
Chapter 11

Files and Networking

Computer programs are only useful if they interact with the rest of the world in some
way. This interaction is referred to as input/output , or I/O . Up until now, this book has
concentrated on just one type of interaction: interaction with the user, through either a graph-
ical user interface or a command-line interface. But the user is only one possible source of
information and only one possible destination for information. We have already encountered
one other type of input/output, since TextIO can read data from files and write data to files.
However, Java has an input/output framework that provides much more power and flexibility
than does TextIO, and that covers other kinds of I/O in addition to files. Most importantly, it
supports communication over network connections. In Java, input/output involving files and
networks is based on streams, which are objects that support I/O commands that are similar
to those that you have already used. In fact, standard output (System.out) and standard input
(System.in) are examples of streams.

Working with files and networks requires familiarity with exceptions, which were covered in
Chapter 8. Many of the subroutines that are used can throw exceptions that require mandatory
exception handling. This generally means calling the subroutine in a try..catch statement
that can deal with the exception if one occurs.

11.1 Streams, Readers, and Writers

Without the ability to interact with the rest of the world, a program would be useless.
The interaction of a program with the rest of the world is referred to as input/output or I/O.
Historically, one of the hardest parts of programming language design has been coming up with
good facilities for doing input and output. A computer can be connected to many different
types of input and output devices. If a programming language had to deal with each type of
device as a special case, the complexity would be overwhelming. One of the major achievements
in the history of programming has been to come up with good abstractions for representing
I/O devices. In Java, the main I/O abstractions are called streams. Other I/O abstractions,
such as “files” and “channels” also exist, but in this section we will look only at streams. Every
stream represents either a source of input or a destination to which output can be sent.

11.1.1 Character and Byte Streams

When dealing with input/output, you have to keep in mind that there are two broad categories
of data: machine-formatted data and human-readable data. Machine-formatted data is repre-
sented in binary form, the same way that data is represented inside the computer, that is, as

537



538 CHAPTER 11. FILES AND NETWORKING

strings of zeros and ones. Human-readable data is in the form of characters. When you read a
number such as 3.141592654, you are reading a sequence of characters and interpreting them
as a number. The same number would be represented in the computer as a bit-string that you
would find unrecognizable.

To deal with the two broad categories of data representation, Java has two broad categories
of streams: byte streams for machine-formatted data and character streams for human-
readable data. There are many predefined classes that represent streams of each type.

An object that outputs data to a byte stream belongs to one of the subclasses of the
abstract class OutputStream. Objects that read data from a byte stream belong to subclasses
of InputStream. If you write numbers to an OutputStream, you won’t be able to read the
resulting data yourself. But the data can be read back into the computer with an InputStream.
The writing and reading of the data will be very efficient, since there is no translation involved:
the bits that are used to represent the data inside the computer are simply copied to and from
the streams.

For reading and writing human-readable character data, the main classes are the abstract
classes Reader and Writer. All character stream classes are subclasses of one of these. If a
number is to be written to a Writer stream, the computer must translate it into a human-
readable sequence of characters that represents that number. Reading a number from a Reader
stream into a numeric variable also involves a translation, from a character sequence into the
appropriate bit string. (Even if the data you are working with consists of characters in the
first place, such as words from a text editor, there might still be some translation. Characters
are stored in the computer as 16-bit Unicode values. For people who use Western alphabets,
character data is generally stored in files in ASCII code, which uses only 8 bits per character.
The Reader and Writer classes take care of this translation, and can also handle non-western
alphabets in countries that use them.)

Byte streams can be useful for direct machine-to-machine communication, and they can
sometimes be useful for storing data in files, especially when large amounts of data need to be
stored efficiently, such as in large databases. However, binary data is fragile in the sense that its
meaning is not self-evident. When faced with a long series of zeros and ones, you have to know
what information it is meant to represent and how that information is encoded before you will
be able to interpret it. Of course, the same is true to some extent for character data, which is
itself coded into binary form. But the binary encoding of character data has been standardized
and is well understood, and data expressed in character form can be made meaningful to human
readers. The current trend seems to be towards increased use of character data, represented in
a way that will make its meaning as self-evident as possible. We’ll look at how this is done in
Section 11.6.

I should note that the original version of Java did not have character streams, and that
for ASCII-encoded character data, byte streams are largely interchangeable with character
streams. In fact, the standard input and output streams, System.in and System.out, are byte
streams rather than character streams. However, you should use Readers and Writers rather
than InputStreams and OutputStreams when working with character data.

The standard stream classes discussed in this section are defined in the package java.io,
along with several supporting classes. You must import the classes from this package if you
want to use them in your program. That means either importing individual classes or putting
the directive “import java.io.*;” at the beginning of your source file. Streams are necessary
for working with files and for doing communication over a network. They can also be used
for communication between two concurrently running threads, and there are stream classes for



11.1. STREAMS, READERS, AND WRITERS 539

reading and writing data stored in the computer’s memory.
The beauty of the stream abstraction is that it is as easy to write data to a file or to send

data over a network as it is to print information on the screen.

∗ ∗ ∗

The basic I/O classes Reader, Writer, InputStream, and OutputStream provide only very
primitive I/O operations. For example, the InputStream class declares the instance method

public int read() throws IOException

for reading one byte of data, as a number in the range 0 to 255, from an input stream. If the
end of the input stream is encountered, the read() method will return the value -1 instead. If
some error occurs during the input attempt, an exception of type IOException is thrown. Since
IOException is an exception class that requires mandatory exception-handling, this means that
you can’t use the read() method except inside a try statement or in a subroutine that is itself
declared with a “throws IOException” clause. (Mandatory exception handling was covered in
Subsection 8.3.4.)

The InputStream class also defines methods for reading several bytes of data in one step into
an array of bytes. However, InputStream provides no convenient methods for reading other
types of data, such as int or double, from a stream. This is not a problem because you’ll never
use an object of type InputStream itself. Instead, you’ll use subclasses of InputStream that add
more convenient input methods to InputStream’s rather primitive capabilities. Similarly, the
OutputStream class defines a primitive output method for writing one byte of data to an output
stream. The method is defined as:

public void write(int b) throws IOException

The parameter is of type int rather than byte, but the parameter value is type-cast to type
byte before it is written; this effectively discards all but the eight low order bytes of b. Again,
in practice, you will almost always use higher-level output operations defined in some subclass
of OutputStream.

The Reader and Writer classes provide identical low-level read and write methods. As in
the byte stream classes, the parameter of the write(c) method in Writer and the return value
of the read() method in Reader are of type int, but in these character-oriented classes, the I/O
operations read and write characters rather than bytes. The return value of read() is -1 if
the end of the input stream has been reached. Otherwise, the return value must be type-cast
to type char to obtain the character that was read. In practice, you will ordinarily use higher
level I/O operations provided by sub-classes of Reader and Writer, as discussed below.

11.1.2 PrintWriter

One of the neat things about Java’s I/O package is that it lets you add capabilities to a stream
by “wrapping” it in another stream object that provides those capabilities. The wrapper object
is also a stream, so you can read from or write to it—but you can do so using fancier operations
than those available for basic streams.

For example, PrintWriter is a subclass of Writer that provides convenient methods for out-
putting human-readable character representations of all of Java’s basic data types. If you have
an object belonging to the Writer class, or any of its subclasses, and you would like to use
PrintWriter methods to output data to that Writer, all you have to do is wrap the Writer in a
PrintWriter object. You do this by constructing a new PrintWriter object, using the Writer as
input to the constructor. For example, if charSink is of type Writer, then you could say



540 CHAPTER 11. FILES AND NETWORKING

PrintWriter printableCharSink = new PrintWriter(charSink);

When you output data to printableCharSink, using the high-level output methods in Print-
Writer, that data will go to exactly the same place as data written directly to charSink. You’ve
just provided a better interface to the same output stream. For example, this allows you to use
PrintWriter methods to send data to a file or over a network connection.

For the record, if out is a variable of type PrintWriter, then the following methods are
defined:

• out.print(x) — prints the value of x, represented in the form of a string of characters,
to the output stream; x can be an expression of any type, including both primitive types
and object types. An object is converted to string form using its toString() method. A
null value is represented by the string “null”.

• out.println() — outputs an end-of-line to the output stream.

• out.println(x) — outputs the value of x, followed by an end-of-line; this is equivalent
to out.print(x) followed by out.println().

• out.printf(formatString, x1, x2, ...) — does formated output of x1, x2, ... to
the output stream. The first parameter is a string that specifies the format of the output.
There can be any number of additional parameters, of any type, but the types of the
parameters must match the formatting directives in the format string. Formatted output
for the standard output stream, System.out, was introduced in Subsection 2.4.4, and
out.printf has the same functionality.

Note that none of these methods will ever throw an IOException. Instead, the PrintWriter
class includes the method

public boolean checkError()

which will return true if any error has been encountered while writing to the stream. The
PrintWriter class catches any IOExceptions internally, and sets the value of an internal error flag
if one occurs. The checkError() method can be used to check the error flag. This allows you
to use PrintWriter methods without worrying about catching exceptions. On the other hand, to
write a fully robust program, you should call checkError() to test for possible errors whenever
you use a PrintWriter.

11.1.3 Data Streams

When you use a PrintWriter to output data to a stream, the data is converted into the sequence
of characters that represents the data in human-readable form. Suppose you want to output
the data in byte-oriented, machine-formatted form? The java.io package includes a byte-
stream class, DataOutputStream that can be used for writing data values to streams in internal,
binary-number format. DataOutputStream bears the same relationship to OutputStream that
PrintWriter bears to Writer. That is, whereas OutputStream only has methods for outputting
bytes, DataOutputStream has methods writeDouble(double x) for outputting values of type
double, writeInt(int x) for outputting values of type int, and so on. Furthermore, you can
wrap any OutputStream in a DataOutputStream so that you can use the higher level output
methods on it. For example, if byteSink is of type OutputStream, you could say

DataOutputStream dataSink = new DataOutputStream(byteSink);



11.1. STREAMS, READERS, AND WRITERS 541

to wrap byteSink in a DataOutputStream, dataSink.
For input of machine-readable data, such as that created by writing to a DataOutputStream,

java.io provides the class DataInputStream. You can wrap any InputStream in a DataIn-
putStream object to provide it with the ability to read data of various types from the byte-
stream. The methods in the DataInputStream for reading binary data are called readDouble(),
readInt(), and so on. Data written by a DataOutputStream is guaranteed to be in a format
that can be read by a DataInputStream. This is true even if the data stream is created on one
type of computer and read on another type of computer. The cross-platform compatibility of
binary data is a major aspect of Java’s platform independence.

In some circumstances, you might need to read character data from an InputStream or write
character data to an OutputStream. This is not a problem, since characters, like all data, are
represented as binary numbers. However, for character data, it is convenient to use Reader and
Writer instead of InputStream and OutputStream. To make this possible, you can wrap a byte
stream in a character stream. If byteSource is a variable of type InputStream and byteSink is
of type OutputStream, then the statements

Reader charSource = new InputStreamReader( byteSource );

Writer charSink = new OutputStreamWriter( byteSink );

create character streams that can be used to read character data from and write character
data to the byte streams. In particular, the standard input stream System.in, which is of
type InputStream for historical reasons, can be wrapped in a Reader to make it easier to read
character data from standard input:

Reader charIn = new InputStreamReader( System.in );

As another application, the input and output streams that are associated with a network
connection are byte streams rather than character streams, but the byte streams can be wrapped
in character streams to make it easy to send and receive character data over the network. We
will encounter network I/O in Section 11.4.

11.1.4 Reading Text

Still, the fact remains that much I/O is done in the form of human-readable characters. In
view of this, it is surprising that Java does not provide a standard character input class that
can read character data in a manner that is reasonably symmetrical with the character output
capabilities of PrintWriter. There is one basic case that is easily handled by a standard class.
The BufferedReader class has a method

public String readLine() throws IOException

that reads one line of text from its input source. If the end of the stream has been reached, the
return value is null. When a line of text is read, the end-of-line marker is read from the input
stream, but it is not part of the string that is returned. Different input streams use different
characters as end-of-line markers, but the readLine method can deal with all the common cases.
(Traditionally, Unix computers, including Linux and Mac OS X, use a line feed character, ’\n’,
to mark an end of line; classic Macintosh used a carriage return character, ’\r’; and Windows
uses the two-character sequence “\r\n”. In general, modern computers can deal correctly with
all of these possibilities.)

Line-by-line processing is very common. Any Reader can be wrapped in a BufferedReader
to make it easy to read full lines of text. If reader is of type Reader, then a BufferedReader
wrapper can be created for reader with



542 CHAPTER 11. FILES AND NETWORKING

BufferedReader in = new BufferedReader( reader );

This can be combined with the InputStreamReader class that was mentioned above to read lines
of text from an InputStream. For example, we can apply this to System.in:

BufferedReader in; // BufferedReader for reading from standard input.

in = new BufferedReader( new InputStreamReader( System.in ) );

try {

String line = in.readLine();

while ( line != null && line.length() > 0 ) {

processOneLineOfInput( line );

line = in.readLine();

}

}

catch (IOException e) {

}

This code segment reads and processes lines from standard input until either an empty line or
an end-of-stream is encountered. (An end-of-stream is possible even for interactive input. For
example, on at least some computers, typing a Control-D generates an end-of-stream on the
standard input stream.) The try..catch statement is necessary because the readLine method
can throw an exception of type IOException, which requires mandatory exception handling; an
alternative to try..catch would be to declare that the method that contains the code “throws
IOException”. Also, remember that BufferedReader, InputStreamReader, and IOException must
be imported from the package java.io.

∗ ∗ ∗

Previously in this book, we have used the non-standard class TextIO for input both from
users and from files. The advantage of TextIO is that it makes it fairly easy to read data values
of any of the primitive types. Disadvantages include the fact that TextIO can only read from
one file at a time, that it can’t do I/O operations on network connections, and that it does not
follow the same pattern as Java’s built-in input/output classes.

I have written a class named TextReader to fix some of these disadvantages, while providing
input capabilities similar to those of TextIO. Like TextIO, TextReader is a non-standard class,
so you have to be careful to make it available to any program that uses it. The source code for
the class can be found in the file TextReader.java

Just as for many of Java’s stream classes, an object of type TextReader can be used as a
wrapper for an existing input stream, which becomes the source of the characters that will
be read by the TextReader. (Unlike the standard classes, however, a TextReader is not itself a
stream and cannot be wrapped inside other stream classes.) The constructors

public TextReader(Reader characterSource)

and

public TextReader(InputStream byteSource)

create objects that can be used to read human-readable data from the given Reader or In-
putStream using the convenient input methods of the TextReader class. In TextIO, the input
methods were static members of the class. The input methods in the TextReader class are
instance methods. The instance methods in a TextReader object read from the data source that
was specified in the object’s constructor. This makes it possible for several TextReader objects
to exist at the same time, reading from different streams; as a result, TextReader can be used
to read data from more than one file at the same time.



11.1. STREAMS, READERS, AND WRITERS 543

A TextReader object has essentially the same set of input methods as the TextIO class.
One big difference is how errors are handled. When a TextReader encounters an error in the
input, it throws an exception of type IOException. This follows the standard pattern that is
used by Java’s standard input streams. IOExceptions require mandatory exception handling,
so TextReader methods are generally called inside try..catch statements. If an IOException
is thrown by the input stream that is wrapped inside a TextReader, that IOException is simply
passed along. However, other types of errors can also occur. One such possible error is an
attempt to read data from the input stream when there is no more data left in the stream. A
TextReader throws an exception of type TextReader.EndOfStreamException when this happens.
The exception class in this case is a nested class in the TextReader class; it is a subclass of
IOException, so a try..catch statement that handles IOExceptions will also handle end-of-
stream exceptions. However, having a class to represent end-of-stream errors makes it possible
to detect such errors and provide special handling for them. Another type of error occurs
when a TextReader tries to read a data value of a certain type, and the next item in the input
stream is not of the correct type. In this case, the TextReader throws an exception of type
TextReader.BadDataException, which is another subclass of IOException.

For reference, here is a list of some of the more useful instance methods in the TextReader
class. All of these methods can throw exceptions of type IOException:

• public char peek()— looks ahead at the next character in the input stream, and returns
that character. The character is not removed from the stream. If the next character is an
end-of-line, the return value is ’\n’. It is legal to call this method even if there is no more
data left in the stream; in that case, the return value is the constant TextReader.EOF.
(“EOF” stands for “End-Of-File,” a term that is more commonly used than “End-Of-
Stream”, even though not all streams are files.)

• public boolean eoln() and public boolean eof()— convenience methods for testing
whether the next thing in the file is an end-of-line or an end-of-file. Note that these
methods do not skip whitespace. If eof() is false, you know that there is still at least
one character to be read, but there might not be any more non-blank characters in the
stream.

• public void skipBlanks() and public void skipWhiteSpace() — skip past whites-
pace characters in the input stream; skipWhiteSpace() skips all whitespace characters,
including end-of-line while skipBlanks() only skips spaces and tabs.

• public String getln() — reads characters up to the next end-of-line (or end-of-stream),
and returns those characters in a string. The end-of-line marker is read but it not part of
the returned string. This will throw an exception if there are no more characters in the
stream.

• public char getAnyChar() — reads and returns the next character from the stream.
The character can be a whitespace character such as a blank or end-of-line. If this method
is called after all the characters in the stream have been read, an exception is thrown.

• public int getlnInt(), public double getlnDouble(), public char getlnChar(),
etc. — skip any whitespace characters in the stream, including end-of-lines, then read a
value of the specified type, which will be the return value of the method. Any remaining
characters on the line are then discarded, including the end-of-line marker. There is a
method for each primitive type. An exception occurs if it’s not possible to read a data
value of the requested type.

• public int getInt(), public double getDouble(), public char getChar(), etc. —



544 CHAPTER 11. FILES AND NETWORKING

skip any whitespace characters in the stream, including end-of-lines, then read and return
a value of the specified type. Extra characters on the line are not discarded and are still
available to be read by subsequent input methods. There is a method for each primitive
type. An exception occurs if it’s not possible to read a data value of the requested type.

11.1.5 The Scanner Class

Since its introduction, Java has been notable for its lack of built-in support for basic input,
and for its reliance on fairly advanced techniques for the support that it does offer. (This is my
opinion, at least.) The Scanner class was introduced in Java 5.0 to make it easier to read basic
data types from a character input source. It does not (again, in my opinion) solve the problem
completely, but it is a big improvement. The Scanner class is in the package java.util.

Input routines are defined as instance methods in the Scanner class, so to use the class, you
need to create a Scanner object. The constructor specifies the source of the characters that the
Scanner will read. The scanner acts as a wrapper for the input source. The source can be a
Reader, an InputStream, a String, or a File. (If a String is used as the input source, the Scanner
will simply read the characters in the string from beginning to end, in the same way that it
would process the same sequence of characters from a stream. The File class will be covered in
the next section.) For example, you can use a Scanner to read from standard input by saying:

Scanner standardInputScanner = new Scanner( System.in );

and if charSource is of type Reader, you can create a Scanner for reading from charSource

with:

Scanner scanner = new Scanner( charSource );

When processing input, a scanner usually works with tokens. A token is a meaningful
string of characters that cannot, for the purposes at hand, be further broken down into smaller
meaningful pieces. A token can, for example, be an individual word or a string of characters
that represents a value of type double. In the case of a scanner, tokens must be separated by
“delimiters.” By default, the delimiters are whitespace characters such as spaces and end-of-line
markers. In normal processing, whitespace characters serve simply to separate tokens and are
discarded by the scanner. A scanner has instance methods for reading tokens of various types.
Suppose that scanner is an object of type Scanner. Then we have:

• scanner.next() — reads the next token from the input source and returns it as a String.

• scanner.nextInt(), scanner.nextDouble(), and so on — reads the next token from the
input source and tries to convert it to a value of type int, double, and so on. There are
methods for reading values of any of the primitive types.

• scanner.nextLine() — reads an entire line from the input source, up to the next end-
of-line and returns the line as a value of type String. The end-of-line marker is read but
is not part of the return value. Note that this method is not based on tokens. An entire
line is read and returned, including any whitespace characters in the line.

All of these methods can generate exceptions. If an attempt is made to read past the
end of input, an exception of type NoSuchElementException is thrown. Methods such as
scanner.getInt() will throw an exception of type InputMismatchException if the next to-
ken in the input does not represent a value of the requested type. The exceptions that can be
generated do not require mandatory exception handling.



11.1. STREAMS, READERS, AND WRITERS 545

The Scanner class has very nice look-ahead capabilities. You can query a scanner to de-
termine whether more tokens are available and whether the next token is of a given type. If
scanner is of type Scanner :

• scanner.hasNext() — returns a boolean value that is true if there is at least one more
token in the input source.

• scanner.hasNextInt(), scanner.hasNextDouble(), and so on — returns a boolean

value that is true if there is at least one more token in the input source and that token
represents a value of the requested type.

• scanner.hasNextLine() — returns a boolean value that is true if there is at least one
more line in the input source.

Although the insistence on defining tokens only in terms of delimiters limits the usability
of scanners to some extent, they are easy to use and are suitable for many applications.

11.1.6 Serialized Object I/O

The classes PrintWriter, TextReader, Scanner, DataInputStream, and DataOutputStream allow
you to easily input and output all of Java’s primitive data types. But what happens when you
want to read and write objects? Traditionally, you would have to come up with some way of
encoding your object as a sequence of data values belonging to the primitive types, which can
then be output as bytes or characters. This is called serializing the object. On input, you
have to read the serialized data and somehow reconstitute a copy of the original object. For
complex objects, this can all be a major chore. However, you can get Java to do all the work
for you by using the classes ObjectInputStream and ObjectOutputStream. These are subclasses
of InputStream and Outputstream that can be used for writing and reading serialized objects.

ObjectInputStream and ObjectOutputStream are wrapper classes that can be wrapped around
arbitrary InputStreams and OutputStreams. This makes it possible to do object input and output
on any byte stream. The methods for object I/O are readObject(), in ObjectInputStream,
and writeObject(Object obj), in ObjectOutputStream. Both of these methods can throw
IOExceptions. Note that readObject() returns a value of type Object, which generally has to
be type-cast to a more useful type.

ObjectOutputStream also has methods writeInt(), writeDouble(), and so on, for out-
putting primitive type values to the stream, and ObjectInputStream has corresponding methods
for reading primitive type values.

Object streams are byte streams. The objects are represented in binary, machine-readable
form. This is good for efficiency, but it does suffer from the fragility that is often seen in
binary data. They suffer from the additional problem that the binary format of Java objects is
very specific to Java, so the data in object streams is not easily available to programs written
in other programming languages. For these reasons, object streams are appropriate mostly
for short-term storage of objects and for transmitting objects over a network connection from
one Java program to another. For long-term storage and for communication with non-Java
programs, other approaches to object serialization are usually better. (See Subsection 11.6.2
for a character-based approach.)

ObjectInputStream and ObjectOutputStream only work with objects that implement an in-
terface named Serializable. Furthermore, all of the instance variables in the object must be
serializable. However, there is little work involved in making an object serializable, since the
Serializable interface does not declare any methods. It exists only as a marker for the compiler,



546 CHAPTER 11. FILES AND NETWORKING

to tell it that the object is meant to be writable and readable. You only need to add the words
“implements Serializable” to your class definitions. Many of Java’s standard classes are
already declared to be serializable, including all the component classes and many other classes
in Swing and in the AWT. One of the programming examples in Section 11.3 uses object IO.

11.2 Files

The data and programs in a computer’s main memory survive only as long as the power is
on. For more permanent storage, computers use files, which are collections of data stored on
a hard disk, on a USB memory stick, on a CD-ROM, or on some other type of storage device.
Files are organized into directories (sometimes called folders). A directory can hold other
directories, as well as files. Both directories and files have names that are used to identify them.

Programs can read data from existing files. They can create new files and can write data
to files. In Java, such input and output can be done using streams. Human-readable character
data is read from a file using an object belonging to the class FileReader, which is a subclass of
Reader. Similarly, data is written to a file in human-readable format through an object of type
FileWriter, a subclass of Writer. For files that store data in machine format, the appropriate I/O
classes are FileInputStream and FileOutputStream. In this section, I will only discuss character-
oriented file I/O using the FileReader and FileWriter classes. However, FileInputStream and
FileOutputStream are used in an exactly parallel fashion. All these classes are defined in the
java.io package.

It’s worth noting right at the start that applets which are downloaded over a network
connection are not allowed to access files (unless you have made a very foolish change to your
web browser’s configuration). This is a security consideration. You can download and run an
applet just by visiting a Web page with your browser. If downloaded applets had access to
the files on your computer, it would be easy to write an applet that would destroy all the data
on a computer that downloads it. To prevent such possibilities, there are a number of things
that downloaded applets are not allowed to do. Accessing files is one of those forbidden things.
Standalone programs written in Java, however, have the same access to your files as any other
program. When you write a standalone Java application, you can use all the file operations
described in this section.

11.2.1 Reading and Writing Files

The FileReader class has a constructor which takes the name of a file as a parameter and
creates an input stream that can be used for reading from that file. This constructor will throw
an exception of type FileNotFoundException if the file doesn’t exist. It requires mandatory
exception handling, so you have to call the constructor in a try..catch statement (or inside a
routine that is declared to throw the exception). For example, suppose you have a file named
“data.txt”, and you want your program to read data from that file. You could do the following
to create an input stream for the file:

FileReader data; // (Declare the variable before the

// try statement, or else the variable

// is local to the try block and you won’t

// be able to use it later in the program.)

try {

data = new FileReader("data.txt"); // create the stream



11.2. FILES 547

}

catch (FileNotFoundException e) {

... // do something to handle the error---maybe, end the program

}

The FileNotFoundException class is a subclass of IOException, so it would be acceptable to
catch IOExceptions in the above try...catch statement. More generally, just about any error
that can occur during input/output operations can be caught by a catch clause that handles
IOException.

Once you have successfully created a FileReader, you can start reading data from it. But
since FileReaders have only the primitive input methods inherited from the basic Reader class,
you will probably want to wrap your FileReader in a Scanner, in a TextReader, or in some
other wrapper class. (The TextReader class is not a standard part of Java; it is described
in Subsection 11.1.4. Scanner is discussed in Subsection 11.1.5.) To create a TextReader for
reading from a file named data.dat, you could say:

TextReader data;

try {

data = new TextReader( new FileReader("data.dat") );

}

catch (FileNotFoundException e) {

... // handle the exception

}

Once you have a TextReader named data, you can read from it using such methods as
data.getInt() and data.peek(), exactly as you would from any other TextReader.

Working with output files is no more difficult than this. You simply create an object
belonging to the class FileWriter. You will probably want to wrap this output stream in an object
of type PrintWriter. For example, suppose you want to write data to a file named “result.dat”.
Since the constructor for FileWriter can throw an exception of type IOException, you should use
a try..catch statement:

PrintWriter result;

try {

result = new PrintWriter(new FileWriter("result.dat"));

}

catch (IOException e) {

... // handle the exception

}

If no file named result.dat exists, a new file will be created. If the file already exists, then
the current contents of the file will be erased and replaced with the data that your program
writes to the file. This will be done without any warning. To avoid overwriting a file that
already exists, you can check whether a file of the same name already exists before trying
to create the stream, as discussed later in this section. An IOException might occur in the
PrintWriter constructor if, for example, you are trying to create a file on a disk that is “write-
protected,” meaning that it cannot be modified.

After you are finished using a file, it’s a good idea to close the file, to tell the operating
system that you are finished using it. You can close a file by calling the close() method of
the associated stream. Once a file has been closed, it is no longer possible to read data from
it or write data to it, unless you open it again as a new stream. (Note that for most stream



548 CHAPTER 11. FILES AND NETWORKING

classes, the close() method can throw an IOException, which must be handled; however, both
PrintWriter and TextReader override this method so that it cannot throw such exceptions.) If
you forget to close a file, the file will ordinarily be closed automatically when the program
terminates or when the file object is garbage collected, but in the case of an output file, some
of the data that has been written to the file might be lost. This can occur because data that
is written to a file can be buffered ; that is, the data is not sent immediately to the file but
is retained in main memory (in a “buffer”) until a larger chunk of data is ready to be written.
This is done for efficiency. The close() method of an output stream will cause all the data in
the buffer to be sent to the file. Every output stream also has a flush() method that can be
called to force any data in the buffer to be written to the file without closing the file.

As a complete example, here is a program that will read numbers from a file named
data.dat, and will then write out the same numbers in reverse order to another file named
result.dat. It is assumed that data.dat contains only one number on each line. Exception-
handling is used to check for problems along the way. Although the application is not a
particularly useful one, this program demonstrates the basics of working with files. (By the
way, at the end of this program, you’ll find our first useful example of a finally clause in a
try statement. When the computer executes a try statement, the commands in its finally

clause are guaranteed to be executed, no matter what.)

import java.io.*;

import java.util.ArrayList;

/**

* Reads numbers from a file named data.dat and writes them to a file

* named result.dat in reverse order. The input file should contain

* exactly one real number per line.

*/

public class ReverseFile {

public static void main(String[] args) {

TextReader data; // Character input stream for reading data.

PrintWriter result; // Character output stream for writing data.

ArrayList<Double> numbers; // An ArrayList for holding the data.

numbers = new ArrayList<Double>();

try { // Create the input stream.

data = new TextReader(new FileReader("data.dat"));

}

catch (FileNotFoundException e) {

System.out.println("Can’t find file data.dat!");

return; // End the program by returning from main().

}

try { // Create the output stream.

result = new PrintWriter(new FileWriter("result.dat"));

}

catch (IOException e) {

System.out.println("Can’t open file result.dat!");

System.out.println("Error: " + e);

data.close(); // Close the input file.

return; // End the program.

}



11.2. FILES 549

try {

// Read numbers from the input file, adding them to the ArrayList.

while ( data.eof() == false ) { // Read until end-of-file.

double inputNumber = data.getlnDouble();

numbers.add( inputNumber );

}

// Output the numbers in reverse order.

for (int i = numbers.size()-1; i >= 0; i--)

result.println(numbers.get(i));

System.out.println("Done!");

}

catch (IOException e) {

// Some problem reading the data from the input file.

System.out.println("Input Error: " + e.getMessage());

}

finally {

// Finish by closing the files, whatever else may have happened.

data.close();

result.close();

}

} // end of main()

} // end of class

11.2.2 Files and Directories

The subject of file names is actually more complicated than I’ve let on so far. To fully specify
a file, you have to give both the name of the file and the name of the directory where that
file is located. A simple file name like “data.dat” or “result.dat” is taken to refer to a file in
a directory that is called the current directory (also known as the “default directory” or
“working directory”). The current directory is not a permanent thing. It can be changed by
the user or by a program. Files not in the current directory must be referred to by a path
name , which includes both the name of the file and information about the directory where it
can be found.

To complicate matters even further, there are two types of path names, absolute path
names and relative path names. An absolute path name uniquely identifies one file among
all the files available to the computer. It contains full information about which directory the
file is in and what the file’s name is. A relative path name tells the computer how to locate the
file starting from the current directory.

Unfortunately, the syntax for file names and path names varies somewhat from one type of
computer to another. Here are some examples:

• data.dat — on any computer, this would be a file named “data.dat” in the current
directory.

• /home/eck/java/examples/data.dat — This is an absolute path name in a UNIX op-
erating system, including Linux and Mac OS X. It refers to a file named data.dat in a
directory named examples, which is in turn in a directory named java, . . . .



550 CHAPTER 11. FILES AND NETWORKING

• C:\eck\java\examples\data.dat — An absolute path name on a Windows computer.

• Hard Drive:java:examples:data.dat — Assuming that “Hard Drive” is the name of a
disk drive, this would be an absolute path name on a computer using a classic Macintosh
operating system such as Mac OS 9.

• examples/data.dat — a relative path name under UNIX. “examples” is the name of a
directory that is contained within the current directory, and data.dat is a file in that direc-
tory. The corresponding relative path name for Windows would be examples\data.dat.

• ../examples/data.dat — a relative path name in UNIX that means “go to the directory
that contains the current directory, then go into a directory named examples inside that
directory, and look there for a file named data.data.” In general, “..” means “go up one
directory.”

It’s reasonably safe to say, though, that if you stick to using simple file names only, and if the
files are stored in the same directory with the program that will use them, then you will be
OK. Later in this section, we’ll look at a convenient way of letting the user specify a file in a
GUI program, which allows you to avoid the issue of path names altogether.

It is possible for a Java program to find out the absolute path names for two important
directories, the current directory and the user’s home directory. The names of these directories
are system properties, and they can be read using the function calls:

• System.getProperty("user.dir") — returns the absolute path name of the current
directory as a String.

• System.getProperty("user.home")— returns the absolute path name of the user’s home
directory as a String.

To avoid some of the problems caused by differences in path names between platforms, Java
has the class java.io.File. An object belonging to this class represents a file. More precisely,
an object of type File represents a file name rather than a file as such. The file to which the
name refers might or might not exist. Directories are treated in the same way as files, so a File
object can represent a directory just as easily as it can represent a file.

A File object has a constructor, new File(String), that creates a File object from a path
name. The name can be a simple name, a relative path, or an absolute path. For example,
new File("data.dat") creates a File object that refers to a file named data.dat, in the current
directory. Another constructor, new File(File,String), has two parameters. The first is a
File object that refers to the directory that contains the file. The second can be the name of
the file or a relative path from the directory to the file.

File objects contain several useful instance methods. Assuming that file is a variable of
type File, here are some of the methods that are available:

• file.exists() — This boolean-valued function returns true if the file named by the
File object already exists. You can use this method if you want to avoid overwriting the
contents of an existing file when you create a new FileWriter.

• file.isDirectory() — This boolean-valued function returns true if the File object
refers to a directory. It returns false if it refers to a regular file or if no file with the given
name exists.

• file.delete()— Deletes the file, if it exists. Returns a boolean value to indicate whether
the file was successfully deleted.



11.2. FILES 551

• file.list() — If the File object refers to a directory, this function returns an array of
type String[] containing the names of the files in that directory. Otherwise, it returns
null.

Here, for example, is a program that will list the names of all the files in a directory specified
by the user. Just for fun, I have used a Scanner (Subsection 11.1.5) to read the user’s input:

import java.io.File;

import java.util.Scanner;

/**

* This program lists the files in a directory specified by

* the user. The user is asked to type in a directory name.

* If the name entered by the user is not a directory, a

* message is printed and the program ends.

*/

public class DirectoryList {

public static void main(String[] args) {

String directoryName; // Directory name entered by the user.

File directory; // File object referring to the directory.

String[] files; // Array of file names in the directory.

Scanner scanner; // For reading a line of input from the user.

scanner = new Scanner(System.in); // scanner reads from standard input.

System.out.print("Enter a directory name: ");

directoryName = scanner.nextLine().trim();

directory = new File(directoryName);

if (directory.isDirectory() == false) {

if (directory.exists() == false)

System.out.println("There is no such directory!");

else

System.out.println("That file is not a directory.");

}

else {

files = directory.list();

System.out.println("Files in directory \"" + directory + "\":");

for (int i = 0; i < files.length; i++)

System.out.println(" " + files[i]);

}

} // end main()

} // end class DirectoryList

All the classes that are used for reading data from files and writing data to files have
constructors that take a File object as a parameter. For example, if file is a variable of type
File, and you want to read character data from that file, you can create a FileReader to do so
by saying new FileReader(file). If you want to use a TextReader to read from the file, you
could say:



552 CHAPTER 11. FILES AND NETWORKING

TextReader data;

try {

data = new TextReader( new FileReader(file) );

}

catch (FileNotFoundException e) {

... // handle the exception

}

11.2.3 File Dialog Boxes

In many programs, you want the user to be able to select the file that is going to be used for
input or output. If your program lets the user type in the file name, you will just have to
assume that the user understands how to work with files and directories. But in a graphical
user interface, the user expects to be able to select files using a file dialog box , which is a
window that a program can open when it wants the user to select a file for input or output.
Swing includes a platform-independent technique for using file dialog boxes in the form of a
class called JFileChooser. This class is part of the package javax.swing. We looked at using
some basic dialog boxes in Subsection 6.8.2. File dialog boxes are similar to those, but are a
little more complicated to use.

A file dialog box shows the user a list of files and sub-directories in some directory, and makes
it easy for the user to specify a file in that directory. The user can also navigate easily from
one directory to another. The most common constructor for JFileChooser has no parameter
and sets the starting directory in the dialog box to be the user’s home directory. There are also
constructors that specify the starting directory explicitly:

new JFileChooser( File startDirectory )

new JFileChooser( String pathToStartDirectory )

Constructing a JFileChooser object does not make the dialog box appear on the screen.
You have to call a method in the object to do that. There are two different methods that
can be used because there are two types of file dialog: An open file dialog allows the user
to specify an existing file to be opened for reading data into the program; a save file dialog
lets the user specify a file, which might or might not already exist, to be opened for writing
data from the program. File dialogs of these two types are opened using the showOpenDialog

and showSaveDialog methods. These methods make the dialog box appear on the screen; the
methods do not end until the user selects a file or cancels the dialog.

A file dialog box always has a parent , another component which is associated with the
dialog box. The parent is specified as a parameter to the showOpenDialog or showSaveDialog
methods. The parent is a GUI component, and can often be specified as “this” in prac-
tice, since file dialogs are often used in instance methods of GUI component classes. (The
parameter can also be null, in which case an invisible component is created to be used
as the parent.) Both showOpenDialog and showSaveDialog have a return value, which
will be one of the constants JFileChooser.CANCEL OPTION, JFileChooser.ERROR OPTION, or
JFileChooser.APPROVE OPTION. If the return value is JFileChooser.APPROVE OPTION, then
the user has selected a file. If the return value is something else, then the user did not select a
file. The user might have clicked a “Cancel” button, for example. You should always check the
return value, to make sure that the user has, in fact, selected a file. If that is the case, then you
can find out which file was selected by calling the JFileChooser’s getSelectedFile() method,
which returns an object of type File that represents the selected file.



11.2. FILES 553

Putting all this together, we can look at a typical subroutine that reads data from a file
that is selected using a JFileChooser :

public void readFile() {

if (fileDialog == null) // (fileDialog is an instance variable)

fileDialog = new JFileChooser();

fileDialog.setDialogTitle("Select File for Reading");

fileDialog.setSelectedFile(null); // No file is initially selected.

int option = fileDialog.showOpenDialog(this);

// (Using "this" as a parameter to showOpenDialog() assumes that the

// readFile() method is an instance method in a GUI component class.)

if (option != JFileChooser.APPROVE OPTION)

return; // User canceled or clicked the dialog’s close box.

File selectedFile = fileDialog.getSelectedFile();

TextReader in; // (or use some other wrapper class)

try {

FileReader stream = new FileReader(selectedFile); // (or a FileInputStream)

in = new TextReader( stream );

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to open the file:\n" + e);

return;

}

try {

.

. // Read and process the data from the input stream, in.

.

in.close();

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to read the data:\n" + e);

}

}

One fine point here is that the variable fileDialog is an instance variable of type JFileChooser.
This allows the file dialog to continue to exist between calls to readFile(). The main effect of
this is that the dialog box will keep the same selected directory from one call of readFile()

to the next. When the dialog reappears, it will show the same directory that the user selected
the previous time it appeared. This is probably what the user expects.

Note that it’s common to do some configuration of a JFileChooser before
calling showOpenDialog or showSaveDialog. For example, the instance method
setDialogTitle(String) is used to specify a title to appear in the title bar of the window.
And setSelectedFile(File) is used to set the file that is selected in the dialog box when
it appears. This can be used to provide a default file choice for the user. In the readFile()

method, above, fileDialog.setSelectedFile(null) specifies that no file is pre-selected when
the dialog box appears.

Writing data to a file is similar, but it’s a good idea to add a check to determine whether
the output file that is selected by the user already exists. In that case, ask the user whether to
replace the file. Here is a typical subroutine for writing to a user-selected file:



554 CHAPTER 11. FILES AND NETWORKING

public void writeFile() {

if (fileDialog == null)

fileDialog = new JFileChooser(); // (fileDialog is an instance variable)

File selectedFile = new File("(default file name)");

fileDialog.setSelectedFile(selectedFile); // Specify a default file name.

fileDialog.setDialogTitle("Select File for Writing");

int option = fileDialog.showSaveDialog(this);

if (option != JFileChooser.APPROVE OPTION)

return; // User canceled or clicked the dialog’s close box.

selectedFile = fileDialog.getSelectedFile();

if (selectedFile.exists()) { // Ask the user whether to replace the file.

int response = JOptionPane.showConfirmDialog( this,

"The file \"" + selectedFile.getName()

+ "\" already exists.\nDo you want to replace it?",

"Confirm Save",

JOptionPane.YES NO OPTION,

JOptionPane.WARNING MESSAGE );

if (response != JOptionPane.YES OPTION)

return; // User does not want to replace the file.

}

PrintWriter out; // (or use some other wrapper class)

try {

FileWriter stream = new FileWriter(selectedFile); // (or FileOutputStream)

out = new PrintWriter( stream );

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to open the file:\n" + e);

return;

}

try {

.

. // Write data to the output stream, out.

.

out.close();

if (out.checkError()) // (need to check for errors in PrintWriter)

throw new IOException("Error check failed.");

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to write the data:\n" + e);

}

}

The readFile() and writeFile() routines presented here can be used, with just a few
changes, when you need to read or write a file in a GUI program. We’ll look at some more
complete examples of using files and file dialogs in the next section.

11.3 Programming With Files

In this section, we look at several programming examples that work with files, using the
techniques that were introduced in Section 11.1 and Section 11.2.



11.3. PROGRAMMING WITH FILES 555

11.3.1 Copying a File

As a first example, we look at a simple command-line program that can make a copy of a
file. Copying a file is a pretty common operation, and every operating system already has a
command for doing it. However, it is still instructive to look at a Java program that does the
same thing. Many file operations are similar to copying a file, except that the data from the
input file is processed in some way before it is written to the output file. All such operations
can be done by programs with the same general form.

Since the program should be able to copy any file, we can’t assume that the data in the
file is in human-readable form. So, we have to use InputStream and OutputStream to operate
on the file rather than Reader and Writer. The program simply copies all the data from the
InputStream to the OutputStream, one byte at a time. If source is the variable that refers to
the InputStream, then the function source.read() can be used to read one byte. This function
returns the value -1 when all the bytes in the input file have been read. Similarly, if copy refers
to the OutputStream, then copy.write(b) writes one byte to the output file. So, the heart of
the program is a simple while loop. As usual, the I/O operations can throw exceptions, so this
must be done in a try..catch statement:

while(true) {

int data = source.read();

if (data < 0)

break;

copy.write(data);

}

The file-copy command in an operating system such as UNIX uses command line argu-
ments to specify the names of the files. For example, the user might say “copy original.dat

backup.dat” to copy an existing file, original.dat, to a file named backup.dat. Command-
line arguments can also be used in Java programs. The command line arguments are stored in
the array of strings, args, which is a parameter to the main() routine. The program can retrieve
the command-line arguments from this array. (See Subsection 7.2.3.) For example, if the pro-
gram is named CopyFile and if the user runs the program with the command “java CopyFile

work.dat oldwork.dat”, then in the program, args[0] will be the string "work.dat" and
args[1] will be the string "oldwork.dat". The value of args.length tells the program how
many command-line arguments were specified by the user.

My CopyFile program gets the names of the files from the command-line arguments. It
prints an error message and exits if the file names are not specified. To add a little interest,
there are two ways to use the program. The command line can simply specify the two file names.
In that case, if the output file already exists, the program will print an error message and end.
This is to make sure that the user won’t accidently overwrite an important file. However, if the
command line has three arguments, then the first argument must be “-f” while the second and
third arguments are file names. The -f is a command-line option , which is meant to modify
the behavior of the program. The program interprets the -f to mean that it’s OK to overwrite
an existing program. (The “f” stands for “force,” since it forces the file to be copied in spite of
what would otherwise have been considered an error.) You can see in the source code how the
command line arguments are interpreted by the program:

import java.io.*;

/**

* Makes a copy of a file. The original file and the name of the



556 CHAPTER 11. FILES AND NETWORKING

* copy must be given as command-line arguments. In addition, the

* first command-line argument can be "-f"; if present, the program

* will overwrite an existing file; if not, the program will report

* an error and end if the output file already exists. The number

* of bytes that are copied is reported.

*/

public class CopyFile {

public static void main(String[] args) {

String sourceName; // Name of the source file,

// as specified on the command line.

String copyName; // Name of the copy,

// as specified on the command line.

InputStream source; // Stream for reading from the source file.

OutputStream copy; // Stream for writing the copy.

boolean force; // This is set to true if the "-f" option

// is specified on the command line.

int byteCount; // Number of bytes copied from the source file.

/* Get file names from the command line and check for the

presence of the -f option. If the command line is not one

of the two possible legal forms, print an error message and

end this program. */

if (args.length == 3 && args[0].equalsIgnoreCase("-f")) {

sourceName = args[1];

copyName = args[2];

force = true;

}

else if (args.length == 2) {

sourceName = args[0];

copyName = args[1];

force = false;

}

else {

System.out.println(

"Usage: java CopyFile <source-file> <copy-name>");

System.out.println(

" or java CopyFile -f <source-file> <copy-name>");

return;

}

/* Create the input stream. If an error occurs, end the program. */

try {

source = new FileInputStream(sourceName);

}

catch (FileNotFoundException e) {

System.out.println("Can’t find file \"" + sourceName + "\".");

return;

}

/* If the output file already exists and the -f option was not

specified, print an error message and end the program. */

File file = new File(copyName);



11.3. PROGRAMMING WITH FILES 557

if (file.exists() && force == false) {

System.out.println(

"Output file exists. Use the -f option to replace it.");

return;

}

/* Create the output stream. If an error occurs, end the program. */

try {

copy = new FileOutputStream(copyName);

}

catch (IOException e) {

System.out.println("Can’t open output file \"" + copyName + "\".");

return;

}

/* Copy one byte at a time from the input stream to the output

stream, ending when the read() method returns -1 (which is

the signal that the end of the stream has been reached). If any

error occurs, print an error message. Also print a message if

the file has been copied successfully. */

byteCount = 0;

try {

while (true) {

int data = source.read();

if (data < 0)

break;

copy.write(data);

byteCount++;

}

source.close();

copy.close();

System.out.println("Successfully copied " + byteCount + " bytes.");

}

catch (Exception e) {

System.out.println("Error occurred while copying. "

+ byteCount + " bytes copied.");

System.out.println("Error: " + e);

}

} // end main()

} // end class CopyFile

11.3.2 Persistent Data

Once a program ends, any data that was stored in variables and objects in the program is gone.
In many cases, it would be useful to have some of that data stick around so that it will be
available when the program is run again. The problem is, how to make the data persistent
between runs of the program? The answer, of course, is to store the data in a file (or, for some
applications, in a database—but the data in a database is itself stored in files).

Consider a “phone book” program that allows the user to keep track of a list of names and
associated phone numbers. The program would make no sense at all if the user had to create



558 CHAPTER 11. FILES AND NETWORKING

the whole list from scratch each time the program is run. It would make more sense to think of
the phone book as a persistent collection of data, and to think of the program as an interface to
that collection of data. The program would allow the user to look up names in the phone book
and to add new entries. Any changes that are made should be preserved after the program
ends.

The sample program PhoneDirectoryFileDemo.java is a very simple implementation of this
idea. It is meant only as an example of file use; the phone book that it implements is a “toy”
version that is not meant to be taken seriously. This program stores the phone book data in a
file named “.phone book demo” in the user’s home directory. To find the user’s home directory,
it uses the System.getProperty() method that was mentioned in Subsection 11.2.2. When
the program starts, it checks whether the file already exists. If it does, it should contain the
user’s phone book, which was saved in a previous run of the program, so the data from the file
is read and entered into a TreeMap named phoneBook that represents the phone book while
the program is running. (See Subsection 10.3.1.) In order to store the phone book in a file,
some decision must be made about how the data in the phone book will be represented. For
this example, I chose a simple representation in which each line of the file contains one entry
consisting of a name and the associated phone number. A percent sign (’%’) separates the
name from the number. The following code at the beginning of the program will read the
phone book data file, if it exists and has the correct format:

File userHomeDirectory = new File( System.getProperty("user.home") );

File dataFile = new File( userHomeDirectory, ".phone book data" );

if ( ! dataFile.exists() ) {

System.out.println("No phone book data file found.");

System.out.println("A new one will be created.");

System.out.println("File name: " + dataFile.getAbsolutePath());

}

else {

System.out.println("Reading phone book data...");

try {

Scanner scanner = new Scanner( dataFile );

while (scanner.hasNextLine()) {

// Read one line from the file, containing one name/number pair.

String phoneEntry = scanner.nextLine();

int separatorPosition = phoneEntry.indexOf(’%’);

if (separatorPosition == -1)

throw new IOException("File is not a phonebook data file.");

name = phoneEntry.substring(0, separatorPosition);

number = phoneEntry.substring(separatorPosition+1);

phoneBook.put(name,number);

}

}

catch (IOException e) {

System.out.println("Error in phone book data file.");

System.out.println("File name: " + dataFile.getAbsolutePath());

System.out.println("This program cannot continue.");

System.exit(1);

}

}



11.3. PROGRAMMING WITH FILES 559

The program then lets the user do various things with the phone book, including making
modifications. Any changes that are made are made only to the TreeMap that holds the data.
When the program ends, the phone book data is written to the file (if any changes have been
made while the program was running), using the following code:

if (changed) {

System.out.println("Saving phone directory changes to file " +

dataFile.getAbsolutePath() + " ...");

PrintWriter out;

try {

out = new PrintWriter( new FileWriter(dataFile) );

}

catch (IOException e) {

System.out.println("ERROR: Can’t open data file for output.");

return;

}

for ( Map.Entry<String,String> entry : phoneBook.entrySet() )

out.println(entry.getKey() + "%" + entry.getValue() );

out.close();

if (out.checkError())

System.out.println("ERROR: Some error occurred while writing data file.");

else

System.out.println("Done.");

}

The net effect of this is that all the data, including the changes, will be there the next time the
program is run. I’ve shown you all the file-handling code from the program. If you would like
to see the rest of the program, including an example of using a Scanner to read integer-valued
responses from the user, see the source code file, PhoneDirectoryFileDemo.java.

11.3.3 Files in GUI Programs

The previous examples in this section use a command-line interface, but graphical user interface
programs can also manipulate files. Programs typically have an “Open” command that reads
the data from a file and displays it in a window and a “Save” command that writes the data
from the window into a file. We can illustrate this in Java with a simple text editor program,
TrivialEdit.java. The window for this program uses a JTextArea component to display some
text that the user can edit. It also has a menu bar, with a “File” menu that includes “Open”
and “Save” commands. These commands are implemented using the techniques for reading and
writing files that were covered in Section 11.2.

When the user selects the Open command from the File menu in the TrivialEdit program,
the program pops up a file dialog box where the user specifies the file. It is assumed that the
file is a text file. A limit of 10000 characters is put on the size of the file, since a JTextArea
is not meant for editing large amounts of text. The program reads the text contained in the
specified file, and sets that text to be the content of the JTextArea. In this case, I decided to
use a BufferedReader to read the file line-by-line. The program also sets the title bar of the
window to show the name of the file that was opened. All this is done in the following method,
which is just a variation of the readFile() method presented in Section 11.2:

/**

* Carry out the Open command by letting the user specify a file to be opened

* and reading up to 10000 characters from that file. If the file is read



560 CHAPTER 11. FILES AND NETWORKING

* successfully and is not too long, then the text from the file replaces the

* text in the JTextArea.

*/

public void doOpen() {

if (fileDialog == null)

fileDialog = new JFileChooser();

fileDialog.setDialogTitle("Select File to be Opened");

fileDialog.setSelectedFile(null); // No file is initially selected.

int option = fileDialog.showOpenDialog(this);

if (option != JFileChooser.APPROVE OPTION)

return; // User canceled or clicked the dialog’s close box.

File selectedFile = fileDialog.getSelectedFile();

BufferedReader in;

try {

FileReader stream = new FileReader(selectedFile);

in = new BufferedReader( stream );

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to open the file:\n" + e);

return;

}

try {

String input = "";

while (true) {

String lineFromFile = in.readLine();

if (lineFromFile == null)

break; // End-of-file has been reached.

input = input + lineFromFile + ’\n’;

if (input.length() > 10000)

throw new IOException("Input file is too large for this program.");

}

in.close();

text.setText(input);

editFile = selectedFile;

setTitle("TrivialEdit: " + editFile.getName());

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to read the data:\n" + e);

}

}

In this program, the instance variable editFile is used to keep track of the file that is currently
being edited, if any, and the setTitle() method (from class JFrame) is used to set the title of
the window to show the name of the file.

Similarly, the response to the Save command is a minor variation on the writeFile()

method from Section 11.2. I will not repeat it here. If you would like to see the entire program,
you will find the source code in the file TrivialEdit.java.



11.3. PROGRAMMING WITH FILES 561

11.3.4 Storing Objects in Files

Whenever data is stored in files, some definite format must be adopted for representing the
data. As long as the output routine that writes the data and the input routine that reads the
data use the same format, the files will be usable. However, as usual, correctness is not the
end of the story. The representation that is used for data in files should also be robust. (See
Section 8.1.) To see what this means, we will look at several different ways of representing the
same data. This example builds on the example SimplePaint2.java from Subsection 7.3.4. In
that program, the user could use the mouse to draw simple sketches. Now, we will add file
input/output capabilities to that program. This will allow the user to save a sketch to a file
and later read the sketch back from the file into the program so that the user can continue to
work on the sketch. The basic requirement is that all relevant data about the sketch must be
saved in the file, so that the sketch can be exactly restored when the file is read by the program.

The new version of the program can be found in the source code file SimplePaintWith-
Files.java. A “File” menu has been added to the new version. It contains two sets of Save/Open
commands, one for saving and reloading sketch data in text form and one for data in binary
form. We will consider both possibilities here, in some detail.

The data for a sketch consists of the background color of the picture and a list of the curves
that were drawn by the user. A curve consists of a list of Points. (Point is a standard class
in package java.awt; a Point pt has instance variables x and y of type int that represent the
coordinates of a point on the xy-plane.) Each curve can be a different color. Furthermore, a
curve can be “symmetric,” which means that in addition to the curve itself, the horizontal and
vertical reflections of the curve are also drawn.) The data for each curve is stored in an object
of type CurveData, which is defined in the program as:

/**

* An object of type CurveData represents the data required to redraw one

* of the curves that have been sketched by the user.

*/

private static class CurveData implements Serializable {

Color color; // The color of the curve.

boolean symmetric; // Are horizontal and vertical reflections also drawn?

ArrayList<Point> points; // The points on the curve.

}

Note that this class has been declared to “implement Serializable”. This allows objects of
type CurveData to be written in binary form to an ObjectOutputStream. See Subsection 11.1.6.

Let’s think about how the data for a sketch could be saved to an ObjectOuputStream. The
sketch is displayed on the screen in an object of type SimplePaintPanel, which is a subclass of
JPanel. All the data needed for the sketch is stored in instance variables of that object. One
possibility would be to simply write the entire SimplePaintPanel component as a single object
to the stream. The could be done in a method in the SimplePaintPanel class with the statement

outputStream.writeObject(this);

where outputStream is the ObjectOutputStream and “this” refers to the SimplePaintPanel
itself. This statement saves the entire current state of the panel. To read the data back into
the program, you would create an ObjectInputStream for reading the object from the file, and
you would retrieve the object from the file with the statement

SimplePaintPanel newPanel = (SimplePaintPanel)in.readObject();



562 CHAPTER 11. FILES AND NETWORKING

where in is the ObjectInputStream. Note that the type-cast is necessary because the method
in.readObject() returns a value of type Object. (To get the saved sketch to appear on the
screen, the newPanel must replace the current content pane in the program’s window; further-
more, the menu bar of the window must be replaced, because the menus are associated with a
particular SimplePaintPanel object.)

It might look tempting to be able to save data and restore it with a single command, but
in this case, it’s not a good idea. The main problem with doing things this way is that the

serialized form of objects that represent Swing components can change from one
version of Java to the next. This means that data files that contain serialized components such
as a SimplePaintPanel might become unusable in the future, and the data that they contain will
be effectively lost. This is an important consideration for any serious application.

Taking this into consideration, my program uses a different format when it creates a binary
file. The data written to the file consists of (1) the background color of the sketch, (2) the
number of curves in the sketch, and (3) all the CurveData objects that describe the individual
curves. The method that saves the data is similar to the writeFile() method from Subsec-
tion 11.2.3. Here is the complete doSaveAsBinary() from SimplePaintWithFiles, with the
changes from the generic readFile() method shown in italic:

/**

* Save the user’s sketch to a file in binary form as serialized

* objects, using an ObjectOutputStream. Files created by this method

* can be read back into the program using the doOpenAsBinary() method.

*/

private void doSaveAsBinary() {

if (fileDialog == null)

fileDialog = new JFileChooser();

File selectedFile; //Initially selected file name in the dialog.

if (editFile == null)

selectedFile = new File("sketchData.binary");

else

selectedFile = new File(editFile.getName());

fileDialog.setSelectedFile(selectedFile);

fileDialog.setDialogTitle("Select File to be Saved");

int option = fileDialog.showSaveDialog(this);

if (option != JFileChooser.APPROVE OPTION)

return; // User canceled or clicked the dialog’s close box.

selectedFile = fileDialog.getSelectedFile();

if (selectedFile.exists()) { // Ask the user whether to replace the file.

int response = JOptionPane.showConfirmDialog( this,

"The file \"" + selectedFile.getName()

+ "\" already exists.\nDo you want to replace it?",

"Confirm Save",

JOptionPane.YES NO OPTION,

JOptionPane.WARNING MESSAGE );

if (response != JOptionPane.YES OPTION)

return; // User does not want to replace the file.

}

ObjectOutputStream out;

try {

FileOutputStream stream = new FileOutputStream(selectedFile);

out = new ObjectOutputStream( stream );

}



11.3. PROGRAMMING WITH FILES 563

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to open the file:\n" + e);

return;

}

try {

out.writeObject(getBackground());

out.writeInt(curves.size());

for ( CurveData curve : curves )

out.writeObject(curve);

out.close();

editFile = selectedFile;

setTitle("SimplePaint: " + editFile.getName());

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to write the text:\n" + e);

}

}

The heart of this method consists of the following lines, which do the actual writing of the data
to the file:

out.writeObject(getBackground()); // Writes the panel’s background color.

out.writeInt(curves.size()); // Writes the number of curves.

for ( CurveData curve : curves ) // For each curve...

out.writeObject(curve); // write the corresponding CurveData object.

The doOpenAsBinary() method, which is responsible for reading sketch data back into the
program from an ObjectInputStream, has to read exactly the same data that was written, in the
same order, and use that data to build the data structures that will represent the sketch while
the program is running. Once the data structures have been successfully built, they replace the
data structures that describe the previous contents of the panel. This is done as follows:

/* Read data from the file into local variables */

Color newBackgroundColor = (Color)in.readObject();

int curveCount = in.readInt();

ArrayList<CurveData> newCurves = new ArrayList<CurveData>();

for (int i = 0; i < curveCount; i++)

newCurves.add( (CurveData)in.readObject() );

in.close();

/* Copy the data that was read into the instance variables that

describe the sketch that is displayed by the program.*/

curves = newCurves;

setBackground(newBackgroundColor);

repaint();

This is only a little harder than saving the entire SimplePaintPanel component to the file in
one step, and it is more robust since the serialized form of the objects that are saved to file is
unlikely to change in the future. But it still suffers from the general fragility of binary data.

∗ ∗ ∗



564 CHAPTER 11. FILES AND NETWORKING

An alternative to using object streams is to save the data in human-readable, character
form. The basic idea is the same: All the data necessary to reconstitute a sketch must be saved
to the output file in some definite format. The method that reads the file must follow exactly
the same format as it reads the data, and it must use the data to rebuild the data structures
that represent the sketch while the program is running.

When writing character data, we can’t write out entire objects in one step. All the data has
to be expressed, ultimately, in terms of simple data values such as strings and primitive type
values. A color, for example, can be expressed in terms of three integers giving the red, green,
and blue components of the color. The first (not very good) idea that comes to mind might be
to just dump all the necessary data, in some definite order, into the file. Suppose that out is a
PrintWriter that is used to write to the file. We could then say:

Color bgColor = getBackground(); // Write the background color to the file.

out.println( bgColor.getRed() );

out.println( bgColor.getGreen() );

out.println( bgColor.getBlue() );

out.println( curves.size() ); // Write the number of curves.

for ( CurveData curve : curves ) { // For each curve, write...

out.println( curve.color.getRed() ); // the color of the curve

out.println( curve.color.getGreen() );

out.println( curve.color.getBlue() );

out.println( curve.symmetric ? 0 : 1 ); // the curve’s symmetry property

out.println( curve.points.size() ); // the number of points on curve

for ( Point pt : curve.points ) { // the coordinates of each point

out.println( pt.x );

out.println( pt.y );

}

}

This works in the sense that the file-reading method can read the data and rebuild the data
structures. Suppose that the input method uses a Scanner named scanner to read the data file
(see Subsection 11.1.5). Then it could say:

Color newBackgroundColor; // Read the background Color.

int red = scanner.nextInt();

int green = scanner.nextInt();

int blue = scanner.nextInt();

newBackgroundColor = new Color(red,green,blue);

ArrayList<CurveData> newCurves = new ArrayList<CurveData>();

int curveCount = scanner.nextInt(); // The number of curves to be read.

for (int i = 0; i < curveCount; i++) {

CurveData curve = new CurveData();

int r = scanner.nextInt(); // Read the curve’s color.

int g = scanner.nextInt();

int b = scanner.nextInt();

curve.color = new Color(r,g,b);

int symmetryCode = scanner.nextInt(); // Read the curve’s symmetry property.

curve.symmetric = (symmetryCode == 1);

curveData.points = new ArrayList<Point>();

int pointCount = scanner.nextInt(); // The number of points on this curve.

for (int j = 0; j < pointCount; j++) {



11.3. PROGRAMMING WITH FILES 565

int x = scanner.nextInt(); // Read the coordinates of the point.

int y = scanner.nextInt();

curveData.points.add(new Point(x,y));

}

newCurves.add(curve);

}

curves = newCurves; // Install the new data structures.

setBackground(newBackgroundColor);

Note how every piece of data that was written by the output method is read, in the same order,
by the input method. While this does work, the data file is just a long string of numbers. It
doesn’t make much more sense to a human reader than a binary-format file would. Furthermore,
it is still fragile in the sense that any small change made to the data representation in the
program, such as adding a new property to curves, will render the data file useless (unless you
happen to remember exactly which version of the program created the file).

So, I decided to use a more complex, more meaningful data format for the text files created
by my program. Instead of just writing numbers, I add words to say what the numbers mean.
Here is a short but complete data file for the program; just by looking at it, you can probably
tell what is going on:

SimplePaintWithFiles 1.0

background 110 110 180

startcurve

color 255 255 255

symmetry true

coords 10 10

coords 200 250

coords 300 10

endcurve

startcurve

color 0 255 255

symmetry false

coords 10 400

coords 590 400

endcurve

The first line of the file identifies the program that created the data file; when the user
selects a file to be opened, the program can check the first word in the file as a simple test to
make sure the the file is of the correct type. The first line also contains a version number, 1.0.
If the file format changes in a later version of the program, a higher version number would be
used; if the program sees a version number of 1.2 in a file, but the program only understands
version 1.0, the program can explain to the user that a newer version of the program is needed
to read the data file.

The second line of the file specifies the background color of the picture. The three integers
specify the red, green, and blue components of the color. The word “background” at the
beginning of the line makes the meaning clear. The remainder of the file consists of data for the
curves that appear in the picture. The data for each curve is clearly marked with “startcurve”
and “endcurve.” The data consists of the color and symmetry properties of the curve and the
xy-coordinates of each point on the curve. Again, the meaning is clear. Files in this format can
easily be created or edited by hand. In fact, the data file shown above was actually created in



566 CHAPTER 11. FILES AND NETWORKING

a text editor rather than by the program. Furthermore, it’s easy to extend the format to allow
for additional options. Future versions of the program could add a “thickness” property to the
curves to make it possible to have curves that are more than one pixel wide. Shapes such as
rectangles and ovals could easily be added.

Outputting data in this format is easy. Suppose that out is a PrintWriter that is being used
to write the sketch data to a file. Then the output can be done with:

out.println("SimplePaintWithFiles 1.0"); // Version number.

Color bgColor = getBackground();

out.println( "background " + bgColor.getRed() + " " +

bgColor.getGreen() + " " + bgColor.getBlue() );

for ( CurveData curve : curves ) {

out.println();

out.println("startcurve");

out.println(" color " + curve.color.getRed() + " " +

curve.color.getGreen() + " " + curve.color.getBlue() );

out.println( " symmetry " + curve.symmetric );

for ( Point pt : curve.points )

out.println( " coords " + pt.x + " " + pt.y );

out.println("endcurve");

}

Reading the data is somewhat harder, since the input routine has to deal with all the extra
words in the data. In my input routine, I decided to allow some variation in the order in which
the data occurs in the file. For example, the background color can be specified at the end of
the file, instead of at the beginning. It can even be left out altogether, in which case white will
be used as the default background color. This is possible because each item of data is labeled
with a word that describes its meaning; the labels can be used to drive the processing of the
input. Here is the complete method from SimplePaintWithFiles.java that reads data files in
text format. It uses a Scanner to read items from the file:

private void doOpenAsText() {

if (fileDialog == null)

fileDialog = new JFileChooser();

fileDialog.setDialogTitle("Select File to be Opened");

fileDialog.setSelectedFile(null); // No file is initially selected.

int option = fileDialog.showOpenDialog(this);

if (option != JFileChooser.APPROVE OPTION)

return; // User canceled or clicked the dialog’s close box.

File selectedFile = fileDialog.getSelectedFile();

Scanner scanner; // For reading from the data file.

try {

Reader stream = new BufferedReader(new FileReader(selectedFile));

scanner = new Scanner( stream );

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to open the file:\n" + e);

return;

}

try { // Read the contents of the file.

String programName = scanner.next();



11.3. PROGRAMMING WITH FILES 567

if ( ! programName.equals("SimplePaintWithFiles") )

throw new IOException("File is not a SimplePaintWithFiles data file.");

double version = scanner.nextDouble();

if (version > 1.0)

throw new IOException("File requires newer version of this program.");

Color newBackgroundColor = Color.WHITE;

ArrayList<CurveData> newCurves = new ArrayList<CurveData>();

while (scanner.hasNext()) {

String itemName = scanner.next();

if (itemName.equalsIgnoreCase("background")) {

int red = scanner.nextInt();

int green = scanner.nextInt();

int blue = scanner.nextInt();

newBackgroundColor = new Color(red,green,blue);

}

else if (itemName.equalsIgnoreCase("startcurve")) {

CurveData curve = new CurveData();

curve.color = Color.BLACK;

curve.symmetric = false;

curve.points = new ArrayList<Point>();

itemName = scanner.next();

while ( ! itemName.equalsIgnoreCase("endcurve") ) {

if (itemName.equalsIgnoreCase("color")) {

int r = scanner.nextInt();

int g = scanner.nextInt();

int b = scanner.nextInt();

curve.color = new Color(r,g,b);

}

else if (itemName.equalsIgnoreCase("symmetry")) {

curve.symmetric = scanner.nextBoolean();

}

else if (itemName.equalsIgnoreCase("coords")) {

int x = scanner.nextInt();

int y = scanner.nextInt();

curve.points.add( new Point(x,y) );

}

else {

throw new Exception("Unknown term in input.");

}

itemName = scanner.next();

}

newCurves.add(curve);

}

else {

throw new Exception("Unknown term in input.");

}

}

scanner.close();

setBackground(newBackgroundColor); // Install the new picture data.

curves = newCurves;

repaint();

editFile = selectedFile;

setTitle("SimplePaint: " + editFile.getName());



568 CHAPTER 11. FILES AND NETWORKING

}

catch (Exception e) {

JOptionPane.showMessageDialog(this,

"Sorry, but an error occurred while trying to read the data:\n" + e);

}

}

The main reason for this long discussion of file formats has been to get you to think about
the problem of representing complex data in a form suitable for storing the data in a file. The
same problem arises when data must be transmitted over a network. There is no one correct
solution to the problem, but some solutions are certainly better than others. In Section 11.6,
we will look at one solution to the data representation problem that has become increasingly
common.

∗ ∗ ∗

In addition to being able to save sketch data in both text form and binary form,
SimplePaintWithFiles can also save the picture itself as an image file that could be, for
example, printed or put on a web page. This is a preview of image-handling techniques that
will be covered in Chapter 12.

11.4 Networking

As far as a program is concerned, a network is just another possible source of input data,
and another place where data can be output. That does oversimplify things, because networks
are not as easy to work with as files are. But in Java, you can do network communication using
input streams and output streams, just as you can use such streams to communicate with the
user or to work with files. Nevertheless, opening a network connection between two computers
is a bit tricky, since there are two computers involved and they have to somehow agree to open a
connection. And when each computer can send data to the other, synchronizing communication
can be a problem. But the fundamentals are the same as for other forms of I/O.

One of the standard Java packages is called java.net. This package includes several
classes that can be used for networking. Two different styles of network I/O are supported.
One of these, which is fairly high-level, is based on the World-Wide Web, and provides the
sort of network communication capability that is used by a Web browser when it downloads
pages for you to view. The main classes for this style of networking are java.net.URL and
java.net.URLConnection. An object of type URL is an abstract representation of a Univer-
sal Resource Locator , which is an address for an HTML document or other resource on the
Web. A URLConnection represents a network connection to such a resource.

The second style of I/O, which is more general and much more important, views the network
at a lower level. It is based on the idea of a socket . A socket is used by a program to establish
a connection with another program on a network. Communication over a network involves two
sockets, one on each of the computers involved in the communication. Java uses a class called
java.net.Socket to represent sockets that are used for network communication. The term
“socket” presumably comes from an image of physically plugging a wire into a computer to
establish a connection to a network, but it is important to understand that a socket, as the
term is used here, is simply an object belonging to the class Socket. In particular, a program
can have several sockets at the same time, each connecting it to another program running on
some other computer on the network. All these connections use the same physical network
connection.



11.4. NETWORKING 569

This section gives a brief introduction to these basic networking classes, and shows how
they relate to input and output streams.

11.4.1 URLs and URLConnections

The URL class is used to represent resources on the World-Wide Web. Every resource has an
address, which identifies it uniquely and contains enough information for a Web browser to find
the resource on the network and retrieve it. The address is called a “url” or “universal resource
locator.”

An object belonging to the URL class represents such an address. Once you have a URL
object, you can use it to open a URLConnection to the resource at that address. A url is
ordinarily specified as a string, such as “http://math.hws.edu/eck/index.html”. There are
also relative url’s. A relative url specifies the location of a resource relative to the location of
another url, which is called the base or context for the relative url. For example, if the context
is given by the url http://math.hws.edu/eck/, then the incomplete, relative url “index.html”
would really refer to http://math.hws.edu/eck/index.html.

An object of the class URL is not simply a string, but it can be constructed from a string
representation of a url. A URL object can also be constructed from another URL object, repre-
senting a context, and a string that specifies a url relative to that context. These constructors
have prototypes

public URL(String urlName) throws MalformedURLException

and

public URL(URL context, String relativeName) throws MalformedURLException

Note that these constructors will throw an exception of type MalformedURLException if the
specified strings don’t represent legal url’s. The MalformedURLException class is a subclass
of IOException, and it requires mandatory exception handling. That is, you must call the
constructor inside a try..catch statement that handles the exception or in a subroutine that
is declared to throw the exception.

The second constructor is especially convenient when writing applets. In an applet, two
methods are available that provide useful URL contexts. The method getDocumentBase(),
defined in the Applet and JApplet classes, returns an object of type URL. This URL represents
the location from which the HTML page that contains the applet was downloaded. This allows
the applet to go back and retrieve other files that are stored in the same location as that
document. For example,

URL url = new URL(getDocumentBase(), "data.txt");

constructs a URL that refers to a file named data.txt on the same computer and in the same
directory as the source file for the web page on which the applet is running. Another method,
getCodeBase(), returns a URL that gives the location of the applet class file (which is not
necessarily the same as the location of the document).

Once you have a valid URL object, you can call its openConnection() method to set up a
connection. This method returns a URLConnection. The URLConnection object can, in turn,
be used to create an InputStream for reading data from the resource represented by the URL.
This is done by calling its getInputStream() method. For example:

URL url = new URL(urlAddressString);

URLConnection connection = url.openConnection();

InputStream in = connection.getInputStream();



570 CHAPTER 11. FILES AND NETWORKING

The openConnection() and getInputStream() methods can both throw exceptions of type
IOException. Once the InputStream has been created, you can read from it in the usual way,
including wrapping it in another input stream type, such as TextReader, or using a Scanner.
Reading from the stream can, of course, generate exceptions.

One of the other useful instance methods in the URLConnection class is getContentType(),
which returns a String that describes the type of information available from the URL. The
return value can be null if the type of information is not yet known or if it is not possi-
ble to determine the type. The type might not be available until after the input stream has
been created, so you should generally call getContentType() after getInputStream(). The
string returned by getContentType() is in a format called a mime type . Mime types include
“text/plain”, “text/html”, “image/jpeg”, “image/gif”, and many others. All mime types con-
tain two parts: a general type, such as “text” or “image”, and a more specific type within that
general category, such as “html” or “gif”. If you are only interested in text data, for example,
you can check whether the string returned by getContentType() starts with “text”. (Mime
types were first introduced to describe the content of email messages. The name stands for
“Multipurpose Internet Mail Extensions.” They are now used almost universally to specify the
type of information in a file or other resource.)

Let’s look at a short example that uses all this to read the data from a URL. This subroutine
opens a connection to a specified URL, checks that the type of data at the URL is text, and
then copies the text onto the screen. Many of the operations in this subroutine can throw
exceptions. They are handled by declaring that the subroutine “throws IOException” and
leaving it up to the main program to decide what to do when an error occurs.

static void readTextFromURL( String urlString ) throws IOException {

/* Open a connection to the URL, and get an input stream

for reading data from the URL. */

URL url = new URL(urlString);

URLConnection connection = url.openConnection();

InputStream urlData = connection.getInputStream();

/* Check that the content is some type of text. */

String contentType = connection.getContentType();

if (contentType == null || contentType.startsWith("text") == false)

throw new IOException("URL does not seem to refer to a text file.");

/* Copy lines of text from the input stream to the screen, until

end-of-file is encountered (or an error occurs). */

BufferedReader in; // For reading from the connection’s input stream.

in = new BufferedReader( new InputStreamReader(urlData) );

while (true) {

String line = in.readLine();

if (line == null)

break;

System.out.println(line);

}

} // end readTextFromURL()

A complete program that uses this subroutine can be found in the file ReadURL.java. When
using the program, note that you have to specify a complete url, including the “http://” at



11.4. NETWORKING 571

the beginning. There is also an applet version of the program, which you can find in the on-line
version of this section.

11.4.2 TCP/IP and Client/Server

Communication over the Internet is based on a pair of protocols called the Transmission
Control Protocol and the Internet Protocol , which are collectively referred to as TCP/IP .
(In fact, there is a more basic communication protocol called UDP that can be used instead of
TCP in certain applications. UDP is supported in Java, but for this discussion, I’ll stick to the
full TCP/IP, which provides reliable two-way communication between networked computers.)

For two programs to communicate using TCP/IP, each program must create a socket, as
discussed earlier in this section, and those sockets must be connected. Once such a connection
is made, communication takes place using input streams and output streams. Each program
has its own input stream and its own output stream. Data written by one program to its output
stream is transmitted to the other computer. There, it enters the input stream of the program
at the other end of the network connection. When that program reads data from its input
stream, it is receiving the data that was transmitted to it over the network.

The hard part, then, is making a network connection in the first place. Two sockets are
involved. To get things started, one program must create a socket that will wait passively until
a connection request comes in from another socket. The waiting socket is said to be listening
for a connection. On the other side of the connection-to-be, another program creates a socket
that sends out a connection request to the listening socket. When the listening socket receives
the connection request, it responds, and the connection is established. Once that is done, each
program can obtain an input stream and an output stream for sending data over the connection.
Communication takes place through these streams until one program or the other closes the
connection.

A program that creates a listening socket is sometimes said to be a server , and the socket is
called a server socket . A program that connects to a server is called a client , and the socket
that it uses to make a connection is called a client socket . The idea is that the server is out
there somewhere on the network, waiting for a connection request from some client. The server
can be thought of as offering some kind of service, and the client gets access to that service by
connecting to the server. This is called the client/server model of network communication.
In many actual applications, a server program can provide connections to several clients at the
same time. When a client connects to a server’s listening socket, that socket does not stop
listening. Instead, it continues listening for additional client connections at the same time that
the first client is being serviced. To do this, it is necessary to use threads (Section 8.5). We’ll
look at how it works in the next section.

The URL class that was discussed at the beginning of this section uses a client socket behind
the scenes to do any necessary network communication. On the other side of that connection is
a server program that accepts a connection request from the URL object, reads a request from
that object for some particular file on the server computer, and responds by transmitting the
contents of that file over the network back to the URL object. After transmitting the data, the
server closes the connection.

∗ ∗ ∗

A client program has to have some way to specify which computer, among all those on the
network, it wants to communicate with. Every computer on the Internet has an IP address
which identifies it uniquely among all the computers on the net. Many computers can also



572 CHAPTER 11. FILES AND NETWORKING

be referred to by domain names such as math.hws.edu or www.whitehouse.gov. (See Sec-
tion 1.7.) Traditional (or IPv4 ) IP addresses are 32-bit integers. They are usually written in
the so-called “dotted decimal” form, such as 69.9.161.200, where each of the four numbers
in the address represents an 8-bit integer in the range 0 through 255. A new version of the
Internet Protocol, IPv6 , is currently being introduced. IPv6 addresses are 128-bit integers and
are usually written in hexadecimal form (with some colons and maybe some extra information
thrown in). In actual use, IPv6 addresses are still fairly rare.

A computer can have several IP addresses, and can have both IPv4 and IPv6 addresses.
Usually, one of these is the loopback address, which can be used when a program wants to
communicate with another program on the same computer. The loopback address has IPv4
address 127.0.0.1 and can also, in general, be referred to using the domain name localhost . In
addition, there can be one or more IP addresses associated with physical network connections.
Your computer probably has some utility for displaying your computer’s IP addresses. I have
written a small Java program, ShowMyNetwork.java, that does the same thing. When I run
ShowMyNetwork on my computer, the output is:

en1 : /192.168.1.47 /fe80:0:0:0:211:24ff:fe9c:5271%5

lo0 : /127.0.0.1 /fe80:0:0:0:0:0:0:1%1 /0:0:0:0:0:0:0:1%0

The first thing on each line is a network interface name, which is really meaningful only to the
computer’s operating system. The output also contains the IP addresses for that interface. In
this example, lo0 refers to the loopback address, which has IPv4 address 127.0.0.1 as usual.
The most important number here is 192.168.1.47, which is the IPv4 address that can be used
for communication over the network.

Now, a single computer might have several programs doing network communication at the
same time, or one program communicating with several other computers. To allow for this
possibility, a network connection is actually identified by a port number in combination with
an IP address. A port number is just a 16-bit integer. A server does not simply listen for
connections—it listens for connections on a particular port. A potential client must know both
the Internet address (or domain name) of the computer on which the server is running and
the port number on which the server is listening. A Web server, for example, generally listens
for connections on port 80; other standard Internet services also have standard port numbers.
(The standard port numbers are all less than 1024, and are reserved for particular services. If
you create your own server programs, you should use port numbers greater than 1024.)

11.4.3 Sockets

To implement TCP/IP connections, the java.net package provides two classes, ServerSocket
and Socket. A ServerSocket represents a listening socket that waits for connection requests
from clients. A Socket represents one endpoint of an actual network connection. A Socket
can be a client socket that sends a connection request to a server. But a Socket can also be
created by a server to handle a connection request from a client. This allows the server to create
multiple sockets and handle multiple connections. A ServerSocket does not itself participate
in connections; it just listens for connection requests and creates Sockets to handle the actual
connections.

When you construct a ServerSocket object, you have to specify the port number on which
the server will listen. The specification for the constructor is

public ServerSocket(int port) throws IOException



11.4. NETWORKING 573

The port number must be in the range 0 through 65535, and should generally be greater than
1024. (A value of 0 tells the server socket to listen on any available port.) The constructor
might throw a SecurityException if a smaller port number is specified. An IOException can occur
if, for example, the specified port number is already in use.

As soon as a ServerSocket is created, it starts listening for connection requests. The
accept() method in the ServerSocket class accepts such a request, establishes a connection
with the client, and returns a Socket that can be used for communication with the client. The
accept() method has the form

public Socket accept() throws IOException

When you call the accept() method, it will not return until a connection request is received (or
until some error occurs). The method is said to block while waiting for the connection. (While
the method is blocked, the thread that called the method can’t do anything else. However,
other threads in the same program can proceed.) You can call accept() repeatedly to accept
multiple connection requests. The ServerSocket will continue listening for connections until it is
closed, using its close() method, or until some error occurs, or until the program is terminated
in some way.

Suppose that you want a server to listen on port 1728, and suppose that you’ve written
a method provideService(Socket) to handle the communication with one client. Then the
basic form of the server program would be:

try {

ServerSocket server = new ServerSocket(1728);

while (true) {

Socket connection = server.accept();

provideService(connection);

}

}

catch (IOException e) {

System.out.println("Server shut down with error: " + e);

}

On the client side, a client socket is created using a constructor in the Socket class. To
connect to a server on a known computer and port, you would use the constructor

public Socket(String computer, int port) throws IOException

The first parameter can be either an IP number or a domain name. This constructor will block
until the connection is established or until an error occurs.

Once you have a connected socket, no matter how it was created, you can use the Socket
methods getInputStream() and getOutputStream() to obtain streams that can be used for
communication over the connection. These methods return objects of type InputStream and
OutputStream, respectively. Keeping all this in mind, here is the outline of a method for
working with a client connection:

/**

* Open a client connection to a specified server computer and

* port number on the server, and then do communication through

* the connection.

*/

void doClientConnection(String computerName, int serverPort) {

Socket connection;

InputStream in;



574 CHAPTER 11. FILES AND NETWORKING

OutputStream out;

try {

connection = new Socket(computerName,serverPort);

in = connection.getInputStream();

out = connection.getOutputStream();

}

catch (IOException e) {

System.out.println(

"Attempt to create connection failed with error: " + e);

return;

}

.

. // Use the streams, in and out, to communicate with server.

.

try {

connection.close();

// (Alternatively, you might depend on the server

// to close the connection.)

}

catch (IOException e) {

}

} // end doClientConnection()

All this makes network communication sound easier than it really is. (And if you think it
sounded hard, then it’s even harder.) If networks were completely reliable, things would be
almost as easy as I’ve described. The problem, though, is to write robust programs that can deal
with network and human error. I won’t go into detail here. However, what I’ve covered here
should give you the basic ideas of network programming, and it is enough to write some simple
network applications. Let’s look at a few working examples of client/server programming.

11.4.4 A Trivial Client/Server

The first example consists of two programs. The source code files for the programs are Date-
Client.java and DateServer.java. One is a simple network client and the other is a matching
server. The client makes a connection to the server, reads one line of text from the server, and
displays that text on the screen. The text sent by the server consists of the current date and
time on the computer where the server is running. In order to open a connection, the client
must know the computer on which the server is running and the port on which it is listening.
The server listens on port number 32007. The port number could be anything between 1025
and 65535, as long the server and the client use the same port. Port numbers between 1 and
1024 are reserved for standard services and should not be used for other servers. The name or
IP number of the computer on which the server is running must be specified as a command-line
argument For example, if the server is running on a computer named math.hws.edu, then you
would typically run the client with the command “java DateClient math.hws.edu”. Here is
the complete client program:

import java.net.*;

import java.io.*;

/**

* This program opens a connection to a computer specified

* as the first command-line argument. The connection is made to

* the port specified by LISTENING PORT. The program reads one



11.4. NETWORKING 575

* line of text from the connection and then closes the

* connection. It displays the text that it read on

* standard output. This program is meant to be used with

* the server program, DateServer, which sends the current

* date and time on the computer where the server is running.

*/

public class DateClient {

public static final int LISTENING PORT = 32007;

public static void main(String[] args) {

String hostName; // Name of the server computer to connect to.

Socket connection; // A socket for communicating with server.

BufferedReader incoming; // For reading data from the connection.

/* Get computer name from command line. */

if (args.length > 0)

hostName = args[0];

else {

// No computer name was given. Print a message and exit.

System.out.println("Usage: java DateClient <server host name>");

return;

}

/* Make the connection, then read and display a line of text. */

try {

connection = new Socket( hostName, LISTENING PORT );

incoming = new BufferedReader(

new InputStreamReader(connection.getInputStream()) );

String lineFromServer = incoming.readLine();

if (lineFromServer == null) {

// A null from incoming.readLine() indicates that

// end-of-stream was encountered.

throw new IOException("Connection was opened, " +

"but server did not send any data.");

}

System.out.println();

System.out.println(lineFromServer);

System.out.println();

incoming.close();

}

catch (Exception e) {

System.out.println("Error: " + e);

}

} // end main()

} //end class DateClient

Note that all the communication with the server is done in a try..catch statement. This
will catch the IOExceptions that can be generated when the connection is opened or closed
and when data is read from the input stream. The connection’s input stream is wrapped in a
BufferedReader, which has a readLine() method that makes it easy to read one line of text.
(See Subsection 11.1.4.)



576 CHAPTER 11. FILES AND NETWORKING

In order for this program to run without error, the server program must be running on
the computer to which the client tries to connect. By the way, it’s possible to run the client
and the server program on the same computer. For example, you can open two command
windows, start the server in one window and then run the client in the other window. To make
things like this easier, most computers will recognize the domain name localhost and the
IP number 127.0.0.1 as referring to “this computer.” This means that the command “java
DateClient localhost” will tell the DateClient program to connect to a server running on the
same computer. If that command doesn’t work, try “java DateClient 127.0.0.1”.

The server program that corresponds to the DateClient client program is called DateServer.
The DateServer program creates a ServerSocket to listen for connection requests on port 32007.
After the listening socket is created, the server will enter an infinite loop in which it accepts
and processes connections. This will continue until the program is killed in some way—for
example by typing a CONTROL-C in the command window where the server is running. When a
connection is received from a client, the server calls a subroutine to handle the connection. In
the subroutine, any Exception that occurs is caught, so that it will not crash the server. Just
because a connection to one client has failed for some reason, it does not mean that the server
should be shut down; the error might have been the fault of the client. The connection-handling
subroutine creates a PrintWriter for sending data over the connection. It writes the current date
and time to this stream and then closes the connection. (The standard class java.util.Date

is used to obtain the current time. An object of type Date represents a particular date and
time. The default constructor, “new Date()”, creates an object that represents the time when
the object is created.) The complete server program is as follows:

import java.net.*;

import java.io.*;

import java.util.Date;

/**

* This program is a server that takes connection requests on

* the port specified by the constant LISTENING PORT. When a

* connection is opened, the program sends the current time to

* the connected socket. The program will continue to receive

* and process connections until it is killed (by a CONTROL-C,

* for example). Note that this server processes each connection

* as it is received, rather than creating a separate thread

* to process the connection.

*/

public class DateServer {

public static final int LISTENING PORT = 32007;

public static void main(String[] args) {

ServerSocket listener; // Listens for incoming connections.

Socket connection; // For communication with the connecting program.

/* Accept and process connections forever, or until some error occurs.

(Note that errors that occur while communicating with a connected

program are caught and handled in the sendDate() routine, so

they will not crash the server.) */

try {

listener = new ServerSocket(LISTENING PORT);

System.out.println("Listening on port " + LISTENING PORT);



11.4. NETWORKING 577

while (true) {

// Accept next connection request and handle it.

connection = listener.accept();

sendDate(connection);

}

}

catch (Exception e) {

System.out.println("Sorry, the server has shut down.");

System.out.println("Error: " + e);

return;

}

} // end main()

/**

* The parameter, client, is a socket that is already connected to another

* program. Get an output stream for the connection, send the current time,

* and close the connection.

*/

private static void sendDate(Socket client) {

try {

System.out.println("Connection from " +

client.getInetAddress().toString() );

Date now = new Date(); // The current date and time.

PrintWriter outgoing; // Stream for sending data.

outgoing = new PrintWriter( client.getOutputStream() );

outgoing.println( now.toString() );

outgoing.flush(); // Make sure the data is actually sent!

client.close();

}

catch (Exception e){

System.out.println("Error: " + e);

}

} // end sendDate()

} //end class DateServer

When you run DateServer in a command-line interface, it will sit and wait for connection
requests and report them as they are received. To make the DateServer service permanently
available on a computer, the program really should be run as a daemon . A daemon is a
program that runs continually on a computer, independently of any user. The computer can be
configured to start the daemon automatically as soon as the computer boots up. It then runs
in the background, even while the computer is being used for other purposes. For example, a
computer that makes pages available on the World Wide Web runs a daemon that listens for
requests for pages and responds by transmitting the pages. It’s just a souped-up analog of the
DateServer program! However, the question of how to set up a program as a daemon is not one
I want to go into here. For testing purposes, it’s easy enough to start the program by hand,
and, in any case, my examples are not really robust enough or full-featured enough to be run
as serious servers. (By the way, the word “daemon” is just an alternative spelling of “demon”
and is usually pronounced the same way.)

Note that after calling out.println() to send a line of data to the client, the server program
calls out.flush(). The flush() method is available in every output stream class. Calling it



578 CHAPTER 11. FILES AND NETWORKING

ensures that data that has been written to the stream is actually sent to its destination. You
should generally call this function every time you use an output stream to send data over a
network connection. If you don’t do so, it’s possible that the stream will collect data until it
has a large batch of data to send. This is done for efficiency, but it can impose unacceptable
delays when the client is waiting for the transmission. It is even possible that some of the
data might remain untransmitted when the socket is closed, so it is especially important to call
flush() before closing the connection. This is one of those unfortunate cases where different
implementations of Java can behave differently. If you fail to flush your output streams, it is
possible that your network application will work on some types of computers but not on others.

11.4.5 A Simple Network Chat

In the DateServer example, the server transmits information and the client reads it. It’s also
possible to have two-way communication between client and server. As a first example, we’ll
look at a client and server that allow a user on each end of the connection to send messages
to the other user. The program works in a command-line interface where the users type in
their messages. In this example, the server waits for a connection from a single client and then
closes down its listener so that no other clients can connect. After the client and server are
connected, both ends of the connection work in much the same way. The user on the client end
types a message, and it is transmitted to the server, which displays it to the user on that end.
Then the user of the server types a message that is transmitted to the client. Then the client
user types another message, and so on. This continues until one user or the other enters “quit”
when prompted for a message. When that happens, the connection is closed and both programs
terminate. The client program and the server program are very similar. The techniques for
opening the connections differ, and the client is programmed to send the first message while
the server is programmed to receive the first message. The client and server programs can be
found in the files CLChatClient.java and CLChatServer.java. (The name “CLChat” stands for
“command-line chat.”) Here is the source code for the server:

import java.net.*;

import java.io.*;

/**

* This program is one end of a simple command-line interface chat program.

* It acts as a server which waits for a connection from the CLChatClient

* program. The port on which the server listens can be specified as a

* command-line argument. If it is not, then the port specified by the

* constant DEFAULT PORT is used. Note that if a port number of zero is

* specified, then the server will listen on any available port.

* This program only supports one connection. As soon as a connection is

* opened, the listening socket is closed down. The two ends of the connection

* each send a HANDSHAKE string to the other, so that both ends can verify

* that the program on the other end is of the right type. Then the connected

* programs alternate sending messages to each other. The client always sends

* the first message. The user on either end can close the connection by

* entering the string "quit" when prompted for a message. Note that the first

* character of any string sent over the connection must be 0 or 1; this

* character is interpreted as a command.

*/

public class CLChatServer {

/**



11.4. NETWORKING 579

* Port to listen on, if none is specified on the command line.

*/

static final int DEFAULT PORT = 1728;

/**

* Handshake string. Each end of the connection sends this string to the

* other just after the connection is opened. This is done to confirm that

* the program on the other side of the connection is a CLChat program.

*/

static final String HANDSHAKE = "CLChat";

/**

* This character is prepended to every message that is sent.

*/

static final char MESSAGE = ’0’;

/**

* This character is sent to the connected program when the user quits.

*/

static final char CLOSE = ’1’;

public static void main(String[] args) {

int port; // The port on which the server listens.

ServerSocket listener; // Listens for a connection request.

Socket connection; // For communication with the client.

BufferedReader incoming; // Stream for receiving data from client.

PrintWriter outgoing; // Stream for sending data to client.

String messageOut; // A message to be sent to the client.

String messageIn; // A message received from the client.

BufferedReader userInput; // A wrapper for System.in, for reading

// lines of input from the user.

/* First, get the port number from the command line,

or use the default port if none is specified. */

if (args.length == 0)

port = DEFAULT PORT;

else {

try {

port= Integer.parseInt(args[0]);

if (port < 0 || port > 65535)

throw new NumberFormatException();

}

catch (NumberFormatException e) {

System.out.println("Illegal port number, " + args[0]);

return;

}

}

/* Wait for a connection request. When it arrives, close

down the listener. Create streams for communication

and exchange the handshake. */

try {



580 CHAPTER 11. FILES AND NETWORKING

listener = new ServerSocket(port);

System.out.println("Listening on port " + listener.getLocalPort());

connection = listener.accept();

listener.close();

incoming = new BufferedReader(

new InputStreamReader(connection.getInputStream()) );

outgoing = new PrintWriter(connection.getOutputStream());

outgoing.println(HANDSHAKE); // Send handshake to client.

outgoing.flush();

messageIn = incoming.readLine(); // Receive handshake from client.

if (! HANDSHAKE.equals(messageIn) ) {

throw new Exception("Connected program is not a CLChat!");

}

System.out.println("Connected. Waiting for the first message.");

}

catch (Exception e) {

System.out.println("An error occurred while opening connection.");

System.out.println(e.toString());

return;

}

/* Exchange messages with the other end of the connection until one side

or the other closes the connection. This server program waits for

the first message from the client. After that, messages alternate

strictly back and forth. */

try {

userInput = new BufferedReader(new InputStreamReader(System.in));

System.out.println("NOTE: Enter ’quit’ to end the program.\n");

while (true) {

System.out.println("WAITING...");

messageIn = incoming.readLine();

if (messageIn.length() > 0) {

// The first character of the message is a command. If

// the command is CLOSE, then the connection is closed.

// Otherwise, remove the command character from the

// message and proceed.

if (messageIn.charAt(0) == CLOSE) {

System.out.println("Connection closed at other end.");

connection.close();

break;

}

messageIn = messageIn.substring(1);

}

System.out.println("RECEIVED: " + messageIn);

System.out.print("SEND: ");

messageOut = userInput.readLine();

if (messageOut.equalsIgnoreCase("quit")) {

// User wants to quit. Inform the other side

// of the connection, then close the connection.

outgoing.println(CLOSE);

outgoing.flush(); // Make sure the data is sent!

connection.close();

System.out.println("Connection closed.");



11.5. NETWORK PROGRAMMING AND THREADS 581

break;

}

outgoing.println(MESSAGE + messageOut);

outgoing.flush(); // Make sure the data is sent!

if (outgoing.checkError()) {

throw new IOException("Error occurred while transmitting message.");

}

}

}

catch (Exception e) {

System.out.println("Sorry, an error has occurred. Connection lost.");

System.out.println("Error: " + e);

System.exit(1);

}

} // end main()

} //end class CLChatServer

This program is a little more robust than DateServer. For one thing, it uses a handshake to
make sure that a client who is trying to connect is really a CLChatClient program. A handshake
is simply information sent between client and server as part of setting up the connection, before
any actual data is sent. In this case, each side of the connection sends a string to the other side
to identify itself. The handshake is part of the protocol that I made up for communication
between CLChatClient and CLChatServer. A protocol is a detailed specification of what data
and messages can be exchanged over a connection, how they must be represented, and what
order they can be sent in. When you design a client/server application, the design of the
protocol is an important consideration. Another aspect of the CLChat protocol is that after the
handshake, every line of text that is sent over the connection begins with a character that acts
as a command. If the character is 0, the rest of the line is a message from one user to the other.
If the character is 1, the line indicates that a user has entered the “quit” command, and the
connection is to be shut down.

Remember that if you want to try out this program on a single computer, you can use
two command-line windows. In one, give the command “java CLChatServer” to start the
server. Then, in the other, use the command “java CLChatClient localhost” to connect to
the server that is running on the same machine.

11.5 Network Programming and Threads

In the previous section, we looked at several examples of network programming. Those
examples showed how to create network connections and communicate through them, but they
didn’t deal with one of the fundamental characteristics of network programming, the fact that
network communication is fundamentally asynchronous. From the point of view of a program
on one end of a network connection, messages can arrive from the other side of the connection at
any time; the arrival of a message is an event that is not under the control of the program that
is receiving the message. Certainly, it is possible to design a network communication protocol
that proceeds in a synchronous, step-by-step process from beginning to end—but whenever the
process gets to a point in the protocol where it needs to read a message from the other side of
the connection, it has to wait for that message to arrive. Essentially, the process has to wait



582 CHAPTER 11. FILES AND NETWORKING

for a message-arrival event to occur before it can proceed. While it is waiting for the message,
we say that the process is blocked .

Perhaps an event-oriented networking API would be a good approach to dealing with the
asynchronous nature of network communication, but that is not the approach that is taken
in Java (or, typically, in other languages). Instead, a serious network program in Java uses
threads. Threads were introduced in Section 8.5. A thread is a separate computational
process that can run in parallel with other threads. When a program uses threads to do
network communication, it is possible that some threads will be blocked, waiting for incoming
messages, but other threads will still be able to continue performing useful work.

11.5.1 A Threaded GUI Chat Program.

The command-line chat programs, CLChatClient.java and CLChatServer.java, from the previ-
ous section use a straight-through, step-by-step protocol for communication. After a user on
one side of a connection enters a message, the user must wait for a reply from the other side of
the connection. An asynchronous chat program would be much nicer. In such a program, a user
could just keep typing lines and sending messages without waiting for any response. Messages
that arrive—asynchronously—from the other side would be displayed as soon as they arrive.
It’s not easy to do this in a command-line interface, but it’s a natural application for a graphical
user interface. The basic idea for a GUI chat program is to create a thread whose job is to read
messages that arrive from the other side of the connection. As soon as the message arrives, it is
displayed to the user; then, the message-reading thread blocks until the next incoming message
arrives. While it is blocked, however, other threads can continue to run. In particular, the
GUI event-handling thread that responds to user actions keeps running; that thread can send
outgoing messages as soon as the user generates them.

The sample program GUIChat.java is an example of this. GUIChat is a two-way network
chat program that allows two users to send messages to each other over the network. In this
chat program, each user can send messages at any time, and incoming messages are displayed
as soon as they are received.

The GUIChat program can act as both the client end and the server end of a connection.
When GUIChat is started, a window appears on the screen. This window has a “Listen” button
that the user can click to create a server socket that will listen for an incoming connection
request; this makes the program act as a server. It also has a “Connect” button that the the
user can click to send a connection request; this makes the program act as a client. As usual,
the server listens on a specified port number. The client needs to know the computer on which
the server is running and the port on which the server is listening. There are input boxes in
the GUIChat window where the user can enter this information. Once a connection has been
established between two GUIChat windows, each user can send messages to the other. The
window has an input box where the user types the message. Pressing return while typing in
this box sends the message. This means that the sending of the message is handled by the
usual event-handling thread, in response to an event generated by a user action. Messages
are received by a separate thread that just sits around waiting for incoming messages. This
thread blocks while waiting for a message to arrive; when a message does arrive, it displays that
message to the user. The window contains a large transcript area that displays both incoming
and outgoing messages, along with other information about the network connection.

I urge you to compile the source code, GUIChat.java, and try the program. To make it easy
to try it on a single computer, you can make a connection between one window and another
window on the same computer, using “localhost” or “127.0.0.1” as the name of the computer.



11.5. NETWORK PROGRAMMING AND THREADS 583

(Once you have one GUIChat window open, you can open a second one by clicking the “New”
button.) I also urge you to read the source code. I will discuss only parts of it here.

The program uses a nested class, ConnectionHandler, to handle most network-related tasks.
ConnectionHandler is a subclass of Thread. The ConnectionHandler thread is responsible for
opening the network connection and then for reading incoming messages once the connection
has been opened. (By putting the connection-opening code in a separate thread, we make
sure that the GUI is not blocked while the connection is being opened. Like reading incoming
messages, opening a connection is a blocking operation that can take some time to complete.)
A ConnectionHandler is created when the user clicks the “Listen” or “Connect” button. The
“Listen” button should make the thread act as a server, while “Connect” should make it act
as a client. To distinguish these two cases, the ConnectionHandler class has two constructors:

/**

* Listen for a connection on a specified port. The constructor

* does not perform any network operations; it just sets some

* instance variables and starts the thread. Note that the

* thread will only listen for one connection, and then will

* close its server socket.

*/

ConnectionHandler(int port) {

state = ConnectionState.LISTENING;

this.port = port;

postMessage("\nLISTENING ON PORT " + port + "\n");

start();

}

/**

* Open a connection to specified computer and port. The constructor

* does not perform any network operations; it just sets some

* instance variables and starts the thread.

*/

ConnectionHandler(String remoteHost, int port) {

state = ConnectionState.CONNECTING;

this.remoteHost = remoteHost;

this.port = port;

postMessage("\nCONNECTING TO " + remoteHost + " ON PORT " + port + "\n");

start();

}

Here, state is an instance variable whose type is defined by an enumerated type

enum ConnectionState { LISTENING, CONNECTING, CONNECTED, CLOSED };

The values of this enum represent different possible states of the network connection. It is often
useful to treat a network connection as a state machine (see Subsection 6.5.4), since the response
to various events can depend on the state of the connection when the event occurs. Setting the
state variable to LISTENING or CONNECTING tells the thread whether it should act as a server
or as a client. Note that the postMessage() method posts a message to the transcript area of
the window, where it will be visible to the user.

Once the thread has been started, it executes the following run() method:

/**

* The run() method that is executed by the thread. It opens a

* connection as a client or as a server (depending on which



584 CHAPTER 11. FILES AND NETWORKING

* constructor was used).

*/

public void run() {

try {

if (state == ConnectionState.LISTENING) {

// Open a connection as a server.

listener = new ServerSocket(port);

socket = listener.accept();

listener.close();

}

else if (state == ConnectionState.CONNECTING) {

// Open a connection as a client.

socket = new Socket(remoteHost,port);

}

connectionOpened(); // Sets up to use the connection (including

// creating a BufferedReader, in, for reading

// incoming messages).

while (state == ConnectionState.CONNECTED) {

// Read one line of text from the other side of

// the connection, and report it to the user.

String input = in.readLine();

if (input == null)

connectionClosedFromOtherSide();

else

received(input); // Report message to user.

}

}

catch (Exception e) {

// An error occurred. Report it to the user, but not

// if the connection has been closed (since the error

// might be the expected error that is generated when

// a socket is closed).

if (state != ConnectionState.CLOSED)

postMessage("\n\n ERROR: " + e);

}

finally { // Clean up before terminating the thread.

cleanUp();

}

}

This method calls several other methods to do some of its work, but you can see the general
outline of how it works. After opening the connection as either a server or client, the run()

method enters a while loop in which it receives and processes messages from the other side of
the connection until the connection is closed. It is important to understand how the connection
can be closed. The GUIChat window has a “Disconnect” button that the user can click to close
the connection. The program responds to this event by closing the socket that represents the
connection. It is likely that when this happens, the connection-handling thread is blocked in the
in.readLine()method, waiting for an incoming message. When the socket is closed by another
thread, this method will fail and will throw an exception; this exception causes the thread to
terminate. (If the connection-handling thread happens to be between calls to in.readLine()

when the socket is closed, the while loop will terminate because the connection state changes



11.5. NETWORK PROGRAMMING AND THREADS 585

from CONNECTED to CLOSED.) Note that closing the window will also close the connection in the
same way.

It is also possible for the user on the other side of the connection to close the connection.
When that happens, the stream of incoming messages ends, and the in.readLine() on this
side of the connection returns the value null, which indicates end-of-stream and acts as a signal
that the connection has been closed by the remote user.

For a final look into the GUIChat code, consider the methods that send and receive messages.
These methods are called from different threads. The send() method is called by the event-
handling thread in response to a user action. Its purpose is to transmit a message to the remote
user. It uses a PrintWriter, out, that writes to the socket’s output stream. Synchronization of
this method prevents the connection state from changing in the middle of the send operation:

/**

* Send a message to the other side of the connection, and post the

* message to the transcript. This should only be called when the

* connection state is ConnectionState.CONNECTED; if it is called at

* other times, it is ignored.

*/

synchronized void send(String message) {

if (state == ConnectionState.CONNECTED) {

postMessage("SEND: " + message);

out.println(message);

out.flush();

if (out.checkError()) {

postMessage("\nERROR OCCURRED WHILE TRYING TO SEND DATA.");

close(); // Closes the connection.

}

}

}

The received() method is called by the connection-handling thread after a message has been
read from the remote user. Its only job is to display the message to the user, but again it is
synchronized to avoid the race condition that could occur if the connection state were changed
by another thread while this method is being executed:

/**

* This is called by the run() method when a message is received from

* the other side of the connection. The message is posted to the

* transcript, but only if the connection state is CONNECTED. (This

* is because a message might be received after the user has clicked

* the "Disconnect" button; that message should not be seen by the

* user.)

*/

synchronized private void received(String message) {

if (state == ConnectionState.CONNECTED)

postMessage("RECEIVE: " + message);

}

11.5.2 A Multithreaded Server

There is still one big problem with the GUIChat program. In order to open a connection
to another computer, a user must know that there is a GUIChat program listening on some



586 CHAPTER 11. FILES AND NETWORKING

particular port on some particular computer. Except in rather contrived situations, there is no
way for a user to know that. It would be nice if it were possible to discover, somehow, who’s
out there on the Internet waiting for a connection. Unfortunately, this is not possible. And
yet, applications such as AOL Instant Messenger seem to do just that—they can show you a
list of users who are available to receive messages. How can they do that?

I don’t know the details of instant messenger protocols, but it has to work something like
this: When you start the client program, that program contacts a server program that runs
constantly on some particular computer and on some particular port. Since the server is always
available at the same computer and port, the information needed to contact it can be built into
the client program or otherwise made available to the users of the program. The purpose of
the server is to keep a list of available users. When your client program contacts the server, it
gets a list of available users, along with whatever information is necessary to send messages to
those users. At the same time, your client program registers you with the server, so that the
server can tell other users that you are on-line. When you shut down the client program, you
are removed from the server’s list of users, and other users can be informed that you have gone
off-line.

Of course, in an application like AOL server, you only get to see a list of available users
from your “buddy list,” a list of your friends who are also AOL users. To implement this, you
need to have an account on the AOL server. The server needs to keep a database of information
about all user accounts, including the buddy list for each user. This makes the server program
rather complicated, and I won’t consider that aspect of its functionality here. However, it is
not very difficult to write a scaled-down application that uses the network in a similar way. I
call my scaled-down version “BuddyChat.” It doesn’t keep separate buddy lists for each user; it
assumes that you’re willing to be buddies with anyone who happens to connect to the server. In
this application, the server keeps a list of connected users and makes that list available to each
connected user. A user can connect to another user and chat with that user, using a window
that is very similar to the chat window in GUIChat. BuddyChat is still just a toy, compared to
serious network applications, but it does illustrate some core ideas.

The BuddyChat application comes in several pieces. BuddyChatServer.java is the server
program, which keeps the list of available users and makes that list available to clients. Ideally,
the server program would run constantly (as a daemon) on a computer and port that are known
to all the possible client users. For testing, of course, it can simply be stated like any other
program. The client program is BuddyChat.java. This program is to be run by any user who
wants to use the BuddyChat service. When a user starts the client program, it connects to the
server, and it gets from the server a list of other users who are currently connected. The list
is displayed to the user of the client program, who can send a request for a chat connection
with any user on the list. The client can also receive incoming chat connection requests from
other users. The window that is used for chatting is defined by BuddyChatWindow.java, which
is not itself a program but just a subclass of JFrame that defines the chat window. (There is
also a fourth piece, BuddyChatServerShutdown.java. This is a program that can be run to shut
down the BuddyChatServer gracefully. I will not discuss it further here. See the source code
for more information, if you are interested.)

I urge you to compile the programs and try them out. For testing, you can try them
on a single computer (although all the windows can get a little confusing). First, start
BuddyChatServer. The server has no GUI interface, but it does print some information to
standard output as it runs. Then start the BuddyChat client program. When BuddyChat starts
up, it presents a window where you can enter the name and port number for the server and your



11.5. NETWORK PROGRAMMING AND THREADS 587

“handle,” which is just a name that will identify you in the server’s list of users. The server
info is already set up to connect to a server on the same machine. When you hit the “Connect”
button, a new window will open with a list, currently empty, of other users connected to the
server. Now, start another copy of the BuddyChat client program. When you click “Connect”,
you’ll have two client list windows, one for each copy of the client program that you’ve started.
(One of these windows will be exactly on top of the other, so you’ll have to move it to see the
second window.) Each client window will display the other client in its list of users. You can
run additional copies of the client program, if you want, and you might want to try connecting
from another computer if one is available.

At this point, there is a network connection in place between the server and each client.
Whenever a client connects to or disconnects from the server, the server sends a notification
of the event to each connected client, so that the client can modify its own list of connected
users. The server also maintains a listening socket that listens for connection requests from new
clients. In order to manage all this, the server is running several threads. One thread waits
for connection requests on the listening socket. In addition to this, there are two threads for
each connected client—one thread for sending messages to the client and one thread for reading
messages sent by the client to the server.

Back to trying out the program. Remember that the whole point was to provide each user
with a list of potential chat partners. Click on a user in one of the client user lists, and then
click the “Connect to Selected Buddy” button. When you do this, your BuddyChat program
sends a connection request to the BuddyChat program that is being run by the selected user.
Each BuddyChat program, one on each side of the connection, opens a chat window (of type
BuddyChatWindow). A network connection between these two windows is set up without any
further action on the part of the two users, and the users can use the windows to send messages
back and forth to each other. The BuddyChatServer program has nothing to do with opening,
closing, or using the connection between its two clients (although a different design might have
had the messages go through the server).

In order to open the chat connection from one program to another, the second program
must be listening for connection requests and the first program must know the computer and
port on which the first user is listening. In the BuddyChat system, the BuddyChatServer knows
this information and provides it to each BuddyChat client program. The users of the client
programs never have to be aware of this information.

How does the server know about the clients’ computers and port numbers? When a Bud-
dyChat client program is run, in addition to opening a connection to the BuddyChatServer, the
client also creates a listening socket to accept connection requests from other users. When the
client registers with the server, it tells the server the port number of the client’s listening socket.
The server also knows the IP address of the computer on which the client is running, since it has
a network connection to that computer. This means that the BuddyChatServer knows the IP
address and listening socket port number of every BuddyChat client. A copy of this information
is provided (along with the users’ handles) to each connected client program. The net result is
that every BuddyChat client program has the information that it needs to contact all the other
clients.

The basic techniques used in the BuddyChat system are the same as those used in previous
networking examples: server sockets, client sockets, input and output streams for sending
messages over the network, and threads to handle the communication. The important difference
is how these basic building blocks are combined to build a more complex application. I have
tried to explain the logic of that application here. I will not discuss the BuddyChat source code



588 CHAPTER 11. FILES AND NETWORKING

here, since it is locally similar to examples that we have already looked at, but I encourage you
to study the source code if you are interested in network programming.

BuddyChat seems to have a lot of functionality, yet I said it was still a “toy” program.
What exactly makes it a toy? There are at least two big problems. First of all, it is not
scalable . A network program is scalable if it will work well for a large number of simultaneous
users. BuddyChat would have problems with a large number of users because it uses so many
threads (two for each user). It takes a certain amount of processing for a computer to switch its
attention from one thread to another. On a very busy server, the constant switching between
threads would soon start to degrade the performance. One solution to this is to use a more
advanced network API. Java has a class SelectableChannel that makes it possible for one thread
to manage communication over a large number of network connections. This class is part of
the package java.nio that provides a number of advanced I/O capabilities for working with
files and networking. However, I will not cover those capabilities in this book.

But the biggest problem is that BuddyChat offers absolutely no defense against denial of
service attacks. In a denial of service, a malicious user attacks a network server in some way
that prevents other users from accessing the service or severely degrades the performance of the
service for those users. It would be simple to launch a denial of service attack on BuddyChat

by making a huge number of connections to the server. The server would then spend most of
its time servicing those bogus connections. The server could guard against this to some extent
by putting a limit on the number of simultaneous connections that it will accept from a given
IP address. It would also be helpful to add some security to the server by requiring users to
know a password in order to connect. However, neither of these measures would fully solve the
problem, and it is very difficult to find a complete defense against denial of service attacks.

11.5.3 Distributed Computing

In Section 8.5, we saw how threads can be used to do parallel processing, where a number of
processors work together to complete some task. In that section, it was assumed that all the
processors were inside one multi-processor computer. But parallel processing can also be done
using processors that are in different computers, as long as those computers are connected to a
network over which they can communicate. This type of parallel processing—in which a number
of computers work together on a task and communicate over a network—is called distributed
computing .

In some sense, the whole Internet is an immense distributed computation, but here I am
interested in how computers on a network can cooperate to solve some computational problem.
There are several approaches to distributed computing that are supported in Java. RMI and
CORBA are standards that enable a program running on one computer to call methods in
objects that exist on other computers. This makes it possible to design an object-oriented
program in which different parts of the program are executed on different computers. RMI
(Remote Method Invocation) only supports communication between Java objects. CORBA
(Common Object Request Broker Architecture) is a more general standard that allows objects
written in various programming languages, including Java, to communicate with each other.
As is commonly the case in networking, there is the problem of locating services (where in this
case, a “service” means an object that is available to be called over the network). That is, how
can one computer know which computer a service is located on and what port it is listening
on? RMI and CORBA solve this problem using something like our little BuddyChatServer

example—a server running at a known location keeps a list of services that are available on other
computers. Computers that offer services register those services with the server; computers that



11.5. NETWORK PROGRAMMING AND THREADS 589

need services contact the server to find out where they are located.

RMI and CORBA are complex systems that are not very easy to use. I mention them here
because they are part of Java’s standard network API, but I will not discuss them further.
Instead, we will look at a relatively simple demonstration of distributed computing that uses
only basic networking.

The problem that we will look at uses the simplest type of parallel programming, in which
the problem can be broken down into tasks that can be performed independently, with no
communication between the tasks. To apply distributed computing to this type of problem,
we can use one “master” program that divides the problem into tasks and sends those tasks
over the network to “worker” programs that do the actual work. The worker programs send
their results back to the master program, which combines the results from all the tasks into a
solution of the overall problem. In this context, the worker programs are often called “slaves,”
and the program uses the so-called master/slave approach to distributed computing.

The demonstration program is defined by three source code files: CLMandelbrotMas-
ter.java defines the master program; CLMandelbrotWorker.java defines the worker programs;
and CLMandelbrotTask.java defines the class, CLMandelbrotTask, that represents an individ-
ual task that is performed by the workers. To run the demonstration, you must start the
CLMandelbrotWorker program on several computers (probably by running it on the command
line). This program uses CLMandelbrotTask, so both class files, CLMandelbrotWorker.class
and CLMandelbrotTask.class, must be present on the worker computers. You can then run
CLMandelbrotMaster on the master computer. Note that this program also requires the class
CLMandelbrotTask. You must specify the host name or IP address of each of the worker com-
puters as command line arguments for CLMandelbrotMaster. A worker program listens for
connection requests from the master program, and the master program must be told where
to send those requests. For example, if the worker program is running on three comput-
ers with IP addresses 172.30.217.101, 172.30.217.102, and 172.30.217.103, then you can run
CLMandelbrotMaster with the command

java CLMandelbrotMaster 172.30.217.101 172.30.217.102 172.30.217.103

The master will make a network connection to the worker at each IP address; these connections
will be used for communication between the master program and the workers.

It is possible to run several copies of CLMandelbrotWorker on the same computer, but
they must listen for network connections on different ports. It is also possible to run
CLMandelbrotWorker on the same computer as CLMandelbrotMaster. You might even see
some speed-up when you do this, if your computer has several processors. See the comments in
the program source code files for more information, but here are some commands that you can
use to run the master program and two copies of the worker program on the same computer.
Give these commands in separate command windows:

java CLMandelbrotWorker (Listens on default port)

java CLMandelbrotWorker 1501 (Listens on port 1501)

java CLMandelbrotMaster localhost localhost:1501

Every time CLMandelbrotMaster is run, it solves exactly the same problem. (For this
demonstration, the nature of the problem is not important, but the problem is to compute the
data needed for a picture of a small piece of the famous “Mandelbrot Set.” If you are interested
in seeing the picture that is produced, uncomment the call to the saveImage() method at the



590 CHAPTER 11. FILES AND NETWORKING

end of the main() routine in CLMandelbrotMaster.java. We will encounter the Mandelbrot Set
again as an example in Chapter 12.)

You can run CLMandelbrotMaster with different numbers of worker programs to see how
the time required to solve the problem depends on the number of workers. (Note that the
worker programs continue to run after the master program exists, so you can run the mas-
ter program several times without having to restart the workers.) In addition, if you run
CLMandelbrotMaster with no command line arguments, it will solve the entire problem on its
own, so you can see how long it takes to do so without using distributed computing. In a trial
that I ran, it took 40 seconds for CLMandelbrotMaster to solve the problem on its own. Using
just one worker, it took 43 seconds. The extra time represents extra work involved in using the
network; it takes time to set up a network connection and to send messages over the network.
Using two workers (on different computers), the problem was solved in 22 seconds. In this case,
each worker did about half of the work, and their computations were performed in parallel,
so that the job was done in about half the time. With larger numbers of workers, the time
continued to decrease, but only up to a point. The master program itself has a certain amount
of work to do, no matter how many workers there are, and the total time to solve the problem
can never be less than the time it takes for the master program to do its part. In this case, the
minimum time seemed to be about five seconds.

∗ ∗ ∗

Let’s take a look at how this distributed application is programmed. The master program
divides the overall problem into a set of tasks. Each task is represented by an object of type
CLMandelbrotTask. These tasks have to be communicated to the worker programs, and the
worker programs must send back their results. Some protocol is needed for this communication.
I decided to use character streams. The master encodes a task as a line of text, which is sent
to a worker. The worker decodes the text (into an object of type CLMandelbrotTask) to find
out what task it is supposed to perform. It performs the assigned task. It encodes the results
as another line of text, which it sends back to the master program. Finally, the master decodes
the results and combines them with the results from other tasks. After all the tasks have been
completed and their results have been combined, the problem has been solved.

The problem is divided into a fairly large number of tasks. A worker receives not just
one task, but a sequence of tasks. Each time it finishes a task and sends back the result, it
is assigned a new task. After all tasks are complete, the worker receives a “close” command
that tells it to close the connection. In CLMandelbrotWorker.java, all this is done in a method
named handleConnection() that is called to handle a connection that has already been opened
to the master program. It uses a method readTask() to decode a task that it receives from
the master and a method writeResults() to encode the results of the task for transmission
back to the master. It must also handle any errors that occur:

private static void handleConnection(Socket connection) {

try {

BufferedReader in = new BufferedReader( new InputStreamReader(

connection.getInputStream()) );

PrintWriter out = new PrintWriter(connection.getOutputStream());

while (true) {

String line = in.readLine(); // Message from the master.

if (line == null) {

// End-of-stream encountered -- should not happen.

throw new Exception("Connection closed unexpectedly.");

}



11.5. NETWORK PROGRAMMING AND THREADS 591

if (line.startsWith(CLOSE CONNECTION COMMAND)) {

// Represents the normal termination of the connection.

System.out.println("Received close command.");

break;

}

else if (line.startsWith(TASK COMMAND)) {

// Represents a CLMandelbrotTask that this worker is

// supposed to perform.

CLMandelbrotTask task = readTask(line); // Decode the message.

task.compute(); // Peform the task.

out.println(writeResults(task)); // Send back the results.

out.flush();

}

else {

// No other messages are part of the protocol.

throw new Exception("Illegal command received.");

}

}

}

catch (Exception e) {

System.out.println("Client connection closed with error " + e);

}

finally {

try {

connection.close(); // Make sure the socket is closed.

}

catch (Exception e) {

}

}

}

Note that this method is not executed in a separate thread. The worker has only one thing to
do at a time and does not need to be multithreaded.

You might wonder why so many tasks are used. Why not just divide the problem into one
task for each worker? The reason is that using a larger number of tasks makes it possible to do
load balancing . Not all tasks take the same amount of time to execute. This is true for many
reasons. Some of the tasks might simply be more computationally complex than others. Some
of the worker computers might be slower than others. Or some worker computers might be
busy running other programs, so that they can only give part of their processing power to the
worker program. If we assigned one task per worker, it is possible that a complex task running
on a slow, busy computer would take much longer than the other tasks to complete. This would
leave the other workers idle and delay the completion of the job while that worker completes its
task. To complete the job as quickly as possible, we want to keep all the workers busy and have
them all finish at about the same time. This is called load balancing. If we have a large number
of tasks, the load will automatically be approximately balanced: A worker is not assigned a
new task until it finishes the task that it is working on. A slow worker, or one that happens to
receive more complex tasks, will complete fewer tasks than other workers, but all workers will
be kept busy until close to the end of the job. On the other hand, individual tasks shouldn’t be
too small. Network communication takes some time. If it takes longer to transmit a task and
its results than it does to perform the task, then using distributed computing will take more



592 CHAPTER 11. FILES AND NETWORKING

time than simply doing the whole job on one computer! A problem is a good candidate for
distributed computing if it can be divided into a fairly large number of fairly large tasks.

Turning to the master program, CLMandelbrotMaster.java, we encounter a more complex
situation. The master program must communicate with several workers over several network
connections. To accomplish this, the master program is multi-threaded, with one thread to
manage communication with each worker. A pseudocode outline of the main() routine is quite
simple:

create a list of all tasks that must be performed

if there are no command line arguments {

// The master program does all the tasks itself.

Perform each task.

}

else {

// The tasks will be performed by worker programs.

for each command line argument:

Get information about a worker from command line argument.

Create and start a thread to communicate with the worker.

Wait for all threads to terminate.

}

// All tasks are now complete (assuming no error occurred).

The list of tasks is stored in a variable, tasks, of type ArrayList<CLMandelbrotTask>. The
communication threads take tasks from this list and send them to worker programs. The
method getNextTask() gets one task from the list. If the list is empty, it returns null as a
signal that all tasks have been assigned and the communication thread can terminate. Since
tasks is a resource that is shared by several threads, access to it must be controlled; this is
accomplished by writing getNextTask() as a synchronized method:

synchronized private static CLMandelbrotTask getNextTask() {

if (tasks.size() == 0)

return null;

else

return tasks.remove(0);

}

(The reason for the synchronization is to avoid the race condition that could occur between
the time that the value of tasks.size() is tested and the time that tasks.remove() is
called. See Subsection 8.5.3 for information about parallel programming, race conditions, and
synchronized.)

The job of a thread is to send a sequence of tasks to a worker thread and to receive the
results that the worker sends back. The thread is also responsible for opening the connection
in the first place. A pseudocode outline for the process executed by the thread might look like:

Create a socket connected to the worker program.

Create input and output streams for communicating with the worker.

while (true) {

Let task = getNextTask().

If task == null

break; // All tasks have been assigned.

Encode the task into a message and transmit it to the worker.

Read the response from the worker.

Decode and process the response.

}



11.5. NETWORK PROGRAMMING AND THREADS 593

Send a "close" command to the worker.

Close the socket.

This would work OK. However, there are a few subtle points. First of all, the thread must be
ready to deal with a network error. For example, a worker might shut down unexpectedly. But if
that happens, the master program can continue, provided other workers are still available. (You
can try this when you run the program: Stop one of the worker programs, with CONTROL-C,
and observe that the master program still completes successfully.) A difficulty arises if an
error occurs while the thread is working on a task: If the problem as a whole is going to be
completed, that task will have to be reassigned to another worker. I take care of this by putting
the uncompleted task back into the task list. (Unfortunately, my program does not handle all
possible errors. If a network connection “hangs” indefinitely without actually generating an
error, my program will also hang, waiting for a response from a worker that will never arrive. A
more robust program would have some way of detecting the problem and reassigning the task.)

Another defect in the procedure outlined above is that it leaves the worker program idle
while the thread is processing the worker’s response. It would be nice to get a new task to the
worker before processing the response from the previous task. This would keep the worker busy
and allow two operations to proceed simultaneously instead of sequentially. (In this example,
the time it takes to process a response is so short that keeping the worker waiting while it is
done probably makes no significant difference. But as a general principle, it’s desirable to have
as much parallelism as possible in the algorithm.) We can modify the procedure to take this
into account:

try {

Create a socket connected to the worker program.

Create input and output streams for communicating with the worker.

Let currentTask = getNextTask().

Encode currentTask into a message and send it to the worker.

while (true) {

Read the response from the worker.

Let nextTask = getNextTask().

If nextTask != null {

// Send nextTask to the worker before processing the

// response to currentTask.

Encode nextTask into a message and send it to the worker.

}

Decode and process the response to currentTask.

currentTask = nextTask.

if (currentTask == null)

break; // All tasks have been assigned.

}

Send a "close" command to the worker.

Close the socket.

}

catch (Exception e) {

Put uncompleted task, if any, back into the task list.

}

finally {

Close the connection.

}

Finally, here is how this translates into Java. The pseudocode presented above becomes the
run() method in the class that defines the communication threads used by the master program:



594 CHAPTER 11. FILES AND NETWORKING

/**

* This class represents one worker thread. The job of a worker thread

* is to send out tasks to a CLMandelbrotWorker program over a network

* connection, and to get back the results computed by that program.

*/

private static class WorkerConnection extends Thread {

int id; // Identifies this thread in output statements.

String host; // The host to which this thread will connect.

int port; // The port number to which this thread will connect.

/**

* The constructor just sets the values of the instance

* variables id, host, and port and starts the thread.

*/

WorkerConnection(int id, String host, int port) {

this.id = id;

this.host = host;

this.port = port;

start();

}

/**

* The run() method of the thread opens a connection to the host and

* port specified in the constructor, then sends tasks to the

* CLMandelbrotWorker program on the other side of that connection.

* If the thread terminates normally, it outputs the number of tasks

* that it processed. If it terminates with an error, it outputs

* an error message.

*/

public void run() {

int tasksCompleted = 0; // How many tasks has this thread handled.

Socket socket; // The socket for the connection.

try {

socket = new Socket(host,port); // open the connection.

}

catch (Exception e) {

System.out.println("Thread " + id + " could not open connection to " +

host + ":" + port);

System.out.println(" Error: " + e);

return;

}

CLMandelbrotTask currentTask = null;

CLMandelbrotTask nextTask = null;

try {

PrintWriter out = new PrintWriter(socket.getOutputStream());

BufferedReader in = new BufferedReader(

new InputStreamReader(socket.getInputStream()) );

currentTask = getNextTask();

if (currentTask != null) {

// Send first task to the worker program.

String taskString = writeTask(currentTask);



11.5. NETWORK PROGRAMMING AND THREADS 595

out.println(taskString);

out.flush();

}

while (currentTask != null) {

String resultString = in.readLine(); // Get results for currentTask.

if (resultString == null)

throw new IOException("Connection closed unexpectedly.");

if (! resultString.startsWith(RESULT COMMAND))

throw new IOException("Illegal string received from worker.");

nextTask = getNextTask(); // Get next task and send it to worker.

if (nextTask != null) {

// Send nextTask to worker before processing results for

// currentTask, so that the worker can work on nextTask

// while the currentTask results are processed.

String taskString = writeTask(nextTask);

out.println(taskString);

out.flush();

}

readResults(resultString, currentTask);

finishTask(currentTask); // Process results from currentTask.

tasksCompleted++;

currentTask = nextTask; // We are finished with old currentTask.

nextTask = null;

}

out.println(CLOSE CONNECTION COMMAND); // Send close command to worker.

out.flush();

}

catch (Exception e) {

System.out.println("Thread " + id + " terminated because of an error");

System.out.println(" Error: " + e);

e.printStackTrace();

// Put uncompleted task, if any, back into the task list.

if (currentTask != null)

reassignTask(currentTask);

if (nextTask != null)

reassignTask(nextTask);

}

finally {

System.out.println("Thread " + id + " ending after completing " +

tasksCompleted + " tasks");

try {

socket.close();

}

catch (Exception e) {

}

}

} //end run()

} // end nested class WorkerConnection



596 CHAPTER 11. FILES AND NETWORKING

11.6 A Brief Introduction to XML

When data is saved to a file or transmitted over a network, it must be represented in some
way that will allow the same data to be rebuilt later, when the file is read or the transmission
is received. We have seen that there are good reasons to prefer textual, character-based rep-
resentations in many cases, but there are many ways to represent a given collection of data as
text. In this section, we’ll take a brief look at one type of character-based data representation
that has become increasingly common.

XML (eXtensible Markup Language) is a syntax for creating data representation languages.
There are two aspects or levels of XML. On the first level, XML specifies a strict but relatively
simple syntax. Any sequence of characters that follows that syntax is a well-formed XML
document. On the second level, XML provides a way of placing further restrictions on what
can appear in a document. This is done by associating a DTD (Document Type Definition)
with an XML document. A DTD is essentially a list of things that are allowed to appear in the
XML document. A well-formed XML document that has an associated DTD and that follows
the rules of the DTD is said to be a valid XML document. The idea is that XML is a general
format for data representation, and a DTD specifies how to use XML to represent a particular
kind of data. (There is also an alternative to DTDs, known as XML schemas, for defining
valid XLM documents, but let’s ignore them here.)

There is nothing magical about XML. It’s certainly not perfect. It’s a very verbose language,
and some people think it’s ugly. On the other hand it’s very flexible; it can be used to represent
almost any type of data. It was built from the start to support all languages and alphabets.
Most important, it has become an accepted standard. There is support in just about any
programming language for processing XML documents. There are standard DTDs for describing
many different kinds of data. There are many ways to design a data representation language,
but XML is the one that has happened to come into widespread use. In fact, it has found its way
into almost every corner of information technology. For example: There are XML languages for
representing mathematical expressions (MathML), musical notation (MusicXML), molecules
and chemical reactions (CML), vector graphics (SVG), and many other kinds of information.
XML is used by OpenOffice and recent versions of Microsoft Office in the document format
for office applications such as word processing, spreadsheets, and presentations. XML site
syndication languages (RSS, ATOM) make it possible for web sites, newspapers, and blogs to
make a list of recent headlines available in a standard format that can be used by other web
sites and by web browsers; the same format is used to publish podcasts. And XML is a common
format for the electronic exchange of business information.

My purpose here is not to tell you everything there is to know about XML. I will just
explain a few ways in which it can be used in your own programs. In particular, I will not
say anything further about DTDs and valid XML. For many purposes, it is sufficient to use
well-formed XML documents with no associated DTDs.

11.6.1 Basic XML Syntax

An XML document looks a lot like an HTML document (see Subsection 6.2.3). HTML is not
itself an XML language, since it does not follow all the strict XML syntax rules, but the basic
ideas are similar. Here is a short, well-formed XML document:

<?xml version="1.0"?>

<simplepaint version="1.0">

<background red=’255’ green=’153’ blue=’51’/>



11.6. A BRIEF INTRODUCTION TO XML 597

<curve>

<color red=’0’ green=’0’ blue=’255’/>

<symmetric>false</symmetric>

<point x=’83’ y=’96’/>

<point x=’116’ y=’149’/>

<point x=’159’ y=’215’/>

<point x=’216’ y=’294’/>

<point x=’264’ y=’359’/>

<point x=’309’ y=’418’/>

<point x=’371’ y=’499’/>

<point x=’400’ y=’543’/>

</curve>

<curve>

<color red=’255’ green=’255’ blue=’255’/>

<symmetric>true</symmetric>

<point x=’54’ y=’305’/>

<point x=’79’ y=’289’/>

<point x=’128’ y=’262’/>

<point x=’190’ y=’236’/>

<point x=’253’ y=’209’/>

<point x=’341’ y=’158’/>

</curve>

</simplepaint>

The first line, which is optional, merely identifies this as an XML document. This line can
also specify other information, such as the character encoding that was used to encode the
characters in the document into binary form. If this document had an associated DTD, it
would be specified in a “DOCTYPE” directive on the next line of the file.

Aside from the first line, the document is made up of elements, attributes, and textual
content. An element starts with a tag , such as <curve> and ends with a matching end-tag
such as </curve>. Between the tag and end-tag is the content of the element, which can
consist of text and nested elements. (In the example, the only textual content is the true or
false in the <symmetric> elements.) If an element has no content, then the opening tag and
end-tag can be combined into a single empty tag , such as <point x=’83’ y=’96’/>, which
is an abbreviation for <point x=’83’ y=’96’></point>. A tag can include attributes such as
the x and y in <point x=’83’ y=’96’/> or the version in <simplepaint version="1.0">.
A document can also include a few other things, such as comments, that I will not discuss here.

The basic structure should look familiar to someone familiar with HTML. The most striking
difference is that in XML, you get to choose the tags. Whereas HTML comes with a fixed,
finite set of tags, with XML you can make up meaningful tag names that are appropriate to
your application and that describe the data that is being represented. (For an XML document
that uses a DTD, it’s the author of the DTD who gets to choose the tag names.)

Every well-formed XML document follows a strict syntax. Here are some of the most
important syntax rules: Tag names and attribute names in XML are case sensitive. A name
must begin with a letter and can contain letters, digits and certain other characters. Spaces
and ends-of-line are significant only in textual content. Every tag must either be an empty
tag or have a matching end-tag. By “matching” here, I mean that elements must be properly
nested; if a tag is inside some element, then the matching end-tag must also be inside that
element. A document must have a root element , which contains all the other elements. The
root element in the above example has tag name simplepaint. Every attribute must have
a value, and that value must be enclosed in quotation marks; either single quotes or double



598 CHAPTER 11. FILES AND NETWORKING

quotes can be used for this. The special characters < and &, if they appear in attribute values
or textual content, must be written as &lt; and &amp;. “&lt;” and “&amp;” are examples
of entities. The entities &gt;, &quot;, and &apos; are also defined, representing >, double
quote, and single quote. (Additional entities can be defined in a DTD.)

While this description will not enable you to understand everything that you might en-
counter in XML documents, it should allow you to design well-formed XML documents to
represent data structures used in Java programs.

11.6.2 XMLEncoder and XMLDecoder

We will look at two approaches to representing data from Java programs in XML format. One
approach is to design a custom XML language for the specific data structures that you want to
represent. We will consider this approach in the next subsection. First, we’ll look at an easy way
to store data in XML files and to read those files back into a program. The technique uses the
classes XMLEncoder and XMLDecoder. These classes are defined in the package java.beans. An
XMLEncoder can be used to write objects to an OutputStream in XML form. An XMLDecoder
can be used to read the output of an XMLEncoder and reconstruct the objects that were written
by it. XMLEncoder and XMLDecoder have much the same functionality as ObjectOutputStream
and ObjectInputStream and are used in much the same way. In fact, you don’t even have to
know anything about XML to use them. However, you do need to know a little about Java
beans.

A Java bean is just an object that has certain characteristics. The class that defines a
Java bean must be a public class. It must have a constructor that takes no parameters. It
should have a “get” method and a “set” method for each of its important instance variables.
(See Subsection 5.1.3.) The last rule is a little vague. The idea is that is should be possible
to inspect all aspects of the object’s state by calling “get” methods, and it should be possible
to set all aspects of the state by calling “set” methods. A bean is not required to implement
any particular interface; it is recognized as a bean just by having the right characteristics.
Usually, Java beans are passive data structures that are acted upon by other objects but don’t
do much themselves.

XMLEncoder and XMLDecoder can’t be used with arbitrary objects; they can only be used
with beans. When an XMLEncoder writes an object, it uses the “get” methods of that object
to find out what information needs to be saved. When an XMLDecoder reconstructs an object,
it creates the object using the constructor with no parameters and it uses “set” methods to
restore the object’s state to the values that were saved by the XMLEncoder. (Some standard
java classes are processed using additional techniques. For example, a different constructor
might be used, and other methods might be used to inspect and restore the state.)

For an example, we return to the same SimplePaint example that was used in Subsec-
tion 11.3.4. Suppose that we want to use XMLEncoder and XMLDecoder to create and read
files in that program. Part of the data for a SimplePaint sketch is stored in objects of type
CurveData, defined as:

private static class CurveData {

Color color; // The color of the curve.

boolean symmetric; // Are reflections also drawn?

ArrayList<Point> points; // The points on the curve.

}

To use such objects with XMLEncoder and XMLDecoder, we have to modify this class so that



11.6. A BRIEF INTRODUCTION TO XML 599

it follows the Java bean pattern. The class has to be public, and we need get and set methods
for each instance variable. This gives:

public static class CurveData {

private Color color; // The color of the curve.

private boolean symmetric; // Are reflections also drawn?

private ArrayList<Point> points; // The points on the curve.

public Color getColor() {

return color;

}

public void setColor(Color color) {

this.color = color;

}

public ArrayList<Point> getPoints() {

return points;

}

public void setPoints(ArrayList<Point> points) {

this.points = points;

}

public boolean isSymmetric() {

return symmetric;

}

public void setSymmetric(boolean symmetric) {

this.symmetric = symmetric;

}

}

I didn’t really need to make the instance variables private, but bean properties are usually
private and are accessed only through their get and set methods.

At this point, we might define another bean class, SketchData, to hold all the necessary
data for representing the user’s picture. If we did that, we could write the data to a file with a
single output statement. In my program, however, I decided to write the data in several pieces.

An XMLEncoder can be constructed to write to any output stream. The output stream is
specified in the encoder’s constructor. For example, to create an encoder for writing to a file:

XMLEncoder encoder;

try {

FileOutputStream stream = new FileOutputStream(selectedFile);

encoder = new XMLEncoder( stream );

.

.

Once an encoder has been created, its writeObject() method is used to write objects, coded
into XML form, to the stream. In the SimplePaint program, I save the background color, the
number of curves in the picture, and the data for each curve. The curve data are stored in a
list of type ArrayList<CurveData> named curves. So, a complete representation of the user’s
picture can be created with:

encoder.writeObject(getBackground());

encoder.writeObject(new Integer(curves.size()));

for (CurveData c : curves)

encoder.writeObject(c);

encoder.close();



600 CHAPTER 11. FILES AND NETWORKING

When reading the data back into the program, an XMLDecoder is created to read from an
input file stream. The objects are then read, using the decoder’s readObject() method, in the
same order in which they were written. Since the return type of readObject() is Object, the
returned values must be type-cast to their correct type:

Color bgColor = (Color)decoder.readObject();

Integer curveCt = (Integer)decoder.readObject();

ArrayList<CurveData> newCurves = new ArrayList<CurveData>();

for (int i = 0; i < curveCt; i++) {

CurveData c = (CurveData)decoder.readObject();

newCurves.add(c);

}

decoder.close();

curves = newCurves; // Replace the program’s data with data from the file.

setBackground(bgColor);

repaint();

You can look at the sample program SimplePaintWithXMLEncoder.java to see this code in
the context of a complete program. Files are created by the method doSaveAsXML() and are
read by doOpenAsXML().

The XML format used by XMLEncoder and XMLDecoder is more robust than the binary
format used for object streams and is more appropriate for long-term storage of objects in files.

11.6.3 Working With the DOM

The output produced by an XMLEncoder tends to be long and not very easy for a human reader
to understand. It would be nice to represent data in a more compact XML format that uses
meaningful tag names to describe the data and makes more sense to human readers. We’ll look
at yet another version of SimplePaint that does just that. See SimplePaintWithXML.java for
the source code. The sample XML document shown earlier in this section was produced by this
program. I designed the format of that document to represent all the data needed to reconstruct
a picture in SimplePaint. The document encodes the background color of the picture and a
list of curves. Each <curve> element contains the data from one object of type CurveData.

It is easy enough to write data in a customized XML format, although we have to be very
careful to follow all the syntax rules. Here is how I write the data for a SimplePaint picture
to a PrintWriter, out:

out.println("<?xml version=\"1.0\"?>");

out.println("<simplepaint version=\"1.0\">");

Color bgColor = getBackground();

out.println(" <background red=’" + bgColor.getRed() + "’ green=’" +

bgColor.getGreen() + "’ blue=’" + bgColor.getBlue() + "’/>");

for (CurveData c : curves) {

out.println(" <curve>");

out.println(" <color red=’" + c.color.getRed() + "’ green=’" +

c.color.getGreen() + "’ blue=’" + c.color.getBlue() + "’/>");

out.println(" <symmetric>" + c.symmetric + "</symmetric>");

for (Point pt : c.points)

out.println(" <point x=’" + pt.x + "’ y=’" + pt.y + "’/>");

out.println(" </curve>");

}

out.println("</simplepaint>");



11.6. A BRIEF INTRODUCTION TO XML 601

Reading the data back into the program is another matter. To reconstruct the data structure
represented by the XML Document, it is necessary to parse the document and extract the data
from it. Fortunately, Java has a standard API for parsing and processing XML Documents.
(Actually, it has two, but we will only look at one of them.)

A well-formed XML document has a certain structure, consisting of elements containing
attributes, nested elements, and textual content. It’s possible to build a data structure in the
computer’s memory that corresponds to the structure and content of the document. Of course,
there are many ways to do this, but there is one common standard representation known as
the Document Object Model , or DOM. The DOM specifies how to build data structures
to represent XML documents, and it specifies some standard methods for accessing the data
in that structure. The data structure is a kind of tree whose structure mirrors the structure
of the document. The tree is constructed from nodes of various types. There are nodes to
represent elements, attributes, and text. (The tree can also contain several other types of node,
representing aspects of XML that we can ignore here.) Attributes and text can be processed
without directly manipulating the corresponding nodes, so we will be concerned almost entirely
with element nodes.

The sample program XMLDemo.java lets you experiment with XML and the DOM. It has a
text area where you can enter an XML document. Initially, the input area contains the sample
XML document from this section. When you click a button named “Parse XML Input”, the
program will attempt to read the XML from the input box and build a DOM representation of
that document. If the input is not legal XML, an error message is displayed. If it is legal, the
program will traverse the DOM representation and display a list of elements, attributes, and
textual content that it encounteres. (The program uses a few techniques that I won’t discuss
here.)

In Java, the DOM representation of an XML document file can be created with just two
statements. If selectedFile is a variable of type File that represents the XML file, then

DocumentBuilder docReader

= DocumentBuilderFactory.newInstance().newDocumentBuilder();

xmldoc = docReader.parse(selectedFile);

will open the file, read its contents, and build the DOM representation. The classes Document-
Builder and DocumentBuilderFactory are both defined in the package javax.xml.parsers. The
method docReader.parse() does the actual work. It will throw an exception if it can’t read
the file or if the file does not contain a legal XML document. If it succeeds, then the value
returned by docReader.parse() is an object that represents the entire XML document. (This
is a very complex task! It has been coded once and for all into a method that can be used very
easily in any Java program. We see the benefit of using a standardized syntax.)

The structure of the DOM data structure is defined in the package org.w3c.dom, which
contains several data types that represent an XML document as a whole and the individual
nodes in a document. The “org.w3c” in the name refers to the World Wide Web Consortium,
W3C, which is the standards organization for the Web. DOM, like XML, is a general standard,
not just a Java standard. The data types that we need here are Document, Node, Element, and
NodeList. (They are defined as interfaces rather than classes, but that fact is not relevant
here.) We can use methods that are defined in these data types to access the data in the DOM
representation of an XML document.

An object of type Document represents an entire XML document. The return value of
docReader.parse()—xmldoc in the above example—is of type Document. We will only need
one method from this class: If xmldoc is of type Document, then



602 CHAPTER 11. FILES AND NETWORKING

xmldoc.getDocumentElement()

returns a value of type Element that represents the root element of the document. (Recall that
this is the top-level element that contains all the other elements.) In the sample XML document
from earlier in this section, the root element consists of the tag <simplepaint version="1.0">,
the end-tag </simplepaint>, and everything in between. The elements that are nested inside
the root element are represented by their own nodes, which are said to be children of the
root node. An object of type Element contains several useful methods. If element is of type
Element, then we have:

• element.getTagName() — returns a String containing the name that is used in the ele-
ment’s tag. For example, the name of a <curve> element is the string “curve”.

• element.getAttribute(attrName) — if attrName is the name of an attribute in the
element, then this method returns the value of that attribute. For the element,
<point x="83" y="42"/>, element.getAttribute("x") would return the string “83”.
Note that the return value is always a String, even if the attribute is supposed to represent
a numerical value. If the element has no attribute with the specified name, then the return
value is an empty string.

• element.getTextContent() — returns a String containing all the textual content that
is contained in the element. Note that this includes text that is contained inside other
elements that are nested inside the element.

• element.getChildNodes()— returns a value of type NodeList that contains all the Nodes
that are children of the element. The list includes nodes representing other elements and
textual content that are directly nested in the element (as well as some other types of node
that I don’t care about here). The getChildNodes() method makes it possible to traverse
the entire DOM data structure by starting with the root element, looking at children of
the root element, children of the children, and so on. (There is a similar method that
returns the attributes of the element, but I won’t be using it here.)

• element.getElementsByTagName(tagName) — returns a NodeList that contains all the
nodes representing all elements that are nested inside element and which have the given
tag name. Note that this includes elements that are nested to any level, not just elements
that are directly contained inside element. The getElementsByTagName()method allows
you to reach into the document and pull out specific data that you are interested in.

An object of type NodeList represents a list of Nodes. It does not use the API defined
for lists in the Java Collection Framework. Instead, a value, nodeList, of type NodeList
has two methods: nodeList.getLength() returns the number of nodes in the list, and
nodeList.item(i) returns the node at position i, where the positions are numbered 0, 1,
. . . , nodeList.getLength() - 1. Note that the return value of nodeList.get() is of type
Node, and it might have to be type-cast to a more specific node type before it is used.

Knowing just this much, you can do the most common types of processing of DOM rep-
resentations. Let’s look at a few code fragments. Suppose that in the course of processing a
document you come across an Element node that represents the element

<background red=’255’ green=’153’ blue=’51’/>

This element might be encountered either while traversing the document with getChildNodes()

or in the result of a call to getElementsByTagName("background"). Our goal is to reconstruct
the data structure represented by the document, and this element represents part of that data.
In this case, the element represents a color, and the red, green, and blue components are given



11.6. A BRIEF INTRODUCTION TO XML 603

by the attributes of the element. If element is a variable that refers to the node, the color can
be obtained by saying:

int r = Integer.parseInt( element.getAttribute("red") );

int g = Integer.parseInt( element.getAttribute("green") );

int b = Integer.parseInt( element.getAttribute("blue") );

Color bgColor = new Color(r,g,b);

Suppose now that element refers to the node that represents the element

<symmetric>true</symmetric>

In this case, the element represents the value of a boolean variable, and the value is encoded
in the textual content of the element. We can recover the value from the element with:

String bool = element.getTextContent();

boolean symmetric;

if (bool.equals("true"))

symmetric = true;

else

symmetric = false;

Next, consider an example that uses a NodeList. Suppose we encounter an element that repre-
sents a list of Points:

<pointlist>

<point x=’17’ y=’42’/>

<point x=’23’ y=’8’/>

<point x=’109’ y=’342’/>

<point x=’18’ y=’270’/>

</pointlist>

Suppose that element refers to the node that represents the <pointlist> element. Our goal
is to build the list of type ArrayList<Point> that is represented by the element. We can do
this by traversing the NodeList that contains the child nodes of element:

ArrayList<Point> points = new ArrayList<Point>();

NodeList children = element.getChildNodes();

for (int i = 0; i < children.getLength(); i++) {

Node child = children.item(i); // One of the child nodes of element.

if ( child instanceof Element ) {

Element pointElement = (Element)child; // One of the <point> elements.

int x = Integer.parseInt( pointElement.getAttribute("x") );

int y = Integer.parseInt( pointElement.getAttribute("y") );

Point pt = new Point(x,y); // Create the Point represented by pointElement.

points.add(pt); // Add the point to the list of points.

}

}

All the nested <point> elements are children of the <pointlist> element. The if statement
in this code fragment is necessary because an element can have other children in addition to its
nested elements. In this example, we only want to process the children that are elements.

All these techniques can be employed to write the file input method for the sample program
SimplePaintWithXML.java. When building the data structure represented by an XML file, my
approach is to start with a default data structure and then to modify and add to it as I traverse
the DOM representation of the file. It’s not a trivial process, but I hope that you can follow it:



604 CHAPTER 11. FILES AND NETWORKING

Color newBackground = Color.WHITE;

ArrayList<CurveData> newCurves = new ArrayList<CurveData>();

Element rootElement = xmldoc.getDocumentElement();

if ( ! rootElement.getNodeName().equals("simplepaint") )

throw new Exception("File is not a SimplePaint file.");

String version = rootElement.getAttribute("version");

try {

double versionNumber = Double.parseDouble(version);

if (versionNumber > 1.0)

throw new Exception("File requires a newer version of SimplePaint.");

}

catch (NumberFormatException e) {

}

NodeList nodes = rootElement.getChildNodes();

for (int i = 0; i < nodes.getLength(); i++) {

if (nodes.item(i) instanceof Element) {

Element element = (Element)nodes.item(i);

if (element.getTagName().equals("background")) { // Read background color.

int r = Integer.parseInt(element.getAttribute("red"));

int g = Integer.parseInt(element.getAttribute("green"));

int b = Integer.parseInt(element.getAttribute("blue"));

newBackground = new Color(r,g,b);

}

else if (element.getTagName().equals("curve")) { // Read data for a curve.

CurveData curve = new CurveData();

curve.color = Color.BLACK;

curve.points = new ArrayList<Point>();

newCurves.add(curve); // Add this curve to the new list of curves.

NodeList curveNodes = element.getChildNodes();

for (int j = 0; j < curveNodes.getLength(); j++) {

if (curveNodes.item(j) instanceof Element) {

Element curveElement = (Element)curveNodes.item(j);

if (curveElement.getTagName().equals("color")) {

int r = Integer.parseInt(curveElement.getAttribute("red"));

int g = Integer.parseInt(curveElement.getAttribute("green"));

int b = Integer.parseInt(curveElement.getAttribute("blue"));

curve.color = new Color(r,g,b);

}

else if (curveElement.getTagName().equals("point")) {

int x = Integer.parseInt(curveElement.getAttribute("x"));

int y = Integer.parseInt(curveElement.getAttribute("y"));

curve.points.add(new Point(x,y));

}

else if (curveElement.getTagName().equals("symmetric")) {

String content = curveElement.getTextContent();

if (content.equals("true"))

curve.symmetric = true;

}

}

}

}



11.6. A BRIEF INTRODUCTION TO XML 605

}

}

curves = newCurves; // Change picture in window to show the data from file.

setBackground(newBackground);

repaint();

∗ ∗ ∗

XML has developed into an extremely important technology, and some applications of it are
very complex. But there is a core of simple ideas that can be easily applied in Java. Knowing
just the basics, you can make good use of XML in your own Java programs.



606 CHAPTER 11. FILES AND NETWORKING

Exercises for Chapter 11

1. The sample program DirectoryList.java, given as an example in Subsection 11.2.2, will
print a list of files in a directory specified by the user. But some of the files in that
directory might themselves be directories. And the subdirectories can themselves contain
directories. And so on. Write a modified version of DirectoryList that will list all the
files in a directory and all its subdirectories, to any level of nesting. You will need a
recursive subroutine to do the listing. The subroutine should have a parameter of type
File. You will need the constructor from the File class that has the form

public File( File dir, String fileName )

// Constructs the File object representing a file

// named fileName in the directory specified by dir.

2. Write a program that will count the number of lines in each file that is specified on the
command line. Assume that the files are text files. Note that multiple files can be specified,
as in:

java LineCounts file1.txt file2.txt file3.txt

Write each file name, along with the number of lines in that file, to standard output. If an
error occurs while trying to read from one of the files, you should print an error message
for that file, but you should still process all the remaining files. Do not use TextIO to
process the files; use a FileReader to access each file.

3. For this exercise, you will write a network server program. The program is a simple file
server that makes a collection of files available for transmission to clients. When the server
starts up, it needs to know the name of the directory that contains the collection of files.
This information can be provided as a command-line argument. You can assume that the
directory contains only regular files (that is, it does not contain any sub-directories). You
can also assume that all the files are text files.

When a client connects to the server, the server first reads a one-line command from
the client. The command can be the string “index”. In this case, the server responds by
sending a list of names of all the files that are available on the server. Or the command
can be of the form “get filename”, where filename is a file name. The server checks
whether the requested file actually exists. If so, it first sends the word “ok” as a message
to the client. Then it sends the contents of the file and closes the connection. Otherwise,
it sends the word “error” to the client and closes the connection.

Ideally, your server should start a separate thread to handle each connection request.
However, if you don’t want to deal with threads you can just call a subroutine to handle the
request. See the DirectoryList example in Subsection 11.2.2 for help with the problem
of getting the list of files in the directory.

4. Write a client program for the server from Exercise 11.3. Design a user interface that will
let the user do at least two things: (1) Get a list of files that are available on the server
and display the list on standard output; and (2) Get a copy of a specified file from the
server and save it to a local file (on the computer where the client is running).

5. The sample program PhoneDirectoryFileDemo.java, from Subsection 11.3.2, stores
name/number pairs for a simple phone book in a text file in the user’s home directory.



Exercises 607

Modify that program so that is uses an XML format for the data. The only significant
changes that you will have to make are to the parts of the program that read and write
the data file. Use the DOM to read the data, as discussed in Subsection 11.6.3. You can
use the XML format illustrated in the following sample phone directory file:

<?xml version="1.0"?>

<phone directory>

<entry name=’barney’ number=’890-1203’/>

<entry name=’fred’ number=’555-9923’/>

</phone directory>

(This is just an easy exercise in simple XML processing; as before, the program in this
exercise is not meant to be a useful phone directory program.)

6. The sample program Checkers.java from Subsection 7.5.3 lets two players play checkers.
It would be nice if, in the middle of a game, the state of the game could be saved to a file.
Later, the file could be read back into the file to restore the game and allow the players to
continue. Add the ability to save and load files to the checkers program. Design a simple
text-based format for the files. Here is a picture of my solution to this exercise, just after
a file has been loaded into the program:

Note: The original checkers program could be run as either an applet or a stand-alone
application. Since the new version uses files, however, it can only be run as an application.
An applet running in a web browser is not allowed to access files.

It’s a little tricky to completely restore the state of a game. The program has a
variable board of type CheckersData that stores the current contents of the board, and it
has a variable currentPlayer of type int that indicates whether Red or Black is currently
moving. This data must be stored in the file when a file is saved. When a file is read into the
program, you should read the data into two local variables newBoard of type CheckersData
and newCurrentPlayer of type int. Once you have successfully read all the data from
the file, you can use the following code to set up the program state correctly. This code
assumes that you have introduced two new variables saveButton and loadButton of type
JButton to represent the “Save Game” and “Load Game” buttons:



608 CHAPTER 11. FILES AND NETWORKING

board = newBoard; // Set up game with data read from file.

currentPlayer = newCurrentPlayer;

legalMoves = board.getLegalMoves(currentPlayer);

selectedRow = -1;

gameInProgress = true;

newGameButton.setEnabled(false);

loadButton.setEnabled(false);

saveButton.setEnabled(true);

resignButton.setEnabled(true);

if (currentPlayer == CheckersData.RED)

message.setText("Game loaded -- it’s RED’s move.");

else

message.setText("Game loaded -- it’s BLACK’s move.");

repaint();

(Note, by the way, that I used a TextReader to read the data from the file into my
program. TextReader is a non-standard class introduced in Subsection 11.1.4 and defined
in the file TextReader.java. How to read the data in a file depends, of course, on the
format that you have chosen for the data.)



Quiz 609

Quiz on Chapter 11

1. In Java, input/output is done using streams. Streams are an abstraction. Explain what
this means and why it is important.

2. Java has two types of streams: character streams and byte streams. Why? What is the
difference between the two types of streams?

3. What is a file? Why are files necessary?

4. What is the point of the following statement?

out = new PrintWriter( new FileWriter("data.dat") );

Why would you need a statement that involves two different stream classes, PrintWriter
and FileWriter?

5. The package java.io includes a class named URL. What does an object of type URL
represent, and how is it used?

6. Explain what is meant by the client / server model of network communication.

7. What is a socket?

8. What is a ServerSocket and how is it used?

9. Network server programs are often multithreaded. Explain what this means and why it is
true.

10. What is meant by an element in an XML document?

11. What is it about XML that makes it suitable for representing almost any type of data?

12. Write a complete program that will display the first ten lines from a text file. The lines
should be written to standard output, System.out. The file name is given as the command-
line argument args[0]. You can assume that the file contains at least ten lines. Don’t
bother to make the program robust. Do not use TextIO to process the file; use a FileReader
to access the file.


