of A and let dB be the derivative
of B. Then the derivative of A+B is dA+dB.

• The derivative of A-B is dA-dB.

• The derivative of A*B is A*dB + B*dA.

• The derivative of A/B is (B*dA - A*dB) / (B*B).

For this exercise, you should modify your program from the previous exercise so that
it can compute the derivative of an expression. You can do this by adding a derivative-
computing method to each of the node classes. First, add another abstract method to the
ExpNode class:

abstract ExpNode derivative();

Then implement this method in each of the four subclasses of ExpNode. All the information
that you need is in the rules given above. In your main program, instead of printing the
stack operations for the original expression, you should print out the stack operations
that define the derivative. Note that the formula that you get for the derivative can be
much more complicated than it needs to be. For example, the derivative of 3*x+1 will be
computed as (3*1+0*x)+0. This is correct, even though it’s kind of ugly, and it would be
nice for it to be simplified. However, simplifying expressions is not easy.

As an alternative to printing out stack operations, you might want to print the deriva-
tive as a fully parenthesized expression. You can do this by adding a printInfix() routine
to each node class. It would be nice to leave out unnecessary parentheses, but again, the
problem of deciding which parentheses can be left out without altering the meaning of the
expression is a fairly difficult one, which I don’t advise you to attempt.

(There is one curious thing that happens here: If you apply the rules, as given, to an
expression tree, the result is no longer a tree, since the same subexpression can occur at
multiple points in the derivative. For example, if you build a node to represent B*B by
saying “new BinOpNode(’*’,B,B)”, then the left and right children of the new node are
actually the same node! This is not allowed in a tree. However, the difference is harmless
in this case since, like a tree, the structure that you get has no loops in it. Loops, on the
other hand, would be a disaster in most of the recursive tree-processing subroutines that
we have written, since it would lead to infinite recursion.)

482 CHAPTER 9. LINKED DATA STRUCTURES AND RECURSION

Quiz on Chapter 9

1. Explain what is meant by a recursive subroutine.

2. Consider the following subroutine:

static void printStuff(int level) {

if (level == 0) {

System.out.print("*");

}

else {

System.out.print("[");

printStuff(level - 1);

System.out.print(",");

printStuff(level - 1);

System.out.println("]");

}

}

Show the output that would be produced by the subroutine calls printStuff(0),
printStuff(1), printStuff(2), and printStuff(3).

3. Suppose that a linked list is formed from objects that belong to the class

class ListNode {

int item; // An item in the list.

ListNode next; // Pointer to next item in the list.

}

Write a subroutine that will count the number of zeros that occur in a given linked list
of ints. The subroutine should have a parameter of type ListNode and should return a
value of type int.

4. What are the three operations on a stack?

5. What is the basic difference between a stack and a queue?

6. What is an activation record? What role does a stack of activation records play in a
computer?

7. Suppose that a binary tree of integers is formed from objects belonging to the class

class TreeNode {

int item; // One item in the tree.

TreeNode left; // Pointer to the left subtree.

TreeNode right; // Pointer to the right subtree.

}

Write a recursive subroutine that will find the sum of all the nodes in the tree. Your
subroutine should have a parameter of type TreeNode, and it should return a value of
type int.

8. What is a postorder traversal of a binary tree?

9. Suppose that a <multilist> is defined by the BNF rule

Quiz 483

<multilist> ::= <word> | "(" [<multilist>]... ")"

where a <word> can be any sequence of letters. Give five different <multilist>’s that
can be generated by this rule. (This rule, by the way, is almost the entire syntax of
the programming language LISP! LISP is known for its simple syntax and its elegant and
powerful semantics.)

10. Explain what is meant by parsing a computer program.

