
Chapter 10

Generic Programming and
Collection Classes

How to avoid reinventing the wheel? Many data structures and algorithms, such as
those from Chapter 9, have been studied, programmed, and re-programmed by generations of
computer science students. This is a valuable learning experience. Unfortunately, they have
also been programmed and re-programmed by generations of working computer professionals,
taking up time that could be devoted to new, more creative work. A programmer who needs
a list or a binary tree shouldn’t have to re-code these data structures from scratch. They are
well-understood and have been programmed thousands of times before. The problem is how to
make pre-written, robust data structures available to programmers. In this chapter, we’ll look
at Java’s attempt to address this problem.

10.1 Generic Programming

Generic programming refers to writing code that will work for many types of data. We
encountered the term in Section 7.3, where we looked at dynamic arrays of integers. The
source code presented there for working with dynamic arrays of integers works only for data
of type int. But the source code for dynamic arrays of double, String, JButton, or any other
type would be almost identical, except for the substitution of one type name for another. It
seems silly to write essentially the same code over and over. As we saw in Subsection 7.3.3,
Java goes some distance towards solving this problem by providing the ArrayList class. An
ArrayList is essentially a dynamic array of values of type Object. Since every class is a subclass
of Object, objects of any type can be stored in an ArrayList. Java goes even further by providing
“parameterized types,” which were introduced in Subsection 7.3.4. There we saw that the
ArrayList type can be parameterized, as in “ArrayList<String>”, to limit the values that can
be stored in the list to objects of a specified type. Parameterized types extend Java’s basic
philosophy of type-safe programming to generic programming.

The ArrayList class is just one of several standard classes that are used for generic pro-
gramming in Java. We will spend the next few sections looking at these classes and how they
are used, and we’ll see that there are also generic methods and generic interfaces (see Subsec-
tion 5.7.1). All the classes and interfaces discussed in these sections are defined in the package
java.util, and you will need an import statement at the beginning of your program to get
access to them. (Before you start putting “import java.util.*” at the beginning of every
program, you should know that some things in java.util have names that are the same as

485

486 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

things in other packages. For example, both java.util.List and java.awt.List exist, so it
is often better to import the individual classes that you need.)

In the final section of this chapter, we will see that it is possible to define new generic classes,
interfaces, and methods. Until then, we will stick to using the generics that are predefined in
Java’s standard library.

It is no easy task to design a library for generic programming. Java’s solution has many
nice features but is certainly not the only possible approach. It is almost certainly not the
best, and has a few features that in my opinion can only be called bizarre, but in the context
of the overall design of Java, it might be close to optimal. To get some perspective on generic
programming in general, it might be useful to look very briefly at generic programming in two
other languages.

10.1.1 Generic Programming in Smalltalk

Smalltalk was one of the very first object-oriented programming languages. It is still used today,
although its use is not very common. It has not achieved anything like the popularity of Java
or C++, but it is the source of many ideas used in these languages. In Smalltalk, essentially
all programming is generic, because of two basic properties of the language.

First of all, variables in Smalltalk are typeless. A data value has a type, such as integer or
string, but variables do not have types. Any variable can hold data of any type. Parameters
are also typeless, so a subroutine can be applied to parameter values of any type. Similarly,
a data structure can hold data values of any type. For example, once you’ve defined a binary
tree data structure in SmallTalk, you can use it for binary trees of integers or strings or dates
or data of any other type. There is simply no need to write new code for each data type.

Secondly, all data values are objects, and all operations on objects are defined by methods
in a class. This is true even for types that are “primitive” in Java, such as integers. When the
“+” operator is used to add two integers, the operation is performed by calling a method in the
integer class. When you define a new class, you can define a “+” operator, and you will then
be able to add objects belonging to that class by saying “a + b” just as if you were adding
numbers. Now, suppose that you write a subroutine that uses the “+” operator to add up the
items in a list. The subroutine can be applied to a list of integers, but it can also be applied,
automatically, to any other data type for which “+” is defined. Similarly, a subroutine that
uses the “<" operator to sort a list can be applied to lists containing any type of data for which
“<” is defined. There is no need to write a different sorting subroutine for each type of data.

Put these two features together and you have a language where data structures and al-
gorithms will work for any type of data for which they make sense, that is, for which the
appropriate operations are defined. This is real generic programming. This might sound pretty
good, and you might be asking yourself why all programming languages don’t work this way.
This type of freedom makes it easier to write programs, but unfortunately it makes it harder
to write programs that are correct and robust (see Chapter 8). Once you have a data structure
that can contain data of any type, it becomes hard to ensure that it only holds the type of
data that you want it to hold. If you have a subroutine that can sort any type of data, it’s
hard to ensure that it will only be applied to data for which the “<” operator is defined. More
particularly, there is no way for a compiler to ensure these things. The problem will only show
up at run time when an attempt is made to apply some operation to a data type for which it
is not defined, and the program will crash.

10.1. GENERIC PROGRAMMING 487

10.1.2 Generic Programming in C++

Unlike Smalltalk, C++ is a very strongly typed language, even more so than Java. Every
variable has a type, and can only hold data values of that type. This means that the kind
of generic programming that is used in Smalltalk is impossible in C++. Furthermore, C++
does not have anything corresponding to Java’s Object class. That is, there is no class that
is a superclass of all other classes. This means that C++ can’t use Java’s style of generic
programming with non-parameterized generic types either. Nevertheless, C++ has a powerful
and flexible system of generic programming. It is made possible by a language feature known
as templates. In C++, instead of writing a different sorting subroutine for each type of data,
you can write a single subroutine template. The template is not a subroutine; it’s more like a
factory for making subroutines. We can look at an example, since the syntax of C++ is very
similar to Java’s:

template<class ItemType>

void sort(ItemType A[], int count) {

// Sort items in the array, A, into increasing order.

// The items in positions 0, 1, 2, ..., (count-1) are sorted.

// The algorithm that is used here is selection sort.

for (int i = count-1; i > 0; i--) {

int position of max = 0;

for (int j = 1; j <= count ; j++)

if (A[j] > A[position of max])

position of max = j;

ItemType temp = A[count];

A[count] = A[position of max];

A[position of max] = temp;

}

}

This piece of code defines a subroutine template. If you remove the first line, “template<class
ItemType>”, and substitute the word “int” for the word “ItemType” in the rest of the template,
you get a subroutine for sorting arrays of ints. (Even though it says “class ItemType”, you
can actually substitute any type for ItemType, including the primitive types.) If you substitute
“string” for “ItemType”, you get a subroutine for sorting arrays of strings. This is pretty much
what the compiler does with the template. If your program says “sort(list,10)” where list
is an array of ints, the compiler uses the template to generate a subroutine for sorting arrays
of ints. If you say “sort(cards,10)” where cards is an array of objects of type Card, then the
compiler generates a subroutine for sorting arrays of Cards. At least, it tries to. The template
uses the “>” operator to compare values. If this operator is defined for values of type Card, then
the compiler will successfully use the template to generate a subroutine for sorting cards. If
“>” is not defined for Cards, then the compiler will fail—but this will happen at compile time,
not, as in Smalltalk, at run time where it would make the program crash.

In addition to subroutine templates, C++ also has templates for making classes. If you
write a template for a binary tree class, you can use it to generate classes for binary trees of
ints, binary trees of strings, binary trees of dates, and so on—all from one template. The most
recent version of C++ comes with a large number of pre-written templates called the Standard
Template Library or STL. The STL is quite complex. Many people would say that its much
too complex. But it is also one of the most interesting features of C++.

488 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

10.1.3 Generic Programming in Java

Java’s generic programming features have gone through several stages of development. The
original version of Java had just a few generic data structure classes, such as Vector, that could
hold values of type Object. Java version 1.2 introduced a much larger group of generics that
followed the same basic model. These generic classes and interfaces as a group are known as
the Java Collection Framework . The ArrayList class is part of the Collection Framework.
The original Collection Framework was closer in spirit to Smalltalk than it was to C++, since
a data structure designed to hold Objects can be used with objects of any type. Unfortunately,
as in Smalltalk, the result is a category of errors that show up only at run time, rather than
at compile time. If a programmer assumes that all the items in a data structure are strings
and tries to process those items as strings, a run-time error will occur if other types of data
have inadvertently been added to the data structure. In Java, the error will most likely occur
when the program retrieves an Object from the data structure and tries to type-cast it to type
String. If the object is not actually of type String, the illegal type-cast will throw an error of
type ClassCastException.

Java 5.0 introduced parameterized types, such as ArrayList<String>. This made it possible to
create generic data structures that can be type-checked at compile time rather than at run time.
With these data structures, type-casting is not necessary, so ClassCastExceptions are avoided.
The compiler will detect any attempt to add an object of the wrong type to the data structure;
it will report a syntax error and will refuse to compile the program. In Java 5.0, all of the
classes and interfaces in the Collection Framework, and even some classes that are not part of
that framework, have been parameterized. Java’s parameterized classes are similar to template
classes in C++ (although the implementation is very different), and their introduction moves
Java’s generic programming model closer to C++ and farther from Smalltalk. In this chapter,
I will use the parameterized types almost exclusively, but you should remember that their use
is not mandatory. It is still legal to use a parameterized class as a non-parameterized type,
such as a plain ArrayList.

Note that there is a significant difference between parameterized classes in Java and tem-
plate classes in C++. A template class in C++ is not really a class at all—it’s a kind of factory
for generating classes. Every time the template is used with a new type, a new compiled class
is created. With a Java parameterized class, there is only one compiled class file. For example,
there is only one compiled class file, ArrayList.class, for the parameterized class ArrayList.
The parameterized types ArrayList<String> and ArrayList<Integer> both use the same compiled
class file, as does the plain ArrayList type. The type parameter—String or Integer—just tells the
compiler to limit the type of object that can be stored in the data structure. The type parame-
ter has no effect at run time and is not even known at run time. The type information is said to
be “erased” at run time. This type erasure introduces a certain amount of weirdness. For ex-
ample, you can’t test “if (list instanceof ArrayList<String>)” because the instanceof
operator is evaluated at run time, and at run time only the plain ArrayList exists. Even worse,
you can’t create an array that has base type ArrayList<String> by using the new operator, as in
“new ArrayList<String>[N]”. This is because the new operator is evaluated at run time, and
at run time there is no such thing as “ArrayList<String>”; only the non-parameterized type
ArrayList exists at run time.

Fortunately, most programmers don’t have to deal with such problems, since they turn up
only in fairly advanced programming. Most people who use the Java Collection Framework will
not encounter them, and they will get the benefits of type-safe generic programming with little
difficulty.

10.1. GENERIC PROGRAMMING 489

10.1.4 The Java Collection Framework

Java’s generic data structures can be divided into two categories: collections and maps. A
collection is more or less what it sounds like: a collection of objects. A map associates objects
in one set with objects in another set in the way that a dictionary associates definitions with
words or a phone book associates phone numbers with names. A map is similar to what I called
an “association list” in Subsection 7.4.2. In Java, collections and maps are represented by the
parameterized interfaces Collection<T> and Map<T,S>. Here, “T” and “S” stand for any type
except for the primitive types. Map<T,S> is the first example we have seen where there are two
type parameters, T and S ; we will not deal further with this possibility until we look at maps
more closely in Section 10.3. In this section and the next, we look at collections only.

There are two types of collections: lists and sets. A list is a collection in which the objects
are arranged in a linear sequence. A list has a first item, a second item, and so on. For any
item in the list, except the last, there is an item that directly follows it. The defining property
of a set is that no object can occur more than once in a set; the elements of a set are not neces-
sarily thought of as being in any particular order. The ideas of lists and sets are represented as
parameterized interfaces List<T> and Set<T>. These are sub-interfaces of Collection<T>. That
is, any object that implements the interface List<T> or Set<T> automatically implements Col-
lection<T> as well. The interface Collection<T> specifies general operations that can be applied
to any collection at all. List<T> and Set<T> add additional operations that are appropriate for
lists and sets respectively.

Of course, any actual object that is a collection, list, or set must belong to a concrete class
that implements the corresponding interface. For example, the class ArrayList<T> implements
the interface List<T> and therefore also implements Collection<T>. This means that all the
methods that are defined in the list and collection interfaces can be used with, for example,
an ArrayList<String> object. We will look at various classes that implement the list and set
interfaces in the next section. But before we do that, we’ll look briefly at some of the general
operations that are available for all collections.

∗ ∗ ∗

The interface Collection<T> specifies methods for performing some basic operations on any
collection of objects. Since “collection” is a very general concept, operations that can be applied
to all collections are also very general. They are generic operations in the sense that they can
be applied to various types of collections containing various types of objects. Suppose that
coll is an object that implements the interface Collection<T> (for some specific non-primitive
type T). Then the following operations, which are specified in the interface Collection<T>, are
defined for coll:

• coll.size() — returns an int that gives the number of objects in the collection.

• coll.isEmpty() — returns a boolean value which is true if the size of the collection is 0.

• coll.clear() — removes all objects from the collection.

• coll.add(tobject)— adds tobject to the collection. The parameter must be of type T ;
if not, a syntax error occurs at compile time. This method returns a boolean value which
tells you whether the operation actually modified the collection. For example, adding an
object to a Set has no effect if that object was already in the set.

• coll.contains(object) — returns a boolean value that is true if object is in the
collection. Note that object is not required to be of type T, since it makes sense to
check whether object is in the collection, no matter what type object has. (For testing

490 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

equality, null is considered to be equal to itself. The criterion for testing non-null objects
for equality can differ from one kind of collection to another; see Subsection 10.1.6, below.)

• coll.remove(object)— removes object from the collection, if it occurs in the collection,
and returns a boolean value that tells you whether the object was found. Again, object
is not required to be of type T.

• coll.containsAll(coll2) — returns a boolean value that is true if every object in
coll2 is also in coll. The parameter can be any collection.

• coll.addAll(coll2) — adds all the objects in coll2 to coll. The parameter, coll2,
can be any collection of type Collection<T>. However, it can also be more general. For
example, if T is a class and S is a sub-class of T, then coll2 can be of type Collection<S>.
This makes sense because any object of type S is automatically of type T and so can
legally be added to coll.

• coll.removeAll(coll2) — removes every object from coll that also occurs in the
collection coll2. coll2 can be any collection.

• coll.retainAll(coll2) — removes every object from coll that does not occur in
the collection coll2. It “retains” only the objects that do occur in coll2. coll2 can be
any collection.

• coll.toArray() — returns an array of type Object[] that contains all the items in the
collection. The return value can be type-cast to another array type, if appropriate. Note
that the return type is Object[], not T[]! However, you can type-cast the return value to a
more specific type. For example, if you know that all the items in coll are of type String,
then (String[])coll.toArray() gives you an array of Strings containing all the strings
in the collection.

Since these methods are part of the Collection<T> interface, they must be defined for every
object that implements that interface. There is a problem with this, however. For example,
the size of some collections cannot be changed after they are created. Methods that add or
remove objects don’t make sense for these collections. While it is still legal to call the methods,
an exception will be thrown when the call is evaluated at run time. The type of the exception
is UnsupportedOperationException. Furthermore, since Collection<T> is only an interface, not a
concrete class, the actual implementation of the method is left to the classes that implement
the interface. This means that the semantics of the methods, as described above, are not
guaranteed to be valid for all collection objects; they are valid, however, for classes in the Java
Collection Framework.

There is also the question of efficiency. Even when an operation is defined for several types of
collections, it might not be equally efficient in all cases. Even a method as simple as size() can
vary greatly in efficiency. For some collections, computing the size() might involve counting
the items in the collection. The number of steps in this process is equal to the number of items.
Other collections might have instance variables to keep track of the size, so evaluating size()

just means returning the value of a variable. In this case, the computation takes only one step,
no matter how many items there are. When working with collections, it’s good to have some
idea of how efficient operations are and to choose a collection for which the operations that you
need can be implemented most efficiently. We’ll see specific examples of this in the next two
sections.

10.1. GENERIC PROGRAMMING 491

10.1.5 Iterators and for-each Loops

The interface Collection<T> defines a few basic generic algorithms, but suppose you want to
write your own generic algorithms. Suppose, for example, you want to do something as simple
as printing out every item in a collection. To do this in a generic way, you need some way of
going through an arbitrary collection, accessing each item in turn. We have seen how to do this
for specific data structures: For an array, you can use a for loop to iterate through all the array
indices. For a linked list, you can use a while loop in which you advance a pointer along the list.
For a binary tree, you can use a recursive subroutine to do an infix traversal. Collections can
be represented in any of these forms and many others besides. With such a variety of traversal
mechanisms, how can we even hope to come up with a single generic method that will work for
collections that are stored in wildly different forms? This problem is solved by iterators. An
iterator is an object that can be used to traverse a collection. Different types of collections have
iterators that are implemented in different ways, but all iterators are used in the same way. An
algorithm that uses an iterator to traverse a collection is generic, because the same technique
can be applied to any type of collection. Iterators can seem rather strange to someone who
is encountering generic programming for the first time, but you should understand that they
solve a difficult problem in an elegant way.

The interface Collection<T> defines a method that can be used to obtain an iterator for any
collection. If coll is a collection, then coll.iterator() returns an iterator that can be used
to traverse the collection. You should think of the iterator as a kind of generalized pointer that
starts at the beginning of the collection and can move along the collection from one item to the
next. Iterators are defined by a parameterized interface named Iterator<T>. If coll implements
the interface Collection<T> for some specific type T, then coll.iterator() returns an iterator
of type Iterator<T>, with the same type T as its type parameter. The interface Iterator<T>
defines just three methods. If iter refers to an object that implements Iterator<T>, then we
have:

• iter.next() — returns the next item, and advances the iterator. The return value is of
type T. This method lets you look at one of the items in the collection. Note that there is
no way to look at an item without advancing the iterator past that item. If this method
is called when no items remain, it will throw a NoSuchElementException.

• iter.hasNext() — returns a boolean value telling you whether there are more items to
be processed. In general, you should test this before calling iter.next().

• iter.remove() — if you call this after calling iter.next(), it will remove the item
that you just saw from the collection. Note that this method has no parameter. It
removes the item that was most recently returned by iter.next(). This might produce
an UnsupportedOperationException, if the collection does not support removal of items.

Using iterators, we can write code for printing all the items in any collection. Suppose,
for example, that coll is of type Collection<String>. In that case, the value returned by
coll.iterator() is of type Iterator<String>, and we can say:

Iterator<String> iter; // Declare the iterater variable.

iter = coll.iterator(); // Get an iterator for the collection.

while (iter.hasNext()) {

String item = iter.next(); // Get the next item.

System.out.println(item);

}

492 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

The same general form will work for other types of processing. For example, the following code
will remove all null values from any collection of type Collection<JButton> (as long as that
collection supports removal of values):

Iterator<JButton> iter = coll.iterator():

while (iter.hasNext()) {

JButton item = iter.next();

if (item == null)

iter.remove();

}

(Note, by the way, that when Collection<T>, Iterator<T>, or any other parameterized type is
used in actual code, they are always used with actual types such as String or JButton in place of
the “formal type parameter” T. An iterator of type Iterator<String> is used to iterate through a
collection of Strings; an iterator of type Iterator<JButton> is used to iterate through a collection
of JButtons; and so on.)

An iterator is often used to apply the same operation to all the elements in a collection.
In many cases, it’s possible to avoid the use of iterators for this purpose by using a for-each
loop. The for-each loop was discussed in Subsection 3.4.4 for use with enumerated types and
in Subsection 7.2.2 for use with arrays. A for-each loop can also be used to iterate through any
collection. For a collection coll of type Collection<T>, a for-each loop takes the form:

for (T x : coll) { // "for each object x, of type T, in coll"

// process x

}

Here, x is the loop control variable. Each object in coll will be assigned to x in turn, and the
body of the loop will be executed for each object. Since objects in coll are of type T, x is
declared to be of type T. For example, if namelist is of type Collection<String>, we can print
out all the names in the collection with:

for (String name : namelist) {

System.out.println(name);

}

This for-each loop could, of course, be written as a while loop using an iterator, but the for-each
loop is much easier to follow.

10.1.6 Equality and Comparison

There are several methods in the collection interface that test objects for equality. For exam-
ple, the methods coll.contains(object) and coll.remove(object) look for an item in the
collection that is equal to object. However, equality is not such a simple matter. The obvious
technique for testing equality—using the == operator—does not usually give a reasonable an-
swer when applied to objects. The == operator tests whether two objects are identical in the
sense that they share the same location in memory. Usually, however, we want to consider two
objects to be equal if they represent the same value, which is a very different thing. Two values
of type String should be considered equal if they contain the same sequence of characters. The
question of whether those characters are stored in the same location in memory is irrelevant.
Two values of type Date should be considered equal if they represent the same time.

The Object class defines the boolean-valued method equals(Object) for testing whether
one object is equal to another. This method is used by many, but not by all, collection
classes for deciding whether two objects are to be considered the same. In the Object class,

10.1. GENERIC PROGRAMMING 493

obj1.equals(obj2) is defined to be the same as obj1 == obj2. However, for most sub-classes
of Object, this definition is not reasonable, and it should be overridden. The String class, for
example, overrides equals() so that for a String str, str.equals(obj) if obj is also a String
and obj contains the same sequence of characters as str.

If you write your own class, you might want to define an equals() method in that class to
get the correct behavior when objects are tested for equality. For example, a Card class that
will work correctly when used in collections could be defined as:

public class Card { // Class to represent playing cards.

int suit; // Number from 0 to 3 that codes for the suit --

// spades, diamonds, clubs or hearts.

int value; // Number from 1 to 13 that represents the value.

public boolean equals(Object obj) {

try {

Card other = (Card)obj; // Type-cast obj to a Card.

if (suit == other.suit && value == other.value) {

// The other card has the same suit and value as

// this card, so they should be considered equal.

return true;

}

else

return false;

}

catch (Exception e) {

// This will catch the NullPointerException that occurs if obj

// is null and the ClassCastException that occurs if obj is

// not of type Card. In these cases, obj is not equal to

// this Card, so return false.

return false;

}

}

.

. // other methods and constructors

.

}

Without the equals() method in this class, methods such as contains() and remove() in the
interface Collection<Card> will not work as expected.

A similar concern arises when items in a collection are sorted. Sorting refers to arranging
a sequence of items in ascending order, according to some criterion. The problem is that there
is no natural notion of ascending order for arbitrary objects. Before objects can be sorted,
some method must be defined for comparing them. Objects that are meant to be compared
should implement the interface java.lang.Comparable. In fact, Comparable is defined as a
parameterized interface, Comparable<T>, which represents the ability to be compared to an
object of type T. The interface Comparable<T> defines one method:

public int compareTo(T obj)

The value returned by obj1.compareTo(obj2) should be negative if and only if obj1 comes
before obj2, when the objects are arranged in ascending order. It should be positive if and
only if obj1 comes after obj2. A return value of zero means that the objects are considered

494 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

to be the same for the purposes of this comparison. This does not necessarily mean that the
objects are equal in the sense that obj1.equals(obj2) is true. For example, if the objects are
of type Address, representing mailing addresses, it might be useful to sort the objects by zip
code. Two Addresses are considered the same for the purposes of the sort if they have the same
zip code—but clearly that would not mean that they are the same address.

The String class implements the interface Comparable<String> and defines compareTo in a
reasonable way (and in this case, the return value of compareTo is zero if and only if the two
strings that are being compared are equal). If you define your own class and want to be able
to sort objects belonging to that class, you should do the same. For example:

/**

* Represents a full name consisting of a first name and a last name.

*/

public class FullName implements Comparable<FullName> {

private String firstName, lastName; // Non-null first and last names.

public FullName(String first, String last) { // Constructor.

if (first == null || last == null)

throw new IllegalArgumentException("Names must be non-null.");

firstName = first;

lastName = last;

}

public boolean equals(Object obj) {

try {

FullName other = (FullName)obj; // Type-cast obj to type FullName

return firstName.equals(other.firstName)

&& lastName.equals(other.lastName);

}

catch (Exception e) {

return false; // if obj is null or is not of type FirstName

}

}

public int compareTo(FullName other) {

if (lastName.compareTo(other.lastName) < 0) {

// If lastName comes before the last name of

// the other object, then this FullName comes

// before the other FullName. Return a negative

// value to indicate this.

return -1;

}

if (lastName.compareTo(other.lastName) > 0) {

// If lastName comes after the last name of

// the other object, then this FullName comes

// after the other FullName. Return a positive

// value to indicate this.

return 1;

}

else {

// Last names are the same, so base the comparison on

// the first names, using compareTo from class String.

return firstName.compareTo(other.firstName);

}

10.1. GENERIC PROGRAMMING 495

}

.

. // other methods

.

}

(I find it a little odd that the class here is declared as “class FullName implements

Comparable<FullName>”, with “FullName” repeated as a type parameter in the name of the
interface. However, it does make sense. It means that we are going to compare objects that
belong to the class FullName to other objects of the same type. Even though this is the only
reasonable thing to do, that fact is not obvious to the Java compiler—and the type parameter
in Comparable<FullName> is there for the compiler.)

There is another way to allow for comparison of objects in Java, and that is to provide
a separate object that is capable of making the comparison. The object must implement the
interface Comparator<T>, where T is the type of the objects that are to be compared. The
interface Comparator<T> defines the method:

public int compare(T obj1, T obj2)

This method compares two objects of type T and returns a value that is negative, or positive,
or zero, depending on whether obj1 comes before obj2, or comes after obj2, or is considered to
be the same as obj2 for the purposes of this comparison. Comparators are useful for compar-
ing objects that do not implement the Comparable interface and for defining several different
orderings on the same collection of objects.

In the next two sections, we’ll see how Comparable and Comparator are used in the context
of collections and maps.

10.1.7 Generics and Wrapper Classes

As noted above, Java’s generic programming does not apply to the primitive types, since generic
data structures can only hold objects, while values of primitive type are not objects. However,
the “wrapper classes” that were introduced in Subsection 5.3.2 make it possible to get around
this restriction to a great extent.

Recall that each primitive type has an associated wrapper class: class Integer for type int,
class Boolean for type boolean, class Character for type char, and so on.

An object of type Integer contains a value of type int. The object serves as a “wrapper”
for the primitive type value, which allows it to be used in contexts where objects are required,
such as in generic data structures. For example, a list of Integers can be stored in a variable of
type ArrayList<Integer>, and interfaces such as Collection<Integer> and Set<Integer> are defined.
Furthermore, class Integer defines equals(), compareTo(), and toString() methods that do
what you would expect (that is, that compare and write out the corresponding primitive type
values in the usual way). Similar remarks apply for all the wrapper classes.

Recall also that Java does automatic conversions between a primitive type and the corre-
sponding wrapper type. (These conversions, which are called autoboxing and unboxing, were
also introduced in Subsection 5.3.2.) This means that once you have created a generic data
structure to hold objects belonging to one of the wrapper classes, you can use the data structure
pretty much as if it actually contained primitive type values. For example, if numbers is a vari-
able of type Collection<Integer>, it is legal to call numbers.add(17) or numbers.remove(42).
You can’t literally add the primitive type value 17 to numbers, but Java will automatically con-
vert the 17 to the corresponding wrapper object, new Integer(17), and the wrapper object

496 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

will be added to the collection. (The creation of the object does add some time and memory
overhead to the operation, and you should keep that in mind in situations where efficiency is
important. An array of int is more efficient than an ArrayList<Integer>.)

10.2 Lists and Sets

In the previous section, we looked at the general properties of collection classes in Java. In
this section, we look at some specific collection classes and how to use them. These classes can
be divided into two categories: lists and sets. A list consists of a sequence of items arranged in
a linear order. A list has a definite order, but is not necessarily sorted into ascending order. A
set is a collection that has no duplicate entries. The elements of a set might or might not be
arranged into some definite order.

10.2.1 ArrayList and LinkedList

There are two obvious ways to represent a list: as a dynamic array and as a linked list. We’ve
encountered these already in Section 7.3 and Section 9.2. Both of these options are available
in generic form as the collection classes java.util.ArrayList and java.util.LinkedList.
These classes are part of the Java Collection Framework. Each implements the interface List<T>,
and therefore the interface Collection<T>. An object of type ArrayList<T> represents an ordered
sequence of objects of type T, stored in an array that will grow in size whenever necessary as
new items are added. An object of type LinkedList<T> also represents an ordered sequence of
objects of type T, but the objects are stored in nodes that are linked together with pointers.

Both list classes support the basic list operations that are defined in the interface List<T>,
and an abstract data type is defined by its operations, not by its representation. So why two
classes? Why not a single List class with a single representation? The problem is that there is

no single representation of lists for which all list operations are efficient. For some operations,
linked lists are more efficient than arrays. For others, arrays are more efficient. In a particular
application of lists, it’s likely that only a few operations will be used frequently. You want
to choose the representation for which the frequently used operations will be as efficient as
possible.

Broadly speaking, the LinkedList class is more efficient in applications where items will often
be added or removed at the beginning of the list or in the middle of the list. In an array, these
operations require moving a large number of items up or down one position in the array, to
make a space for a new item or to fill in the hole left by the removal of an item. In terms of
asymptotic analysis (Section 8.6), adding an element at the beginning or in the middle of an
array has run time Θ(n), where n is the number of items in the array. In a linked list, nodes can
be added or removed at any position by changing a few pointer values, an operation that has
run time Θ(1). That is, the operation takes only some constant amount of time, independent
of how many items are in the list.

On the other hand, the ArrayList class is more efficient when random access to items is
required. Random access means accessing the k-th item in the list, for any integer k. Random
access is used when you get or change the value stored at a specified position in the list. This is
trivial for an array, with run time Θ(1). But for a linked list it means starting at the beginning
of the list and moving from node to node along the list for k steps, an operation that has run
time Θ(n).

10.2. LISTS AND SETS 497

Operations that can be done efficiently for both types of lists include sorting and adding an
item at the end of the list.

All lists implement the methods from interface Collection<T> that were discussed in Sub-
section 10.1.4. These methods include size(), isEmpty(), add(T), remove(Object), and
clear(). The add(T) method adds the object at the end of the list. The remove(Object)

method involves first finding the object, which is not very efficient for any list since it involves
going through the items in the list from beginning to end until the object is found. The interface
List<T> adds some methods for accessing list items according to their numerical positions in
the list. Suppose that list is an object of type List<T>. Then we have the methods:

• list.get(index) — returns the object of type T that is at position index in the list,
where index is an integer. Items are numbered 0, 1, 2, . . . , list.size()-1. The param-
eter must be in this range, or an IndexOutOfBoundsException is thrown.

• list.set(index,obj) — stores the object obj at position number index in the list,
replacing the object that was there previously. The object obj must be of type T. This
does not change the number of elements in the list or move any of the other elements.

• list.add(index,obj) — inserts an object obj into the list at position number index,
where obj must be of type T. The number of items in the list increases by one, and items
that come after position index move up one position to make room for the new item. The
value of index must be in the range 0 to list.size(), inclusive. If index is equal to
list.size(), then obj is added at the end of the list.

• list.remove(index) — removes the object at position number index, and returns that
object as the return value of the method. Items after this position move up one space in
the list to fill the hole, and the size of the list decreases by one. The value of index must
be in the range 0 to list.size()-1

• list.indexOf(obj)— returns an int that gives the position of obj in the list, if it occurs.
If it does not occur, the return value is -1. The object obj can be of any type, not just
of type T. If obj occurs more than once in the list, the index of the first occurrence is
returned.

These methods are defined both in class ArrayList<T> and in class LinkedList<T>, although
some of them—get and set—are only efficient for ArrayLists. The class LinkedList<T> adds a
few additional methods, which are not defined for an ArrayList. If linkedlist is an object of
type LinkedList<T>, then we have

• linkedlist.getFirst() — returns the object of type T that is the first item in the list.
The list is not modified. If the list is empty when the method is called, an exception of
type NoSuchElementException is thrown (the same is true for the next three methods as
well).

• linkedlist.getLast() — returns the object of type T that is the last item in the list.
The list is not modified.

• linkedlist.removeFirst() — removes the first item from the list, and returns that
object of type T as its return value.

• linkedlist.removeLast()— removes the last item from the list, and returns that object
of type T as its return value.

• linkedlist.addFirst(obj) — adds the obj, which must be of type T, to the beginning
of the list.

498 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

• linkedlist.addLast(obj) — adds the object obj, which must be of type T, to the end
of the list. (This is exactly the same as linkedlist.add(obj) and is apparently defined
just to keep the naming consistent.)

These methods are apparently defined to make it easy to use a LinkedList as if it were a
stack or a queue. (See Section 9.3.) For example, we can use a LinkedList as a queue by adding
items onto one end of the list (using the addLast() method) and removing them from the other
end (using the removeFirst() method).

If list is an object of type List<T>, then the method list.iterator(), defined in the
interface Collection<T>, returns an Iterator that can be used to traverse the list from beginning
to end. However, for Lists, there is a special type of Iterator, called a ListIterator, which offers
additional capabilities. ListIterator<T> is an interface that extends the interface Iterator<T>.
The method list.listIterator() returns an object of type ListIterator<T>.

A ListIterator has the usual Iterator methods, hasNext(), next(), and remove(), but it
also has methods hasPrevious(), previous(), and add(obj) that make it possible to move
backwards in the list and to add an item at the current position of the iterator. To understand
how these work, it’s best to think of an iterator as pointing to a position between two list
elements, or at the beginning or end of the list. In this diagram, the items in a list are
represented by squares, and arrows indicate the possible positions of an iterator:

If iter is of type ListIterator<T>, then iter.next() moves the iterator one space to the
right along the list and returns the item that the iterator passes as it moves. The method
iter.previous() moves the iterator one space to the left along the list and returns the item
that it passes. The method iter.remove() removes an item from the list; the item that is
removed is the item that the iterator passed most recently in a call to either iter.next() or
iter.previous(). There is also a method iter.add(obj) that adds the specified object to the
list at the current position of the iterator (where obj must be of type T). This can be between
two existing items or at the beginning of the list or at the end of the list.

(By the way, the lists that are used in class LinkedList<T> are doubly linked lists.
That is, each node in the list contains two pointers—one to the next node in the list and
one to the previous node. This makes it possible to efficiently implement both the next()

and previous() methods of a ListIterator. Also, to make the addLast() and getLast()

methods of a LinkedList efficient, the class LinkedList<T> includes an instance variable that
points to the last node in the list.)

As an example of using a ListIterator, suppose that we want to maintain a list of items that
is always sorted into increasing order. When adding an item to the list, we can use a ListIterator
to find the position in the list where the item should be added. Once the position has been
found, we use the same list iterator to place the item in that position. The idea is to start at
the beginning of the list and to move the iterator forward past all the items that are smaller
than the item that is being inserted. At that point, the iterator’s add() method can be used to
insert the item. To be more definite, suppose that stringList is a variable of type List<String>.
Assume that that the strings that are already in the list are stored in ascending order and that
newItem is a string that we would like to insert into the list. The following code will place
newItem in the list in its correct position, so that the modified list is still in ascending order:

10.2. LISTS AND SETS 499

ListIterator<String> iter = stringList.listIterator();

// Move the iterator so that it points to the position where

// newItem should be inserted into the list. If newItem is

// bigger than all the items in the list, then the while loop

// will end when iter.hasNext() becomes false, that is, when

// the iterator has reached the end of the list.

while (iter.hasNext()) {

String item = iter.next();

if (newItem.compareTo(item) <= 0) {

// newItem should come BEFORE item in the list.

// Move the iterator back one space so that

// it points to the correct insertion point,

// and end the loop.

iter.previous();

break;

}

}

iter.add(newItem);

Here, stringList might be of type ArrayList<String> or of type LinkedList<String>. The
algorithm that is used to insert newItem into the list will be about equally efficient for both types
of lists, and it will even work for other classes that implement the interface List<String>. You
would probably find it easier to design an insertion algorithm that uses array-like indexing with
the methods get(index) and add(index,obj). However, that algorithm would be horribly
inefficient for LinkedLists because random access is so inefficient for linked lists. (By the way,
the insertion algorithm works when the list is empty. It might be useful for you to think about
why this is true.)

10.2.2 Sorting

Sorting a list is a fairly common operation, and there should really be a sorting method in the
List interface. There is not, presumably because it only makes sense to sort lists of certain
types of objects, but methods for sorting lists are available as static methods in the class
java.util.Collections. This class contains a variety of static utility methods for working
with collections. The methods are generic; that is, they will work for collections of objects of
various types. Suppose that list is of type List<T>. The command

Collections.sort(list);

can be used to sort the list into ascending order. The items in the list should implement the
interface Comparable<T> (see Subsection 10.1.6). The method Collections.sort() will work,
for example, for lists of String and for lists of any of the wrapper classes such as Integer and
Double. There is also a sorting method that takes a Comparator as its second argument:

Collections.sort(list,comparator);

In this method, the comparator will be used to compare the items in the list. As mentioned
in the previous section, a Comparator is an object that defines a compare() method that can
be used to compare two objects. We’ll see an example of using a Comparator in Section 10.4.

The sorting method that is used by Collections.sort() is the so-called “merge sort”
algorithm, which has both worst-case and average-case run times that are Θ(n*log(n)) for

500 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

a list of size n. Although the average run time for MergeSort is a little slower than that of
QuickSort, its worst-case performance is much better than QuickSort’s. (QuickSort was covered
in Subsection 9.1.3.) MergeSort also has a nice property called “stability” that we will encounter
at the end of Subsection 10.4.3.

The Collections class has at least two other useful methods for modifying lists.
Collections.shuffle(list) will rearrange the elements of the list into a random order.
Collections.reverse(list) will reverse the order of the elements, so that the last element is
moved to the beginning of the list, the next-to-last element to the second position, and so on.

Since an efficient sorting method is provided for Lists, there is no need to write one your-
self. You might be wondering whether there is an equally convenient method for standard
arrays. The answer is yes. Array-sorting methods are available as static methods in the class
java.util.Arrays. The statement

Arrays.sort(A);

will sort an array, A, provided either that the base type of A is one of the primitive types (except
boolean) or that A is an array of Objects that implement the Comparable interface. You can
also sort part of an array. This is important since arrays are often only “partially filled.” The
command:

Arrays.sort(A,fromIndex,toIndex);

sorts the elements A[fromIndex], A[fromIndex+1], . . . , A[toIndex-1] into ascending order.
You can use Arrays.sort(A,0,N-1) to sort a partially filled array which has items in the first
N positions.

Java does not support generic programming for primitive types. In order to implement the
command Arrays.sort(A), the Arrays class contains eight methods: one method for arrays
of Objects and one method for each of the primitive types byte, short, int, long, float, double,
and char.

10.2.3 TreeSet and HashSet

A set is a collection of objects in which no object occurs more than once. Sets implement all
the methods in the interface Collection<T>, but do so in a way that ensures that no element
occurs twice in the set. For example, if set is an object of type Set<T>, then set.add(obj)

will have no effect on the set if obj is already an element of the set. Java has two classes that
implement the interface Set<T>: java.util.TreeSet and java.util.HashSet.

In addition to being a Set, a TreeSet has the property that the elements of the set are
arranged into ascending sorted order. An Iterator for a TreeSet will always visit the elements
of the set in ascending order.

A TreeSet cannot hold arbitrary objects, since there must be a way to determine the sorted
order of the objects it contains. Ordinarily, this means that the objects in a set of type
TreeSet<T> should implement the interface Comparable<T> and that obj1.compareTo(obj2)

should be defined in a reasonable way for any two objects obj1 and obj2 in the set. Alter-
natively, an object of type Comparator<T> can be provided as a parameter to the constructor
when the TreeSet is created. In that case, the compareTo() method of the Comparator will be
used to compare objects that are added to the set.

A TreeSet does not use the equals() method to test whether two objects are the same.
Instead, it uses the compareTo() method. This can be a problem. Recall from Subsection 10.1.6
that compareTo() can consider two objects to be the same for the purpose of the comparison

10.2. LISTS AND SETS 501

even though the objects are not equal. For a TreeSet, this means that only one of those objects
can be in the set. For example, if the TreeSet contains mailing addresses and if the compareTo()
method for addresses just compares their zip codes, then the set can contain only one address in
each zip code. Clearly, this is not right! But that only means that you have to be aware of the
semantics of TreeSets, and you need to make sure that compareTo() is defined in a reasonable
way for objects that you put into a TreeSet. This will be true, by the way, for Strings, Integers,
and many other built-in types, since the compareTo() method for these types considers two
objects to be the same only if they are actually equal.

In the implementation of a TreeSet, the elements are stored in something similar to a binary
sort tree. (See Subsection 9.4.2.) However, the data structure that is used is balanced in the
sense that all the leaves of the tree are at about the same distance from the root of the tree.
This ensures that all the basic operations—inserting, deleting, and searching—are efficient, with
worst-case run time Θ(log(n)), where n is the number of items in the set.

The fact that a TreeSet sorts its elements and removes duplicates makes it very useful in
some applications. Exercise 7.6 asked you to write a program that would read a file and output
an alphabetical list of all the words that occurred in the file, with duplicates removed. The
words were to be stored in an ArrayList, so it was up to you to make sure that the list was
sorted and contained no duplicates. The same task can be programmed much more easily
using a TreeSet instead of a list. A TreeSet automatically eliminates duplicates, and an iterator
for the set will automatically visit the items in the set in sorted order. An algorithm for the
program, using a TreeSet, would be:

TreeSet<String> words = new TreeSet<String>();

while there is more data in the input file:

Let word = the next word from the file

Convert word to lower case

words.add(word) // Adds the word only if not already present.

Iterator<String> iter = words.iterator();

while (iter.hasNext()):

Output iter.next() // Prints the words in sorted order.

If you would like to see a complete, working program, you can find it in the file WordListWith-
TreeSet.java.

As another example, suppose that coll is any Collection of Strings. (This would also
work for any other type for which compareTo() is properly defined.) We can use a TreeSet to
sort the items of coll and remove the duplicates simply by saying:

TreeSet<String> set = new TreeSet();

set.addAll(coll);

The second statement adds all the elements of the collection to the set. Since it’s a Set,
duplicates are ignored. Since it’s a TreeSet, the elements of the set are sorted. If you would like
to have the data in some other type of data structure, it’s easy to copy the data from the set.
For example, to place the answer in an ArrayList, you could say:

TreeSet<String> set = new TreeSet<String>();

set.addAll(coll);

ArrayList<String> list = new ArrayList<String>();

list.addAll(set);

502 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

Now, in fact, every one of Java’s collection classes has a constructor that takes a Collection
as an argument. All the items in that Collection are added to the new collection when it is
created. So, if coll is of type Collection<String>, then “new TreeSet<String>(coll)” creates
a TreeSet that contains the same elements as coll, but with duplicates removed and in sorted
order. This means that we can abbreviate the four lines in the above example to the single
command:

ArrayList<String> list = new ArrayList<String>(new TreeSet<String>(coll));

This makes a sorted list of the elements of coll with no duplicates. Although the repeated
type parameter, “<String>”, makes it a bit ugly to look at, this is still a nice example of the
power of generic programming. (It seems, by the way, there is no equally easy way to get a
sorted list with duplicates. To do this, we would need something like a TreeSet that allows
duplicates. The C++ programming language has such a thing and refers to it as a multiset .
The Smalltalk language has something similar and calls it a bag . Java, for the time being at
least, lacks this data type.)

∗ ∗ ∗

A HashSet stores its elements in a hash table , a type of data structure that I will discuss
in the next section. The operations of finding, adding, and removing elements are implemented
very efficiently in hash tables, even more so than for TreeSets. The elements of a HashSet are not
stored in any particular order, and so do not need to implement the Comparable interface. The
equals() method is used to determine whether two objects in a HashSet are to be considered
the same. An Iterator for a HashSet will visit its elements in what seems to be a completely
arbitrary order, and it’s possible for the order to change completely when a new element is
added. Use a HashSet instead of a TreeSet when the elements it contains are not comparable,
or when the order is not important, or when the small advantage in efficiency is important

∗ ∗ ∗

A note about the mathematics of sets: In mathematical set theory, the items in a set are
called members or elements of that set. Important operations include adding an element
to a set, removing an element from a set, and testing whether a given entity is an element of
a set. Operations that can be performed on two sets include union , intersection , and set
difference . All these operations are defined in Java for objects of type Set, but with different
names. Suppose that A and B are Sets. Then:

• A.add(x) adds the element x to the set A.

• A.remove(x) removes the element x from the set A.

• A.contains(x) tests whether x is an element of the set A.

• A.addAll(B) computes the union of A and B.

• A.retainAll(B) computes the intersection of A and B.

• A.removeAll(B) computes the set difference, A - B.

There are of course, differences between mathematical sets and sets in Java. Most important,
perhaps, sets in Java must be finite, while in mathematics, most of the fun in set theory comes
from working with infinity. In mathematics, a set can contain arbitrary elements, while in Java,
a set of type Set<T> can only contain elements of type T. The operation A.addAll(B) acts by
modifying the value of A, while in mathematics the operation A union B computes a new set,
without changing the value of A or B. See Exercise 10.2 for an example of mathematical set
operations in Java.

10.2. LISTS AND SETS 503

10.2.4 EnumSet

Enumerated types (or “enums”) were introduced in Subsection 2.3.3. Suppose that E is an
enumerated type. Since E is a class, it is possible to create objects of type TreeSet<E> and Hash-
Set<E>. However, because enums are so simple, trees and hash tables are not the most efficient
implementation for sets of enumerated type values. Java provides the class java.util.EnumSet
as an alternative way to create such sets.

Sets of enumerated type values are created using static methods in the class EnumSet. For
example, if e1, e2, and e3 are values belonging to the enumerated type E, then the method

EnumSet.of(e1, e2, e3)

creates and returns a set of type EnumSet<E> that contains exactly the elements e1, e2, and
e3. The set implements the interface Set<E>, so all the usual set and collection operations are
available. The implementation of these operations is very efficient. The implementation uses
what is called a bit vector. A bit is a quantity that has only two possible values, zero and one.
A set of type EnumSet<E> is represented by a bit vector that contains one bit for each enum
constant in the enumerated type E ; the bit corresponding to the enum constant e is 1 if e is
a member of the set and is 0 if e is not a member of the set. The bit vectors for two sets of
type EnumSet<E> can be very easily combined to represent such operations as the union and
intersection of two sets. The bit vector representation is feasible for EnumSets, but not for
other sets in Java, because an enumerated type contains only a small finite number of enum
constants. (Java actually has a class named BitSet that uses bit vectors to represent finite sets
of non-negative integers, but this class is not part of the Java Collection Framework and does
not implement the Set interface.)

The function EnumSet.of can be used with any positive number of parameters. All the
parameters must be values of the same enumerated type. Null values are not allowed. An
EnumSet cannot contain the value null—any attempt to add null to an EnumSet will result
in a NullPointerException.

There is also a function EnumSet.range(e1,e2) that returns an EnumSet consisting of the
enum constants between e1 and e2, inclusive. The ordering of enum constants is the same as
the order in which they are listed in the definition of the enum. In EnumSet.range(e1,e2), e1
and e2 must belong to the same enumerated type, and e1 must be less than or equal to e2.

If E is an enum, then EnumSet.allOf(E.class) is a set that contains all values of type
E. EnumSet.noneOf(E.class) is an empty set , a set of type EnumSet<E> that contains no
elements at all. Note that in EnumSet.allOf(E.class) and EnumSet.noneOf(E.class), the
odd-looking parameter represents the enumerated type class itself. If eset is a set of type
EnumSet<E>, then EnumSet.complementOf(eset) is a set that contains all the enum constants
of E that are not in eset.

As an example, consider a program that keeps schedules of events. The program must
keep track of repeating events that happen on specified days of the week. For example, an
event might take place only on weekdays, or only on Wednesdays and Fridays. In other words,
associated with the event is the set of days of the week on which it takes place. This information
can be represented using the enumerated type

enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY }

The days of the week on which an event takes place would then be a value of type EnumSet<Day>.
An object of type RepeatingEvent would have an instance variable of type EnumSet<Day> to
hold this information. An event that takes place on Wednesdays and Fridays would have the
associated set

504 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

EnumSet.of(Day.WEDNESDAY, Day.FRIDAY)

We could define some common sets of Days as

EnumSet<Day> weekday = EnumSet.range(Day.MONDAY, Day.FRIDAY);

EnumSet<Day> weekend = EnumSet.complementOf(weekday);

EnumSet<Day> everyday = EnumSet.allOf(Day.class);

EnumSets are often used to specify sets of “options” that are to be applied during some type
of processing. For example, a program that draws characters in fancy fonts might have various
options that can be applied. Let’s say that the options are bold, italic, underlined, strikethrough,
and boxed. Note that we are assuming that options can be combined in arbitrary ways. For
example, you can have italic, boxed, underlined characters. This just means that we need to
keep track of a set of options. If the options are represented by the enumerated type

enum FontOption { BOLD, ITALIC, UNDERLINED, STRIKETHROUGH, BOXED }

then a set of options is represented by a value of type EnumSet<FontOption>. Suppose that
options is a variable of this type that represents the set of options that are currently being
applied by the program. Then we can do things like:

• options = EnumSet.noneOf(FontOption.class) — Turn off all options.

• options = EnumSet.of(FontOption.BOLD) — Use bold, with no other options.

• options.add(FontOption.BOLD) — Add bold to any options that are already on.

• options.remove(FontOption.UNDERLINED) — Turn underlining off (if it’s on).

This is a nice, safe way to work with sets of options, and applications like this are one of the
major reasons that enumerated types were introduced.

10.3 Maps

An array of N elements can be thought of as a way of associating some item with each of
the integers 0, 1, . . . , N-1. If i is one of these integers, it’s possible to get the item associated
with i, and it’s possible to put a new item in the i-th position. These “get” and “put”
operations define what it means to be an array.

A map is a kind of generalized array. Like an array, a map is defined by “get” and “put”
operations. But in a map, these operations are defined not for integers 0, 1, . . . , N-1, but for
arbitrary objects of some specified type T. Associated to these objects of type T are objects of
some possibly different type S.

In fact, some programming languages use the term associative array instead of “map”
and use the same notation for associative arrays as for regular arrays. In those languages,
for example, you might see the notation A["fred"] used to indicate the item associated to the
string “fred” in the associative array A. Java does not use array notation for maps, unfortunately,
but the idea is the same: A map is like an array, but the indices for a map are objects, not
integers. In a map, an object that serves as an “index” is called a key . The object that is
associated with a key is called a value . Note that a key can have at most one associated value,
but the same value can be associated to several different keys. A map can be considered to be
a set of “associations,” where each association is a key/value pair.

10.3. MAPS 505

10.3.1 The Map Interface

In Java, maps are defined by the interface java.util.Map, which includes put and get methods
as well as other general methods for working with maps. The map interface, Map<T,S>, is
parameterized by two types. The first type parameter, T, specifies the type of objects that are
possible keys in the map; the second type parameter, S, specifies the type of objects that are
possible values in the map. For example, a map of type Map<Date,JButton> would associate
values of type JButton to keys of type Date. For a map of type Map<String,String>, both the
keys and the values are of type String.

Suppose that map is a variable of type Map<T,S> for some specific types T and S. Then the
following are some of the methods that are defined for map:

• map.get(key) — returns the object of type S that is associated by the map to the key.
key can be any object; it does not have to be of type T. If the map does not associate
any value with obj, then the return value is null. Note that it’s also possible for the
return value to be null when the map explicitly associates the value null with the key.
Referring to “map.get(key)” is similar to referring to “A[key]” for an array A. (But note
that there is nothing like an IndexOutOfBoundsException for maps.)

• map.put(key,value) — Associates the specified value with the specified key, where key
must be of type T and value must be of type S. If the map already associated some
other value with the key, then the new value replaces the old one. This is similar to the
command “A[key] = value” for an array.

• map.putAll(map2) — if map2 is another map of type Map<T,S>, this copies all the asso-
ciations from map2 into map.

• map.remove(key) — if map associates a value to the specified key, that association is
removed from the map. key can be any object; it does not have to be of type T.

• map.containsKey(key)— returns a boolean value that is true if the map associates some
value to the specified key. key can be any object; it does not have to be of type T.

• map.containsValue(value) — returns a boolean value that is true if the map associates
the specified value to some key. value can be any object; it does not have to be of type S.

• map.size() — returns an int that gives the number of associations in the map.

• map.isEmpty() — returns a boolean value that is true if the map is empty, that is if it
contains no associations.

• map.clear() — removes all associations from the map, leaving it empty.

The put and get methods are certainly the most commonly used of the methods in the Map
interface. In many applications, these are the only methods that are needed, and in such cases
a map is really no more difficult to use than a standard array.

Java includes two classes that implement the interface Map<T,S>: TreeMap<T,S> and
HashMap<T,S>. In a TreeMap, the key/value associations are stored in a sorted tree, in which
they are sorted according to their keys. For this to work, it must be possible to compare the
keys to one another. This means either that the keys must implement the interface Compara-
ble<T>, or that a Comparator must be provided for comparing keys. (The Comparator can be
provided as a parameter to the TreeMap constructor.) Note that in a TreeMap, as in a TreeSet,
the compareTo() method is used to decide whether two keys are to be considered the same.
This can have undesirable consequences if the compareTo() method does not agree with the
usual notion of equality, and you should keep this in mind when using TreeMaps.

506 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

A HashMap does not store associations in any particular order, so the keys that can be used
in a HashMap do not have to be comparable. However, the key class should have reasonable
definitions for the equals() method and for a hashCode() method that is discussed later in
this section; most of Java’s standard classes define these methods correctly. Most operations are
a little faster on HashMaps than they are on TreeMaps. In general, you should use a HashMap
unless you have some particular need for the ordering property of a TreeMap. In particular, if
you are only using the put and get operations, you can safely use a HashMap.

Let’s consider an example where maps would be useful. In Subsection 7.4.2, I presented
a simple PhoneDirectory class that associated phone numbers with names. That class defined
operations addEntry(name,number) and getNumber(name), where both name and number are
given as Strings. In fact, the phone directory is acting just like a map, with the addEntry

method playing the role of the put operation and getNumber playing the role of get. In a real
programming application, there would be no need to define a new class; we could simply use a
map of type Map<String,String>. A directory would be defined as

Map<String,String> directory = new Map<String,String>();

and then directory.put(name,number) would record a phone number in the directory and
directory.get(name) would retrieve the phone number associated with a given name.

10.3.2 Views, SubSets, and SubMaps

A Map is not a Collection, and maps do not implement all the operations defined on collections.
In particular, there are no iterators for maps. Sometimes, though, it’s useful to be able to
iterate through all the associations in a map. Java makes this possible in a roundabout but
clever way. If map is a variable of type Map<T,S>, then the method

map.keySet()

returns the set of all objects that occur as keys for associations in the map. The value returned
by this method is an object that implements the interface Set<T>. The elements of this set
are the map’s keys. The obvious way to implement the keySet() method would be to create
a new set object, add all the keys from the map, and return that set. But that’s not how it’s
done. The value returned by map.keySet() is not an independent object. It is what is called a
view of the actual objects that are stored in the map. This “view” of the map implements the
Set<T> interface, but it does it in such a way that the methods defined in the interface refer
directly to keys in the map. For example, if you remove a key from the view, that key—along
with its associated value—is actually removed from the map. It’s not legal to add an object
to the view, since it doesn’t make sense to add a key to a map without specifying the value
that should be associated to the key. Since map.keySet() does not create a new set, it’s very
efficient, even for very large maps.

One of the things that you can do with a Set is get an Iterator for it and use the iterator to
visit each of the elements of the set in turn. We can use an iterator for the key set of a map to
traverse the map. For example, if map is of type Map<String,Double>, we could write:

Set<String> keys = map.keySet(); // The set of keys in the map.

Iterator<String> keyIter = keys.iterator();

System.out.println("The map contains the following associations:");

while (keyIter.hasNext()) {

String key = keyIter.next(); // Get the next key.

Double value = map.get(key); // Get the value for that key.

System.out.println(" (" + key + "," + value + ")");

10.3. MAPS 507

}

Or we could do the same thing more easily, avoiding the explicit use of an iterator, with a
for-each loop:

System.out.println("The map contains the following associations:");

for (String key : map.keySet()) { // "for each key in the map’s key set"

Double value = map.get(key);

System.out.println(" (" + key + "," + value + ")");

}

If the map is a TreeMap, then the key set of the map is a sorted set, and the iterator will visit
the keys in ascending order. For a HashMap, the keys are visited in an arbitrary, unpredictable
order.

The Map interface defines two other views. If map is a variable of type Map<T,S>, then the
method:

map.values()

returns an object of type Collection<S> that contains all the values from the associations that
are stored in the map. The return value is a Collection rather than a Set because it can contain
duplicate elements (since a map can associate the same value to any number of keys). The
method:

map.entrySet()

returns a set that contains all the associations from the map. The elements in the set are
objects of type Map.Entry<T,S>. Map.Entry<T,S> is defined as a static nested interface inside
the interface Map<T,S>, so its full name contains a period. However, it can be used in the same
way as any other type name. (The return type of the method map.entrySet() is written as
Set<Map.Entry<T,S>>. The type parameter in this case is itself a parameterized type. Although
this might look confusing, it’s just Java’s way of saying that the elements of the set are of
type Map.Entry<T,S>.) The information in the set returned by map.entrySet() is actually no
different from the information in the map itself, but the set provides a different view of this
information, with different operations. Each Map.Entry object contains one key/value pair,
and defines methods getKey() and getValue() for retrieving the key and the value. There is
also a method, setValue(value), for setting the value; calling this method for a Map.Entry

object will modify the map itself, just as if the map’s put method were called. As an example,
we can use the entry set of a map to print all the key/value pairs in the map. This is more
efficient than using the key set to print the same information, as I did in the above example,
since we don’t have to use the get() method to look up the value associated with each key.
Suppose again that map is of type Map<String,Double>. Then we can write:

Set<Map.Entry<String,Double>> entries = map.entrySet();

Iterator<Map.Entry<String,Double>> entryIter = entries.iterator();

System.out.println("The map contains the following associations:");

while (entryIter.hasNext()) {

Map.Entry<String,Double> entry = entryIter.next();

String key = entry.getKey(); // Get the key from the entry.

Double value = entry.getValue(); // Get the value.

System.out.println(" (" + key + "," + value + ")");

}

or, using a for-each loop:

508 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

System.out.println("The map contains the following associations:");

for (Map.Entry<String,Double> entry : map.entrySet())

System.out.println(" (" + entry.getKey() + "," + entry.getValue() + ")");

∗ ∗ ∗

Maps are not the only place in Java’s generic programming framework where views are
used. For example, the interface List<T> defines a sublist as a view of a part of a list. If list
implements the interface List<T>, then the method:

list.subList(fromIndex, toIndex)

where fromIndex and toList are integers, returns a view of the part of the list consisting of the
list elements in positions between fromIndex and toIndex (including fromIndex but excluding
toIndex). This view lets you operate on the sublist using any of the operations defined for
lists, but the sublist is not an independent list. Changes made to the sublist are actually made
to the original list.

Similarly, it is possible to obtain views that represent certain subsets of a sorted set. If
set is of type TreeSet<T>, then set.subSet(fromElement,toElement) returns a Set<T> that
contains all the elements of set that are between fromElement and toElement (including
fromElement and excluding toElement). The parameters fromElement and toElement must
be objects of type T. For example, if words is a set of type TreeSet<String> in which all the
elements are strings of lower case letters, then words.subSet("m","n") contains all the ele-
ments of words that begin with the letter ’m’. This subset is a view of part of the original
set. That is, creating the subset does not involve copying elements. And changes made to
the subset, such as adding or removing elements, are actually made to the original set. The
view set.headSet(toElement) consists of all elements from the set which are strictly less than
toElement, and set.tailSet(fromElement) is a view that contains all elements from the set
that are greater than or equal to fromElement.

The class TreeMap<T,S> defines three submap views. A submap is similar to a subset.
A submap is a Map that contains a subset of the keys from the original Map, along with
their associated values. If map is a variable of type TreeMap<T,S>, and if fromKey and toKey

are of type T, then map.subMap(fromKey,toKey) returns a view that contains all key/value
pairs from map whose keys are between fromKey and toKey (including fromKey and excluding
toKey). There are also views map.headMap(toKey) and map.tailMap(fromKey) which are
defined analogously to headSet and tailSet. Suppose, for example, that blackBook is a map
of type TreeMap<String,String> in which the keys are names and the values are phone numbers.
We can print out all the entries from blackBook where the name begins with “M” as follows:

Map<String,String> ems = blackBook.subMap("M","N");

// This submap contains entries for which the key is greater

// than or equal to "M" and strictly less than "N".

if (ems.isEmpty()) {

System.out.println("No entries beginning with M.");

}

else {

System.out.println("Entries beginning with M:");

for (Map.Entry<String,String> entry : ems.entrySet())

System.out.println(" " + entry.getKey() + ": " + entry.getValue());

}

10.3. MAPS 509

Subsets and submaps are probably best thought of as generalized search operations that
make it possible to find all the items in a range of values, rather than just to find a single
value. Suppose, for example that a database of scheduled events is stored in a map of type
TreeMap<Date,Event> in which the keys are the times of the events, and suppose you want a
listing of all events that are scheduled for some time on July 4, 2007. Just make a submap
containing all keys in the range from 12:00 AM, July 4, 2007 to 12:00 AM, July 5, 2007, and
output all the entries from that submap. This type of search, which is known as a subrange
query is quite common.

10.3.3 Hash Tables and Hash Codes

HashSets and HashMaps are implemented using a data structure known as a hash table .
You don’t need to understand hash tables to use HashSets or HashMaps, but any computer
programmer should be familiar with hash tables and how they work.

Hash tables are an elegant solution to the search problem. A hash table, like a HashMap,
stores key/value pairs. Given a key, you have to search the table for the corresponding key/value
pair. When a hash table is used to implement a set, the values are all null, and the only question
is whether or not the key occurs in the set. You still have to search for the key to check whether
it is there or not.

In most search algorithms, in order to find the item you are interested in, you have to look
through a bunch of other items that don’t interest you. To find something in an unsorted list,
you have to go though the items one-by-one until you come to the one you are looking for. In
a binary sort tree, you have to start at the root and move down the tree until you find the
item you want. When you search for a key/value pair in a hash table, you can go directly to
the location that contains the item you want. You don’t have to look through any other items.
(This is not quite true, but it’s close.) The location of the key/value pair is computed from the
key: You just look at the key, and then you go directly to the location where it is stored.

How can this work? If the keys were integers in the range 0 to 99, we could store the
key/value pairs in an array, A, of 100 elements. The key/value pair with key K would be stored
in A[K]. The key takes us directly to the location of the key/value pair. The problem is that
there are usually far too many different possible keys for us to be able to use an array with
one location for each possible key. For example, if the key can be any value of type int, then
we would need an array with over four billion locations—quite a waste of space if we are only
going to store, say, a few thousand items! If the key can be a string of any length, then the
number of possible keys is infinite, and using an array with one location for each possible key
is simply impossible.

Nevertheless, hash tables store their data in an array, and the array index where a key is
stored is based on the key. The index is not equal to the key, but it is computed from the key.
The array index for a key is called the hash code for that key. A function that computes a
hash code, given a key, is called a hash function . To find a key in a hash table, you just have
to compute the hash code of the key and go directly to the array location given by that hash
code. If the hash code is 17, look in array location number 17.

Now, since there are fewer array locations than there are possible keys, it’s possible that
we might try to store two or more keys in the same array location. This is called a collision .
A collision is not an error. We can’t reject a key just because another key happened to have
the same hash code. A hash table must be able to handle collisions in some reasonable way. In
the type of hash table that is used in Java, each array location actually holds a linked list of

510 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

key/value pairs (possibly an empty list). When two items have the same hash code, they are
in the same linked list. The structure of the hash table looks something like this:0 1234567891 01 1

i t e mi t e m i t e m
i t e mi t e m i t e m i t e m
i t e m i t e mi t e m

In this diagram, there is one item with hash code 0, no items with hash code 1, two items with
hash code 2, and so on. In a properly designed hash table, most of the linked lists are of length
zero or one, and the average length of the lists is less than one. Although the hash code of a key
doesn’t necessarily take you directly to that key, there are probably no more than one or two
other items that you have to look through before finding the key you want. For this to work
properly, the number of items in the hash table should be somewhat less than the number of
locations in the array. In Java’s implementation, whenever the number of items exceeds 75%
of the array size, the array is replaced by a larger one and all the items in the old array are
inserted into the new one. (This is why adding one new item will sometimes cause the ordering
of all the items in the hash table to change completely.)

There is still the question of where hash codes come from. Every object in Java has a
hash code. The Object class defines the method hashCode(), which returns a value of type
int. When an object, obj, is stored in a hash table that has N locations, a hash code in the
range 0 to N-1 is needed. This hash code is computed as Math.abs(obj.hashCode()) % N,
the remainder when the absolute value of obj.hashCode() is divided by N. (The Math.abs

is necessary because obj.hashCode() can be a negative integer, and we need a non-negative
number to use as an array index.)

For hashing to work properly, two objects that are equal according to the equals() method
must have the same hash code. In the Object class, this condition is satisfied because both
equals() and hashCode() are based on the address of the memory location where the object
is stored. However, as noted in Subsection 10.1.6, many classes redefine the equals() method.
If a class redefines the equals() method, and if objects of that class will be used as keys in
hash tables, then the class should also redefine the hashCode() method. For example, in the
String class, the equals() method is redefined so that two objects of type String are considered
to be equal if they contain the same sequence of characters. The hashCode() method is also
redefined in the String class, so that the hash code of a string is computed from the characters
in that string rather than from its location in memory. For Java’s standard classes, you can
expect equals() and hashCode() to be correctly defined. However, you might need to define

10.4. PROGRAMMING WITH THE COLLECTION FRAMEWORK 511

these methods in classes that you write yourself.

10.4 Programming with the Collection Framework

In this section, we’ll look at some programming examples that use classes from the Java
Collection Framework. The Collection Framework is easy to use, especially compared to the
difficulty of programming new data structures from scratch.

10.4.1 Symbol Tables

We begin with a straightforward but important application of maps. When a compiler reads
the source code of a program, it encounters definitions of variables, subroutines, and classes.
The names of these things can be used later in the program. The compiler has to remember the
definition of each name, so that it can recognize the name and apply the definition when the
name is encountered later in the program. This is a natural application for a Map. The name
can be used as a key in the map. The value associated to the key is the definition of the name,
encoded somehow as an object. A map that is used in this way is called a symbol table .

In a compiler, the values in a symbol table can be quite complicated, since the compiler has
to deal with names for various sorts of things, and it needs a different type of information for
each different type of name. We will keep things simple by looking at a symbol table in another
context. Suppose that we want a program that can evaluate expressions entered by the user,
and suppose that the expressions can contain variables, in addition to operators, numbers, and
parentheses. For this to make sense, we need some way of assigning values to variables. When
a variable is used in an expression, we need to retrieve the variable’s value. A symbol table can
be used to store the data that we need. The keys for the symbol table are variable names. The
value associated with a key is the value of that variable, which is of type double. The symbol
table will be an object of type Map<String,Double>. (Remember that primitive types such as
double can’t be used as type parameters; a wrapper class such as Double must be used instead.
See Subsection 10.1.7.)

To demonstrate the idea, we’ll use a rather simple-minded program in which the user types
commands such as:

let x = 3 + 12

print 2 + 2

print 10*x +17

let rate = 0.06

print 1000*(1+rate)

The program is an interpreter for a very simple language. The only two commands that
the program understands are “print” and “let”. When a “print” command is executed, the
computer evaluates the expression and displays the value. If the expression contains a variable,
the computer has to look up the value of that variable in the symbol table. A “let” command
is used to give a value to a variable. The computer has to store the value of the variable in
the symbol table. (Note: The “variables” I am talking about here are not variables in the Java
program. The Java program is executing a sort of program typed in by the user. I am talking
about variables in the user’s program. The user gets to make up variable names, so there is no
way for the Java program to know in advance what the variables will be.)

In Subsection 9.5.2, we saw how to write a program, SimpleParser2.java, that can evaluate
expressions that do not contain variables. Here, I will discuss another example program, Sim-

512 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

pleInterpreter.java, that is based on the older program. I will only talk about the parts that
are relevant to the symbol table.

The program uses a HashMap as the symbol table. A TreeMap could also be used, but since
the program does not need to access the variables in alphabetical order, we don’t need to have
the keys stored in sorted order. The symbol table in the program is represented by a variable
named symbolTable of type HashMap<String,Double>. At the beginning of the program, the
symbol table object is created with the command:

symbolTable = new HashMap<String,Double>();

This creates a map that initially contains no key/value associations. To execute a “let” com-
mand, the program uses the symbol table’s put() method to associate a value with the variable
name. Suppose that the name of the variable is given by a String, varName, and the value of
the variable is stored in a variable val of type double. The following command would then set
the value associated with the variable in the symbol table:

symbolTable.put(varName, val);

In the program SimpleInterpreter.java, you’ll find this in the method named doLetCommand().
The actual value that is stored in the symbol table is an object of type Double. We can use the
double value val in the call to put because Java does an automatic conversion of type double

to Double when necessary. The double value is “wrapped” in an object of type Double, so that,
in effect, the above statement is equivalent to

symbolTable.put(varName, new Double(val));

Just for fun, I decided to pre-define two variables named “pi” and “e” whose values are the
usual mathematical constants π and e. In Java, the values of these constants are given by
Math.PI and Math.E. To make these variables available to the user of the program, they are
added to the symbol table with the commands:

symbolTable.put("pi", Math.PI);

symbolTable.put("e", Math.E);

When the program encounters a variable while evaluating an expression, the symbol table’s
get() method is used to retrieve its value. The function symbolTable.get(varName) returns
a value of type Double. It is possible that the return value is null; this will happen if no value
has ever been assigned to varName in the symbol table. It’s important to check this possibility.
It indicates that the user is trying to use a variable that the user has not defined. The program
considers this to be an error, so the processing looks something like this:

Double val = symbolTable.get(varName);

if (val == null) {

... // Throw an exception: Undefined variable.

}

// The value associated to varName is val.doubleValue()

You will find this code, more or less, in a method named primaryValue() in SimpleInter-
preter.java.

As you can see from this example, Maps are very useful and are really quite easy to use.

10.4.2 Sets Inside a Map

The objects in a collection or map can be of any type. They can even be collections. Here’s an
example where it’s natural to store sets as the value objects in a map.

10.4. PROGRAMMING WITH THE COLLECTION FRAMEWORK 513

Consider the problem of making an index for a book. An index consists of a list of terms
that appear in the book. Next to each term is a list of the pages on which that term appears.
To represent an index in a program, we need a data structure that can hold a list of terms,
along with a list of pages for each term. Adding new data should be easy and efficient. When
it’s time to print the index, it should be easy to access the terms in alphabetical order. There
are many ways this could be done, but I’d like to use Java’s generic data structures and let
them do as much of the work as possible.

We can think of an index as a Map that associates a list of page references to each term.
The terms are keys, and the value associated with a given key is the list of page references for
that term. A Map can be either a TreeMap or a HashMap, but only a TreeMap will make it
easy to access the terms in sorted order. The value associated with a term is a list of page
references. How can we represent such a value? If you think about it, you see that it’s not
really a list in the sense of Java’s generic classes. If you look in any index, you’ll see that a
list of page references has no duplicates, so it’s really a set rather than a list. Furthermore,
the page references for a given term are always printed in increasing order, so we want a sorted
set. This means that we should use a TreeSet to represent each list of page references. The
values that we really want to put in this set are of type int, but once again we have to deal
with the fact that generic data structures can only hold objects, so we must use the wrapper
class, Integer, for the objects in the set.

To summarize, an index will be represented by a TreeMap. The keys for the map will be
terms, which are of type String. The values in the map will be TreeSets that contain the Integers
which give the page numbers of every page on which a term appears. The parameterized type
that we should use for the sets is TreeSet<Integer>. For the TreeMap that represents the index
as a whole, the key type is String and the value type is TreeSet<Integer>. This means that the
index has type

TreeMap< String, TreeSet<Integer> >

This is just the usual TreeMap<T,S> with T=String and S=TreeSet<Integer>. A type name
as complicated as this one can look intimidating (especially, I think, when used in a constructor
with the new operator), but if you think about the data structure that we want to represent, it
makes sense. Given a little time and practice, you can get used to types like this one.

To make an index, we need to start with an empty TreeMap, look through the book, inserting
every reference that we want to be in the index into the map, and then print out the data from
the map. Let’s leave aside the question of how we find the references to put in the index, and
just look at how the TreeMap is used. It can be created with the commands:

TreeMap<String,TreeSet<Integer>> index; // Declare the variable.

index = new TreeMap<String,TreeSet<Integer>>(); // Create the map object.

Now, suppose that we find a reference to some term (of type String) on some pageNum (of
type int). We need to insert this information into the index. To do this, we should look up the
term in the index, using index.get(term). The return value is either null or is the set of page
references that we have previously found for the term. If the return value is null, then this is
the first page reference for the term, so we should add the term to the index, with a new set
that contains the page reference we’ve just found. If the return value is non-null, we already
have a set of page references, and we should just add the new page reference to the set. Here
is a subroutine that does this:

/**

* Add a page reference to the index.

514 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

*/

void addReference(String term, int pageNum) {

TreeSet<Integer> references; // The set of page references that we

// have so far for the term.

references = index.get(term);

if (references == null){

// This is the first reference that we have

// found for the term. Make a new set containing

// the page number and add it to the index, with

// the term as the key.

TreeSet<Integer> firstRef = new TreeSet<Integer>();

firstRef.add(pageNum); // pageNum is "autoboxed" to give an Integer!

index.put(term,firstRef);

}

else {

// references is the set of page references

// that we have found previously for the term.

// Add the new page number to that set. This

// set is already associated to term in the index.

references.add(pageNum); // pageNum is "autoboxed" to give an Integer!

}

}

The only other thing we need to do with the index is print it out. We want to iterate
through the index and print out each term, together with the set of page references for that
term. We could use an Iterator to iterate through the index, but it’s much easier to do it with
a for-each loop. The loop will iterate through the entry set of the map (see Subsection 10.3.2).
Each “entry” is a key/value pair from the map; the key is a term and the value is the associated
set of page references. Inside the for-each loop, we will have to print out a set of Integers, which
can also be done with a for-each loop. So, here we have an example of nested for-each loops.
(You might try to do the same thing entirely with iterators; doing so should give you some
appreciation for the for-each loop!) Here is a subroutine that will print the index:

/**

* Print each entry in the index.

*/

void printIndex() {

for (Map.Entry<String,TreeSet<Integer>> entry : index.entrySet()) {

String term = entry.getKey();

TreeSet<Integer> pageSet = entry.getValue();

System.out.print(term + " ");

for (int page : pageSet) {

System.out.print(page + " ");

}

System.out.println();

}

}

The hardest thing here is the name of the type Map.Entry<String,TreeSet<Integer>>! Re-
member that the entries in a map of type Map<T,S> have type Map.Entry<T,S>, so the type
parameters in Map.Entry<String,TreeSet<Integer>> are simply copied from the declaration

10.4. PROGRAMMING WITH THE COLLECTION FRAMEWORK 515

of index. Another thing to note is that I used a loop control variable, page, of type int to
iterate through the elements of pageSet, which is of type TreeSet<Integer>. You might have
expected page to be of type Integer, not int, and in fact Integer would have worked just as well
here. However, int does work, because of automatic type conversion: it’s legal to assign a value
of type Integer to a variable of type int. (To be honest, I was sort of surprised that this worked
when I first tried it!)

This is not a lot of code, considering the complexity of the operations. I have not written
a complete indexing program, but Exercise 10.5 presents a problem that is almost identical to
the indexing problem.

∗ ∗ ∗

By the way, in this example, I would prefer to print each list of page references with the
integers separated by commas. In the printIndex() method given above,they are separated
by spaces. There is an extra space after the last page reference in the list, but it does no harm
since it’s invisible in the printout. An extra comma at the end of the list would be annoying.
The lists should be in a form such as “17,42,105” and not “17,42,105,”. The problem is, how
to leave that last comma out. Unfortunately, this is not so easy to do with a for-each loop. It
might be fun to look at a few ways to solve this problem. One alternative is to use an iterator:

Iterator<Integer> iter = pageSet.iterator();

int firstPage = iter.next(); // In this program, we know the set has at least

// one element. Note also that this statement

// uses an auto-conversion from Integer to int.

System.out.print(firstPage);

while (iter.hasNext()) {

int nextPage = iter.next();

System.out.print("," + nextPage);

}

Another possibility is to use the fact that the TreeSet class defines a method first() that
returns the first item in the set, that is, the one that is smallest in terms of the ordering that
is used to compare items in the set. (It also defines the method last().) We can solve our
problem using this method and a for-each loop:

int firstPage = pageSet.first(); // Find out the first page number in the set.

for (int page : pageSet) {

if (page != firstPage)

System.out.print(","); // Output comma only if this is not the first page.

System.out.print(page);

}

Finally, here is an elegant solution using a subset view of the tree. (See Subsection 10.3.2.)
Actually, this solution might be a bit extreme:

int firstPage = pageSet.first(); // Get first item, which we know exists.

System.out.print(firstPage); // Print first item, with no comma.

for (int page : pageSet.tailSet(firstPage+1)) // Process remaining items.

System.out.print("," + page);

10.4.3 Using a Comparator

There is a potential problem with our solution to the indexing problem. If the terms in the index
can contain both upper case and lower case letters, then the terms will not be in alphabetical

516 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

order! The ordering on String is not alphabetical. It is based on the Unicode codes of the
characters in the string. The codes for all the upper case letters are less than the codes for
the lower case letters. So, for example, terms beginning with “Z” come before terms beginning
with “a”. If the terms are restricted to use lower case letters only (or upper case only), then
the ordering would be alphabetical. But suppose that we allow both upper and lower case, and
that we insist on alphabetical order. In that case, our index can’t use the usual ordering for
Strings. Fortunately, it’s possible to specify a different method to be used for comparing the
keys of a map. This is a typical use for a Comparator.

Recall that an object that implements the interface Comparator<T> defines a method for
comparing two objects of type T :

public int compare(T obj1, T obj2)

This method should return an integer that is positive, zero, or negative, depending on whether
obj1 is less than, equal to, or greater than obj2. We need an object of type Comparator<String>
that will compare two Strings based on alphabetical order. The easiest way to do this is to
convert the Strings to lower case and use the default comparison on the lower case Strings. The
following class defines such a comparator:

/**

* Represents a Comparator that can be used for comparing two

* strings based on alphabetical order.

*/

class AlphabeticalOrder implements Comparator<String> {

public int compare(String str1, String str2) {

String s1 = str1.toLowerCase(); // Convert to lower case.

String s2 = str2.toLowerCase();

return s1.compareTo(s2); // Compare lower-case Strings.

}

}

To solve our indexing problem, we just need to tell our index to use an object of type
AlphabeticalOrder for comparing keys. This is done by providing a Comparator object as a
parameter to the constructor. We just have to create the index in our example with the
command:

index = new TreeMap<String,TreeSet<Integer>>(new AlphabeticalOrder());

This does work. However, I’ve been concealing one technicality. Suppose, for exam-
ple, that the indexing program calls addReference("aardvark",56) and that it later calls
addReference("Aardvark",102). The words “aardvark” and “Aardvark” differ only in that
one of them begins with an upper case letter; when converted to lower case, they are the same.
When we insert them into the index, do they count as two different terms or as one term? The
answer depends on the way that a TreeMap tests objects for equality. In fact, TreeMaps and
TreeSets always use a Comparator object or a compareTo method to test for equality. They do
not use the equals() method for this purpose. The Comparator that is used for the TreeMap
in this example returns the value zero when it is used to compare “aardvark” and “Aardvark”,
so the TreeMap considers them to be the same. Page references to “aardvark” and “Aardvark”
are combined into a single list. This is probably the correct behavior in this example. If not,
some other technique must be used to sort the terms into alphabetical order.

10.4. PROGRAMMING WITH THE COLLECTION FRAMEWORK 517

10.4.4 Word Counting

The final example in this section also deals with storing information about words. The problem
here is to make a list of all the words that occur in a file, along with the number of times that
each word occurs. The file will be selected by the user. The output of the program will consist
of two lists. Each list contains all the words from the file, along with the number of times that
the word occurred. One list is sorted alphabetically, and the other is sorted according to the
number of occurrences, with the most common words at the top and the least common at the
bottom. The problem here is a generalization of Exercise 7.6, which asked you to make an
alphabetical list of all the words in a file, without counting the number of occurrences.

My word counting program can be found in the file WordCount.java. As the program reads
an input file, it must keep track of how many times it encounters each word. We could simply
throw all the words, with duplicates, into a list and count them later. But that would require
a lot of storage and would not be very efficient. A better method is to keep a counter for each
word. The first time the word is encountered, the counter is initialized to 1. On subsequent
encounters, the counter is incremented. To keep track of the data for one word, the program
uses a simple class that holds a word and the counter for that word. The class is a static

nested class:

/**

* Represents the data we need about a word: the word and

* the number of times it has been encountered.

*/

private static class WordData {

String word;

int count;

WordData(String w) {

// Constructor for creating a WordData object when

// we encounter a new word.

word = w;

count = 1; // The initial value of count is 1.

}

} // end class WordData

The program has to store all the WordData objects in some sort of data structure. We want
to be able to add new words efficiently. Given a word, we need to check whether a WordData
object already exists for that word, and if it does, we need to find that object so that we can
increment its counter. A Map can be used to implement these operations. Given a word, we
want to look up a WordData object in the Map. This means that the word is the key, and the
WordData object is the value. (It might seem strange that the key is also one of the instance
variables in the value object, but in fact this is probably the most common situation: The
value object contains all the information about some entity, and the key is one of those pieces
of information; the partial information in the key is used to retrieve the full information in the
value object.) After reading the file, we want to output the words in alphabetical order, so we
should use a TreeMap rather than a HashMap. This program converts all words to lower case
so that the default ordering on Strings will put the words in alphabetical order. The data is
stored in a variable named words of type TreeMap<String,WordData>. The variable is declared
and the map object is created with the statement:

TreeMap<String,WordData> words = new TreeMap<String,WordData>();

518 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

When the program reads a word from a file, it calls words.get(word) to find out if that
word is already in the map. If the return value is null, then this is the first time the word
has been encountered, so a new WordData object is created and inserted into the map with the
command words.put(word, new WordData(word)). If words.get(word) is not null, then
its value is the WordData object for this word, and the program only has to increment the
counter in that object. The program uses a method readNextWord(), which was given in
Exercise 7.6, to read one word from the file. This method returns null when the end of the file
is encountered. Here is the complete code segment that reads the file and collects the data:

String word = readNextWord();

while (word != null) {

word = word.toLowerCase(); // convert word to lower case

WordData data = words.get(word);

if (data == null)

words.put(word, new WordData(word));

else

data.count++;

word = readNextWord();

}

After reading the words and printing them out in alphabetical order, the program has to
sort the words by frequency and print them again. To do the sorting using a generic algorithm, I
defined a simple Comparator class for comparing two word objects according to their frequency
counts. The class implements the interface Comparator<WordData>, since it will be used to
compare two objects of type WordData:

/**

* A comparator class for comparing objects of type WordData according to

* their counts. This is used for sorting the list of words by frequency.

*/

private static class CountCompare implements Comparator<WordData> {

public int compare(WordData data1, WordData data2) {

return data2.count - data1.count;

// The return value is positive if data2.count > data1.count.

// I.E., data1 comes after data2 in the ordering if there

// were more occurrences of data2.word than of data1.word.

// The words are sorted according to decreasing counts.

}

} // end class CountCompare

Given this class, we can sort the WordData objects according to frequency by first copying
them into a list and then using the generic method Collections.sort(list,comparator).
The WordData objects that we need are the values in the map, words. Recall that
words.values() returns a Collection that contains all the values from the map. The con-
structor for the ArrayList class lets you specify a collection to be copied into the list when it is
created. So, we can use the following commands to create a list of type ArrayList<WordData>
containing the word data and then sort that list according to frequency:

ArrayList<WordData> wordsByFrequency = new ArrayList<WordData>(words.values());

Collections.sort(wordsByFrequency, new CountCompare());

You should notice that these two lines replace a lot of code! It requires some practice to think
in terms of generic data structures and algorithms, but the payoff is significant in terms of saved
time and effort.

10.5. WRITING GENERIC CLASSES AND METHODS 519

The only remaining problem is to print the data. We have to print the data from all the
WordData objects twice, first in alphabetical order and then sorted according to frequency
count. The data is in alphabetical order in the TreeMap, or more precisely, in the values of
the TreeMap. We can use a for-each loop to print the data in the collection words.values(),
and the words will appear in alphabetical order. Another for-each loop can be used to print
the data in the list wordsByFrequency, and the words will be printed in order of decreasing
frequency. Here is the code that does it:

TextIO.putln("List of words in alphabetical order"

+ " (with counts in parentheses):\n");

for (WordData data : words.values())

TextIO.putln(" " + data.word + " (" + data.count + ")");

TextIO.putln("\n\nList of words by frequency of occurrence:\n");

for (WordData data : wordsByFrequency)

TextIO.putln(" " + data.word + " (" + data.count + ")");

You can find the complete word-counting program in the file WordCount.java. Note that for
reading and writing files, it uses the file I/O capabilities of TextIO.java, which were discussed
in Subsection 2.4.5.

By the way, if you run the WordCount program on a reasonably large file and take a look
at the output, it will illustrate something about the Collections.sort() method. The second
list of words in the output is ordered by frequency, but if you look at a group of words that all
have the same frequency, you will see that the words in that group are in alphabetical order.
The method Collections.sort()was applied to sort the words by frequency, but before it was
applied, the words were already in alphabetical order. When Collections.sort() rearranged
the words, it did not change the ordering of words that have the same frequency, so they were
still in alphabetical order within the group of words with that frequency. This is because the
algorithm used by Collections.sort() is a stable sorting algorithm. A sorting algorithm is
said to be stable if it satisfies the following condition: When the algorithm is used to sort a list
according to some property of the items in the list, then the sort does not change the relative
order of items that have the same value of that property. That is, if item B comes after item A
in the list before the sort, and if both items have the same value for the property that is being
used as the basis for sorting, then item B will still come after item A after the sorting has
been done. Neither SelectionSort nor QuickSort are stable sorting algorithms. Insertion sort is
stable, but is not very fast. The sorting algorithm used by Collections.sort() is both stable
and fast.

I hope that the programming examples in this section have convinced you of the usefulness
of the Java Collection Framework!

10.5 Writing Generic Classes and Methods

So far in this chapter, you have learned about using the generic classes and methods that
are part of the Java Collection Framework. Now, it’s time to learn how to write new generic
classes and methods from scratch. Generic programming produces highly general and reusable
code—it’s very useful for people who write reusable software libraries to know how to do generic
programming, since it enables them to write code that can be used in many different situations.
Not every programmer needs to write reusable software libraries, but every programmer should
know at least a little about how to do it. In fact, just to read the JavaDoc documentation for

520 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

Java’s standard generic classes, you need to know some of the syntax that is introduced in this
section.

I will not cover every detail of generic programming in Java in this section, but the material
presented here should be sufficient to cover the most common cases.

10.5.1 Simple Generic Classes

Let’s start with an example that illustrates the motivation for generic programming. In Subsec-
tion 10.2.1, I remarked that it would be easy to use a LinkedList to implement a queue. (Queues
were introduced in Subsection 9.3.2.) To ensure that the only operations that are performed
on the list are the queue operations enqueue, dequeue, and isEmpty, we can create a new class
that contains the linked list as a private instance variable. To implement queues of strings, for
example, we can define the class:

class QueueOfStrings {

private LinkedList<String> items = new LinkedList<String>();

public void enqueue(String item) {

items.addLast(item);

}

public String dequeue() {

return items.removeFirst();

}

public boolean isEmpty() {

return (items.size() == 0);

}

}

This is a fine and useful class. But, if this is how we write queue classes, and if we want
queues of Integers or Doubles or JButtons or any other type, then we will have to write a
different class for each type. The code for all of these classes will be almost identical, which
seems like a lot of redundant programming. To avoid the redundancy, we can write a generic

Queue class that can be used to define queues of any type of object.
The syntax for writing the generic class is straightforward: We replace the specific type

String with a type parameter such as T, and we add the type parameter to the name of the
class:

class Queue<T> {

private LinkedList<T> items = new LinkedList<T>();

public void enqueue(T item) {

items.addLast(item);

}

public T dequeue() {

return items.removeFirst();

}

public boolean isEmpty() {

return (items.size() == 0);

}

}

Note that within the class, the type parameter T is used just like any regular type name.
It’s used to declare the return type for dequeue, as the type of the formal parameter item in
enqueue, and even as the actual type parameter in LinkedList<T>. Given this class definition, we
can use parameterized types such as Queue<String> and Queue<Integer> and Queue<JButton>.

10.5. WRITING GENERIC CLASSES AND METHODS 521

That is, the Queue class is used in exactly the same way as built-in generic classes like LinkedList
and HashSet.

Note that you don’t have to use “T” as the name of the type parameter in the definition of
the generic class. Type parameters are like formal parameters in subroutines. You can make up
any name you like in the definition of the class. The name in the definition will be replaced by
an actual type name when the class is used to declare variables or create objects. If you prefer
to use a more meaningful name for the type parameter, you might define the Queue class as:

class Queue<ItemType> {

private LinkedList<ItemType> items = new LinkedList<ItemType>();

public void enqueue(ItemType item) {

items.addLast(item);

}

public ItemType dequeue() {

return items.removeFirst();

}

public boolean isEmpty() {

return (items.size() == 0);

}

}

Changing the name from “T” to “ItemType” has absolutely no effect on the meaning of the
class definition or on the way that Queue is used.

Generic interfaces can be defined in a similar way. It’s also easy to define generic classes
and interfaces that have two or more type parameters, as is done with the standard interface
Map<T,S>. A typical example is the definition of a “Pair” that contains two objects, possibly
of different types. A simple version of such a class can be defined as:

class Pair<T,S> {

public T first;

public S second;

public Pair(T a, S b) { // Constructor.

first = a;

second = b;

}

}

This class can be used to declare variables and create objects such as:

Pair<String,Color> colorName = new Pair<String,Color>("Red", Color.RED);

Pair<Double,Double> coordinates = new Pair<Double,Double>(17.3,42.8);

Note that in the definition of the constructor in this class, the name “Pair” does not have type
parameters. You might have expected “Pair<T,S>. However, the name of the class is “Pair”,
not “Pair<T,S>, and within the definition of the class, “T” and “S” are used as if they are the
names of specific, actual types. Note in any case that type parameters are never added to the
names of methods or constructors, only to the names of classes and interfaces.

10.5.2 Simple Generic Methods

In addition to generic classes, Java also has generic methods. An example is the method
Collections.sort(), which can sort collections of objects of any type. To see how to write
generic methods, let’s start with a non-generic method for counting the number of times that
a given string occurs in an array of strings:

522 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

/**

* Returns the number of times that itemToCount occurs in list. Items in the

* list are tested for equality using itemToCount.equals(), except in the

* special case where itemToCount is null.

*/

public static int countOccurrences(String[] list, String itemToCount) {

int count = 0;

if (itemToCount == null) {

for (String listItem : list)

if (listItem == null)

count++;

}

else {

for (String listItem : list)

if (itemToCount.equals(listItem))

count++;

}

return count;

}

Once again, we have some code that works for type String, and we can imagine writing
almost identical code to work with other types of objects. By writing a generic method, we get
to write a single method definition that will work for objects of any type. We need to replace
the specific type String in the definition of the method with the name of a type parameter, such
as T. However, if that’s the only change we make, the compiler will think that “T” is the name
of an actual type, and it will mark it as an undeclared identifier. We need some way of telling
the compiler that “T” is a type parameter. That’s what the “<T>” does in the definition of the
generic class “class Queue<T> { ...”. For a generic method, the “<T>” goes just before the
name of the return type of the method:

public static <T> int countOccurrences(T[] list, T itemToCount) {

int count = 0;

if (itemToCount == null) {

for (T listItem : list)

if (listItem == null)

count++;

}

else {

for (T listItem : list)

if (itemToCount.equals(listItem))

count++;

}

return count;

}

The “<T>” marks the method as being generic and specifies the name of the type parameter
that will be used in the definition. Of course, the name of the type parameter doesn’t have to
be “T”; it can be anything. (The “<T>” looks a little strange in that position, I know, but it
had to go somewhere and that’s just where the designers of Java decided to put it.)

Given the generic method definition, we can apply it to objects of any type. If wordList is
a variable of type String[] and word is a variable of type String, then

int ct = countOccurrences(wordList, word);

10.5. WRITING GENERIC CLASSES AND METHODS 523

will count the number of times that word occurs in wordList. If palette is a variable of type
Color[] and color is a variable of type Color, then

int ct = countOccurrences(palette, color);

will count the number of times that color occurs in palette. If numbers is a variable of type
Integer[], then

int ct = countOccurrences(numbers, 17);

will count the number of times that 17 occurs in numbers. This last example uses au-
toboxing; the 17 is automatically converted to a value of type Integer, as if we had said
“countOccurrences(numbers, new Integer(17))”. Note that, since generic programming
in Java applies only to objects, we cannot use countOccurrences to count the number of
occurrences of 17 in an array of type int[].

A generic method can have one or more type parameters, such as the “T” in
countOccurrences. Note that when a generic method is used, as in the function call
“countOccurrences(wordlist, word)”, there is no explicit mention of the type that is sub-
stituted for the type parameter. The compiler deduces the type from the types of the actual
parameters in the method call. Since wordlist is of type String[], the compiler can tell that
in “countOccurrences(wordlist, word)”, the type that replaces T is String. This contrasts
with the use of generic classes, as in “new Queue<String>()”, where the type parameter is
specified explicitly.

The countOccurrences method operates on an array. We could also write a similar method
to count occurrences of an object in any collection:

public static <T> int countOccurrences(Collection<T> collection, T itemToCount) {

int count = 0;

if (itemToCount == null) {

for (T item : collection)

if (item == null)

count++;

}

else {

for (T item : collection)

if (itemToCount.equals(item))

count++;

}

return count;

}

Since Collection<T> is itself a generic type, this method is very general. It can operate on
an ArrayList of Integers, a TreeSet of Strings, a LinkedList of JButtons,

10.5.3 Type Wildcards

There is a limitation on the sort of generic classes and methods that we have looked at so far:
The type parameter in our examples, usually named T, can be any type at all. This is OK
in many cases, but it means that the only things that you can do with T are things that can
be done with every type, and the only things that you can do with objects of type T are
things that you can do with every object. With the techniques that we have covered so far,
you can’t, for example, write a generic method that compares objects with the compareTo()

method, since that method is not defined for all objects. The compareTo() method is defined

524 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

in the Comparable interface. What we need is a way of specifying that a generic class or method
only applies to objects of type Comparable and not to arbitrary objects. With that restriction,
we should be free to use compareTo() in the definition of the generic class or method.

There are two different but related syntaxes for putting restrictions on the types that are
used in generic programming. One of these is bounded type parameters, which are used
as formal type parameters in generic class and method definitions; a bounded type parameter
would be used in place of the simple type parameter T in “class GenericClass<T> ...”
or in “public static <T> void genericMethod(...”. The second syntax is wildcard
types, which are used as type parameters in the declarations of variables and of formal
method parameters; a wildcard type could be used in place of the type parameter String
in the declaration statement “List<String> list;” or in the formal parameter list “void
max(Collection<String> c)”. We will look at wildcard types first, and we will return to the
topic of bounded types later in this section.

Let’s start with a simple example in which a wildcard type is useful. Suppose that Shape
is a class that defines a method public void draw(), and suppose that Shape has subclasses
such as Rect and Oval. Suppose that we want a method that can draw all the shapes in a
collection of Shapes. We might try:

public static void drawAll(Collection<Shape> shapes) {

for (Shape s : shapes)

s.draw();

}

This method works fine if we apply it to a variable of type Collection<Shape>, or Ar-
rayList<Shape>, or any other collection class with type parameter Shape. Suppose, however,
that you have a list of Rects stored in a variable named rectangles of type Collection<Rect>.
Since Rects are Shapes, you might expect to be able to call drawAll(rectangles). Unfortu-
nately, this will not work; a collection of Rects is not considered to be a collection of Shapes!
The variable rectangles cannot be assigned to the formal parameter shapes. The solution
is to replace the type parameter “Shape” in the declaration of shapes with the wildcard type
“? extends Shape”:

public static void drawAll(Collection<? extends Shape> shapes) {

for (Shape s : shapes)

s.draw();

}

The wildcard type “? extends Shape” means roughly “any type that is either equal to Shape
or that is a subclass of Shape”. When the parameter shapes is declared to be of type Collec-
tion<? extends Shape>, it becomes possible to call the drawAll method with an actual parameter
of type Collection<Rect> since Rect is a subclass of Shape and therefore matches the wildcard
“? extends Shape”. We could also pass actual parameters to drawAll of type ArrayList<Rect>
or Set<Oval> or List<Oval>. And we can still pass variables of type Collection<Shape> or Ar-
rayList<Shape>, since the class Shape itself matches “? extends Shape”. We have greatly
increased the usefulness of the method by using the wildcard type.

(Although it is not essential, you might be interested in knowing why Java does not allow
a collection of Rects to be used as a collection of Shapes, even though every Rect is considered
to be a Shape. Consider the rather silly but legal method that adds an oval to a list of shapes:

static void addOval(List<Shape> shapes, Oval oval) {

shapes.add(oval);

}

10.5. WRITING GENERIC CLASSES AND METHODS 525

Suppose that rectangles is of type List<Rect>. It’s illegal to call addOval(rectangles,oval),
because of the rule that a list of Rects is not a list of Shapes. If we dropped that rule, then
addOval(rectangles,oval) would be legal, and it would add an Oval to a list of Rects. This
would be bad: Since Oval is not a subclass of Rect, an Oval is not a Rect, and a list of Rects
should never be able to contain an Oval. The method call addOval(rectangles,oval) does
not make sense and should be illegal, so the rule that a collection of Rects is not a collection
of Shapes is a good rule.)

As another example, consider the method addAll() from the interface Collection<T>. In
my description of this method in Subsection 10.1.4, I say that for a collection, coll, of type
Collection<T>, coll.addAll(coll2) “adds all the objects in coll2 to coll. The parameter,
coll2, can be any collection of type Collection<T>. However, it can also be more general. For
example, if T is a class and S is a sub-class of T, then coll2 can be of type Collection<S>.
This makes sense because any object of type S is automatically of type T and so can legally
be added to coll.” If you think for a moment, you’ll see that what I’m describing here, a little
awkwardly, is a use of wildcard types: We don’t want to require coll2 to be a collection of of
objects of type T ; we want to allow collections of any subclass of T. To be more specific, let’s
look at how a similar addAll() method could be added to the generic Queue class that was
defined earlier in this section:

class Queue<T> {

private LinkedList<T> items = new LinkedList<T>();

public void enqueue(T item) {

items.addLast(item);

}

public T dequeue() {

return items.removeFirst();

}

public boolean isEmpty() {

return (items.size() == 0);

}

public void addAll(Collection<? extends T> collection) {

// Add all the items from the collection to the end of the queue

for (T item : collection)

enqueue(item);

}

}

Here, T is a type parameter in the generic class definition. We are combining wildcard
types with generic classes. Inside the generic class definition, “T” is used as if it is a specific,
though unknown, type. The wildcard type “? extends T” means some type that extends that
specific type. When we create a queue of type Queue<Shape>, “T” refers to “Shape”, and the
wildcard type “? extends T” in the class definition means “? extends Shape”, meaning that
the addAll method of the queue can be applied to collections of Rects and Ovals as well as to
collections of Shapes.

The for-each loop in the definition of addAll iterates through the collection using a
variable, item, of type T. Now, collection can be of type Collection<S>, where S is a subclass
of T. Since item is of type T, not S, do we have a problem here? No, no problem. As long as
S is a subclass of T, a value of type S can be assigned to a variable of type T. The restriction
on the wildcard type makes everything work nicely.

526 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

The addAll method adds all the items from a collection to the queue. Suppose that we
wanted to do the opposite: Add all the items that are currently on the queue to a given
collection. An instance method defined as

public void addAllTo(Collection<T> collection)

would only work for collections whose base type is exactly the same as T. This is too restrictive.
We need some sort of wildcard. However, “? extends T” won’t work. Suppose we try it:

public void addAllTo(Collection<? extends T> collection) {

// Remove all items currently on the queue and add them to collection

while (! isEmpty()) {

T item = dequeue(); // Remove an item from the queue.

collection.add(item); // Add it to the collection. ILLEGAL!!

}

}

The problem is that we can’t add an item of type T to a collection that might only be able
to hold items belonging to some subclass, S, of T. The containment is going in the wrong
direction: An item of type T is not necessarily of type S. For example, if we have a queue of
type Queue<Shape>, it doesn’t make sense to add items from the queue to a collection of type
Collection<Rect>, since not every Shape is a Rect. On the other hand, if we have a Queue<Rect>,
it would make sense to add items from that queue to a Collection<Shape> or indeed to any
collection Collection<S> where S is a superclass of Rect.

To express this type of relationship, we need a new kind of type wildcard: “? super T”.
This wildcard means, roughly, “either T itself or any class that is a superclass of T.” For
example, Collection<? super Rect> would match the types Collection<Shape>, ArrayList<Object>,
and Set<Rect>. This is what we need for our addAllTo method. With this change, our complete
generic queue class becomes:

class Queue<T> {

private LinkedList<T> items = new LinkedList<T>();

public void enqueue(T item) {

items.addLast(item);

}

public T dequeue() {

return items.removeFirst();

}

public boolean isEmpty() {

return (items.size() == 0);

}

public void addAll(Collection<? extends T> collection) {

// Add all the items from the collection to the end of the queue

for (T item : collection)

enqueue(item);

}

public void addAllTo(Collection<? super T> collection) {

// Remove all items currently on the queue and add them to collection

while (! isEmpty()) {

T item = dequeue(); // Remove an item from the queue.

collection.add(item); // Add it to the collection.

}

}

}

10.5. WRITING GENERIC CLASSES AND METHODS 527

In a wildcard type such as “? extends T”, T can be an interface instead of a class. Note
that the term “extends” (not “implements”) is used in the wildcard type, even if T is an
interface. For example, recall that Runnable is an interface that defines the method public

void run(). Runnable objects are usually associated with threads (see Section 8.5). Here is a
method that runs all the objects in a collection of Runnables in parallel, by creating a separate
thread for each object:

public static runAllInParallel(Collection<? extends Runnable> runnables) {

for (Runnable runnable : runnables) {

Thread runner; // A thread to run the method runnable.run()

runner = new Thread(runnable); // Create the thread.

runner.start(); // Start the thread running.

}

}

∗ ∗ ∗

Wildcard types are used only as type parameters in parameterized types, such as Collec-
tion<? extends Runnable>. The place where a wildcard type is most likely to occur, by far, is
in a formal parameter list, where the wildcard type is used in the declaration of the type of a
formal parameter. However, they can also be used in a few other places. For example, they can
be used in the type specification in a variable declaration statement.

One final remark: The wildcard type “<?>” is equivalent to “<? extends Object>”. That
is, it matches any possible type. For example, the removeAll() method in the generic interface
Collections<T> is declared as

public boolean removeAll(Collection<?> c) { ...

This just means that the removeAll method can be applied to any collection of any type of
object.

10.5.4 Bounded Types

Wildcard types don’t solve all of our problems. They allow us to generalize method definitions
so that they can work with collections of objects of various types, rather than just a single type.
However, they do not allow us to restrict the types that are allowed as type parameters in a
generic class or method definition. Bounded types exist for this purpose.

We start with a small, not very realistic example. Suppose that you would like to cre-
ate groups of GUI components using a generic class named ComponentGroup. For example,
the parameterized type ComponentGroup<JButton> would represent a group of JButtons, while
ComponentGroup<JPanel> would represent a group of JPanels. The class will include methods
that can be called to apply certain operations to all components in the group at once. For
example, there will be an instance method of the form

public void repaintAll() {

.

. // Call the repaint() method of every component in the group.

.

}

The problem is that the repaint() method is defined in any JComponent object, but not for ob-
jects of arbitrary type. It wouldn’t make sense to allow types such as ComponentGroup<String>
or ComponentGroup<Integer>, since Strings and Integers don’t have repaint() methods. We

528 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

need some way to restrict the type parameter T in ComponentGroup<T> so that only JCompo-
nent and subclasses of JComponent are allowed as actual type parameters. We can do this by
using the bounded type “T extends JComponent” instead of a plain “T” in the definition of
the class:

public class ComponentGroup<T extends JComponent> {

private ArrayList<T> components; // For storing the components in this group.

public void repaintAll() {

for (JComponent c : components)

if (c != null)

c.repaint();

}

public void setAllEnabled(boolean enable) {

for (JComponent c : components)

if (c != null)

c.setEnabled(enable);

}

}

public void add(T c) { // Add a value c, of type T, to the group.

components.add(c);

}

.

. // Additional methods and constructors.

.

}

The restriction “extends JComponent” on T makes it illegal to create the parameterized
types ComponentGroup<String> and ComponentGroup<Integer>, since the actual type parameter
that replaces “T” is required to be either JComponent itself or a subclass of JComponent.
With this restriction, we know—and, more important, the compiler knows—that the objects in
the group are of type JComponent and the operations c.repaint() and c.setEnabled() are
defined for any c in the group.

In general, a bounded type parameter “T extends SomeType” means roughly “a type, T,
that is either equal to SomeType or is a subclass of SomeType”, and the upshot is that any
object of type T is also of type SomeType, and any operation that is defined for objects of type
SomeType is defined for objects of type T. The type SomeType doesn’t have to be the name of a
class. It can be anything that represents an actual type. For example, it can be an interface

or even a parameterized type.

Bounded types and wildcard types are clearly related. They are, however, used in very
different ways. A bounded type can be used only as a formal type parameter in the definition
of a generic method, class, or interface. A wildcard type is used most often to declare the type
of a formal parameter in a method and cannot be used as a formal type parameter. One other
difference, by the way, is that, in contrast to wildcard types, bounded type parameters can only
use “extends”, never “super”.

Bounded type parameters can be used when declaring generic methods. For example, as
an alternative to the generic ComponentGroup class, one could write a free-standing generic
static method that can repaint any collection of JComponents as follows:

public static <T extends JComponent> void repaintAll(Collection<T> comps) {

for (JComponent c : comps)

if (c != null)

c.repaint();

10.5. WRITING GENERIC CLASSES AND METHODS 529

}

Using “<T extends JComponent>” as the formal type parameter means that the method can
only be called for collections whose base type is JComponent or some subclass of JComponent.
Thus, it is legal to call repaintAll(coll) where coll is of type List<JPanel> but not where
coll is of type Set<String>.

Note that we don’t really need a generic type parameter in this case. We can write an
equivalent method using a wildcard type:

public static void repaintAll(Collection<? extends JComponent> comps) {

for (JComponent c : comps)

if (c != null)

c.repaint();

}

In this situation, the version that uses the wildcard type is to be preferred, since the implemen-
tation is simpler. However, there are some situations where a generic method with a bounded
type parameter cannot be rewritten using a wildcard type. Note that a generic type parameter
gives a name, such as T, to the unknown type, while a wildcard type does not give a name to
the unknown type. The name makes it possible to refer to the unknown type in the body of
the method that is being defined. If a generic method definition uses the generic type name
more than once or uses it outside the formal parameter list of the method, then the generic
type cannot be replaced with a wildcard type.

Let’s look at a generic method in which a bounded type parameter is essential. In Subsec-
tion 10.2.1, I presented a code segment for inserting a string into a sorted list of strings, in such
a way that the modified list is still in sorted order. Here is the same code, but this time in the
form of a method definition (and without the comments):

static void sortedInsert(List<String> sortedList, String newItem) {

ListIterator<String> iter = sortedList.listIterator();

while (iter.hasNext()) {

String item = iter.next();

if (newItem.compareTo(item) <= 0) {

iter.previous();

break;

}

}

iter.add(newItem);

}

This method works fine for lists of strings, but it would be nice to have a generic method
that can be applied to lists of other types of objects. The problem, of course, is that the code
assumes that the compareTo() method is defined for objects in the list, so the method can
only work for lists of objects that implement the Comparable interface. We can’t simply use
a wildcard type to enforce this restriction. Suppose we try to do it, by replacing List<String>
with List<? extends Comparable>:

static void sortedInsert(List<? extends Comparable> sortedList, ???? newItem) {

ListIterator<????> iter = stringList.listIterator();

...

We immediately run into a problem, because we have no name for the unknown type represented
by the wildcard. We need a name for that type because the type of newItem and of iter should
be the same as the type of the items in the list. The problem is solved if we write a generic

530 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

method with a bounded type parameter, since then we have a name for the unknown type, and
we can write a valid generic method:

static <T extends Comparable> void sortedInsert(List<T> sortedList, T newItem) {

ListIterator<T> iter = sortedList.listIterator();

while (iter.hasNext()) {

T item = iter.next();

if (newItem.compareTo(item) <= 0) {

iter.previous();

break;

}

}

iter.add(newItem);

}

There is still one technicality to cover in this example. Comparable is itself a parameterized
type, but I have used it here without a type parameter. This is legal but the compiler might give
you a warning about using a “raw type.” In fact, the objects in the list should implement the
parameterized interface Comparable<T>, since they are being compared to items of type T. This
just means that instead of using Comparable as the type bound, we should use Comparable<T>:

static <T extends Comparable<T>> void sortedInsert(List<T> sortedList, ...

∗ ∗ ∗

With this example, I will leave the topic of generic types and generic programming. In this
chapter, I have occasionally used terms such as “strange” and “weird” to talk about generic
programming in Java. I will confess that I have some affection for the more simple-minded
generic programming style of Smalltalk. Nevertheless, I recognize the power and increased
robustness of generics in Java. I hope that I have convinced you that using the Java Collection
Framework is reasonably natural and straightforward, and that using it can save you a lot of
time and effort compared to repeatedly recoding the same data structures and algorithms from
scratch. Things become a little more technical when you start writing new generic classes and
methods of your own, and the syntax is (as I’ve said) a little strange. But with some practice,
you’ll get used to the syntax and will find that it’s not that difficult after all.

Exercises 531

Exercises for Chapter 10

1. Rewrite the PhoneDirectory class from Subsection 7.4.2 so that it uses a TreeMap to store
directory entries, instead of an array. (Doing this was suggested in Subsection 10.3.1.)

2. In mathematics, several operations are defined on sets. The union of two sets A and B is
a set that contains all the elements that are in A together with all the elements that are
in B. The intersection of A and B is the set that contains elements that are in both A
and B. The difference of A and B is the set that contains all the elements of A except

for those elements that are also in B.
Suppose that A and B are variables of type set in Java. The mathematical opera-

tions on A and B can be computed using methods from the Set interface. In particular:
A.addAll(B) computes the union of A and B; A.retainAll(B) computes the intersection
of A and B; and A.removeAll(B) computes the difference of A and B. (These operations
change the contents of the set A, while the mathematical operations create a new set
without changing A, but that difference is not relevant to this exercise.)

For this exercise, you should write a program that can be used as a “set calcula-
tor” for simple operations on sets of non-negative integers. (Negative integers are not
allowed.) A set of such integers will be represented as a list of integers, separated by
commas and, optionally, spaces and enclosed in square brackets. For example: [1,2,3] or
[17, 42, 9, 53,108]. The characters +, *, and - will be used for the union, intersection,
and difference operations. The user of the program will type in lines of input containing
two sets, separated by an operator. The program should perform the operation and print
the resulting set. Here are some examples:

Input Output

------------------------- -------------------

[1, 2, 3] + [3, 5, 7] [1, 2, 3, 5, 7]

[10,9,8,7] * [2,4,6,8] [8]

[5, 10, 15, 20] - [0, 10, 20] [5, 15]

To represent sets of non-negative integers, use sets of type TreeSet<Integer>. Read the
user’s input, create two TreeSets, and use the appropriate TreeSet method to perform the
requested operation on the two sets. Your program should be able to read and process
any number of lines of input. If a line contains a syntax error, your program should not
crash. It should report the error and move on to the next line of input. (Note: To print
out a Set, A, of Integers, you can just say System.out.println(A). I’ve chosen the syntax
for sets to be the same as that used by the system for outputting a set.)

3. The fact that Java has a HashMap class means that no Java programmer has to write an
implementation of hash tables from scratch—unless, of course, you are a computer science
student.

For this exercise, you should write a hash table in which both the keys and the values
are of type String. (This is not an exercise in generic programming; do not try to write a
generic class.) Write an implementation of hash tables from scratch. Define the following
methods: get(key), put(key,value), remove(key), containsKey(key), and size().
Remember that every object, obj, has a method obj.hashCode() that can be used for
computing a hash code for the object, so at least you don’t have to define your own hash
function. Do not use any of Java’s built-in generic types; create your own linked lists

532 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

using nodes as covered in Subsection 9.2.2. However, you do not have to worry about
increasing the size of the table when it becomes too full.

You should also write a short program to test your solution.

4. A predicate is a boolean-valued function with one parameter. Some languages use pred-
icates in generic programming. Java doesn’t, but this exercise looks at how predicates
might work in Java.

In Java, we could implement “predicate objects” by defining a generic interface:

public interface Predicate<T> {

public boolean test(T obj);

}

The idea is that an object that implements this interface knows how to “test” objects
of type T in some way. Define a class that contains the following generic static methods
for working with predicate objects. The name of the class should be Predicates, in analogy
with the standard class Collections that provides various static methods for working with
collections.

public static <T> void remove(Collection<T> coll, Predicate<T> pred)

// Remove every object, obj, from coll for which

// pred.test(obj) is true.

public static <T> void retain(Collection<T> coll, Predicate<T> pred)

// Remove every object, obj, from coll for which

// pred.test(obj) is false. (That is, retain the

// objects for which the predicate is true.)

public static <T> List<T> collect(Collection<T> coll, Predicate<T> pred)

// Return a List that contains all the objects, obj,

// from the collection, coll, such that pred.test(obj)

// is true.

public static <T> int find(ArrayList<T> list, Predicate<T> pred)

// Return the index of the first item in list

// for which the predicate is true, if any.

// If there is no such item, return -1.

(In C++, methods similar to these are included as a standard part of the generic pro-
gramming framework.)

5. An example in Subsection 10.4.2 concerns the problem of making an index for a book.
A related problem is making a concordance for a document. A concordance lists every
word that occurs in the document, and for each word it gives the line number of every
line in the document where the word occurs. All the subroutines for creating an index
that were presented in Subsection 10.4.2 can also be used to create a concordance. The
only real difference is that the integers in a concordance are line numbers rather than page
numbers.

Write a program that can create a concordance. The document should be read from
an input file, and the concordance data should be written to an output file. You can use
the indexing subroutines from Subsection 10.4.2, modified to write the data to TextIO

instead of to System.out. (You will need to make these subroutines static.) The input
and output files should be selected by the user when the program is run. The sample

Exercises 533

program WordCount.java, from Subsection 10.4.4, can be used as a model of how to use
files. That program also has a useful subroutine that reads one word from input.

As you read the file, you want to take each word that you encounter and add it to the
concordance along with the current line number. Keeping track of the line numbers is one
of the trickiest parts of the problem. In an input file, the end of each line in the file is
marked by the newline character, ’\n’. Every time you encounter this character, you have
to add one to the line number. WordCount.java ignores ends of lines. Because you need
to find and count the end-of-line characters, your program cannot process the input file in
exactly the same way as does WordCount.java. Also, you will need to detect the end of
the file. The function TextIO.peek(), which is used to look ahead at the next character
in the input, returns the value TextIO.EOF at end-of-file, after all the characters in the
file have been read.

Because it is so common, don’t include the word “the” in your concordance. Also, do
not include words that have length less than 3.

6. The sample program SimpleInterpreter.java from Subsection 10.4.1 can carry out com-
mands of the form “let variable = expression” or “print expression”. That program can
handle expressions that contain variables, numbers, operators, and parentheses. Extend
the program so that it can also handle the standard mathematical functions sin, cos,
tan, abs, sqrt, and log. For example, the program should be able to evaluate an expres-
sion such as sin(3*x-7)+log(sqrt(y)), assuming that the variables x and y have been
given values. Note that the name of a function must be followed by an expression that is
enclosed in parentheses.

In the original program, a symbol table holds a value for each variable that has been
defined. In your program, you should add another type of symbol to the table to represent
standard functions. You can use the following nested enumerated type and class for this
purpose:

private enum Functions { SIN, COS, TAN, ABS, SQRT, LOG }

/**

* An object of this class represents one of the standard functions.

*/

private static class StandardFunction {

/**

* Tells which function this is.

*/

Functions functionCode;

/**

* Constructor creates an object to represent one of

* the standard functions

* @param code which function is represented.

*/

StandardFunction(Functions code) {

functionCode = code;

}

/**

* Finds the value of this function for the specified

* parameter value, x.

534 CHAPTER 10. GENERIC PROGRAMMING AND COLLECTION CLASSES

*/

double evaluate(double x) {

switch(functionCode) {

case SIN:

return Math.sin(x);

case COS:

return Math.cos(x);

case TAN:

return Math.tan(x);

case ABS:

return Math.abs(x);

case SQRT:

return Math.sqrt(x);

default:

return Math.log(x);

}

}

} // end class StandardFunction

Add a symbol to the symbol table to represent each function. The key is the name
of the function and the value is an object of type StandardFunction that represents the
function. For example:

symbolTable.put("sin", new StandardFunction(StandardFunction.SIN));

In SimpleInterpreter.java, the symbol table is a map of type HashMap<String,Double>. It’s
not legal to use a StandardFunction as the value in such a map, so you will have to change
the type of the map. The map has to hold two different types of objects. The easy way
to make this possible is to create a map of type HashMap<String,Object>. (A better way
is to create a general type to represent objects that can be values in the symbol table,
and to define two subclasses of that class, one to represent variables and one to represent
standard functions, but for this exercise, you should do it the easy way.)

In your parser, when you encounter a word, you have to be able to tell whether it’s a
variable or a standard function. Look up the word in the symbol table. If the associated
object is non-null and is of type Double, then the word is a variable. If it is of type
StandardFunction, then the word is a function. Remember that you can test the type of
an object using the instanceof operator. For example: if (obj instanceof Double)

Quiz 535

Quiz on Chapter 10

1. What is meant by generic programming and what is the alternative?

2. Why can’t you make an object of type LinkedList<int>? What should you do instead?

3. What is an iterator and why are iterators necessary for generic programming?

4. Suppose that integers is a variable of type Collection<Integer>. Write a code segment
that uses an iterator to compute the sum of all the integer values in the collection. Write
a second code segment that does the same thing using a for-each loop.

5. Interfaces such as List, Set, and Map define abstract data types. Explain what this means.

6. What is the fundamental property that distinguishes Sets from other types of Collections?

7. What is the essential difference in functionality between a TreeMap and a HashMap?

8. Explain what is meant by a hash code.

9. Modify the following Date class so that it implements the interface Comparable<Date>.
The ordering on objects of type Date should be the natural, chronological ordering.

class Date {

int month; // Month number in range 1 to 12.

int day; // Day number in range 1 to 31.

int year; // Year number.

Date(int m, int d, int y) { // Convenience constructor.

month = m;

day = d;

year = y;

}

}

10. Suppose that syllabus is a variable of type TreeMap<Date,String>, where Date is the class
from the preceding exercise. Write a code segment that will write out the value string for
every key that is in the month of December, 2006.

11. Write a generic class Stack<T> that can be used to represent stacks of objects of type T.
The class should include methods push(), pop(), and isEmpty(). Inside the class, use
an ArrayList to hold the items on the stack.

12. Write a generic method, using a generic type parameter <T>, that replaces every occurrence
in a ArrayList<T> of a specified item with a specified replacement item. The list and the
two items are parameters to the method. Both items are of type T. Take into account
the fact that the item that is being replaced might be null. For a non-null item, use
equals() to do the comparison.

