
Chapter 1 

Knowledge Discovery and Data 
Mining: Concepts and Fundamental 

Aspects 

1.1 Overview 

The goal of this chapter is to summarize the preliminary background 
required for this book. The chapter provides an overview of concepts from 
various interrelated fields used in the subsequent chapters. It starts by 
defining basic arguments from data mining and supervised machine learn- 
ing. Next, there is a review on some common induction algorithms and 
a discussion on their advantages and drawbacks. Performance evaluation 
techniques are then presented and finally, open challenges in the field are 
discussed. 

1.2 Data Mining and Knowledge Discovery 

Data mining is the science and technology of exploring data in order to 
discover previously unknown patterns. Data Mining is a part of the overall 
process of Knowledge Discovery in databases (KDD). The accessibility and 
abundance of information today makes data mining a matter of considerable 
importance and necessity. 

Most data mining techniques are based on inductive learning (see 
[Mitchell (1997)]), where a model is constructed explicitly or implic- 
itly by generalizing from a sufficient number of training examples. The 
underlying assumption of the inductive approach is that the trained model 
is applicable to future, unseen examples. Strictly speaking, any form of 
inference in which the conclusions are not deductively implied by the 
premises can be thought of as induction. 

Traditionally data collection is considered to be one of the most 
important stages in data analysis. An analyst (e.g., a statistician) used 
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the available domain knowledge to select the variables to be collected. The 
number of variables selected was usually small and the collection of their 
values could be done manually (e.g., utilizing hand-written records or oral 
interviews). In the case of computer-aided analysis, the analyst had to  en- 
ter the colIected data into a statistical computer ~ackage or an electronic 
spreadsheet. Due to the high cost of data collection, people learned to make 
decisions based on limited information. 

However, since the information-age, the accumulation of data become 
easier and storing it inexpensive. It  has been estimated that the amount 
of stored information doubles every twenty months [Frawley et al. (1991)). 
Unfortunately, as the amount of machine readable information increases, 
the ability to understand and make use of it does not keep pace with its 
growth. Data mining is a term coined to describe the process of sifting 
through large databases in search of interesting patterns and relationships. 
Practically, Data Mining provides tools by which large quantities of data 
can be automatically analyzed. Some of the researchers consider the term 
"Data Mining" as misleading and prefer the term "Knowledge Mining" as 
it provides a better analogy to gold mining [Klosgen and Zytkow (2002)l. 

The Knowledge Discovery in Databases (KDD) process was defined my 
many, for instance [Fayyad et al. (1996)l define it as "the nontrivial process 
of identifying valid, novel, potentially useful, and ultimately understandable 
patterns in data". [Friedman (1997a)l considers the KDD process as an 
automatic exploratory data analysis of large databases. [Hand (1998)] views 
it as a secondary data analysis of large databases. The term "Secondary" 
emphasizes the fact that the primary purpose of the database was not data 
analysis. Data Mining can be considered as a central step of the overall 
process of the Knowledge Discovery in Databases (KDD) process. Due to 
the centrality of data mining in the KDD process, there are some researchers 
and practitioners that use the term "data mining" as synonymous to the 
complete KDD process. 

Several researchers, such as [~rachman and Anand (1994)], [ ~ a ~ ~ a d  
et al. (1996)],  a aim on and Last (2000)] and [Reinartz (2002)l have pro- 

posed different ways to divide the KDD process into phases. This book 
adopts a hybridization of these proposals and suggests breaking the KDD 
process into the following eight phases. Note that the process is iterative 
and moving back to previous phases may be required. 

(1) Developing an understanding of the application domain, the relevant 
prior knowledge and the goals of the end-user. 
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(2) Selecting a data set on which discovery is to be performed. 
(3) Data Preprocessing: This stage includes operations for Dimension 

Reduction (such as Feature Selection and Sampling), Data Cleansing 
(such as Handling Missing Values, Removal of Noise or Outliers), and 
Data Transformation (such as Discretization of Numerical Attributes 
and Attribute Extraction) 

(4) Choosing the appropriate Data Mining task such as: classification, 
regression, clustering and summarization. 

(5) Choosing the Data Mining algorithm: This stage includes selecting the 
specific method to be used for searching patterns. 

(6) Employing The Data mining Algorithm. 
(7) Evaluating and interpreting the mined patterns. 
(8) Deployment: Using the knowledge directly, incorporating the knowl- 

edge into another system for further action or simply documenting the 
discovered knowledge. 

1.3 Taxonomy of Data Mining Methods 

It  is useful to distinguish between two main types of data min- 
ing: verification-oriented (the system verifies the user's hypothesis) and 
discovery-oriented (the system finds new rules and patterns autonomously) 
[Fayyad et  al. (1996)l. Figure 1.1 illustrates this taxonomy. 

Discovery methods are methods that automatically identify patterns in 
the data. The discovery method branch consists of prediction methods 
versus description methods. Description-oriented Data Mining methods 
focus on (the part of) understanding the way the underlying data operates, 
where prediction-oriented methods aim to build a behavioral model that 
can get newly and unseen samples and is able to predict values of one or 
more variables related to the sample. 

However, some prediction-oriented methods can also help provide 
understanding of the data. 

Most of the discovery-oriented techniques are based on inductive learn- 
ing [Mitchell (1997)], where a model is constructed explicitly or implic- 
itly by generalizing from a sufficient number of training examples . The 
underlying assumption of the inductive approach is that the trained model 
is applicable to future unseen examples. Strictly speaking, any form of infer- 
ence in which the conclusions are not deductively implied by the premises 
can be thought of as induction. 
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Goodness of fit 

Fig. 1.1 Taxonomy of Data Mining Methods 

Verification methods, on the other hand, deal with evaluation of a 
hypothesis proposed by an external source (like an expert etc.). These 
methods include the most common methods of traditional statistics, like 
goodness-of-fit test, t-test of means, and analysis of variance. These meth- 
ods are less associated with data mining than their discovery-oriented 
counterparts because most data mining problems are concerned with 
selecting a hypothesis (out of a set of hypotheses) rather than testing a 
known one. The focus of traditional statistical methods is usually on model 
estimation as opposed to one of the main objectives of data mining: model 
identification [Elder and Pregibon (1996)l. 

1.4 Supervised Methods 

1.4.1 Overview 

Another common terminology used by the machine-learning community 
refers to the prediction methods as supervised learning as opposed to unsu- 
pervised learning. Unsupervised learning refers to modeling the distribution 
of instances in a typical, high-dimensional input space. 
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According to [Kohavi and Provost (1998)] the term "Unsupervised learn- 
ing" refers to  LLlearning techniques that group instances without a prespec- 
ified dependent attribute". Thus the term unsurprised learning covers only 
a portion of the description methods presented in Figure 1.1, for instance it 
does cover clustering methods but it does not cover visualization methods. 

Supervised methods are methods that attempt to discover the relation- 
ship between input attributes (sometimes called independent variables) and 
a target attribute (sometimes referred to  as a dependent variable). The 
relationship discovered is represented in a structure referred to as a Model. 
Usually models describe and explain phenomena, which are hidden in the 
dataset and can be used for predicting the value of the target attribute 
knowing the values of the input attributes. The supervised methods can 
be implemented on a variety of domains such as marketing, finance and 
manufacturing. 

It is useful to distinguish between two main supervised models: Clas- 
sification Models (Classifiers) and Regression Models. Regression models 
map the input space into a real-valued domain. For instance, a regres- 
sor can predict the d e m q d  for a certain product given it characteristics. 
On the other hand classifiers map the input space into predefined classes. 
For instance classifiers can be used to  classify mortgage consumers to good 
(fully payback the mortgage on time) and bad (delayed payback). There 
are many alternatives to represent classifiers, for example: Support Vector 
Machines, decision trees, probabilistic summaries, algebraic function, etc. 

This book deals mainly in classification problems. Along with regres- 
sion and probability estimation, classification is one of the most studied 
approaches, possibly one with the greatest practical relevance. The poten- 
tial benefits of progress in classification are immense since the technique 
has great impact on other areas, both within data mining and in its appli- 
cations. 

1.4.2 Training Set 

In a typical supervised learning scenario, a training set is given and the 
goal is to form a description that can be used to predict previously unseen 
examples. 

The training set can be described in a variety of languages. Most fre- 
quently, it is described as a Bag Instance of a certain Bag Schema. A 
Bag Instance is a collection of tuples (also known as records, rows or inst- 
ances) that may contain duplicates. Each tuple is described by a vector of 
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attribute values. The bag schema provides the description of the attributes 
and their domains. For the purpose of this book, a bag schema is denoted 
as B(AU y) where A denotes the set of input attributes containing n attri- 
butes: A = {al,  . . . , a,, . . . , a,) and y represents the class variable or the 
target attribute. 

Attributes (sometimes called field, variable or feature) are typically 
one of two types: nominal (values are members of an unordered set), or 
numeric (values are real numbers). When the attribute a, is nominal it 
is useful to denote by dom(a,) = {v,,l,v,,z,. . . , ~ , , l d ~ ~ ( ~ , ) l )  its domain val- 
ues, where (dom(a,)( stands for its finite cardinality. In a similar way, 
dom(y) = {cl, . . . , c ~ ~ ~ ~ ( ~ ) ~ )  represents the domain of the target attribute. 
Numeric attributes have infinite cardinalities. 

The instance space (the set of all possible examples) is defined as a 
Cartesian product of all the input attributes domains: X = dom(al) x 
dom(az) x . . . x dom(a,). The Universal Instance Space (or the Labeled 
Instance Space) U is defined as a Cartesian product of all input attribute 
domains and the target attribute domain, i.e.: U = X x dom(y). 

The training set is a Bag Instance consistin~of a set of m tuples. For- 
mally the training set is denoted as S(B)  = ((xl ,  yl), . . . , (x,, y,)) where 
x, E X and y, E dom(y). 

Usually, it is assumed that the training set tuples are generated ran- 
domly and independently according to some fixed and unknown joint prob- 
ability distribution D over U .  Note that this is a generalization of the deter- 
ministic case when a supervisor classifies a tuple using a function y = f (x). 

This book uses the common notation of bag algebra to present pro- 
jection (T) and selection ( a )  of tuples ([Grumbach and Milo (1996)]. 
For example given the dataset S presented in Table 1.1, the expression 
Ta,,asUal=nYesn ANDa4>6S result with the dataset presented in Table 1.2. 

1.4.3 Definition of the Classification Problem 

This section defines the classification problem. Originally the machine 
learning community has introduced the problem of concept learning. Con- 
cepts are mental categories for objects, events, or ideas that have a com- 
mon set of features. According to [Mitchell (1997)l: "each concept can 
be viewed as describing some subset of objects or events defined over a 
larger set" (e.g., the subset of a vehicle that constitues trucks). To learn a 
concept is to infer its general definition from a set of examples. This defi- 
nition may be either explicitly formulated or left implicit, but either way it 
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Table 1.1 Illustration of a Dataset S 
having five attributes. 

a1 a2 a3 a4 Y 

Yes 17 4 7 0 
No 8 1 1 9 1 
Yes 17 4 9 0 
No 671 5 2 0 
Yes 1 123 2 0 
Yes 1 5 22 1 
No 6 62 1 1 
No 6 58 54 0 
No 16 6 3 0 

Table 1.2 The Result of the Expression 
~ a 2 , a 3 ~ a l = c c y e s ' L ~ ~ ~ D 4 , 6  s Based on the 
Table 1.1. 

assigns each possible example to  the concept or not. Thus, a concept can be 
regarded as a function from the Instance space to  the Boolean set, namely: 
c : X -+ {-1,l).  Alternatively one can refer a concept c as a subset of X ,  
namely: {x E X : c (x )  = 1). A concept class C is a set of concepts. 

To learn a concept is to  infer its general definition from a set of examples. 
This definition may be either explicitly formulated or left implicit, but 
either way it assigns each possible example to the concept or not. Thus, a 
concept can be formally regarded as a function from the set of all possible 
examples to the Boolean set {True, False). 

Other communities, such as the KDD community prefer to  deal with a 
straightforward extension of Concept Learning, known as The Classzjication 
Problem. In this case we search for a function that maps the set of all 
possible examples into a predefined set of class labels which are not limited 
to the Boolean set. Most frequently the goal of the Classifiers Inducers is 
formally defined as: 

Given a training set S with input attributes set A = {al, aa, . . . ,a,) 
and a nominal target attribute y from an unknown fixed distribution D 
over the labeled instance space, the goal is to induce an optimal classifier 
with minimum generalization error. 
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The Generalization error is defined as the misclassification rate over the 
distribution D. In case of the nominal attributes it can be expressed as: 

where L(y, I (S)(x)  is the zero one loss function defined as: 

In case of numeric attributes the sum operator is replaced with the 
integration operator. 

Consider the training set in Table 1.3 containing data concerning about 
ten customers. Each customer is characterized by three attributes: Age, 
Gender and "Last Reaction" (an indication whether the customer has pos- 
itively responded to  the last previous direct mailing campaign). The last 
attribute ("Buy") describes whether that customer was willing to purchase 
a product in the current campaign. The goal is to induce a classifier 
that most accurately classifies a potential customer to  LLBuyers" and "Non- 
Buyers" in the current campaign, given the attributes: Age, Gender, Last 
Reaction. 

Table 1.3 An Illustration of Direct Mailing Dataset. 

I Aae I Gender I Last Reaction I Briv I 

1.4.4 Induction Algorithms 

An Induction algorithm, or more concisely an Inducer (also known as 
learner), is an entity that obtains a training set and forms a model that 
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generalizes the relationship between the input attributes and the target 
attribute. For example, an inducer may take as an input specific training 
tuples with the corresponding class label, and produce a classifier. 

The notation I represents an inducer and I (S)  represents a model which 
was induced by performing I on a training set S .  Using I(S) it is possible 
to predict the target value of a tuple x,. This prediction is denoted as 

I(S)(xq). 
Given the long history and recent growth of the field, it is not surpris- 

ing that several mature approaches to induction are now available to the 
practitioner. 

Classifiers may be represented differently from one inducer to another. 
For example, C4.5 [Quinlan (1993)] represents model as a decision tree 
while Na'ive Bayes [ ~ u d a  and Hart (1973)] represents a model in the form 
of probabilistic summaries. Furthermore, inducers can be deterministic (as 
in the case of C4.5) or stochastic (as in the case of back propagation) 

The classifier generated by the inducer can be used to classify an unseen 
tuple either by explicitly assigning it to  a certain class (Crisp Classifier) or 
by providing a vector of probabilities representing the conditional proba- 
bility of the given instance to belong to each class (Probabilistic Classifier). 
Inducers that can construct Probabilistic Classifiers are known as Proba- 
bilistic Inducers. In this case it is possible to estimate the conditional prob- 
ability PI(S) (y = cj la, = xq,i ; i = 1 , .  . . , n) of an observation x,. Note the 
addition of the "hat" - - t o  the conditional probability estimation is 
used for distinguishing it from the actual conditional probability. 

The following sections briefly review some of the major approaches 
to concept learning: Decision tree induction, Neural Networks, Genetic 
Algorithms, instance- based learning, statistical methods, Bayesian meth- 
ods and Support Vector Machines. This review focuses more on methods 
that have the greatest attention in this book. 

1.5 Rule Induction 

Rule induction algorithms generate a set of if-then rules that jointly repre- 
sent the target function. The main advantage that rule induction offers is 
its high comprehensibility. Most of the Rule induction algorithms are based 
on the separate and conquer paradigm [Michalski (1983)]. For that reason 
these algorithms are capable of finding simple axis parallel frontiers, are 
well suited to symbolic domains, and can often dispose easily of irrelevant 
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attributes; but they can have difficulty with nonaxisparallel frontiers, and 
suffer from the fragmentation problem (i.e., the available data dwindles as 
induction progresses [Pagallo and Huassler (1990)] and the small disjuncts 
problem i.e., rules covering few training examples have a high error rate 
[Holte et  al. (1989)l. 

1.6 Decision Trees 

A Decision tree is a classifier expressed as a recursive partition of the 
instance space. A decision tree consists of nodes that form a Rooted Tree, 
meaning it is a Directed Tree with a node called root that has no incoming 
edges. All other nodes have exactly one incoming edge. A node with out- 
going edges is called internal node or test nodes. All other nodes are called 
leaves (also known as terminal nodes or decision nodes). 

In a decision tree, each internal node splits the instance space into two 
or more subspaces according to  a certain discrete function of the input 
attributes values. In the simplest and most frequent case each test considers 
a single attribute, such that the instance space is partitioned according to 
the attribute's value. In the case of numeric attributes the condition refers 
to a range. 

Each leaf is assigned to one class representing the most appropriate 
target value. Usually the most appropriate target value is the class with 
the greatest representation, because selecting this value minimizes the zero- 
one loss. However if a different loss function is used then a different class 
may be selected in order to  minimize the loss function. Alternatively the 
leaf may hold a probability vector indicating the probability of the target 
value having a certain value. 

Instances are classified by navigating them from the root of the tree 
down to a leaf, according to the outcome of the tests along the path. 

Figure 1.2 describes a decision tree to  the classification problem illus- 
trated in Table 1.3 (whether or not a potential customer will respond to 
a direct mailing). Internal nodes are represented as circles whereas leaves 
are denoted as triangles. The node "Last R" stands for the attribute "Last 
Reaction". Note that this decision tree incorporates both nominal and 
numeric attributes. Given this classifier, the analyst can predict the 
response of a potential customer (by sorting it down the tree), and under- 
stand the behavioral characteristics of the potential customers regarding 
direct mailing. Each node is labeled with the attribute it tests, and its 
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branches are labeled with its corresponding values. 
In case of numeric attributes, decision trees can be geometrically inter- 

preted as a collection of hyperplanes, each orthogonal to  one of the axes. 

Fig. 1.2 Decision Tree Presenting Response to Direct Mailing 

Naturally, decision makers prefer a less complex decision tree, as it 
is considered more comprehensible. Furthermore, according to [Breiman 
et al. (1984)] the tree complexity has a crucial effect on its accuracy perfor- 
mance. Usually large trees are obtained by over fitting the data and hence 
exhibit poor generalization ability. Nevertheless a large decision tree can 
be accurate if it was induced without over fitting the data. The tree com- 
plexity is explicitly controlled by the stopping criteria used and the pruning 
method employed. Usually the tree complexity is measured by one of the 
following metrics: The total number of nodes, Total number of leaves, Tree 
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Depth and Number of attributes used. 
Decision tree induction is closely related to rule induction. Each path 

from the root of a decision tree to  one of its leaves can be transformed into 
a rule simply by conjoining the tests along the path to form the antecedent 
part, and taking the leaf's class prediction as the class value. For example, 
one of the paths in Figure 1.2 can be transformed into the rule: "If customer 
age 5 30, and the gender of the customer is "Male" - then the customer 
will respond to the mailv. The resulting rule set can then be simplified to 
improve its comprehensibility to  a human user, and possibly its accuracy 
[Quinlan (1987)]. A survey of methods for constructing decision trees can 
be found in the following chapter. 

1.7 Bayesian Methods 

1.7.1 Overview 

Bayesian approaches employ probabilistic concept representations, and 
range from the Nai've Bayes [Domingos and Pazzani (1997)l to  Bayesian 
networks. The basic assumption of Bayesian reasoning is that the relation 
between attributes can be represented as a probability distribution [Mai- 
mon and Last (2000)]. Moreover if the problem examined is supervised then 
the objective is to find the conditional distribution of the target attribute 
given the input attribute. 

1.7.2 Naive Bayes 

1.7.2.1 The Basic Naiire Bayes Classifier 

The most straightforward Bayesian learning method is the Na'ive Bayesian 
classifier [Duda and Hart (1973)l. This method uses a set of discriminant 
functions for estimating the probability of a given instance to belong to a 
certain class. More specifically it uses Bayes rule to compute the probability 
of each possible value of the target attribute given the instance, assuming 
the input attributes are conditionally independent given the target attri- 
bute. 

Due to the fact that this method is based on the simplistic, and rather 
unrealistic, assumption that the causes are conditionally independent given 
the effect, this method is well known as Na'ive Bayes. 
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The predicted value of the target attribute is the one which maximizes 
the following calculated probability: 

n A 

UMAP(X,) = argmax P ( ~  = cj) . n P(a i  = x,,~ Jy = cj ) 
c j  E d o m ( y )  i= 1 

(1.2) 

where P ( ~  = cj) denotes the estimation for the a-priori probability of the 
target attribute obtaining the value cj. Similarly P(a i  = x,,~ ly = cj ) 
denotes the conditional probability of the input attribute ai obtaining 
the value x,,i given that the target attribute obtains the value cj. Note 
that the hat above the conditional probability distinguishes the probability 
estimation from the actual conditional probability. 

A simple estimation for the above probabilities can be obtained using 
the corresponding frequencies in the training set, namely: 

Using the Bayes rule, the above equations can be rewritten as: 

Or alternatively, after using the log function as: 

UMAP(Z~)  = argmar log P ( ~  = cj)) 
c j E d o m ( y )  ( A 

+ F (log (P (y = y /0i = Z C i ) )  - log (B (y = CJ)) 
2= 1 

If the "naive" assumption is true, this classifier can easily be shown to be op- 
timal (i.e. minimizing the generalization error), in the sense of minimizing 
the misclassification rate or zero-one loss (misclassification rate), by a di- 
rect application of Bayes' theorem. [Domingos and Pazzani (1997)] showed 
that the Naive Bayes can be optimal under zero-one loss even when the in- 
dependence assumption is violated by a wide margin. This implies that the 
Bayesian classifier has a much greater range of applicability than previously 
thought, for instance for learning conjunctions and disjunctions. Moreover, 
a variety of empirical research shows surprisingly that this method can per- 
form quite well compared to  other methods, even in domains where clear 
attribute dependencies exist. 
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The computational complexity of Naive Bayes is considered very low 
compared to  other methods like decision trees, since no explicit enumera- 
tion of possible interactions of various causes is required. More specifically 
since the Naive Bayesian classifier combines simple functions of univariate 
densities, the complexity of this procedure is O(nm). 

Furthermore, Naive Bayes classifiers are also very simple and easy to  
understand [Kononenko (1990)]. Other advantages of Naive Bayes are the 
easy adaptation of the model to incremental learning environments and 
resistance to  irrelevant attributes. The main disadvantage of Naive Bayes 
is that it is limited to  simplified models only, that in some cases are far 
from representing the complicated nature of the problem. To understand 
this weakness, consider a target attribute that cannot be explained by a 
single attribute, for instance, the Boolean exclusive or function (XOR). 

The classification using the Naive Bayesian classifier is based on all of 
the available attributes, unless a feature selection procedure is applied as a 
pre-processing step. 

1.7.2.2 Nazve Bayes for Numeric Attributes 

Originally Na'ive Bayes assumes that all input attributes are nominal. If 
this is not the case then there are some options to bypass this problem: 

(1) Pre-Processing: The numeric attributes should be discretized before 
using the Naive Bayes. [Domingos and Pazzani (1997)] suggest dis- 
cretizing each numeric attribute into ten equal-length intervals (or one 
per observed value, whichever was the least). Obviously there are many 
other more informed discretization methods that can be applied here 
and probably obtain better results. 

(2) Revising the Naive Bayes: [ ~ o h n  and Langley (1995)] suggests using 
kernel estimation or single variable normal distribution as part of build- 
ing the conditional probabilities. 

1.7.2.3 Correction to the Probability Estimation 

Using the probability estimation described above as-is will typically over- 
estimate the probability. This can be problematic especially when a given 
class and attribute value never co-occur in the training set. This case 
leads to  a zero probability that wipes out the information in all the other 
probabilities terms when they are multiplied according to the original Naive 
Bayes equation. 
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There are two known corrections for the simple probability estimation 
which avoid this phenomenon. The following sections describe these cor- 
rections. 

1.7.2.4 Laplace Correction 

According to Laplace's law of succession [ ~ i b l e t t  (1987)] ,  the probability of 
the event y = ci where y is a random variable and ci is a possible outcome 
of y which has been observed mi times out of m observations is: 

where pa is an a-priori probability estimation of the event and k is the 
equivalent sample size that determines the weight of the a-priori estimation 
relative to the observed data. According to [Mitchell (1997)] k is called 
"equivalent sample size" because it represents an augmentation of the m 
actual observations by additional k virtual samples distributed according 

to pa. The above ratio can be rewritten as the weighted average of the 
a-priori probability and the posteriori probability (denoted as pp ) :  

In the case discussed here the following correction is used: 

In order to use the above correction, the values of p and k should be se- 
lected. It is possible to use p = 1/ Idom(y)l and k = Idom(y)l .  [Ali and 
Pazzani (1996)] suggest to use k = 2 and p = 112 in any case even if 
Idom(y)l > 2 in order to emphasize the fact that the estimated event is 
always compared to the opposite event. [Kohavi et al. (1997)] suggest to 
use k = I dom(y ) l /  IS( and p = l/ ldom(y) l .  

1.7.2.5 N o  Match 

According to [Clark and Niblett (1989)] only zero probabilities are corrected 
and replaced by the following value: pa/lSI .  [ ~ o h a v i  et al. (1997)l suggest 
to use pa = 0.5. They also empirically compared the Laplace correction and 
the No-Match correction and indicate that there is no significant difference 



16 Decomposition Methodology for Knowledge Discovery and Data Mining 

between them. However, both of them are significantly better than not 
performing any correction at all. 

1.7.3 Other Bayesian Methods 

A more complicated model can be represented by Bayesian belief networks 
[Pearl (1988)l. Usually each node in a Bayesian network represents a certain 
attribute. The immediate predecessors of a node represent the attributes 
on which the node depends. By knowing their values, it is possible to 
determine the conditional distribution of this node. Bayesian networks have 
the benefit of a clearer semantics than more ad hoc methods, and provide 
a natural platform for combining domain knowledge (in the initial network 
structure) and empirical learning (of the probabilities, and possibly of new 
structure). However, inference in Bayesian networks can have a high time 
complexity, and as tools for classification learning they are not yet as mature 
or well tested as other approaches. More generally, as [Buntine (1990)] 
notes, the Bayesian paradigm extends beyond any single representation, and 
forms a framework in which many learning tasks can be usefully studied. 

1.8 Other Induction Methods 

1.8.1 Neural Networks 

Neural network methods are based on representing the concept as a network 
of nonlinear units [Anderson and Rosenfeld (2000)]. The most frequently 
used type of unit, incorporating a sigmoidal nonlinearity, can be seen as a 
generalization of a propositional rule, where numeric weights are assigned 
to antecedents, and the output is graded, rather than binary  o ow ell and 
Shavlik (l994)]. 

The multilayer feedforward neural network is the most widely stud- 
ied neural network, because it is suitable for representing functional 
relationships between a set of input attributes and one or more target 
attributes. Multilayer feedforward neural network consists of intercon- 
nected units called neurons, which are organized in layers. Each neuron 
performs a simple task of information processing by converting received 
inputs into processed outputs. Figure 1.3 illustrates the most frequently 
used architecture of feedforward neural network. This network consists 
of neurons (nodes) organized in three layers: input layer, hidden layer, 
and output layer. The neurons in the input layer correspond to the input 
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attributes and the neurons in the output layer correspond to  the target 
attribute. Neurons in the hidden layer are connected t o  both input and 
output neurons and are key to  inducing the classifier. Note that the signal 
flow is one directional from the input layer to the output layer and there 
are no feedback connections. 

Hidden T .aver ( I  I I *  . . *  I  

Inpu ~t Layer 

Fig. 1.3 Three-Layer Feedforward Neural Network 

Many search methods can be used to learn these networks, of which 
the most widely applied one is back propagation [~ume lha r t  et al. (1986)l. 
This method efficiently propagates values of the evaluation function back- 
ward from the output of the network, which then allows the network to  
be adapted so as to  obtain a better evaluation score. Radial basis func- 
tion (RBI?) networks employ units with a Gaussian nonlinearity [Moody 
and Darken (1989)], and can be seen as a generalization of nearestneighbor 
methods with an exponential distance function [Poggio and Girosi (1990)l. 
Most ANNs are based on a unit called perceptron. A perceptron calcu- 
lates a linear combination of its inputs, and outputs one of two values as a 
result. Figure 1.4 illustrates the perceptron. The activation function turns 
the weighted sum of inputs into a twevalue output. 

Using a single perceptron, it is possible to realize any decision function 
that can be represented as a hyper-plane in the input attribute space, so 
that any instance in one side of the plane is assigned to one class, and 
instances on the other side of the plane are assigned to  the other class. The 
equation for this hyperplane is: 
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Transfer Function 

w'\ 

Input Function Activation Function 

Fig. 1.4 The Perceptron. 

where each wi is a real-valued weight, that determines the contribution of 
each input signal xi to the perceptron output. 

Neural networks are remarkable for their learning efficiency and tend 
to outperform other methods (like decision trees) when no highly relevant 
attributes exist, but many weakly relevant ones are present. Furthermore, 
ANN can easily be adjusted as new examples accumulate. 

However according to [Lu e t  al. (1996)], the drawbacks of applying neu- 
ral networks to data mining include: difficulty in interpreting the model, 
difficulty in incorporating prior knowledge about the application domain in 
a neural network, and, also, long learning time, both in terms of CPU time, 
and of manually finding parameter settings that will enable successful learn- 
ing. The rule extraction algorithm, described in [LU e t  al. (1996)], makes 
an effective use of the neural network structure, though the weights of the 
links between the nodes remain meaningless, and the rules are extracted in 
a deterministic (Boolean) form. The network is pruned by removing redun- 
dant links and units, but removal of entire attributes (Feature selection) is 
not considered. 

1.8.2 Genetic Algorithms 

Genetic algorithms are a search method that can be applied to learning 
many different representations, of which the most frequently used one is 
probably rule sets [~ooke r  e t  al. (1989)l. Genetic algorithms maintain a 
population of classifiers during learning, as opposed to just one, and search 
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for a better classifier by applying random mutations to them, and exchang- 
ing parts between pairs of classifiers that obtain high evaluation scores. 
This endows them with a potentially greater ability to avoid local minima 
than is possible with the simple greedy search employed in most learners, 
but can lead to high computational cost, and to higher risks of finding poor 
classifiers that appear good on the training data by chance. 

1.8.3 Instancebased Learning 

Instancebased learning algorithms [Aha et al. (1991)l are non-parametric 
general classification algorithms that simply search for similar instances in 
the labeled database in order to classify a new unlabeled instance. These 
techniques are able to induce complex frontiers from relatively few examples 
and are naturally suited to numeric domains, but can be very sensitive to 
irrelevant attributes and are unable to select different attributes in differ- 
ent regions of the instance space. Another disadvantage of instance-based 
methods is that it is relatively time consuming to classify a new instance. 

The most basic and simplest Instance-based method is the nearest neigh- 
bor (NN) classifier, which was first examined by [Fix and Hodges (1957)]. 
It  can be represented by the following rule: to classify an unknown pattern, 
choose the class of the nearest example in the training set as measured by a 
distance metric. A common extension is to choose the most common class 
in the k nearest neighbors (kNN). 

Despite its simplicity, the nearest neighbor classifier has many advan- 
tages over other methods. For instance, it can generalize from a relatively 
small training set. Namely, compared to other methods, such as decision 
trees or neural network, nearest neighbor requires smaller training exam- 
ples to provide effective classification. Moreover, it can incrementally add 
new information at  runtime, thus the nearest neighbor can provide a perfor- 
mance that is competitive when compared to more modern methods such 
as decision trees or neural networks. 

1.8.4 Support Vector Machines 

Support Vector Machines [vapnik (1995)) map the input space into a high- 
dimensional feature space through some non-linear mapping chosen a-priori 
and then construct an optimal separating hyperplan in the new feature 
space. The method searches for a hyperplan that is optimal according the 
VC-Dimension theory. Further details and pointers to the literature on 
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these induction paradigms can be found in the above reference and in the 
following section. 

1.9 Performance Evaluation 

Evaluating the performance of an inducer is a fundamental aspect of 
machine learning. As stated above, an inducer receives a training set 
as input and constructs a classification model that can classify an unseen 
instance . Both the classifier and the inducer can be evaluated using an 
evaluation criteria. The evaluation is important for understanding the qual- 
ity of the model (or inducer), for refining parameters in the KDD iterative 
process and for selecting the most acceptable model (or inducer) from a 
given set of models (or inducers). 

There are several criteria for evaluating models and inducers. Naturally, 
classification models with high accuracy are considered better. However, 
there are other criteria that can be important as well, such as the compu- 
tational complexity or the comprehensibility of the generated classifier. 

1.9.1 Generalization Error 

Let I (S)  represent a classifier generated by an inducer I on S .  Recall that 
the generalization error of I (S )  is its probability to misclassify an instance 
selected according to  the distribution D of the instance labeled space. The 
Classification Accuracy of a classifier is one minus the generalization error. 
The Training Error is defined as the percentage of examples in the training 
set correctly classified by the classifier, formally: 

where L(y, I (S)(x))  is the zero-one loss function defined in Equation 1.1. 
In this book, classification accuracy is the primary evaluation criterion 

for experiments. A decomposition is considered beneficial if the accuracy 
of an inducer improves or remains the same. 

Although generalization error is a natural criterion, its actual value is 
known only in rare cases (mainly synthetic cases). The reason for that is 
that the distribution D of the instance labeled space is not known. 

One can take the training error as an estimation of the generalization 
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error. However, using the training error as-is will typically provide an 
optimistically biased estimate, especially if the learning algorithm over- 
fits the training data. There are two main approaches for estimating the 
generalization error: Theoretical and Empirical. In the context of this book 
we utilize both approaches. 

1.9.2 Theoretical Estimation of Generalization Error 

A low training error does not guarantee low generalization error. There is 
often a trade-off between the training error and the confidence assigned to 
the training error as a predictor for the generalization error, measured by 
the difference between the generalization and training errors. The capacity 
of the inducer is a determining factor for this confidence in the training 
error. Indefinitely speaking, the capacity of an inducer indicates the variety 
of classifiers it can induce. The notion of VC-Dimension presented below 
can be used as a measure of the inducers capacity. 

Inducers with a large capacity, e.g. a large number of free parameters, 
relative to  the size of the training set are likely to  obtain a low training error, 
but might just be memorizing or over-fitting the patterns and hence exhibit 
a poor generalization ability. In this regime, the low error is likely to be a 
poor predictor for the higher generalization error. In the opposite regime, 
when the capacity is too small for the given number of examples, inducers 
may under-fit the data, and exhibit both poor training and generalization 
error. For inducers with an insufficient number of free parameters, the 
training error may be poor, but it is a good predictor for the generalization 
error. In between these capacity extremes there is an optimal capacity for 
whlch the best generalization error is obtained, given the character and 
amount of the available training data. 

In the book "Mathematics of Generalization", [Wolpert (1995)] discuss 
four theoretical frameworks for estimating the generalization error, namely: 
PAC, VC and Bayesian, and Statistical Physics. All these frameworks com- 
bine the training error (which can be easily calculated) with some penalty 
function expressing the capacity of the inducers. In this book we employ 
the VC framework, described in the next section. 

Of all the major theoretical approaches to  learning from examples the 
Vapnik-Chervonenkis theory [Vapnik (1995)] is the most comprehensive, 
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applicable to regression, as well as classification tasks. It  provides gen- 
eral necessary and sufficient conditions for the consistency of the induction 
procedure in terms of bounds on certain measures. Here we refer to the 
classical notion of consistency in statistics: both the training error and the 
generalization error of the induced classifier must converge to the same min- 
imal error value as the training set size tends to infinity. Vapnik's theory 
also defines a capacity measure of an inducer, the VC-dimension, which is 
widely used. 

VC-theory describes a worst case scenario: the estimates of the differ- 
ence between the training and generalization errors are bounds valid for 
any induction algorithm and probability distribution in the labeled space. 
The bounds are expressed in terms of the size of the training set and the 
VC-dimension of the inducer. 

Theorem 1.1 The bound on  the generalization error of hypothesis space 
H with finite VC-Dimension d is given by: 

with probability of 1 - 6 where i ( h ,  S )  represents the training error of 
classifier h measured on  training set S of cardinality m and ~ ( h ,  D )  repre- 
sents the generalization error of the classifier h over the distribution D .  

The VC dimension is a property of a set of all classifiers, denoted by 
H ,  that have been examined by the inducer. For the sake of simplicity 
we consider classifiers that correspond to the two-class pattern recognition 
case. In this case, the VC dimension is defined as the maximum number 
of data points that can be shattered by the set of admissible classifiers. 
By definition, a set S of m points is shattered by H if and only if for 
every dichotomy of S there is some classifier in H that is consistent with 
this dichotomy. In other words, the set S is shattered by H if there are 
classifiers that split the points into two classes in all of the 2m possible 
ways. Note that, if the VC dimension of H is d, then there exists at  least 
one set of d points that can be shattered by H, but in general it will not 
be true that every set of d points can be shattered by H. 

A sufficient condition for consistency of an induction procedure is that 
the VC-dimension of the inducer is finite. The VC-dimension of a linear 
classifier is simply the dimension n of the input space, or the number of 
free parameters of the classifier. The VC-dimension of a general classifier 
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may however be quite different from the number of free parameters and in 
many cases it might be very difficult to  compute it accurately. In this case 
it is useful t o  calculate a lower and upper bound for the VC-Dimension, 
for instance [Schmitt (2002)] have presented these VC bounds for neural 
networks. 

The Probably Approximately Correct (PAC) learning model was introduced 
by [Valiant (1984)l. This framework can be used to  characterize the con- 
cept class "that can be reliably learned from a reasonable number of ran- 
domly drawn training examples and a reasonable amount of computation" 
 i itch ell (1997)]. We use the following formal definition of PAC-learnable 
adapted from [Mitchell (1997)l: 

Definition 1.1 Let C be a concept class defined over the input instance 
space X with n attributes. Let I be an inducer that considers hypothesis 
space H .  C is said to be PAC-learnable by I using H if for all c E C,  
distributions D over X, E such that 0 < E < 112 and b such that 0 < b < 
112, learner I with a probability of at least (1 - 6) will output a hypothesis 
h E H such that ~ ( h ,  D) < E, in time that is polynomial in 1 / ~  , 116, n, and 
size(c), where size(c) represents the encoding length of c in C ,  assuming 
some representation for C. 

The PAC learning model provides a general bound on the number of 
training examples sufficient for any consistent learner I examining a finite 
hypothesis space H with probability at least (1 - 6) to  output a hypothesis 
h E H within error E of the target concept c E C Z, H.  More 
specifically, the size of the training set should be:m 2 a(ln(ll6) + In I HI) 

1.9.3 Empirical Estimation of Generalization Error 

Another approach for estimating the generalization error is to split the 
available examples into two groups: training set and test set. First, the 
training set is used by the inducer to construct a suitable classifier and then 
we measure the misclassification rate of this classifier on the test set. This 
test set error usually provides a better estimation to the generalization error 
than the training error. The reason for that is the fact that the training 
error usually under-estimates the generalization error (due to the overfitting 
phenomena). 
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When data is limited, it is common practice to resample the data, that 
is, partition the data into training and test sets in different ways. An 
inducer is trained and tested for each partition and the accuracies averaged. 
By doing this, a more reliable estimate of the true generalization error of 
the inducer is provided. 

Random subsampling and n-fold cross-validation are two common meth- 
ods of resampling. In random subsampling, the data is randomly parti- 
tioned into disjoint training and test sets several times. Errors obtained 
from each partition are averaged. In n-fold cross-validation, the data is 
randomly split into n mutually exclusive subsets of approximately equal 
size. An inducer is trained and tested n times; each time it is tested on one 
of the k folds and trained using the remaining n - 1 folds. 

The cross-validation estimate of the generalization error is the overall 
number of misclassifications, divided by the number of examples in the 
data. The random subsampling method has the advantage that it can be 
repeated an indefinite number of times. However, it has the disadvan- 
tage that the test sets are not independently drawn with respect to the 
underlying distribution of examples. Because of this, using a t-test for 
paired differences with random subsampling can lead to increased chance 
of Type I error that is, identifying a significant difference when one does not 
actually exist. Using a t-test on the generalization error produced on each 
fold has a lower chance of Type I error but may not give a stable estimate 
of the generalization error. It  is common practice to repeat n fold cross- 
validation n times in order to provide a stable estimate. However, this of 
course renders the test sets non-independent and increases the chance of 
Type I error. Unfortunately, there is no satisfactory solution to this prob- 
lem. Alternative tests suggested by [Dietterich (1998)] have low chance of 
Type I error but high chance of Type I1 error - that is, failing to identify 
a significant difference when one does actually exist. 

Stratzjicatzon is a process often applied during random subsampling and 
n-fold crossvalidation. Stratification ensures that the class distribution from 
the whole dataset is preserved in the training and test sets. Stratification 
has been shown to help reduce the variance of the estimated error espe- 
cially for datasets with many classes. Stratified random subsampling with 
a paired t-test is used herein to evaluate accuracy. 


