
Concepts and Fundamental Aspects 

1.9.4 Bias and Variance Decomposition 

It  is well known that the error can be decomposed into three additive com- 
ponents [ ~ o h a v i  and Wolpert (1996)]: the intrinsic error, the bias error and 
the variance error. 

The intrinsic error represents the error generated due to noise. This 
quantity is the lower bound of any inducer, i.e. it is the expected error 
of the Bayes optimal classifier (also known as irreducible error). The bias 
error of an inducer is the persistent or systematic error that the inducer 
is expected to make. Variance is a concept closely related to bias. The 
variance captures random variation in the algorithm from one training set 
to another, namely it measures the sensitivity of the algorithm to the actual 
training set, or error due to the training set's finite size. The following 
equations are a possible mathematical definition for the various components 
in case of a zero-one loss. 

t ( I ,  S ,  c j ,  x )  = 1 PI(S)(Y = cj 1%) > &(s)(y = c* (z)  Vc* E dorn(y), # cj 
0 Otherwise 

Note that the probability to misclassify the instance x using inducer I  and 
a training set of size m is: 
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It  is important to note that in case of zero-one loss there are other definitions 
for the bias-variance components. These definitions are not necessarily 
consistent. In fact there is a considerable debate in the literature about 
what should be the most appropriate definition. For a complete list of 
these definitions please refer to [Hansen (2000)l. 

Nevertheless in context of regression a single definition of bias and vari- 
ance has been adopted by the entire community. In this case it is useful to  
define the bias-variance components by referring to  the quadratic loss, as 
follows: 

where fR(x) represents the prediction of the regression model and f(x) 
represents the actual value. The intrinsic variance 
are respectively defined as: 

and bias components 

Simpler models tend to  have a higher bias error and smaller variance 
error than complicated models. [Bauer and Kohavi (1999)] have provided 
an experimental result supporting the last argument for Naive Bayes, while 
[Dietterich and Kong (1995)] have examined the bias-variance issue in deci- 
sion trees. Figure 1.5 illustrates this argument. The figure shows that there 
is a trade-off between variance and bias. When the classifier is simple it has 
a large bias and small variance. As the classifier become more complicated, 
it has larger variance but smaller bias. The minimum generalization error 
is obtained somewhere in between, where both bias and variance are small. 

1.9.5 Computational Complexity 

Another useful criterion for comparing inducers and classifiers is their com- 
putational complexities. Strictly speaking computational complexity is the 
amount of CPU consumed by each inducer. It  is convenient to differentiate 
between three metrics of computational complexity: 

0 Computational Complexity for generating a new classifier: This is the 
most important metric, especially when there is a need to scale the 
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Fig. 1.5 Bias vs. Variance in the Deterministic Case: Hansen, 2000. 

data mining algorithm to massive data sets. Because most of the 
algorithms have computational complexity, which is worse than linear 
in the numbers of tuples, mining massive data sets might be "pro- 
hibitively expensive". 
Computational Complexity for updating a classifier: Giving a new data 
- what is the computational complexity required for updating the 
current classifier such that the new classifier reflects the new data? 
Computational Complexity for classifying a new instance: Generally 
this type is neglected because it is relatively small. However, in certain 
methods (like k-Nearest Neighborhood) or in certain real time applica- 
tions (like anti-missiles applications), this type can be critical. 

1.9.6 Comprehensibility 

Comprehensibility criterion (also known as Interpretability) refers to how 
well humans grasp the classifier induced. While the generalization error 
measures how the cIassifier fits the data, comprehensibility measures the 
"Mental fit" of that classifier. 

Many techniques, like neural networks or SVM (Support Vector Ma- 
chines), are designed solely to achieve accuracy. However, as their classifiers 
are represented using large assemblages of real valued parameters, they are 
also difficult to understand and are referred to as black-box models. 

It  is often important for the researcher to be able to inspect an induced 
classifier. For domains such as medical diagnosis, the users must understand 
how the system makes its decisions in order to be confident of the outcome. 
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Data mining can also play an important role in the process of scientific 
discovery. A system may discover salient features in the input data whose 
importance was not previously recognized. If the representations formed 
by the inducer are comprehensible, then these discoveries can be made 
accessible to human review [Hunter and Klein (1993)l. 

Comprehensibility can vary between different classifiers created by the 
same inducer. For instance, in the case of decision trees, the size (number 
of nodes) of the induced trees is also important. Smaller trees are preferred 
because they are easier to interpret. However, this is only a rule of thumb, 
in some pathologic cases a large and unbalanced tree can still be easily 
interpreted [ ~ u j a  and Lee (2001)l. 

As the reader can see the accuracy and complexity factors can be quan- 
titatively estimated, while the comprehensibility is more subjective. 

Another distinction is that the complexity and comprehensibility 
depend mainly only on the induction method and much less on the specific 
domain considered. On the other hand, the dependence of error metric on 
specific domain can not be neglected. 

1.10 "No Free Lunch" Theorem 

Empirical comparison of the performance of different approaches and their 
variants in a wide range of application domains has shown that each per- 
forms best in some, but not all, domains. This has been termed the selective 
superiority problem [Bradley (1995)l. 

It is well known that no induction algorithm can be the best in all 
possible domains; each algorithm contains an explicit or implicit bias 
[Mitchell (1980)] that leads it to  prefer certain generalizations over others, 
and it will be successful only insofar as this bias matches the characteris- 
tics of the application domain [Brazdil et  al. (1994)]. Furthermore, other 
results have demonstrated the existence and correctness of the "conserva- 
tion law" [Schaffer (1994)] or "no free lunch theorem" [Wolpert (1996)l: if 
one inducer is better than another in some domains, then there are neces- 
sarily other domains in which this relationship is reversed. 

The ''no free lunch theorem" implies that for a given problem a cer- 
tain approach can yield more information from the same data than other 
approaches. 

A distinction should be made between all the mathematically possible 
domains, which are simply a product of the representation languages used, 
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and the domains that occur in the real world, and are therefore the ones 

of primary interest [ R ~ Q  et al. (1995)l. Without doubt there are many 
domains in the former set that are not in the latter, and average accuracy 
in the realworld domains can be increased at the expense of accuracy in the 
domains that never occur in practice. Indeed, achieving this is the goal of 
inductive learning research. It  is still true that some algorithms will match 
certain classes of naturallyoccurring domains better than other algorithms, 
and so achieve higher accuracy than these algorithms, and that this may be 
reversed in other realworld domains; but this does not preclude an improved 
algorithm from being as accurate as the best in each of the domain classes. 

Indeed, in many application domains the generalization error of even 
the best methods is far above 0%, and the question of whether it can 
be improved, and if so how, is an open and important one. One part 
of answering this question is determining the minimum error achievable 
by any classifier in the application domain (known as the optimal Bayes 
error). If existing classifiers do not reach this level, new approaches are 
needed. Although this problem has received considerable attention (see for 
instance [Tumer and Ghosh (1996)]), no generally reliable method has so 
far been demonstrated. 

The "no free lunch" concept presents a dilemma to  the analyst 
approaching a new task: which inducer should be used? 

If the analyst is looking for accuracy only, one solution is to try each one 
in turn, and by estimating the generalization error, to choose the one that 
appears to perform best [Schaffer (1994)l. Another approach, known as 
multistrategy learning [Michalski and Tecuci (1994)], attempts to  combine 
two or more different paradigms in a single algorithm. Most research in 
this area has been concerned with combining empirical approaches with 
analytical methods (see for instance  o ow ell and Shavlik (1994)l. Ideally, a 
multistrategy learning algorithm would always perform as well as the best 
of its "parents" obviating the need to try each one and simplifying the 
knowledge acquisition task. Even more ambitiously, there is hope that this 
combination of paradigms might produce synergistic effects (for instance 
by allowing different types of frontiers between classes in different regions 
of the example space), leading to levels of accuracy that neither atomic 
approach by itself would be able to  achieve. 

Unfortunately, this approach has often been only moderately successful. 
Although it is true that in some industrial applications (like in the case of 
demand planning) this strategy proved to boost the error performance, in 
many other cases the resulting algorithms are prone to be cumbersome, 
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and often achieve an error that lie between those of their parents, instead 
of matching the lowest. 

The dilemma of what method to choose becomes even greater, if other 
factors such as comprehensibility are taken intoconsideration. For instance 
for a specific domain, neural network may outperform decision trees in 
accuracy. However, from the comprehensibility aspect, decision trees are 
considered better. In other words, in this case even if the researcher knows 
that neural network is more accurate, he still has a dilemma what method 
to use. 

1.11 Scalability to Large Datasets 

Obviously induction is one of the central problems in many disciplines like: 
machine learning, pattern recognition, and statistics. 

However the feature that distinguishes data mining from traditional 
methods is its scalability to very large sets of varied types of input data. In 
this book the notion, "scalability" refers to datasets that fulfill a t  least one 
of the following properties: high number of records, high dimensionality, 
high number of classes or heterogeneousness. 

"Classical" induction algorithms have been applied with practical suc- 
cess in many relatively simple and small-scale problems. However, trying 
to discover knowledge in real life and large databases, introduce time and 
memory problems. 

As large databases have become the norm in many fields (including 
astronomy, molecular biology, finance, marketing, health care, and many 
others), the use of data mining to discover patterns in them has become 
a potentially very productive enterprise. Many companies are staking a 
large part of their future on these "data mining" applications, and looking 
to the research community for solutions to the fundamental problems they 
encounter. 

While a very large amount of available data used to be a dream of any 
data analyst, nowadays the synonym for 'bery large" has become "ter- 
abyte", a hardly imaginable volume of information. Information-intensive 
organizations (like telecom companies and banks) are supposed to accumu- 
late several terabytes of raw data every one to two years. 

However, the availability of an electronic data repository (in its 
enhanced form known as a "data warehouse") has caused a number of 
previously unknown problems, which, if ignored, may turn the task of 
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efficient data mining into mission impossible. Managing and analyzing 
huge data warehouses requires special and very expensive hardware and 
software, which often causes a company to exploit only a small part of the 
stored data. 

According to [Fayyad et al. (1996)] the explicit challenges for the data 
mining research community is to develop methods that facilitate the use of 
data mining algorithms for real-world databases. One of the characteristics 
of a real world databases is high volume data. 

Huge databases pose several challenges: 

Computing complexity: Since most induction algorithms have a com- 
putational complexity that is greater than linear in the number of 
attributes or tuples, the execution time needed to process such 
databases might become an important issue. 
Poor classification accuracy due to difficulties in finding the correct 
classifier. Large databases increase the size of the search space, and 
thus it increases the chance that the inducer will select an over fitted 
classifier that is not valid in general. 
Storage problems: In most machine learning algorithms, the entire 
training set should be read from the secondary storage (such as mag- 
netic storage) into the computer's primary storage (main memory) 
before the induction process begins. This causes problems since the 
main memory's capability is much smaller than the capability of mag- 
netic disks. 

The difficulties in implementing classification algorithms as-is on high vol- 
ume databases derives from the increase in the number of records/instances 
in the database and from the increase in the number of attributeslfeatures 
in each instance (high dimensionality). 

Approaches for dealing with a high number of records include: 

Sampling methods - statisticians are selecting records from a popula- 
tion by different sampling techniques. 
Aggregation - reduces the number of records either by treating a group 
of records as one, or by ignoring subsets of "unimportant" records. 
Massively parallel processing - exploiting parallel technology - to 
simultaneously solve various aspects of the problem. 
Efficient storage methods - enabling the algorithm to handle many 
records. For instance [Shafer et al. (1996)] presented the SPRINT which 
constructs an attribute list data structure. 
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Reducing the algorithm's Search space - For instance the PUBLIC 
algorithm [Rastogi and Shim (2000)] integrates the growing and prun- 
ing of decision trees by using MDL cost in order to reduce the compu- 
tational complexity. 

1.12 The "Curse of Dimensionality" 

High dimensionality of the input (that is, the number of attributes) 
increases the size of the search space in an exponential manner, and thus 
increases the chance that the inducer will find spurious classifiers that are 
not valid in general. It is well known that the required number of labeled 
samples for supervised classification increases as a function of dimension- 
ality [Jimenez and Landgrebe (1998)l. [Fukunaga (1990)] showed that the 
required number of training samples is linearly related to  the dimensionality 
for a linear classifier and to the square of the dimensionality for a quadratic 
classifier. In terms of nonparametric classifiers like decision trees, the sit- 
uation is even more severe. It has been estimated that as the number of 
dimensions increases, the sample size needs to  increase exponentially in 
order to have an effective estimate of multivariate densities ([Hwang 
et  al. (1994)l. 

This phenomenon is usually called "curse of dimensionality". Bellman 
(1961) was the first to coin this term, while working on complicated sig- 
nal processing. Techniques like decision trees inducers that are efficient 
in low dimensions fail to  provide meaningful results when the number of 
dimensions increases beyond a "modest" size. Furthermore, smaller clas- 
sifiers, involving fewer features (probably less than lo),  are much more 
understandable by humans. Smaller classifiers are also more appropriate 
for user-driven data mining techniques such as visualization. 

Most of the methods for dealing with high dimensionality focus on Fea- 
ture Selection techniques, i.e. selecting a single subset of features upon 
which the inducer (induction algorithm) will run, while ignoring the rest. 
The selection of the subset can be done manually by using prior knowledge 
to  identify irrelevant variables or by using proper algorithms. 

In the last decade, Feature Selection has enjoyed increased interest by 
many researchers. Consequently many Feature Selection algorithms have 
been proposed, some of which have reported remarkable accuracy improve- 
ment. As it is too wide to survey here all methods, the reader is referred to  
the following sources: [Langley (1994)], [Liu and Motoda (1998)] for further 
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reading. 
Despite its popularity, the usage of feature selection methodologies for 

overcoming the obstacles of high dimensionality has several drawbacks: 

0 The assumption that a large set of input features can be reduced to a 
small subset of relevant features is not always true; in some cases the 
target feature is actually affected by most of the input features, and 
removing features will cause a significant loss of important information. 

0 The outcome (i.e. the subset) of many algorithms for Feature Selec- 
tion (for example almost any of the algorithms that are based upon 
the wrapper methodology) is strongly dependent on the training set 
size. That is, if the training set is small, then the size of the reduced 
subset will be small also. Consequently, relevant features might be 
lost. Accordingly, the induced classifiers might achieve lower accuracy 
compared to classifiers that have access to all relevant features. 
In some cases, even after eliminating a set of irrelevant features, the 
researcher is left with relatively large numbers of relevant features. 

0 The backward elimination strategy, used by some methods, is extremely 
inefficient for working with large-scale databases, where the number of 
original features is more than 100. 

A number of linear dimension reducers have been developed over the years. 
The linear methods of dimensionality reduction include projection pursuit 
[Friedman and Tukey (1973)], factor analysis [ ~ i m  and Mueller (1978)], 
and principal components analysis [Dunteman (1989)]. These methods are 
not aimed directly at eliminating irrelevant and redundant features, but 
are rather concerned with transforming the observed variables into a small 
number of "projections" or LLdimensions". The underlying assumptions are 
that the variables are numeric and the dimensions can be expressed as linear 
combinations of the observed variables (and vice versa). Each discovered 
dimension is assumed to  represent an unobserved factor and thus provide 
a new way of understanding the data (similar to the curve equation in the 
regression models). 

The linear dimension reducers have been enhanced by constructive 
induction systems that use a set of existing features and a set of pre- 
defined constructive operators to derive new features [Pfahringer (1994); 
Ragavan and Rendell (1993)l. These methods are effective for high dimen- 
sionality applications only if the original domain size of the input feature 
can be in fact decreased dramatically. 
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One way to deal with the above mentioned disadvantages is to use a very 
large training set (which should increase in an exponential manner as the 
number of input features increases). However, the researcher rarely enjoys 
this privilege, and even if it does happen, the researcher will probably 
encounter the aforementioned difficulties derived from a high number of 
instances. 

Practically most of the training sets are still considered "small" not due 
to their absolute size but rather due to the fact that they contain too few 
instances given the nature of the investigated problem, namely the instance 
space size, the space distribution and the intrinsic noise. Furthermore, even 
if a sufficient dataset is available, the researcher will probably encounter the 
aforementioned difficulties derived from high number of records. 


