
Chapter 6
Graphical User Interfaces

in JAVA

Contents
6.1 Introduction: The Modern User Interface 106
6.2 The Basic GUI Application . 107

6.2.1 JFrame and JPanel . 109
6.2.2 Components and Layout . 111
6.2.3 Events and Listeners . 112

6.3 Applets and HTML . 113
6.3.1 JApplet . 113
6.3.2 Reusing Your JPanels . 115
6.3.3 Applets on Web Pages . 117

6.4 Graphics and Painting . 119
6.4.1 Coordinates . 121
6.4.2 Colors . 122
6.4.3 Fonts . 123
6.4.4 Shapes . 124
6.4.5 An Example . 126

6.5 Mouse Events . 129
6.5.1 Event Handling . 130
6.5.2 MouseEvent and MouseListener 131
6.5.3 Anonymous Event Handlers . 134

6.6 Basic Components . 137
6.6.1 JButton . 139
6.6.2 JLabel . 140
6.6.3 JCheckBox . 140
6.6.4 JTextField and JTextArea . 141

6.7 Basic Layout . 143
6.7.1 Basic Layout Managers . 144
6.7.2 A Simple Calculator . 146
6.7.3 A Little Card Game . 148

105

6.8 Images and Resources . 152
6.8.1 Images . 153
6.8.2 Image File I/O . 155

6.1 Introduction: The Modern User Interface

WHEN COMPUTERS WERE FIRST INTRODUCED, ordinary people,including most program-
mers, couldn’t get near them. They were locked up in rooms with white-coated at-
tendants who would take your programs and data, feed them to the computer, and
return the computer’s response some time later. When timesharing – where the com-
puter switches its attention rapidly from one person to another – was invented in the
1960s, it became possible for several people to interact directly with the computer
at the same time. On a timesharing system, users sit at “terminals” where they type
commands to the computer, and the computer types back its response. Early personal
computers also used typed commands and responses, except that there was only one
person involved at a time. This type of interaction between a user and a computer is
called a command-line interface.

Today most people interact with computers in a completely different way. They
use a Graphical User Interface, or GUI. The computer draws interface components on
the screen. The components include things like windows, scroll bars, menus, buttons,
and icons. Usually, a mouse is used to manipulate such components.

A lot of GUI interface components have become fairly standard. That is, they have
similar appearance and behavior on many different computer platforms including
MACINTOSH, WINDOWS, and LINUX. JAVA programs, which are supposed to run
on many different platforms without modification to the program, can use all the
standard GUI components. They might vary a little in appearance from platform to
platform, but their functionality should be identical on any computer on which the
program runs.

Below is a very simple JAVA program–actually an “applet,”–that shows a few stan-
dard GUI interface components. There are four components that the user can interact
with: a button, a checkbox, a text field, and a pop-up menu. These components are
labeled. There are a few other components in the applet. The labels themselves are
components (even though you can’t interact with them). The right half of the applet
is a text area component, which can display multiple lines of text, and a scrollbar
component appears alongside the text area when the number of lines of text becomes
larger than will fit in the text area. And in fact, in JAVA terminology, the whole applet
is itself considered to be a “component.”

JAVA actually has two complete sets of GUI components. One of these, the AWT
or Abstract Windowing Toolkit, was available in the original version of JAVA. The
other, which is known as Swing, is included in JAVA version 1.2 or later, and is used

106

in preference to the AWT in most modern JAVA programs. The applet that is shown
above uses components that are part of Swing.

When a user interacts with the GUI components in this applet, an “event” is gen-
erated. For example, clicking a push button generates an event, and pressing return
while typing in a text field generates an event. Each time an event is generated, a
message is sent to the applet telling it that the event has occurred, and the applet
responds according to its program. In fact, the program consists mainly of “event
handlers” that tell the applet how to respond to various types of events. In this ex-
ample, the applet has been programmed to respond to each event by displaying a
message in the text area.

The use of the term “message” here is deliberate. Messages are sent to objects. In
fact, JAVA GUI components are implemented as objects. JAVA includes many prede-
fined classes that represent various types of GUI components. Some of these classes
are subclasses of others. Here is a diagram showing some of Swing’s GUI classes and
their relationships:

Note that all GUI classes are subclasses, directly or indirectly, of a class called
JComponent, which represents general properties that are shared by all Swing com-
ponents. Two of the direct subclasses of JComponent themselves have subclasses. The
classes JTextArea and JTextField, which have certain behaviors in common, are
grouped together as subclasses of JTextComponent. Also, JButton and JToggleButton
are subclasses of JAbstractButton, which represents properties common to both but-
tons and checkboxes.

Just from this brief discussion, perhaps you can see how GUI programming can
make effective use of object-oriented design. In fact, GUI’s, with their “visible ob-
jects,” are probably a major factor contributing to the popularity of OOP.

6.2 The Basic GUI Application

THERE ARE TWO BASIC TYPES of GUI program in JAVA: stand-alone applications and
applets. An applet is a program that runs in a rectangular area on a Web page.
Applets are generally small programs, meant to do fairly simple things, although
there is nothing to stop them from being very complex. Applets were responsible for
a lot of the initial excitement about JAVA when it was introduced, since they could
do things that could not otherwise be done on Web pages. However, there are now
easier ways to do many of the more basic things that can be done with applets, and

107

they are no longer the main focus of interest in JAVA. Nevertheless, there are still
some things that can be done best with applets, and they are still fairly common on
the Web.

A stand-alone application is a program that runs on its own, without depending on
a Web browser. You’ve been writing stand-alone applications all along. Any class that
has a main() method defines a stand-alone application; running the program just
means executing this main() method. However, the programs that you’ve seen up
till now have been “command-line” programs, where the user and computer interact
by typing things back and forth to each other. A GUI program offers a much richer
type of user interface, where the user uses a mouse and keyboard to interact with
GUI components such as windows, menus, buttons, check boxes, text input boxes,
scroll bars, and so on. The main method of a GUI program creates one or more
such components and displays them on the computer screen. Very often, that’s all
it does. Once a GUI component has been created, it follows its own programming—
programming that tells it how to draw itself on the screen and how to respond to
events such as being clicked on by the user.

A GUI program doesn’t have to be immensely complex. We can, for example write
a very simple GUI “Hello World” program that says “Hello” to the user, but does it by
opening a window where the greeting is displayed:

import javax.swing.JOptionPane;

public class HelloWorldGUI1 {

public static void main(String[] args) {
JOptionPane.showMessageDialog(null, " Hel lo World ! "); }

}

When this program is run, a window appears on the screen that contains the mes-
sage “Hello World!”. The window also contains an “OK” button for the user to click
after reading the message. When the user clicks this button, the window closes
and the program ends. By the way, this program can be placed in a file named
HelloWorldGUI1.java, compiled, and run just like any other JAVA program.

Now, this program is already doing some pretty fancy stuff. It creates a window, it
draws the contents of that window, and it handles the event that is generated when
the user clicks the button. The reason the program was so easy to write is that all
the work is done by showMessageDialog(), a static method in the built-in class
JOptionPane. (Note: the source code “imports” the class javax.swing.JOptionPane
to make it possible to refer to the JOptionPane class using its simple name.)

If you want to display a message to the user in a GUI program, this is a good way
to do it: Just use a standard class that already knows how to do the work! And in fact,
JOptionPane is regularly used for just this purpose (but as part of a larger program,
usually). Of course, if you want to do anything serious in a GUI program, there is a
lot more to learn. To give you an idea of the types of things that are involved, we’ll
look at a short GUI program that does the same things as the previous program –
open a window containing a message and an OK button, and respond to a click on
the button by ending the program – but does it all by hand instead of by using the
built-in JOptionPane class. Mind you, this is not a good way to write the program,
but it will illustrate some important aspects of GUI programming in JAVA.

Here is the source code for the program. I will explain how it works below, but it
will take the rest of the chapter before you will really understand completely.

108

import java.awt.∗;
import java.awt.event.∗;
import javax.swing.∗;

public class HelloWorldGUI2 {

private static class HelloWorldDisplay extends JPanel {
public void paintComponent(Graphics g) {

super.paintComponent(g);
g.drawString(" Hel lo World ! ", 20, 30);

}
}

private static class ButtonHandler implements ActionListener {
public void actionPerformed(ActionEvent e) {

System.exit(0);
}

}

public static void main(String[] args) {

HelloWorldDisplay displayPanel = new HelloWorldDisplay();
JButton okButton = new JButton("OK");
ButtonHandler listener = new ButtonHandler();
okButton.addActionListener(listener);

JPanel content = new JPanel();
content.setLayout(new BorderLayout());
content.add(displayPanel, BorderLayout.CENTER);
content.add(okButton, BorderLayout.SOUTH);

JFrame window = new JFrame(" GUI Test ");
window.setContentPane(content);
window.setSize(250,100);
window.setLocation(100,100);
window.setVisible(true);

}

}

6.2.1 JFrame and JPanel

In a JAVA GUI program, each GUI component in the interface is represented by an
object in the program. One of the most fundamental types of component is the window.
Windows have many behaviors. They can be opened and closed. They can be resized.
They have “titles” that are displayed in the title bar above the window. And most
important, they can contain other GUI components such as buttons and menus.

JAVA, of course, has a built-in class to represent windows. There are actually
several different types of window, but the most common type is represented by the
JFrame class (which is included in the package javax.swing). A JFrame is an inde-
pendent window that can, for example, act as the main window of an application.
One of the most important things to understand is that a JFrame object comes with
many of the behaviors of windows already programmed in. In particular, it comes

109

with the basic properties shared by all windows, such as a titlebar and the ability to
be opened and closed. Since a JFrame comes with these behaviors, you don’t have to
program them yourself! This is, of course, one of the central ideas of object-oriented
programming. What a JFrame doesn’t come with, of course, is content, the stuff that
is contained in the window. If you don’t add any other content to a JFrame, it will just
display a large blank area. You can add content either by creating a JFrame object
and then adding the content to it or by creating a subclass of JFrame and adding the
content in the constructor of that subclass.

The main program above declares a variable, window, of type JFrame and sets it
to refer to a new window object with the statement:
JFrame window = new JFrame("GUI Test");.

The parameter in the constructor, “GUI Test”, specifies the title that will be dis-
played in the titlebar of the window. This line creates the window object, but the
window itself is not yet visible on the screen. Before making the window visible,
some of its properties are set with these statements:

window.setContentPane(content);
window.setSize(250,100);
window.setLocation(100,100);

The first line here sets the content of the window. (The content itself was created
earlier in the main program.) The second line says that the window will be 250 pixels
wide and 100 pixels high. The third line says that the upper left corner of the window
will be 100 pixels over from the left edge of the screen and 100 pixels down from the
top. Once all this has been set up, the window is actually made visible on the screen
with the command:window.setVisible(true);.

It might look as if the program ends at that point, and, in fact, the main() method
does end. However, the the window is still on the screen and the program as a whole
does not end until the user clicks the OK button.

The content that is displayed in a JFrame is called its content pane. (In addition
to its content pane, a JFrame can also have a menu bar, which is a separate thing that
I will talk about later.) A basic JFrame already has a blank content pane; you can ei-
ther add things to that pane or you can replace the basic content pane entirely. In
my sample program, the line window.setContentPane(content) replaces the origi-
nal blank content pane with a different component. (Remember that a “component”
is just a visual element of a graphical user interface). In this case, the new content is
a component of type JPanel.

JPanel is another of the fundamental classes in Swing. The basic JPanel is, again,
just a blank rectangle. There are two ways to make a useful JPanel: The first is to
add other components to the panel; the second is to draw something in the panel.
Both of these techniques are illustrated in the sample program. In fact, you will find
two JPanels in the program: content, which is used to contain other components,
and displayPanel, which is used as a drawing surface.

Let’s look more closely at displayPanel. displayPanel is a variable of type
HelloWorldDisplay, which is a nested static class inside the HelloWorldGUI2 class.
This class defines just one instance method, paintComponent(), which overrides a
method of the same name in the JPanel class:

110

private static class HelloWorldDisplay extends JPanel {
public void paintComponent(Graphics g) {

super.paintComponent(g);
g.drawString(" Hel lo World ! ", 20, 30);

}
}

The paintComponent() method is called by the system when a component needs to
be painted on the screen. In the JPanel class, the paintComponent method simply
fills the panel with the panel’s background color. The paintComponent() method
in HelloWorldDisplay begins by calling super.paintComponent(g). This calls the
version of paintComponent() that is defined in the superclass, JPanel; that is, it fills
the panel with the background color. Then it calls g.drawString() to paint the string
“Hello World!” onto the panel. The net result is that whenever a HelloWorldDisplay
is shown on the screen, it displays the string “Hello World!”.

We will often use JPanels in this way, as drawing surfaces. Usually, when we do
this, we will define a nested class that is a subclass of JPanel and we will write a
paintComponent method in that class to draw the desired content in the panel.

6.2.2 Components and Layout

Another way of using a JPanel is as a container to hold other components. JAVA has
many classes that define GUI components. Before these components can appear on
the screen, they must be added to a container. In this program, the variable named
content refers to a JPanel that is used as a container, and two other components are
added to that container. This is done in the statements:

content.add(displayPanel, BorderLayout.CENTER);
content.add(okButton, BorderLayout.SOUTH);

Here, content refers to an object of type JPanel; later in the program, this panel
becomes the content pane of the window. The first component that is added to
content is displayPanel which, as discussed above, displays the message, “Hello
World!”. The second is okButton which represents the button that the user clicks
to close the window. The variable okButton is of type JButton, the JAVA class that
represents push buttons.

The “BorderLayout” stuff in these statements has to do with how the two com-
ponents are arranged in the container. When components are added to a container,
there has to be some way of deciding how those components are arranged inside the
container. This is called “laying out” the components in the container, and the most
common technique for laying out components is to use a layout manager. A layout
manager is an object that implements some policy for how to arrange the components
in a container; different types of layout manager implement different policies. One
type of layout manager is defined by the BorderLayout class. In the program, the
statement

content.setLayout(new BorderLayout());

creates a new BorderLayout object and tells the content panel to use the new ob-
ject as its layout manager. Essentially, this line determines how components that
are added to the content panel will be arranged inside the panel. We will cover lay-
out managers in much more detail later, but for now all you need to know is that
adding okButton in the BorderLayout.SOUTH position puts the button at the bottom

111

of the panel, and putting the component displayPanel in the BorderLayout.CENTER
position makes it fill any space that is not taken up by the button.

This example shows a general technique for setting up a GUI: Create a container
and assign a layout manager to it, create components and add them to the container,
and use the container as the content pane of a window or applet. A container is
itself a component, so it is possible that some of the components that are added to
the top-level container are themselves containers, with their own layout managers
and components. This makes it possible to build up complex user interfaces in a
hierarchical fashion, with containers inside containers inside containers...

6.2.3 Events and Listeners

The structure of containers and components sets up the physical appearance of a
GUI, but it doesn’t say anything about how the GUI behaves. That is, what can
the user do to the GUI and how will it respond? GUIs are largely event−driven;
that is, the program waits for events that are generated by the user’s actions (or by
some other cause). When an event occurs, the program responds by executing an
event−handling method. In order to program the behavior of a GUI, you have to
write event-handling methods to respond to the events that you are interested in.

Event listeners are the most common technique for handling events in JAVA. A
listener is an object that includes one or more event-handling methods. When an
event is detected by another object, such as a button or menu, the listener object
is notified and it responds by running the appropriate event-handling method. An
event is detected or generated by an object. Another object, the listener, has the
responsibility of responding to the event. The event itself is actually represented by
a third object, which carries information about the type of event, when it occurred,
and so on. This division of responsibilities makes it easier to organize large programs.

As an example, consider the OK button in the sample program. When the user
clicks the button, an event is generated. This event is represented by an object be-
longing to the class ActionEvent. The event that is generated is associated with the
button; we say that the button is the source of the event. The listener object in this
case is an object belonging to the class ButtonHandler, which is defined as a nested
class inside HelloWorldGUI2:

private static class ButtonHandler implements ActionListener {
public void actionPerformed(ActionEvent e) {

System.exit(0);
}

}

This class implements the ActionListener interface – a requirement for listener ob-
jects that handle events from buttons. The event-handling method is named
actionPerformed, as specified by the ActionListener interface. This method con-
tains the code that is executed when the user clicks the button; in this case, the code
is a call to System.exit(), which will terminate the program.

There is one more ingredient that is necessary to get the event from the button
to the listener object: The listener object must register itself with the button as an
event listener. This is done with the statement:

okButton.addActionListener(listener);

This statement tells okButton that when the user clicks the button, the ActionEvent
that is generated should be sent to listener. Without this statement, the button

112

has no way of knowing that some other object would like to listen for events from the
button.

This example shows a general technique for programming the behavior of a GUI:
Write classes that include event-handling methods. Create objects that belong to
these classes and register them as listeners with the objects that will actually detect
or generate the events. When an event occurs, the listener is notified, and the code
that you wrote in one of its event-handling methods is executed. At first, this might
seem like a very roundabout and complicated way to get things done, but as you gain
experience with it, you will find that it is very flexible and that it goes together very
well with object oriented programming. (We will return to events and listeners in
much more detail in later sections.)

6.3 Applets and HTML

ALTHOUGH STAND-ALONE APPLICATIONS are probably more important than applets at
this point in the history of JAVA, applets are still widely used. They can do things on
Web pages that can’t easily be done with other technologies. It is easy to distribute
applets to users: The user just has to open a Web page, and the applet is there, with
no special installation required (although the user must have an appropriate version
of JAVA installed on their computer). And of course, applets are fun; now that the
Web has become such a common part of life, it’s nice to be able to see your work
running on a web page.

The good news is that writing applets is not much different from writing stand-
alone applications. The structure of an applet is essentially the same as the structure
of the JFrames that were introduced in the previously, and events are handled in the
same way in both types of program. So, most of what you learn about applications
applies to applets, and vice versa.

Of course, one difference is that an applet is dependent on a Web page, so to use
applets effectively, you have to learn at least a little about creating Web pages. Web
pages are written using a language called HTML (HyperText Markup Language).

6.3.1 JApplet

The JApplet class (in package javax.swing) can be used as a basis for writing applets
in the same way that JFrame is used for writing stand-alone applications. The basic
JApplet class represents a blank rectangular area. Since an applet is not a stand-
alone application, this area must appear on a Web page, or in some other environment
that knows how to display an applet. Like a JFrame, a JApplet contains a content
pane (and can contain a menu bar). You can add content to an applet either by adding
content to its content pane or by replacing the content pane with another component.
In my examples, I will generally create a JPanel and use it as a replacement for the
applet’s content pane.

To create an applet, you will write a subclass of JApplet. The JApplet class de-
fines several instance methods that are unique to applets. These methods are called
by the applet’s environment at certain points during the applet’s “life cycle.” In the
JApplet class itself, these methods do nothing; you can override these methods in a
subclass. The most important of these special applet methods is public void init().

An applet’s init() method is called when the applet is created. You can use
the init() method as a place where you can set up the physical structure of the

113

applet and the event handling that will determine its behavior. (You can also do
some initialization in the constructor for your class, but there are certain aspects of
the applet’s environment that are set up after its constructor is called but before the
init() method is called, so there are a few operations that will work in the init()
method but will not work in the constructor.) The other applet life-cycle methods are
start(), stop(), and destroy(). I will not use these methods for the time being and
will not discuss them here except to mention that destroy() is called at the end of
the applet’s lifetime and can be used as a place to do any necessary cleanup, such as
closing any windows that were opened by the applet.

With this in mind, we can look at our first example of a JApplet. It is, of course,
an applet that says “Hello World!”. To make it a little more interesting, I have added
a button that changes the text of the message, and a state variable, currentMessage
that holds the text of the current message. This example is very similar to the
stand-alone application HelloWorldGUI2 from the previous section. It uses an event-
handling class to respond when the user clicks the button, a panel to display the
message, and another panel that serves as a container for the message panel and the
button. The second panel becomes the content pane of the applet. Here is the source
code for the applet; again, you are not expected to understand all the details at this
time:

import java.awt.∗;
import java.awt.event.∗;
import javax.swing.∗;

/∗ ∗
∗ A simple app le t t h a t can d i sp lay the messages " He l lo World "
∗ and " Goodbye World " . The app le t conta ins a button , and i t
∗ swi tches from one message to the other when the but ton i s
∗ c l i c k e d .
∗ /

public class HelloWorldApplet extends JApplet {

private String currentMessage = " Hel lo World ! ";
private MessageDisplay displayPanel;

private class MessageDisplay extends JPanel { / / Def ines the d i sp lay panel .
public void paintComponent(Graphics g) {

super.paintComponent(g);
g.drawString(currentMessage, 20, 30);

}
}

private class ButtonHandler implements ActionListener { / / The event l i s t e n e r .
public void actionPerformed(ActionEvent e) {

if (currentMessage.equals(" Hel lo World ! "))
currentMessage = "Goodbye World ! ";

else
currentMessage = " Hel lo World ! ";

displayPanel.repaint(); / / Pa in t d i sp lay panel w i th new message .
}

}

114

/∗ ∗
∗ The app le t ’ s i n i t () method creates the but ton and d i sp lay panel and
∗ adds them to the applet , and i t sets up a l i s t e n e r to respond to
∗ c l i c k s on the but ton .
∗ /

public void init() {

displayPanel = new MessageDisplay();
JButton changeMessageButton = new JButton("Change Message");
ButtonHandler listener = new ButtonHandler();
changeMessageButton.addActionListener(listener);

JPanel content = new JPanel();
content.setLayout(new BorderLayout());
content.add(displayPanel, BorderLayout.CENTER);
content.add(changeMessageButton, BorderLayout.SOUTH);

setContentPane(content);
}

}

You should compare this class with HelloWorldGUI2.java from the previous section.
One subtle difference that you will notice is that the member variables and nested
classes in this example are non-static. Remember that an applet is an object. A single
class can be used to make several applets, and each of those applets will need its own
copy of the applet data, so the member variables in which the data is stored must
be non-static instance variables. Since the variables are non-static, the two nested
classes, which use those variables, must also be non-static. (Static nested classes
cannot access non-static member variables in the containing class) Remember the
basic rule for deciding whether to make a nested class static: If it needs access to any
instance variable or instance method in the containing class, the nested class must
be non-static; otherwise, it can be declared to be static.

You can try out the applet itself. Click the “Change Message” button to switch the
message back and forth between “Hello World!” and “Goodbye World!”:

6.3.2 Reusing Your JPanels

Both applets and frames can be programmed in the same way: Design a JPanel, and
use it to replace the default content pane in the applet or frame. This makes it very
easy to write two versions of a program, one which runs as an applet and one which
runs as a frame. The idea is to create a subclass of JPanel that represents the content
pane for your program; all the hard programming work is done in this panel class.
An object of this class can then be used as the content pane either in a frame or in an
applet. Only a very simple main() program is needed to show your panel in a frame,
and only a very simple applet class is needed to show your panel in an applet, so it’s
easy to make both versions.

As an example, we can rewrite HelloWorldApplet by writing a subclass of JPanel.
That class can then be reused to make a frame in a standalone application. This
class is very similar to HelloWorldApplet, but now the initialization is done in a
constructor instead of in an init() method:

115

import java.awt.∗;
import java.awt.event.∗;
import javax.swing.∗;

public class HelloWorldPanel extends JPanel {

private String currentMessage = " Hel lo World ! ";
private MessageDisplay displayPanel;

private class MessageDisplay extends JPanel { / / Def ines the d i sp lay panel .
public void paintComponent(Graphics g) {

super.paintComponent(g);
g.drawString(currentMessage, 20, 30);

}
}

private class ButtonHandler implements ActionListener { / / The event l i s t e n e r .
public void actionPerformed(ActionEvent e) {

if (currentMessage.equals(" Hel lo World ! "))
currentMessage = "Goodbye World ! ";

else
currentMessage = " Hel lo World ! ";

displayPanel.repaint(); / / Pa in t d i sp lay panel w i th new message .
}

}

/∗ ∗
∗ The cons t ruc to r creates the components t h a t w i l l be conta ined i n s i d e t h i s
∗ panel , and then adds those components to t h i s panel .
∗ /

public HelloWorldPanel() {

displayPanel = new MessageDisplay(); / / Create the d i sp lay subpanel .

JButton changeMessageButton = new JButton("Change Message"); / / The but ton .
ButtonHandler listener = new ButtonHandler();
changeMessageButton.addActionListener(listener);

setLayout(new BorderLayout()); / / Set the layou t manager f o r t h i s panel .
add(displayPanel, BorderLayout.CENTER); / / Add the d i sp lay panel .
add(changeMessageButton, BorderLayout.SOUTH); / / Add the but ton .

}

}

Once this class exists, it can be used in an applet. The applet class only has to
create an object of type HelloWorldPanel and use that object as its content pane:

import javax.swing.JApplet;

public class HelloWorldApplet2 extends JApplet {
public void init() {

HelloWorldPanel content = new HelloWorldPanel();
setContentPane(content);

}
}

116

Similarly, its easy to make a frame that uses an object of type HelloWorldPanel
as its content pane:

import javax.swing.JFrame;

public class HelloWorldGUI3 {

public static void main(String[] args) {
JFrame window = new JFrame(" GUI Test ");
HelloWorldPanel content = new HelloWorldPanel();
window.setContentPane(content);
window.setSize(250,100);
window.setLocation(100,100);
window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
window.setVisible(true);

}

}

One new feature of this example is the line

window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

This says that when the user closes the window by clicking the close box in the title
bar of the window, the program should be terminated. This is necessary because
no other way is provided to end the program. Without this line, the default close
operation of the window would simply hide the window when the user clicks the close
box, leaving the program running. This brings up one of the difficulties of reusing
the same panel class both in an applet and in a frame: There are some things that
a stand-alone application can do that an applet can’t do. Terminating the program
is one of those things. If an applet calls System.exit() , it has no effect except to
generate an error.

Nevertheless, in spite of occasional minor difficulties, many of the GUI examples
in this book will be written as subclasses of JPanel that can be used either in an
applet or in a frame.

6.3.3 Applets on Web Pages

The <applet> tag can be used to add a JAVA applet to a Web page. This tag must
have a matching </applet>. A required modifier named code gives the name of the
compiled class file that contains the applet class. The modifiers height and width
are required to specify the size of the applet, in pixels. If you want the applet to be
centered on the page, you can put the applet in a paragraph with center alignment
So, an applet tag to display an applet named HelloWorldApplet centered on a Web
page would look like this:

<p align=center>
<applet code= " HelloWorldApplet . c lass " height=100 width=250>
</applet>
</p>

This assumes that the file HelloWorldApplet.class is located in the same direc-
tory with the HTML document. If this is not the case, you can use another modifier,
codebase, to give the URL of the directory that contains the class file. The value of
code itself is always just a class, not a URL.

117

If the applet uses other classes in addition to the applet class itself, then those
class files must be in the same directory as the applet class (always assuming that
your classes are all in the “default package”; see Subection2.6.4). If an applet requires
more than one or two class files, it’s a good idea to collect all the class files into a
single jar file. Jar files are “archive files” which hold a number of smaller files. If
your class files are in a jar archive, then you have to specify the name of the jar file
in an archive modifier in the <applet> tag, as in

<applet code= " HelloWorldApplet . c lass " archive= " HelloWorld . j a r "
height=50...

Applets can use applet parameters to customize their behavior. Applet parame-
ters are specified by using <param> tags, which can only occur between an <applet>
tag and the closing </applet>. The param tag has required modifiers named name
and value, and it takes the form

<param name= ‘‘param−name ’ ’ value=‘‘param−value ’ ’>

The parameters are available to the applet when it runs. An applet can use the
predefined method getParameter() to check for parameters specified in param tags.
The getParameter() method has the following interface:

String getParameter(String paramName)

The parameter paramName corresponds to the param−name in a param tag. If the
specified paramName occurs in one of the param tags, then getParameter(paramName)
returns the associated param−value. If the specified paramName does not occur in
any param tag, then getParameter(paramName) returns the value null. Parameter
names are case-sensitive, so you cannot use “size” in the param tag and ask for “Size”
in getParameter. The getParameter() method is often called in the applet’s init()
method. It will not work correctly in the applet’s constructor, since it depends on in-
formation about the applet’s environment that is not available when the constructor
is called.

Here is an example of an applet tag with several params:

<applet code= "ShowMessage. c lass " width=200 height=50>
<param name= "message" value= "Goodbye World ! ">
<param name= " font " value= " S e r i f ">
<param name= " s i z e " value= " 36 ">

</applet>

The ShowMessage applet would presumably read these parameters in its init()
method, which could go something like this:

118

String message; / / Ins tance v a r i a b l e : message to be d isp layed .
String fontName; / / Ins tance v a r i a b l e : f o n t to use f o r d i sp lay .
int fontSize; / / Ins tance v a r i a b l e : s i ze o f the d i sp lay f o n t .

public void init() {
String value;
value = getParameter("message"); / / Get message param , i f any .
if (value == null)

message = " Hel lo World ! "; / / De fau l t value , i f no param i s present .
else

message = value; / / Value from PARAM tag .
value = getParameter(" font ");
if (value == null)

fontName = " SansSer i f "; / / De fau l t value , i f no param i s present .
else

fontName = value;
value = getParameter(" s i z e ");
try {

fontSize = Integer.parseInt(value); / / Convert s t r i n g to number .
}
catch (NumberFormatException e) {

fontSize = 20; / / De fau l t value , i f no param i s present , or i f
} / / the parameter value i s not a l e g a l i n t e g e r .
.
.
.

Elsewhere in the applet, the instance variables message, fontName, and fontSize
would be used to determine the message displayed by the applet and the appear-
ance of that message. Note that the value returned by getParameter() is always a
String. If the param represents a numerical value, the string must be converted into
a number, as is done here for the size parameter.

6.4 Graphics and Painting

EVERTHING YOU SEE ON A COMPUTER SCREEN has to be drawn there, even the text. The
JAVA API includes a range of classes and methods that are devoted to drawing. In
this section, I’ll look at some of the most basic of these.

The physical structure of a GUI is built of components. The term component
refers to a visual element in a GUI, including buttons, menus, text-input boxes,
scroll bars, check boxes, and so on. In JAVA, GUI components are represented by
objects belonging to subclasses of the class java.awt.Component. Most components
in the Swing GUI – although not top-level components like JApplet and JFrame – be-
long to subclasses of the class javax.swing.JComponent, which is itself a subclass of
java.awt.Component. Every component is responsible for drawing itself. If you want
to use a standard component, you only have to add it to your applet or frame. You
don’t have to worry about painting it on the screen. That will happen automatically,
since it already knows how to draw itself.

Sometimes, however, you do want to draw on a component. You will have to do this
whenever you want to display something that is not included among the standard,
pre-defined component classes. When you want to do this, you have to define your
own component class and provide a method in that class for drawing the component.
I will always use a subclass of JPanel when I need a drawing surface of this kind,

119

as I did for the MessageDisplay class in the example HelloWorldApplet.java in the
previous section. A JPanel, like any JComponent, draws its content in the method

public void paintComponent(Graphics g)

To create a drawing surface, you should define a subclass of JPanel and provide a
custom paintComponent() method. Create an object belonging to this class and use
it in your applet or frame. When the time comes for your component to be drawn on
the screen, the system will call its paintComponent() to do the drawing. That is, the
code that you put into the paintComponent() method will be executed whenever the
panel needs to be drawn on the screen; by writing this method, you determine the
picture that will be displayed in the panel.

Note that the paintComponent() method has a parameter of type Graphics. The
Graphics object will be provided by the system when it calls your method. You
need this object to do the actual drawing. To do any drawing at all in JAVA, you
need a graphics context. A graphics context is an object belonging to the class
java.awt.Graphics. Instance methods are provided in this class for drawing shapes,
text, and images. Any given Graphics object can draw to only one location. In this
chapter, that location will always be a GUI component belonging to some subclass
of JPanel. The Graphics class is an abstract class, which means that it is impossi-
ble to create a graphics context directly, with a constructor. There are actually two
ways to get a graphics context for drawing on a component: First of all, of course,
when the paintComponent() method of a component is called by the system, the pa-
rameter to that method is a graphics context for drawing on the component. Second,
every component has an instance method called getGraphics(). This method re-
turns a graphics context that can be used for drawing on the component outside its
paintComponent() method. The official line is that you should not do this, and I will
avoid it for the most part. But I have found it convenient to use getGraphics() in a
few cases.

The paintComponent() method in the JPanel class simply fills the panel with the
panel’s background color. When defining a subclass of JPanel for use as a drawing
surface, you will almost always want to fill the panel with the background color be-
fore drawing other content onto the panel (although it is not necessary to do this if
the drawing commands in the method cover the background of the component com-
pletely.) This is traditionally done with a call to super.paintComponent(g), so most
paintComponent() methods that you write will have the form:

public void paintComponent(g) {
super.paintComponent(g); . . .

/ / Draw the content o f the component .
}

Most components do, in fact, do all drawing operations in their paintComponent()
methods. What happens if, in the middle of some other method, you realize that the
content of the component needs to be changed? You should not call paintComponent()
directly to make the change; this method is meant to be called only by the system.
Instead, you have to inform the system that the component needs to be redrawn,
and let the system do its job by calling paintComponent(). You do this by calling
the component’s repaint() method. The method public void repaint(); is de-
fined in the Component class, and so can be used with any component. You should
call repaint() to inform the system that the component needs to be redrawn. The
repaint() method returns immediately, without doing any painting itself. The sys-

120

tem will call the component’s paintComponent() method later, as soon as it gets a
chance to do so, after processing other pending events if there are any.

Note that the system can also call paintComponent() for other reasons. It is
called when the component first appears on the screen. It will also be called if the
component is resized or if it is covered up by another window and then uncovered.
The system does not save a copy of the component’s contents when it is covered. When
it is uncovered, the component is responsible for redrawing itself. (As you will see,
some of our early examples will not be able to do this correctly.)

This means that, to work properly, the paintComponent() method must be smart
enough to correctly redraw the component at any time. To make this possible, a
program should store data about the state of the component in its instance vari-
ables. These variables should contain all the information necessary to redraw the
component completely. The paintComponent() method should use the data in these
variables to decide what to draw. When the program wants to change the content
of the component, it should not simply draw the new content. It should change
the values of the relevant variables and call repaint(). When the system calls
paintComponent(), that method will use the new values of the variables and will
draw the component with the desired modifications. This might seem a roundabout
way of doing things. Why not just draw the modifications directly? There are at least
two reasons. First of all, it really does turn out to be easier to get things right if all
drawing is done in one method. Second, even if you did make modifications directly,
you would still have to make the paintComponent() method aware of them in some
way so that it will be able to redraw the component correctly on demand.

You will see how all this works in practice as we work through examples in the
rest of this chapter. For now, we will spend the rest of this section looking at how to
get some actual drawing done.

6.4.1 Coordinates

The screen of a computer is a grid of little squares called pixels. The color of each
pixel can be set individually, and drawing on the screen just means setting the colors
of individual pixels.

A graphics context draws in a rectangle made up of pixels. A position in the
rectangle is specified by a pair of integer coordinates, (x,y). The upper left corner has
coordinates (0,0). The x coordinate increases from left to right, and the y coordinate
increases from top to bottom. The illustration shows a 16-by-10 pixel component

121

(with very large pixels). A small line, rectangle, and oval are shown as they would be
drawn by coloring individual pixels. (Note that, properly speaking, the coordinates
don’t belong to the pixels but to the grid lines between them.)

For any component, you can find out the size of the rectangle that it occupies by
calling the instance methods getWidth() and getHeight(), which return the number
of pixels in the horizontal and vertical directions, respectively. In general, it’s not a
good idea to assume that you know the size of a component, since the size is often set
by a layout manager and can even change if the component is in a window and that
window is resized by the user. This means that it’s good form to check the size of a
component before doing any drawing on that component. For example, you can use a
paintComponent() method that looks like:

public void paintComponent(Graphics g) {
super.paintComponent(g);
int width = getWidth(); / / Find out the width o f t h i s component .
int height = getHeight(); / / Find out i t s he igh t .
. . . / / Draw the content o f the component .

}

Of course, your drawing commands will have to take the size into account. That
is, they will have to use (x,y) coordinates that are calculated based on the actual
height and width of the component.

6.4.2 Colors

You will probably want to use some color when you draw. JAVA is designed to work
with the RGB color system. An RGB color is specified by three numbers that give
the level of red, green, and blue, respectively, in the color. A color in JAVA is an object
of the class, java.awt.Color. You can construct a new color by specifying its red,
blue, and green components. For example,

Color myColor = new Color(r,g,b);

There are two constructors that you can call in this way. In the one that I al-
most always use, r, g, and b are integers in the range 0 to 255. In the other,
they are numbers of type float in the range 0.0F to 1.0F. (Recall that a literal
of type float is written with an “F” to distinguish it from a double number.) Of-
ten, you can avoid constructing new colors altogether, since the Color class defines
several named constants representing common colors: Color.WHITE, Color.BLACK,
Color.RED, Color.GREEN, Color.BLUE, Color.CYAN, Color.MAGENTA, Color.YELLOW,
Color.PINK, Color.ORANGE, Color.LIGHT_GRAY, Color.GRAY, and Color.DARK_GRAY.
(There are older, alternative names for these constants that use lower case rather
than upper case constants, such as Color.red instead of Color.RED, but the upper
case versions are preferred because they follow the convention that constant names
should be upper case.)

An alternative to RGB is the HSB color system. In the HSB system, a color is
specified by three numbers called the hue, the saturation, and the brightness. The
hue is the basic color, ranging from red through orange through all the other colors
of the rainbow. The brightness is pretty much what it sounds like. A fully saturated
color is a pure color tone. Decreasing the saturation is like mixing white or gray paint
into the pure color. In JAVA, the hue, saturation and brightness are always specified
by values of type float in the range from 0.0F to 1.0F. The Color class has a static

122

member method named getHSBColor for creating HSB colors. To create the color
with HSB values given by h, s, and b, you can say:

Color myColor = Color.getHSBColor(h,s,b);

For example, to make a color with a random hue that is as bright and as saturated
as possible, you could use:

Color randomColor = Color.getHSBColor(
(float)Math.random(), 1.0F, 1.0F);

The type cast is necessary because the value returned by Math.random() is of type
double, and Color.getHSBColor() requires values of type float. (By the way, you
might ask why RGB colors are created using a constructor while HSB colors are cre-
ated using a static member method. The problem is that we would need two different
constructors, both of them with three parameters of type float. Unfortunately, this
is impossible. You can have two constructors only if the number of parameters or the
parameter types differ.)

The RGB system and the HSB system are just different ways of describing the
same set of colors. It is possible to translate between one system and the other. The
best way to understand the color systems is to experiment with them. In the following
applet, you can use the scroll bars to control the RGB and HSB values of a color. A
sample of the color is shown on the right side of the applet.

One of the properties of a Graphics object is the current drawing color, which is
used for all drawing of shapes and text. If g is a graphics context, you can change the
current drawing color for g using the method g.setColor(c), where c is a Color. For
example, if you want to draw in green, you would just say g.setColor(Color.GREEN)
before doing the drawing. The graphics context continues to use the color until you
explicitly change it with another setColor() command. If you want to know what
the current drawing color is, you can call the method g.getColor(), which returns
an object of type Color. This can be useful if you want to change to another drawing
color temporarily and then restore the previous drawing color.

Every component has an associated foreground color and background color.
Generally, the component is filled with the background color before anything else is
drawn (although some components are “transparent,” meaning that the background
color is ignored). When a new graphics context is created for a component, the cur-
rent drawing color is set to the foreground color. Note that the foreground color and
background color are properties of the component, not of a graphics context.

Foreground and background colors can be set by the instance methods
setForeground(c) and setBackground(c), which are defined in the Component class
and therefore are available for use with any component. This can be useful even for
standard components, if you want them to use colors that are different from the de-
faults.

6.4.3 Fonts

A font represents a particular size and style of text. The same character will appear
different in different fonts. In JAVA, a font is characterized by a font name, a style,
and a size. The available font names are system dependent, but you can always use
the following four strings as font names: “Serif”, “SansSerif”, “Monospaced”, and
“Dialog”. (A “serif” is a little decoration on a character, such as a short horizontal
line at the bottom of the letter i. “SansSerif” means “without serifs.” “Monospaced”

123

means that all the characters in the font have the same width. The “Dialog” font is
the one that is typically used in dialog boxes.)

The style of a font is specified using named constants that are defined in the Font
class. You can specify the style as one of the four values:

• Font.PLAIN,

• Font.ITALIC,

• Font.BOLD, or

• Font.BOLD + Font.ITALIC.

The size of a font is an integer. Size typically ranges from about 10 to 36, although
larger sizes can also be used. The size of a font is usually about equal to the height of
the largest characters in the font, in pixels, but this is not an exact rule. The size of
the default font is 12.

JAVA uses the class named java.awt.Font for representing fonts. You can con-
struct a new font by specifying its font name, style, and size in a constructor:

Font plainFont = new Font(" S e r i f ", Font.PLAIN, 12);
Font bigBoldFont = new Font(" SansSer i f ", Font.BOLD, 24);

Every graphics context has a current font, which is used for drawing text. You can
change the current font with the setFont() method. For example, if g is a graphics
context and bigBoldFont is a font, then the command g.setFont(bigBoldFont) will
set the current font of g to bigBoldFont. The new font will be used for any text that
is drawn after the setFont() command is given. You can find out the current font of
g by calling the method g.getFont(), which returns an object of type Font.

Every component has an associated font that can be set with the setFont(font)
instance method, which is defined in the Component class. When a graphics context
is created for drawing on a component, the graphic context’s current font is set equal
to the font of the component.

6.4.4 Shapes

The Graphics class includes a large number of instance methods for drawing various
shapes, such as lines, rectangles, and ovals. The shapes are specified using the (x,y)
coordinate system described above. They are drawn in the current drawing color of
the graphics context. The current drawing color is set to the foreground color of the
component when the graphics context is created, but it can be changed at any time
using the setColor() method.

Here is a list of some of the most important drawing methods. With all these
commands, any drawing that is done outside the boundaries of the component is
ignored. Note that all these methods are in the Graphics class, so they all must be
called through an object of type Graphics.

• drawString(String str, int x, int y)
Draws the text given by the string str. The string is drawn using the current
color and font of the graphics context. x specifies the position of the left end of
the string. y is the y-coordinate of the baseline of the string. The baseline is a
horizontal line on which the characters rest. Some parts of the characters, such
as the tail on a y or g, extend below the baseline.

124

• drawLine(int x1, int y1, int x2, int y2)
Draws a line from the point (x1,y1) to the point (x2,y2). The line is drawn
as if with a pen that hangs one pixel to the right and one pixel down from the
(x,y) point where the pen is located. For example, if g refers to an object of
type Graphics, then the command g.drawLine(x,y,x,y), which corresponds
to putting the pen down at a point, colors the single pixel with upper left corner
at the point (x,y).

• drawRect(int x, int y, int width, int height)
Draws the outline of a rectangle. The upper left corner is at (x,y), and the
width and height of the rectangle are as specified. If width equals height, then
the rectangle is a square. If the width or the height is negative, then nothing is
drawn. The rectangle is drawn with the same pen that is used for drawLine().
This means that the actual width of the rectangle as drawn is width+1, and
similarly for the height. There is an extra pixel along the right edge and the
bottom edge. For example, if you want to draw a rectangle around the edges of
the component, you can say
“g.drawRect(0, 0, getWidth()−1,getHeight()−1);”, where g is a graphics
context for the component. If you use
“g.drawRect(0, 0, getWidth(), getHeight());”, then the right and bottom
edges of the rectangle will be drawn outside the component.

• drawOval(int x, int y, int width, int height)
Draws the outline of an oval. The oval is one that just fits inside the rectangle
specified by x, y, width, and height. If width equals height, the oval is a circle.

• drawRoundRect(int x, int y, int width, int height, int xdiam, int ydiam)
Draws the outline of a rectangle with rounded corners. The basic rectangle is
specified by x, y, width, and height, but the corners are rounded. The degree
of rounding is given by xdiam and ydiam. The corners are arcs of an ellipse
with horizontal diameter xdiam and vertical diameter ydiam. A typical value
for xdiam and ydiam is 16, but the value used should really depend on how big
the rectangle is.

• draw3DRect(int x, int y, int width, int height, boolean raised)
Draws the outline of a rectangle that is supposed to have a three-dimensional
effect, as if it is raised from the screen or pushed into the screen. The basic
rectangle is specified by x, y, width, and height. The raised parameter tells
whether the rectangle seems to be raised from the screen or pushed into it. The
3D effect is achieved by using brighter and darker versions of the drawing color
for different edges of the rectangle. The documentation recommends setting
the drawing color equal to the background color before using this method. The
effect won’t work well for some colors.

• drawArc(int x, int y, int width, int height, int startAngle, int arcAngle)
Draws part of the oval that just fits inside the rectangle specified by x, y, width,
and height. The part drawn is an arc that extends arcAngle degrees from a
starting angle at startAngle degrees. Angles are measured with 0 degrees at
the 3 o’clock position (the positive direction of the horizontal axis). Positive
angles are measured counterclockwise from zero, and negative angles are mea-
sured clockwise. To get an arc of a circle, make sure that width is equal to
height.

125

• fillRect(int x, int y, int width, int height)
Draws a filled-in rectangle. This fills in the interior of the rectangle that would
be drawn by drawRect(x,y,width,height). The extra pixel along the bottom
and right edges is not included. The width and height parameters give the
exact width and height of the rectangle. For example, if you wanted to fill in the
entire component, you could say
“g.fillRect(0, 0, getWidth(), getHeight());”

• fillOval(int x, int y, int width, int height)
Draws a filled-in oval.

• fillRoundRect(int x, int y, int width, int height, int xdiam, int ydiam)
Draws a filled-in rounded rectangle.

• fill3DRect(int x, int y, int width, int height, boolean raised)
Draws a filled-in three-dimensional rectangle.

• fillArc(int x, int y, int width, int height, int startAngle, int arcAngle)
Draw a filled-in arc. This looks like a wedge of pie, whose crust is the arc that
would be drawn by the drawArc method.

6.4.5 An Example

Let’s use some of the material covered in this section to write a subclass of JPanel for
use as a drawing surface. The panel can then be used in either an applet or a frame.
All the drawing will be done in the paintComponent() method of the panel class. The
panel will draw multiple copies of a message on a black background. Each copy of the
message is in a random color. Five different fonts are used, with different sizes and
styles. The message can be specified in the constructor; if the default constructor is
used, the message is the string “Java!”. The panel works OK no matter what its size.
Here’s an applet that uses the panel as its content pane:

The source for the panel class is shown below. I use an instance variable called
message to hold the message that the panel will display. There are five instance vari-
ables of type Font that represent different sizes and styles of text. These variables
are initialized in the constructor and are used in the paintComponent() method.

The paintComponent() method for the panel simply draws 25 copies of the mes-
sage. For each copy, it chooses one of the five fonts at random, and it calls g.setFont()
to select that font for drawing the text. It creates a random HSB color and uses
g.setColor() to select that color for drawing. It then chooses random (x,y) coordi-
nates for the location of the message. The x coordinate gives the horizontal position
of the left end of the string. The formula used for the x coordinate,
“−50 + (int)(Math.random() ∗ (width+40))” gives a random integer in the range
from −50 to width−10. This makes it possible for the string to extend beyond the left
edge or the right edge of the panel. Similarly, the formula for y allows the string to
extend beyond the top and bottom of the applet.

Here is the complete source code for the RandomStringsPanel

import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import javax.swing.JPanel;

126

/∗
∗ This panel d i sp lays 25 copies o f a message . The co lo r and
∗ p o s i t i o n o f each message i s se lec ted a t random . The f o n t
∗ of each message i s randomly chosen from among f i v e poss ib le
∗ f on t s . The messages are d isp layed on a black background .
∗ <p>This panel i s meant to be used as the content pane i n
∗ e i t h e r an app le t or a frame .
∗ /

public class RandomStringsPanel extends JPanel {

private String message; / / The message to be d isp layed . This can be set i n
/ / the cons t ruc to r . I f no value i s provided i n the
/ / cons t ruc to r , then the s t r i n g " Java ! " i s used .

private Font font1, font2, font3, font4, font5; / / The f i v e fon t s .

/∗ ∗
∗ Defau l t cons t r uc to r creates a panel t h a t d i sp lays the message " Java ! " .
∗
∗ /

public RandomStringsPanel() {
this(null); / / Ca l l the other cons t ruc to r , w i th parameter n u l l .

}

/∗ ∗
∗ Const ruc tor creates a panel to d i sp lay 25 copies o f a s p e c i f i e d message .
∗ @param messageString The message to be d isp layed . I f t h i s i s n u l l ,
∗ then the d e f a u l t message " Java ! " i s d isp layed .
∗ /

public RandomStringsPanel(String messageString) {

message = messageString;
if (message == null)

message = " Java ! ";

font1 = new Font(" S e r i f ", Font.BOLD, 14);
font2 = new Font(" SansSer i f ", Font.BOLD + Font.ITALIC, 24);
font3 = new Font("Monospaced", Font.PLAIN, 30);
font4 = new Font(" Dialog ", Font.PLAIN, 36);
font5 = new Font(" S e r i f ", Font.ITALIC, 48);

setBackground(Color.BLACK);

}

/∗ ∗ The paintComponent method i s respons ib le f o r drawing the content
∗ of the panel . I t draws 25 copies o f the message s t r i n g , using a
∗ random color , fon t , and p o s i t i o n f o r each s t r i n g .
∗ /

127

public void paintComponent(Graphics g) {

super.paintComponent(g); / / Ca l l the paintComponent method from the
/ / superclass , JPanel . This s imply f i l l s the
/ / e n t i r e panel w i th the background co lor , b lack .

int width = getWidth();
int height = getHeight();

for (int i = 0; i < 25; i++) {

/ / Draw one s t r i n g . F i r s t , se t the f o n t to be one of the f i v e
/ / a v a i l a b l e fon ts , a t random .

int fontNum = (int)(5∗Math.random()) + 1;
switch (fontNum) {

case 1:
g.setFont(font1);
break;

case 2:
g.setFont(font2);
break;

case 3:
g.setFont(font3);
break;

case 4:
g.setFont(font4);
break;

case 5:
g.setFont(font5);
break;

} / / end swi tch

/ / Set the co lo r to a b r i gh t , sa tu ra ted co lor , w i th random hue .

float hue = (float)Math.random();
g.setColor(Color.getHSBColor(hue, 1.0F, 1.0F));

/ / Se lec t the p o s i t i o n o f the s t r i n g , a t random .

int x,y;
x = −50 + (int)(Math.random()∗(width+40));
y = (int)(Math.random()∗(height+20));

/ / Draw the message .

g.drawString(message,x,y);

} / / end f o r

} / / end paintComponent ()

} / / end c lass RandomStringsPanel

This class defines a panel, which is not something that can stand on its own. To

128

see it on the screen, we have to use it in an applet or a frame. Here is a simple applet
class that uses a RandomStringsPanel as its content pane:
import javax.swing.JApplet;

/∗ ∗
∗ A RandomStringsApplet d i sp lays 25 copies o f a s t r i n g , using random colors ,
∗ fon ts , and p o s i t i o n s f o r the copies . The message can be s p e c i f i e d as the
∗ value o f an app le t param wi th name " message . " I f no param wi th name
∗ " message " i s present , then the d e f a u l t message " Java ! " i s d isp layed .
∗ The ac tua l content o f the app le t i s an ob jec t o f type RandomStringsPanel .
∗ /

public class RandomStringsApplet extends JApplet {

public void init() {
String message = getParameter("message");
RandomStringsPanel content = new RandomStringsPanel(message);
setContentPane(content);

}

}

Note that the message to be displayed in the applet can be set using an applet pa-
rameter when the applet is added to an HTML document. Remember that to use the
applet on a Web page, include both the panel class file, RandomStringsPanel.class,
and the applet class file, RandomStringsApplet.class, in the same directory as the
HTML document (or, alternatively, bundle the two class files into a jar file, and put
the jar file in the document directory).

Instead of writing an applet, of course, we could use the panel in the window of a
stand-alone application. You can find the source code for a main program that does
this in the file RandomStringsApp.java.

6.5 Mouse Events

EVENTS ARE CENTRAL TO PROGRAMMING for a graphical user interface. A GUI program
doesn’t have a main() method that outlines what will happen when the program is
run, in a step-by-step process from beginning to end. Instead, the program must
be prepared to respond to various kinds of events that can happen at unpredictable
times and in an order that the program doesn’t control. The most basic kinds of
events are generated by the mouse and keyboard. The user can press any key on the
keyboard, move the mouse, or press a button on the mouse. The user can do any of
these things at any time, and the computer has to respond appropriately.

In JAVA, events are represented by objects. When an event occurs, the system
collects all the information relevant to the event and constructs an object to contain
that information. Different types of events are represented by objects belonging to
different classes. For example, when the user presses one of the buttons on a mouse,
an object belonging to a class called MouseEvent is constructed. The object contains
information such as the source of the event (that is, the component on which the
user clicked), the (x,y) coordinates of the point in the component where the click
occurred, and which button on the mouse was pressed. When the user presses a
key on the keyboard, a KeyEvent is created. After the event object is constructed,
it is passed as a parameter to a designated method. By writing that method, the
programmer says what should happen when the event occurs.

129

As a JAVA programmer, you get a fairly high-level view of events. There is a lot
of processing that goes on between the time that the user presses a key or moves
the mouse and the time that a method in your program is called to respond to the
event. Fortunately, you don’t need to know much about that processing. But you
should understand this much: Even though your GUI program doesn’t have a main()
method, there is a sort of main method running somewhere that executes a loop of
the form

while the program is still running:
Wait for the next event to occur
Call a method to handle the event

This loop is called an event loop. Every GUI program has an event loop. In
JAVA, you don’t have to write the loop. It’s part of “the system.” If you write a GUI
program in some other language, you might have to provide a main method that runs
an event loop.

In this section, we’ll look at handling mouse events in JAVA, and we’ll cover the
framework for handling events in general. The next section will cover keyboard-
related events and timer events. JAVA also has other types of events, which are
produced by GUI components.

6.5.1 Event Handling

For an event to have any effect, a program must detect the event and react to it.
In order to detect an event, the program must “listen” for it. Listening for events
is something that is done by an object called an event listener. An event listener
object must contain instance methods for handling the events for which it listens. For
example, if an object is to serve as a listener for events of type MouseEvent, then it
must contain the following method (among several others):

public void mousePressed(MouseEvent evt) {
. . .

}

The body of the method defines how the object responds when it is notified that a
mouse button has been pressed. The parameter, evt, contains information about the
event. This information can be used by the listener object to determine its response.

The methods that are required in a mouse event listener are specified in an
interface named MouseListener. To be used as a listener for mouse events, an
object must implement this MouseListener interface. JAVA interfaces were cov-
ered previously. (To review briefly: An interface in JAVA is just a list of instance
methods. A class can “implement” an interface by doing two things. First, the class
must be declared to implement the interface, as in

class MyListener implements MouseListener
OR
class MyApplet extends JApplet implements MouseListener

Second, the class must include a definition for each instance method specified in the
interface. An interface can be used as the type for a variable or formal parameter.
We say that an object implements the MouseListener interface if it belongs to a
class that implements the MouseListener interface. Note that it is not enough for
the object to include the specified methods. It must also belong to a class that is
specifically declared to implement the interface.)

130

Many events in JAVA are associated with GUI components. For example, when
the user presses a button on the mouse, the associated component is the one that
the user clicked on. Before a listener object can “hear” events associated with a
given component, the listener object must be registered with the component. If a
MouseListener object, mListener, needs to hear mouse events associated with a
Component object, comp, the listener must be registered with the component by call-
ing “comp.addMouseListener(mListener);”. The addMouseListener() method is
an instance method in class Component, and so can be used with any GUI component
object. In our first few examples, we will listen for events on a JPanel that is being
used as a drawing surface.

The event classes, such as MouseEvent, and the listener interfaces, for example
MouseListener, are defined in the package java.awt.event. This means that if you
want to work with events, you either include the line “import java.awt.event.∗;”
at the beginning of your source code file or import the individual classes and inter-
faces.

Admittedly, there is a large number of details to tend to when you want to use
events. To summarize, you must

1. Put the import specification “import java.awt.event.∗;” (or individual im-
ports) at the beginning of your source code;

2. Declare that some class implements the appropriate listener interface, such as
MouseListener;

3. Provide definitions in that class for the methods from the interface;

4. Register the listener object with the component that will generate the events by
calling a method such as addMouseListener() in the component.

Any object can act as an event listener, provided that it implements the appropri-
ate interface. A component can listen for the events that it itself generates. A panel
can listen for events from components that are contained in the panel. A special class
can be created just for the purpose of defining a listening object. Many people con-
sider it to be good form to use anonymous inner classes to define listening objects.
You will see all of these patterns in examples in this textbook.

6.5.2 MouseEvent and MouseListener

The MouseListener interface specifies five different instance methods:

public void mousePressed(MouseEvent evt);
public void mouseReleased(MouseEvent evt);
public void mouseClicked(MouseEvent evt);
public void mouseEntered(MouseEvent evt);
public void mouseExited(MouseEvent evt);

The mousePressed method is called as soon as the user presses down on one of the
mouse buttons, and mouseReleased is called when the user releases a button. These
are the two methods that are most commonly used, but any mouse listener object
must define all five methods; you can leave the body of a method empty if you don’t
want to define a response. The mouseClicked method is called if the user presses
a mouse button and then releases it quickly, without moving the mouse. (When the
user does this, all three methods – mousePressed, mouseReleased, and mouseClicked

131

– will be called in that order.) In most cases, you should define mousePressed instead
of mouseClicked. The mouseEntered and mouseExited methods are called when the
mouse cursor enters or leaves the component. For example, if you want the compo-
nent to change appearance whenever the user moves the mouse over the component,
you could define these two methods.

As an example, we will look at a small addition to the RandomStringsPanel ex-
ample from the previous section. In the new version, the panel will repaint itself
when the user clicks on it. In order for this to happen, a mouse listener should listen
for mouse events on the panel, and when the listener detects a mousePressed event,
it should respond by calling the repaint() method of the panel. Here is an applet
version of the ClickableRandomStrings program for you to try; when you click the
applet, a new set of random strings is displayed:

For the new version of the program, we need an object that implements the
MouseListener interface. One way to create the object is to define a separate class,
such as:
import java.awt.Component;
import java.awt.event.∗;

/∗ ∗
∗ An ob jec t o f type RepaintOnClick i s a MouseListener t h a t
∗ w i l l respond to a mousePressed event by c a l l i n g the r e p a i n t ()
∗ method of the source o f the event . That is , a RepaintOnClick
∗ ob jec t can be added as a mouse l i s t e n e r to any Component ;
∗ when the user c l i c k s t h a t component , the component w i l l be
∗ repa in ted .
∗ /

public class RepaintOnClick implements MouseListener {

public void mousePressed(MouseEvent evt) {
Component source = (Component)evt.getSource();
source.repaint(); / / Ca l l r e p a i n t () on the Component t h a t was c l i c k e d .

}

public void mouseClicked(MouseEvent evt) { }
public void mouseReleased(MouseEvent evt) { }
public void mouseEntered(MouseEvent evt) { }
public void mouseExited(MouseEvent evt) { }

}

This class does three of the four things that we need to do in order to handle mouse
events: First, it imports java.awt.event.∗ for easy access to event-related classes.
Second, it is declared that the class “implements MouseListener”. And third, it pro-
vides definitions for the five methods that are specified in the MouseListener inter-
face. (Note that four of the five event-handling methods have empty defintions. We
really only want to define a response to mousePressed events, but in order to imple-
ment the MouseListener interface, a class must define all five methods.)

We must do one more thing to set up the event handling for this example: We
must register an event-handling object as a listener with the component that will
generate the events. In this case, the mouse events that we are interested in will
be generated by an object of type RandomStringsPanel. If panel is a variable that
refers to the panel object, we can create a mouse listener object and register it with
the panel with the statements:

132

/ / Create MouseListener ob jec t .
RepaintOnClick listener = new RepaintOnClick();

/ / Create MouseListener ob jec t .
panel.addMouseListener(listener);

Once this is done, the listener object will be notified of mouse events on the
panel. Whenever a mousePressed event occurs, the mousePressed() method in the
listener will be called. The code in this method calls the repaint() method in the
component that is the source of the event, that is, in the panel. The result is that the
RandomStringsPanel is repainted with its strings in new random colors, fonts, and
positions.

Although the RepaintOnClick class was written for use with the
RandomStringsPanel example, the event-handling class contains no reference at all
to the RandomStringsPanel class. How can this be? The mousePressed() method
in class RepaintOnClick looks at the source of the event, and calls its repaint()
method. If we have registered the RepaintOnClick object as a listener on a
RandomStringsPanel, then it is that panel that is repainted. But the listener ob-
ject could be used with any type of component, and it would work in the same way.

Similarly, RandomStringsPanel contains no reference to the RepaintOnClick class–
in fact, RandomStringsPanel was written before we even knew anything about mouse
events! The panel will send mouse events to any object that has registered with it as
a mouse listener. It does not need to know anything about that object except that it
is capable of receiving mouse events.

The relationship between an object that generates an event and an object that
responds to that event is rather loose. The relationship is set up by registering one
object to listen for events from the other object. This is something that can poten-
tially be done from outside both objects. Each object can be developed independently,
with no knowledge of the internal operation of the other object. This is the essence
of modular design: Build a complex system out of modules that interact only in
straightforward, easy to understand ways. Then each module is a separate design
problem that can be tackled independently.

To make this clearer, consider the application version of ClickableRandomStrings.
I have included RepaintOnClick as a nested subclass, although it could just as easily
be a separate class. The main point is that this program uses the same
RandomStringsPanel class that was used in the original program, which did not re-
spond to mouse clicks. The mouse handling has been “bolted on” to an existing class,
without having to make any changes at all to that class:

import java.awt.Component;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import javax.swing.JFrame;

133

/∗ ∗
∗ Disp lays a window t h a t shows 25 copies o f the s t r i n g " Java ! " i n
∗ random colors , fon ts , and p o s i t i o n s . The content o f the window
∗ i s an ob jec t o f type RandomStringsPanel . When the user c l i c k s
∗ the window , the content o f the window i s repain ted , w i th the
∗ s t r i n g s i n newly se lec ted random colors , fon ts , and p o s i t i o n s .
∗ /

public class ClickableRandomStringsApp {

public static void main(String[] args) {
JFrame window = new JFrame("Random S t r i n g s ");
RandomStringsPanel content = new RandomStringsPanel();
content.addMouseListener(new RepaintOnClick()); / / Reg is te r mouse l i s t e n e r .
window.setContentPane(content);
window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
window.setLocation(100,75);
window.setSize(300,240);
window.setVisible(true);

}

private static class RepaintOnClick implements MouseListener {

public void mousePressed(MouseEvent evt) {
Component source = (Component)evt.getSource();
source.repaint();

}

public void mouseClicked(MouseEvent evt) { }
public void mouseReleased(MouseEvent evt) { }
public void mouseEntered(MouseEvent evt) { }
public void mouseExited(MouseEvent evt) { }

}
}

Often, when a mouse event occurs, you want to know the location of the mouse cursor.
This information is available from the MouseEvent parameter to the event-handling
method, which contains instance methods that return information about the event.
If evt is the parameter, then you can find out the coordinates of the mouse cursor by
calling evt.getX() and evt.getY(). These methods return integers which give the x
and y coordinates where the mouse cursor was positioned at the time when the event
occurred. The coordinates are expressed in the coordinate system of the component
that generated the event, where the top left corner of the component is (0,0).

6.5.3 Anonymous Event Handlers

As I mentioned above, it is a fairly common practice to use anonymous nested classes
to define listener objects. A special form of the new operator is used to create an
object that belongs to an anonymous class. For example, a mouse listener object can
be created with an expression of the form:

134

new MouseListener() {
public void mousePressed(MouseEvent evt) { . . . }
public void mouseReleased(MouseEvent evt) { . . . }
public void mouseClicked(MouseEvent evt) { . . . }
public void mouseEntered(MouseEvent evt) { . . . }
public void mouseExited(MouseEvent evt) { . . . }

}

This is all just one long expression that both defines an un-named class and cre-
ates an object that belongs to that class. To use the object as a mouse listener, it
should be passed as the parameter to some component’s addMouseListener() method
in a command of the form:

component.addMouseListener(new MouseListener() {
public void mousePressed(MouseEvent evt) { . . . }
public void mouseReleased(MouseEvent evt) { . . . }
public void mouseClicked(MouseEvent evt) { . . . }
public void mouseEntered(MouseEvent evt) { . . . }
public void mouseExited(MouseEvent evt) { . . . }

});

Now, in a typical application, most of the method definitions in this class will be
empty. A class that implements an interface must provide definitions for all the
methods in that interface, even if the definitions are empty. To avoid the tedium of
writing empty method definitions in cases like this, JAVA provides adapter classes.
An adapter class implements a listener interface by providing empty definitions for
all the methods in the interface. An adapter class is useful only as a basis for making
subclasses. In the subclass, you can define just those methods that you actually want
to use. For the remaining methods, the empty definitions that are provided by the
adapter class will be used. The adapter class for the MouseListener interface is
named MouseAdapter. For example, if you want a mouse listener that only responds
to mouse-pressed events, you can use a command of the form:

component.addMouseListener(new MouseAdapter() {
public void mousePressed(MouseEvent evt) { . . . }

});

To see how this works in a real example, let’s write another version of the appli-
cation: ClickableRandomStringsApp. This version uses an anonymous class based
on MouseAdapter to handle mouse events:

import java.awt.Component;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import javax.swing.JFrame;

135

public class ClickableRandomStringsApp {

public static void main(String[] args) {
JFrame window = new JFrame("Random S t r i n g s ");
RandomStringsPanel content = new RandomStringsPanel();

content.addMouseListener(new MouseAdapter() {
/ / Reg is te r a mouse l i s t e n e r t h a t i s def ined by an anonymous subclass
/ / o f MouseAdapter . This rep laces the RepaintOnClick c lass t h a t was
/ / used i n the o r i g i n a l vers ion .
public void mousePressed(MouseEvent evt) {

Component source = (Component)evt.getSource();
source.repaint();

}
});

window.setContentPane(content);
window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
window.setLocation(100,75);
window.setSize(300,240);
window.setVisible(true);

}
}

Anonymous inner classes can be used for other purposes besides event handling.
For example, suppose that you want to define a subclass of JPanel to represent a
drawing surface. The subclass will only be used once. It will redefine the paintComponent()
method, but will make no other changes to JPanel. It might make sense to define the
subclass as an anonymous nested class. As an example, I present HelloWorldGUI4.java.
This version is a variation of HelloWorldGUI2.java that uses anonymous nested
classes where the original program uses ordinary, named nested classes:

import java.awt.∗;
import java.awt.event.∗;
import javax.swing.∗;

/∗ ∗
∗ A simple GUI program t h a t creates and opens a JFrame con ta in ing
∗ the message " He l lo World " and an "OK" but ton . When the user c l i c k s
∗ the OK button , the program ends . This vers ion uses anonymous
∗ classes to de f ine the message d i sp lay panel and the ac t i on l i s t e n e r
∗ ob jec t . Compare to HelloWorldGUI2 , which uses nested classes .
∗ /

public class HelloWorldGUI4 {
/∗ ∗
∗ The main program creates a window con ta in ing a Hel loWor ldDisp lay
∗ and a but ton t h a t w i l l end the program when the user c l i c k s i t .
∗ /

136

public static void main(String[] args) {

JPanel displayPanel = new JPanel() {
/ / An anonymous subclass o f JPanel t h a t d i sp lays " He l lo World ! " .

public void paintComponent(Graphics g) {
super.paintComponent(g);
g.drawString(" Hel lo World ! ", 20, 30);

}
};

JButton okButton = new JButton("OK");

okButton.addActionListener(new ActionListener() {
/ / An anonymous c lass t h a t de f ines the l i s t e n e r ob jec t .

public void actionPerformed(ActionEvent e) {
System.exit(0);

}
});

JPanel content = new JPanel();
content.setLayout(new BorderLayout());
content.add(displayPanel, BorderLayout.CENTER);
content.add(okButton, BorderLayout.SOUTH);

JFrame window = new JFrame(" GUI Test ");
window.setContentPane(content);
window.setSize(250,100);
window.setLocation(100,100);
window.setVisible(true);

}
}

6.6 Basic Components

IN PRECEDING SECTIONS, you’ve seen how to use a graphics context to draw on the
screen and how to handle mouse events and keyboard events. In one sense, that’s
all there is to GUI programming. If you’re willing to program all the drawing and
handle all the mouse and keyboard events, you have nothing more to learn. However,
you would either be doing a lot more work than you need to do, or you would be lim-
iting yourself to very simple user interfaces. A typical user interface uses standard
GUI components such as buttons, scroll bars, text-input boxes, and menus. These
components have already been written for you, so you don’t have to duplicate the
work involved in developing them. They know how to draw themselves, and they can
handle the details of processing the mouse and keyboard events that concern them.

Consider one of the simplest user interface components, a push button. The but-
ton has a border, and it displays some text. This text can be changed. Sometimes
the button is disabled, so that clicking on it doesn’t have any effect. When it is dis-
abled, its appearance changes. When the user clicks on the push button, the button
changes appearance while the mouse button is pressed and changes back when the
mouse button is released. In fact, it’s more complicated than that. If the user moves
the mouse outside the push button before releasing the mouse button, the button
changes to its regular appearance. To implement this, it is necessary to respond to

137

mouse exit or mouse drag events. Furthermore, on many platforms, a button can
receive the input focus. The button changes appearance when it has the focus. If the
button has the focus and the user presses the space bar, the button is triggered. This
means that the button must respond to keyboard and focus events as well.

Fortunately, you don’t have to program any of this, provided you use an object
belonging to the standard class javax.swing.JButton. A JButton object draws itself
and processes mouse, keyboard, and focus events on its own. You only hear from the
Button when the user triggers it by clicking on it or pressing the space bar while
the button has the input focus. When this happens, the JButton object creates an
event object belonging to the class java.awt.event.ActionEvent. The event object
is sent to any registered listeners to tell them that the button has been pushed. Your
program gets only the information it needs – the fact that a button was pushed.

The standard components that are defined as part of the Swing graphical user
interface API are defined by subclasses of the class JComponent, which is itself a
subclass of Component. (Note that this includes the JPanel class that we have already
been working with extensively.) Many useful methods are defined in the Component
and JComponent classes and so can be used with any Swing component. We begin by
looking at a few of these methods. Suppose that comp is a variable that refers to some
JComponent. Then the following methods can be used:

• comp.getWidth() and comp.getHeight() are methods that give the current
size of the component, in pixels. One warning: When a component is first cre-
ated, its size is zero. The size will be set later, probably by a layout manager. A
common mistake is to check the size of a component before that size has been
set, such as in a constructor.

• comp.setEnabled(true) and comp.setEnabled(false) can be used to enable
and disable the component. When a component is disabled, its appearance
might change, and the user cannot do anything with it. The boolean-valued
method, comp.isEnabled() can be called to discover whether the component is
enabled.

• comp.setVisible(true) and comp.setVisible(false) can be called to hide or
show the component.

• comp.setFont(font) sets the font that is used for text displayed on the compo-
nent. See Subection6.3.3 for a discussion of fonts.

• comp.setBackground(color) and comp.setForeground(color) set the back-
ground and foreground colors for the component.

• comp.setOpaque(true) tells the component that the area occupied by the com-
ponent should be filled with the component’s background color before the con-
tent of the component is painted. By default, only JLabels are non-opaque. A
non-opaque, or “transparent”, component ignores its background color and sim-
ply paints its content over the content of its container. This usually means that
it inherits the background color from its container.

• comp.setToolTipText(string) sets the specified string as a “tool tip” for the
component. The tool tip is displayed if the mouse cursor is in the component
and the mouse is not moved for a few seconds. The tool tip should give some
information about the meaning of the component or how to use it.

138

• comp.setPreferredSize(size) sets the size at which the component should be
displayed, if possible. The parameter is of type java.awt.Dimension, where
an object of type Dimension has two public integer-valued instance variables,
width and height. A call to this method usually looks something like
“setPreferredSize(new Dimension(100,50))”.
The preferred size is used as a hint by layout managers, but will not be re-
spected in all cases. Standard components generally compute a correct pre-
ferred size automatically, but it can be useful to set it in some cases. For exam-
ple, if you use a JPanel as a drawing surface, it might be a good idea to set a
preferred size for it.

Note that using any component is a multi-step process. The component object must
be created with a constructor. It must be added to a container. In many cases, a
listener must be registered to respond to events from the component. And in some
cases, a reference to the component must be saved in an instance variable so that
the component can be manipulated by the program after it has been created. In this
section, we will look at a few of the basic standard components that are available in
Swing. In the next section we will consider the problem of laying out components in
containers.

6.6.1 JButton

An object of class JButton is a push button that the user can click to trigger some
action. You’ve already seen buttons, but we consider them in much more detail here.
To use any component effectively, there are several aspects of the corresponding class
that you should be familiar with. For JButton, as an example, I list these aspects
explicitly:

• Constructors: The JButton class has a constructor that takes a string as a
parameter. This string becomes the text displayed on the button. For example
constructing the JButton with stopGoButton = new JButton(‘‘Go’’) creates
a button object that will display the text, “Go” (but remember that the button
must still be added to a container before it can appear on the screen).

• Events: When the user clicks on a button, the button generates an event of
type ActionEvent. This event is sent to any listener that has been registered
with the button as an ActionListener.

• Listeners: An object that wants to handle events generated by buttons must
implement the ActionListener interface. This interface defines just one method,
“pubic void actionPerformed(ActionEvent evt)”,
which is called to notify the object of an action event.

• Registration of Listeners: In order to actually receive notification of an event
from a button, an ActionListener must be registered with the button. This is
done with the button’s addActionListener() method. For example:
stopGoButton.addActionListener(buttonHandler);

• Event methods: When actionPerformed(evt) is called by the button, the pa-
rameter, evt, contains information about the event. This information can be re-
trieved by calling methods in the ActionEvent class. In particular,
evt.getActionCommand() returns a String giving the command associated with

139

the button. By default, this command is the text that is displayed on the button,
but it is possible to set it to some other string. The method evt.getSource() re-
turns a reference to the Object that produced the event, that is, to the JButton
that was pressed. The return value is of type Object, not JButton, because
other types of components can also produce ActionEvents.

• Component methods: Several useful methods are defined in the JButton
class. For example, stopGoButton.setText(‘‘Stop’’) changes the text dis-
played on the button to “Stop”. And stopGoButton.setActionCommand(‘‘sgb’’)
changes the action command associated to this button for action events.

Of course, JButtons have all the general Component methods, such as setEnabled()
and setFont(). The setEnabled() and setText() methods of a button are particu-
larly useful for giving the user information about what is going on in the program. A
disabled button is better than a button that gives an obnoxious error message such
as “Sorry, you can’t click on me now!”

6.6.2 JLabel

JLabel is certainly the simplest type of component. An object of type JLabel exists
just to display a line of text. The text cannot be edited by the user, although it can
be changed by your program. The constructor for a JLabel specifies the text to be
displayed:

JLabel message = new JLabel(" Hel lo World ! ");

There is another constructor that specifies where in the label the text is located, if
there is extra space. The possible alignments are given by the constants JLabel.LEFT,
JLabel.CENTER, and JLabel.RIGHT. For example,

JLabel message = new JLabel(" Hel lo World ! ", JLabel.CENTER);

creates a label whose text is centered in the available space. You can change the text
displayed in a label by calling the label’s setText() method:

message.setText("Goodby World ! ");

Since JLabel is a subclass of JComponent, you can use JComponent methods such
as setForeground() with labels. If you want the background color to have any effect,
call setOpaque(true) on the label, since otherwise the JLabel might not fill in its
background. For example:

JLabel message = new JLabel(" Hel lo World ! ", JLabel.CENTER);
message.setForeground(Color.red); / / D isp lay red t e x t . . .
message.setBackground(Color.black); / / on a black background . . .
message.setFont(new Font(" S e r i f ",Font.BOLD,18)); / / i n a b ig bold f o n t .
message.setOpaque(true); / / Make sure background i s f i l l e d i n .

6.6.3 JCheckBox

A JCheckBox is a component that has two states: selected or unselected. The user
can change the state of a check box by clicking on it. The state of a checkbox is
represented by a boolean value that is true if the box is selected and false if the box
is unselected. A checkbox has a label, which is specified when the box is constructed:

JCheckBox showTime = new JCheckBox("Show Current Time ");

140

Usually, it’s the user who sets the state of a JCheckBox, but you can also set the
state in your program using its setSelected(boolean) method. If you want the
checkbox showTime to be checked, you would say “showTime.setSelected(true)’’.
To uncheck the box, say “showTime.setSelected(false)’’. You can determine the
current state of a checkbox by calling its isSelected() method, which returns a
boolean value.

In many cases, you don’t need to worry about events from checkboxes. Your pro-
gram can just check the state whenever it needs to know it by calling the isSelected()
method. However, a checkbox does generate an event when its state is changed by
the user, and you can detect this event and respond to it if you want something to
happen at the moment the state changes. When the state of a checkbox is changed by
the user, it generates an event of type ActionEvent. If you want something to hap-
pen when the user changes the state, you must register an ActionListener with the
checkbox by calling its addActionListener() method. (Note that if you change the
state by calling the setSelected() method, no ActionEvent is generated. However,
there is another method in the JCheckBox class, doClick(), which simulates a user
click on the checkbox and does generate an ActionEvent.)

When handling an ActionEvent, call evt.getSource() in the actionPerformed()
method to find out which object generated the event. (Of course, if you are only lis-
tening for events from one component, you don’t even have to do this.) The returned
value is of type Object, but you can type-cast it to another type if you want. Once
you know the object that generated the event, you can ask the object to tell you its
current state. For example, if you know that the event had to come from one of two
checkboxes, cb1 or cb2, then your actionPerformed() method might look like this:

public void actionPerformed(ActionEvent evt) {
Object source = evt.getSource();
if (source == cb1) {

boolean newState = ((JCheckBox)cb1).isSelected();
... / / respond to the change of s t a t e

}
else if (source == cb2) {

boolean newState = ((JCheckBox)cb2).isSelected();
... / / respond to the change of s t a t e

}
}

Alternatively, you can use evt.getActionCommand() to retrieve the action com-
mand associated with the source. For a JCheckBox, the action command is, by default,
the label of the checkbox.

6.6.4 JTextField and JTextArea

The JTextField and JTextArea classes represent components that contain text that
can be edited by the user. A JTextField holds a single line of text, while a JTextArea
can hold multiple lines. It is also possible to set a JTextField or JTextArea to be
read-only so that the user can read the text that it contains but cannot edit the text.
Both classes are subclasses of an abstract class, JTextComponent, which defines their
common properties.

JTextField and JTextArea have many methods in common. The setText() in-
stance method, which takes a parameter of type String, can be used to change
the text that is displayed in an input component. The contents of the component

141

can be retrieved by calling its getText() instance method, which returns a value
of type String. If you want to stop the user from modifying the text, you can call
setEditable(false). Call the same method with a parameter of true to make the
input component user-editable again.

The user can only type into a text component when it has the input focus. The
user can give the input focus to a text component by clicking it with the mouse, but
sometimes it is useful to give the input focus to a text field programmatically. You
can do this by calling its requestFocus() method. For example, when I discover an
error in the user’s input, I usually call requestFocus() on the text field that contains
the error. This helps the user see where the error occurred and let’s the user start
typing the correction immediately.

The JTextField class has a constructor public JTextField(int columns) where
columns is an integer that specifies the number of characters that should be visible in
the text field. This is used to determine the preferred width of the text field. (Because
characters can be of different sizes and because the preferred width is not always re-
spected, the actual number of characters visible in the text field might not be equal
to columns.) You don’t have to specify the number of columns; for example, you might
use the text field in a context where it will expand to fill whatever space is available.
In that case, you can use the constructor JTextField(), with no parameters. You can
also use the following constructors, which specify the initial contents of the text field:
public JTextField(String contents);
public JTextField(String contents, int columns);

The constructors for a JTextArea are
public JTextArea()
public JTextArea(int rows, int columns)
public JTextArea(String contents)
public JTextArea(String contents, int rows, int columns)

The parameter rows specifies how many lines of text should be visible in the text
area. This determines the preferred height of the text area, just as columns deter-
mines the preferred width. However, the text area can actually contain any number
of lines; the text area can be scrolled to reveal lines that are not currently visible. It
is common to use a JTextArea as the CENTER component of a BorderLayout. In that
case, it isn’t useful to specify the number of lines and columns, since the TextArea
will expand to fill all the space available in the center area of the container.

The JTextArea class adds a few useful methods to those already inherited from
JTextComponent e.g. the instance method append(moreText), where moreText is of
type String, adds the specified text at the end of the current content of the text area.
(When using append() or setText() to add text to a JTextArea, line breaks can be
inserted in the text by using the newline character, ’\n’.) And setLineWrap(wrap),
where wrap is of type boolean, tells what should happen when a line of text is too
long to be displayed in the text area. If wrap is true, then any line that is too long will
be “wrapped” onto the next line; if wrap is false, the line will simply extend outside
the text area, and the user will have to scroll the text area horizontally to see the
entire line. The default value of wrap is false.

When the user is typing in a JTextField and presses return, an ActionEvent is
generated. If you want to respond to such events, you can register an ActionListener
with the text field, using the text field’s addActionListener() method. (Since a
JTextArea can contain multiple lines of text, pressing return in a text area does not
generate an event; is simply begins a new line of text.)

142

6.7 Basic Layout

COMPONENTS ARE THE FUNDAMENTAL BUILDING BLOCKS of a graphical user interface.
But you have to do more with components besides create them. Another aspect of
GUI programming is laying out components on the screen, that is, deciding where
they are drawn and how big they are. You have probably noticed that computing
coordinates can be a difficult problem, especially if you don’t assume a fixed size for
the drawing area. JAVA has a solution for this, as well.

Components are the visible objects that make up a GUI. Some components are
containers, which can hold other components. Containers in JAVA are objects that
belong to some subclass of java.awt.Container. The content pane of a JApplet or
JFrame is an example of a container. The standard class JPanel, which we have
mostly used as a drawing surface up till now, is another example of a container.

Because a JPanel object is a container, it can hold other components. Because a
JPanel is itself a component, you can add a JPanel to another JPanel. This makes
complex nesting of components possible. JPanels can be used to organize complicated
user interfaces, as shown in this illustration:

The components in a container must be “laid out,” which means setting their sizes
and positions. It’s possible to program the layout yourself, but ordinarily layout is
done by a layout manager. A layout manager is an object associated with a con-
tainer that implements some policy for laying out the components in that container.
Different types of layout manager implement different policies. In this section, we
will cover the three most common types of layout manager, and then we will look at
several programming examples that use components and layout.

Every container has an instance method, setLayout(), that takes a parameter
of type LayoutManager and that is used to specify the layout manager that will be
responsible for laying out any components that are added to the container. Com-
ponents are added to a container by calling an instance method named add() in the
container object. There are actually several versions of the add() method, with differ-
ent parameter lists. Different versions of add() are appropriate for different layout
managers, as we will see below.

143

6.7.1 Basic Layout Managers

JAVA has a variety of standard layout managers that can be used as parameters in the
setLayout() method. They are defined by classes in the package java.awt. Here, we
will look at just three of these layout manager classes: FlowLayout, BorderLayout,
and GridLayout.

A FlowLayout simply lines up components in a row across the container. The
size of each component is equal to that component’s “preferred size.” After laying
out as many items as will fit in a row across the container, the layout manager will
move on to the next row. The default layout for a JPanel is a FlowLayout; that is, a
JPanel uses a FlowLayout unless you specify a different layout manager by calling
the panel’s setLayout() method.

The components in a given row can be either left-aligned, right-aligned, or cen-
tered within that row, and there can be horizontal and vertical gaps between compo-
nents. If the default constructor, “new FlowLayout()”, is used, then the components
on each row will be centered and both the horizontal and the vertical gaps will be five
pixels. The constructor

public FlowLayout(int align, int hgap, int vgap)

can be used to specify alternative alignment and gaps. The possible values of align
are FlowLayout.LEFT, FlowLayout.RIGHT, and FlowLayout.CENTER.

Suppose that cntr is a container object that is using a FlowLayout as its layout
manager. Then, a component, comp, can be added to the container with the statement
cntr.add(comp);

The FlowLayout will line up all the components that have been added to the con-
tainer in this way. They will be lined up in the order in which they were added. For
example, this picture shows five buttons in a panel that uses a FlowLayout:

Note that since the five buttons will not fit in a single row across the panel, they
are arranged in two rows. In each row, the buttons are grouped together and are
centered in the row. The buttons were added to the panel using the statements:

panel.add(button1);
panel.add(button2);
panel.add(button3);
panel.add(button4);
panel.add(button5);

When a container uses a layout manager, the layout manager is ordinarily respon-
sible for computing the preferred size of the container (although a different preferred
size could be set by calling the container’s setPreferredSize method). A FlowLayout
prefers to put its components in a single row, so the preferred width is the total of the
preferred widths of all the components, plus the horizontal gaps between the compo-
nents. The preferred height is the maximum preferred height of all the components.

A BorderLayout layout manager is designed to display one large, central compo-
nent, with up to four smaller components arranged along the edges of the central com-
ponent. If a container, cntr, is using a BorderLayout, then a component, comp, should
be added to the container using a statement of the form

144

cntr.add(comp, borderLayoutPosition);
where borderLayoutPosition specifies what position the component should occupy
in the layout and is given as one of the constants
BorderLayout.CENTER, BorderLayout.NORTH, BorderLayout.SOUTH,
BorderLayout.EAST, or BorderLayout.WEST. The meaning of the five positions is
shown in this diagram:

Note that a border layout can contain fewer than five compompontnts, so that not
all five of the possible positions need to be filled.

A BorderLayout selects the sizes of its components as follows: The NORTH and
SOUTH components (if present) are shown at their preferred heights, but their width
is set equal to the full width of the container. The EAST and WEST components are
shown at their preferred widths, but their height is set to the height of the container,
minus the space occupied by the NORTH and SOUTH components. Finally, the CENTER
component takes up any remaining space; the preferred size of the CENTER component
is completely ignored. You should make sure that the components that you put into
a BorderLayout are suitable for the positions that they will occupy. A horizontal
slider or text field, for example, would work well in the NORTH or SOUTH position, but
wouldn’t make much sense in the EAST or WEST position.

The default constructor, new BorderLayout(), leaves no space between compo-
nents. If you would like to leave some space, you can specify horizontal and vertical
gaps in the constructor of the BorderLayout object. For example, if you say

panel.setLayout(new BorderLayout(5,7));

then the layout manager will insert horizontal gaps of 5 pixels between components
and vertical gaps of 7 pixels between components. The background color of the con-
tainer will show through in these gaps. The default layout for the original content
pane that comes with a JFrame or JApplet is a BorderLayout with no horizontal or
vertical gap.

Finally, we consider the GridLayout layout manager. A grid layout lays out com-
ponents in a grid of equal sized rectangles. This illustration shows how the compo-
nents would be arranged in a grid layout with 3 rows and 2 columns:

145

If a container uses a GridLayout, the appropriate add method for the container
takes a single parameter of type Component (for example: cntr.add(comp)). Compo-
nents are added to the grid in the order shown; that is, each row is filled from left to
right before going on the next row.

The constructor for a GridLayout takes the form “new GridLayout(R,C)”, where
R is the number of rows and C is the number of columns. If you want to leave hori-
zontal gaps of H pixels between columns and vertical gaps of V pixels between rows,
then you need to use “new GridLayout(R,C,H,V)” instead.

When you use a GridLayout, it’s probably good form to add just enough compo-
nents to fill the grid. However, this is not required. In fact, as long as you specify
a non-zero value for the number of rows, then the number of columns is essentially
ignored. The system will use just as many columns as are necessary to hold all the
components that you add to the container. If you want to depend on this behavior,
you should probably specify zero as the number of columns. You can also specify the
number of rows as zero. In that case, you must give a non-zero number of columns.
The system will use the specified number of columns, with just as many rows as
necessary to hold the components that are added to the container.

Horizontal grids, with a single row, and vertical grids, with a single column, are
very common. For example, suppose that button1, button2, and button3 are buttons
and that you’d like to display them in a horizontal row in a panel. If you use a
horizontal grid for the panel, then the buttons will completely fill that panel and will
all be the same size. The panel can be created as follows:

JPanel buttonBar = new JPanel();
buttonBar.setLayout(new GridLayout(1,3));

/ / (Note : The "3 " here i s p r e t t y much ignored , and
/ / you could a lso say "new GridLayout (1 , 0) " .
/ / To leave gaps between the buttons , you could use
/ / ‘ ‘ new GridLayout (1 , 0 , 5 , 5) ’ ’ .)

buttonBar.add(button1);
buttonBar.add(button2);
buttonBar.add(button3);

You might find this button bar to be more attractive than the one that uses the
default FlowLayout layout manager.

6.7.2 A Simple Calculator

As our next example, we look briefly at an example that uses nested subpanels to
build a more complex user interface. The program has two JTextFields where the
user can enter two numbers, four JButtons that the user can click to add, subtract,

146

multiply, or divide the two numbers, and a JLabel that displays the result of the
operation:

Like the previous example, this example uses a main panel with a GridLayout
that has four rows and one column. In this case, the layout is created with the
statement: “setLayout(new GridLayout(4,1,3,3));” which allows a 3-pixel gap be-
tween the rows where the gray background color of the panel is visible. The gray bor-
der around the edges of the panel is added with the statement
setBorder(BorderFactory.createEmptyBorder(5,5,5,5));.

The first row of the grid layout actually contains two components, a JLabel dis-
playing the text “x =” and a JTextField. A grid layout can only only have one com-
ponent in each position. In this case, that component is a JPanel, a subpanel that is
nested inside the main panel. This subpanel in turn contains the label and text field.
This can be programmed as follows:

xInput = new JTextField(" 0 ", 10); / / Create a t e x t f i e l d to hold 10 chars .
JPanel xPanel = new JPanel(); / / Create the subpanel .
xPanel.add(new JLabel(" x = ")); / / Add a l a b e l to the subpanel .
xPanel.add(xInput); / / Add the t e x t f i e l d to the subpanel
mainPanel.add(xPanel); / / Add the subpanel to the main panel .

The subpanel uses the default FlowLayout layout manager, so the label and text
field are simply placed next to each other in the subpanel at their preferred size, and
are centered in the subpanel.

Similarly, the third row of the grid layout is a subpanel that contains four buttons.
In this case, the subpanel uses a GridLayout with one row and four columns, so that
the buttons are all the same size and completely fill the subpanel.

One other point of interest in this example is the actionPerformed() method
that responds when the user clicks one of the buttons. This method must retrieve
the user’s numbers from the text field, perform the appropriate arithmetic operation
on them (depending on which button was clicked), and set the text of the label to
represent the result. However, the contents of the text fields can only be retrieved
as strings, and these strings must be converted into numbers. If the conversion fails,
the label is set to display an error message:

public void actionPerformed(ActionEvent evt) {

double x, y; / / The numbers from the inpu t boxes .

try {
String xStr = xInput.getText();
x = Double.parseDouble(xStr);

}
catch (NumberFormatException e) {

/ / The s t r i n g xSt r i s not a l e g a l number .
answer.setText(" I l l e g a l data fo r x . ");
xInput.requestFocus();
return;

}

try {
String yStr = yInput.getText();
y = Double.parseDouble(yStr);

}

147

catch (NumberFormatException e) {
/ / The s t r i n g xSt r i s not a l e g a l number .

answer.setText(" I l l e g a l data fo r y . ");
yInput.requestFocus();
return;

}

/∗ Perfrom the opera t ion based on the ac t i on command from the
but ton . The ac t i on command i s the t e x t d isp layed on the but ton .
Note t h a t d i v i s i o n by zero produces an e r r o r message . ∗ /

String op = evt.getActionCommand();
if (op.equals(" + "))

answer.setText(" x + y = " + (x+y));
else if (op.equals("−"))

answer.setText(" x − y = " + (x−y));
else if (op.equals(" ∗ "))

answer.setText(" x ∗ y = " + (x∗y));
else if (op.equals(" / ")) {

if (y == 0)
answer.setText("Can’ t divide by zero ! ");

else
answer.setText(" x / y = " + (x/y));

}
} / / end act ionPerformed ()

(The complete source code for this example can be found in SimpleCalc.java.)

6.7.3 A Little Card Game

For a final example, let’s look at something a little more interesting as a program. The
example is a simple card game in which you look at a playing card and try to predict
whether the next card will be higher or lower in value. (Aces have the lowest value
in this game.) You’ve seen a text-oriented version of the same game previously have
also seen Deck, Hand, and Card classes that are used in the game program. In this
GUI version of the game, you click on a button to make your prediction. If you predict
wrong, you lose. If you make three correct predictions, you win. After completing one
game, you can click the “New Game” button to start a new game. Try it! See what
happens if you click on one of the buttons at a time when it doesn’t make sense to do
so.

The complete source code for this example is in the file HighLowGUI.java.
The overall structure of the main panel in this example should be clear: It has

three buttons in a subpanel at the bottom of the main panel and a large drawing
surface that displays the cards and a message. The main panel uses a BorderLayout.
The drawing surface occupies the CENTER position of the border layout. The subpanel
that contains the buttons occupies the SOUTH position of the border layout, and the
other three positions of the layout are empty.

The drawing surface is defined by a nested class named CardPanel, which is a
subclass of JPanel. I have chosen to let the drawing surface object do most of the
work of the game: It listens for events from the three buttons and responds by taking
the appropriate actions. The main panel is defined by HighLowGUI itself, which is
another subclass of JPanel. The constructor of the HighLowGUI class creates all the
other components, sets up event handling, and lays out the components:

148

public HighLowGUI() { / / The cons t ruc to r .

setBackground(new Color(130,50,40));

setLayout(new BorderLayout(3,3)); / / BorderLayout w i th 3−p i x e l gaps .

CardPanel board = new CardPanel(); / / Where the cards are drawn .
add(board, BorderLayout.CENTER);

JPanel buttonPanel = new JPanel(); / / The subpanel t h a t holds the but tons .
buttonPanel.setBackground(new Color(220,200,180));
add(buttonPanel, BorderLayout.SOUTH);

JButton higher = new JButton(" Higher ");
higher.addActionListener(board); / / The CardPanel l i s t e n s f o r events .
buttonPanel.add(higher);

JButton lower = new JButton(" Lower ");
lower.addActionListener(board);
buttonPanel.add(lower);

JButton newGame = new JButton("New Game");
newGame.addActionListener(board);
buttonPanel.add(newGame);

setBorder(BorderFactory.createLineBorder(new Color(130,50,40), 3));

} / / end cons t ruc to r

The programming of the drawing surface class, CardPanel, is a nice example of
thinking in terms of a state machine. (See Subection6.5.4.) It is important to think
in terms of the states that the game can be in, how the state can change, and how the
response to events can depend on the state. The approach that produced the original,
text-oriented game in Subection5.4.3 is not appropriate here. Trying to think about
the game in terms of a process that goes step-by-step from beginning to end is more
likely to confuse you than to help you.

The state of the game includes the cards and the message. The cards are stored in
an object of type Hand. The message is a String. These values are stored in instance
variables. There is also another, less obvious aspect of the state: Sometimes a game
is in progress, and the user is supposed to make a prediction about the next card.
Sometimes we are between games, and the user is supposed to click the “New Game”
button. It’s a good idea to keep track of this basic difference in state. The CardPanel
class uses a boolean instance variable named gameInProgress for this purpose.

The state of the game can change whenever the user clicks on a button. CardPanel
implements the ActionListener interface and defines an actionPerformed() method
to respond to the user’s clicks. This method simply calls one of three other methods,
doHigher(), doLower(), or newGame(), depending on which button was pressed. It’s
in these three event-handling methods that the action of the game takes place.

We don’t want to let the user start a new game if a game is currently in progress.
That would be cheating. So, the response in the newGame() method is different de-
pending on whether the state variable gameInProgress is true or false. If a game is
in progress, the message instance variable should be set to show an error message.
If a game is not in progress, then all the state variables should be set to appropriate

149

values for the beginning of a new game. In any case, the board must be repainted so
that the user can see that the state has changed. The complete newGame() method is
as follows:

/∗ ∗
∗ Cal led by the CardPanel cons t ruc to r , and c a l l e d by act ionPerformed () i f
∗ the user c l i c k s the "New Game" but ton . S t a r t a new game .
∗ /

void doNewGame() {
if (gameInProgress) {

/ / I f the cu r ren t game i s not over , i t i s an e r r o r to t r y
/ / to s t a r t a new game .

message = "You s t i l l have to f i n i s h t h i s game! ";
repaint();
return;

}
deck = new Deck(); / / Create the deck and hand to use f o r t h i s game .
hand = new Hand();
deck.shuffle();
hand.addCard(deck.dealCard()); / / Deal the f i r s t card i n t o the hand .
message = " I s the next card higher or lower? ";
gameInProgress = true;
repaint();

} / / end doNewGame()

The doHigher() and doLower() methods are almost identical to each other (and
could probably have been combined into one method with a parameter, if I were more
clever). Let’s look at the doHigher() method. This is called when the user clicks the
“Higher” button. This only makes sense if a game is in progress, so the first thing
doHigher() should do is check the value of the state variable gameInProgress. If the
value is false, then doHigher() should just set up an error message. If a game is in
progress, a new card should be added to the hand and the user’s prediction should be
tested. The user might win or lose at this time. If so, the value of the state variable
gameInProgress must be set to false because the game is over. In any case, the
board is repainted to show the new state. Here is the doHigher() method:

/∗ ∗
∗ Cal led by actionPerformmed () when user c l i c k s " Higher " but ton .
∗ Check the user ’ s p r e d i c t i o n . Game ends i f user guessed
∗ wrong or i f the user has made three c o r r e c t p r e d i c t i o n s .
∗ /

void doHigher() {
if (gameInProgress == false) {

/ / I f the game has ended , i t was an e r r o r to c l i c k " Higher " ,
/ / So set up an e r r o r message and abor t processing .

message = " Cl ick \"New Game\" to s t a r t a new game! ";
repaint();
return;

}
hand.addCard(deck.dealCard()); / / Deal a card to the hand .
int cardCt = hand.getCardCount();
Card thisCard = hand.getCard(cardCt − 1); / / Card j u s t dea l t .
Card prevCard = hand.getCard(cardCt − 2); / / The prev ious card .

150

if (thisCard.getValue() < prevCard.getValue()) {
gameInProgress = false;
message = " Too bad! You lose . ";

}
else if (thisCard.getValue() == prevCard.getValue()) {

gameInProgress = false;
message = " Too bad! You lose on t i e s . ";

}
else if (cardCt == 4) {

gameInProgress = false;
message = "You win ! You made three correct guesses . ";

}
else {

message = "Got i t r i g h t ! T r y fo r " + cardCt + " . ";
}
repaint();

} / / end doHigher ()

The paintComponent() method of the CardPanel class uses the values in the state
variables to decide what to show. It displays the string stored in the message vari-
able. It draws each of the cards in the hand. There is one little tricky bit: If a game is
in progress, it draws an extra face-down card, which is not in the hand, to represent
the next card in the deck. Drawing the cards requires some care and computation. I
wrote a method, “void drawCard(Graphics g, Card card, int x, int y)”, which
draws a card with its upper left corner at the point (x,y). The paintComponent()
method decides where to draw each card and calls this method to do the drawing. You
can check out all the details in the source code, HighLowGUI.java.

One further note on the programming of this example: The source code defines
HighLowGUI as a subclass of JPanel. The class contains a main() method so that it
can be run as a stand-alone application; the main() method simply opens a window
that uses a panel of type JPanel as its content pane. In addition, I decided to write
an applet version of the program as a static nested class named Applet inside the
HighLowGUI class. Since this is a nested class, its full name is HighLowGUI.Applet
and the class file produced when the code is compiled is HighLowGUI\$Applet.class.
This class is used for the applet version of the program shown above. The <applet>
tag lists the class file for the applet as code=’’HighLowGUI\$Applet.class’’. This is
admittedly an unusual way to organize the program, and it is probably more natu-
ral to have the panel, applet, and stand-alone program defined in separate classes.
However, writing the program in this way does show the flexibility of JAVA classes.

Simple dialogs are created by static methods in the class JOptionPane. This class
includes many methods for making dialog boxes, but they are all variations on the
three basic types shown here: a “message” dialog, a “confirm” dialog, and an “input”
dialog. (The variations allow you to provide a title for the dialog box, to specify the
icon that appears in the dialog, and to add other components to the dialog box. I will
only cover the most basic forms here.)

A message dialog simply displays a message string to the user. The user (hope-
fully) reads the message and dismisses the dialog by clicking the “OK” button. A
message dialog can be shown by calling the static method:

void JOptionPane.showMessageDialog(Component parentComp, String message)

The message can be more than one line long. Lines in the message should be
separated by newline characters, \n. New lines will not be inserted automatically,

151

even if the message is very long.
An input dialog displays a question or request and lets the user type in a string

as a response. You can show an input dialog by calling:

String JOptionPane.showInputDialog(Component parentComp, String question)

Again, the question can include newline characters. The dialog box will contain
an input box, an “OK” button, and a “Cancel” button. If the user clicks “Cancel”, or
closes the dialog box in some other way, then the return value of the method is null.
If the user clicks “OK”, then the return value is the string that was entered by the
user. Note that the return value can be an empty string (which is not the same as a
null value), if the user clicks “OK” without typing anything in the input box. If you
want to use an input dialog to get a numerical value from the user, you will have to
convert the return value into a number.

Finally, a confirm dialog presents a question and three response buttons: “Yes”,
“No”, and “Cancel”. A confirm dialog can be shown by calling:

int JOptionPane.showConfirmDialog(Component parentComp, String question)

The return value tells you the user’s response. It is one of the following constants:

• JOptionPane.YES_OPTION–the user clicked the “Yes” button

• JOptionPane.NO_OPTION–the user clicked the “No” button

• JOptionPane.CANCEL_OPTION–the user clicked the “Cancel” button

• JOptionPane.CLOSE_OPTION–the dialog was closed in some other way.

By the way, it is possible to omit the Cancel button from a confirm dialog by calling
one of the other methods in the JOptionPane class. Just call:

title, JOptionPane.YES_NO_OPTION)

The final parameter is a constant which specifies that only a “Yes” button and a
“No” button should be used. The third parameter is a string that will be displayed as
the title of the dialog box window.

If you would like to see how dialogs are created and used in the sample applet,
you can find the source code in the file SimpleDialogDemo.java.

6.8 Images and Resources

WE HAVE SEEN HOW TO USE THE GRAPHICS class to draw on a GUI component that is
visible on the computer’s screen. Often, however, it is useful to be able to create a
drawing off-screen , in the computer’s memory. It is also important to be able to
work with images that are stored in files.

To a computer, an image is just a set of numbers. The numbers specify the color
of each pixel in the image. The numbers that represent the image on the computer’s
screen are stored in a part of memory called a frame buffer. Many times each second,
the computer’s video card reads the data in the frame buffer and colors each pixel
on the screen according to that data. Whenever the computer needs to make some
change to the screen, it writes some new numbers to the frame buffer, and the change
appears on the screen a fraction of a second later, the next time the screen is redrawn
by the video card.

152

Since it’s just a set of numbers, the data for an image doesn’t have to be stored in
a frame buffer. It can be stored elsewhere in the computer’s memory. It can be stored
in a file on the computer’s hard disk. Just like any other data file, an image file can
be downloaded over the Internet. Java includes standard classes and methods that
can be used to copy image data from one part of memory to another and to get data
from an image file and use it to display the image on the screen.

6.8.1 Images

The class java.awt.Image represents an image stored in the computer’s memory.
There are two fundamentally different types of Image. One kind represents an im-
age read from a source outside the program, such as from a file on the computer’s
hard disk or over a network connection. The second type is an image created by the
program. I refer to this second type as an off-screen canvas. An off-screen canvas is
region of the computer’s memory that can be used as a drawing surface. It is possible
to draw to an offscreen image using the same Graphics class that is used for drawing
on the screen.

An Image of either type can be copied onto the screen (or onto an off-screen can-
vas) using methods that are defined in the Graphics class. This is most commonly
done in the paintComponent() method of a JComponent. Suppose that g is the Graph-
ics object that is provided as a parameter to the paintComponent() method, and that
img is of type Image. Then the statement “g.drawImage(img, x, y, this);” will
draw the image img in a rectangular area in the component. The integer-valued pa-
rameters x and y give the position of the upper-left corner of the rectangle in which
the image is displayed, and the rectangle is just large enough to hold the image.
The fourth parameter, this, is the special variable that refers to the JComponent it-
self. This parameter is there for technical reasons having to do with the funny way
Java treats image files. For most applications, you don’t need to understand this,
but here is how it works: g.drawImage() does not actually draw the image in all
cases. It is possible that the complete image is not available when this method is
called; this can happen, for example, if the image has to be read from a file. In that
case, g.drawImage() merely initiates the drawing of the image and returns immedi-
ately. Pieces of the image are drawn later, asynchronously, as they become available.
The question is, how do they get drawn? That’s where the fourth parameter to the
drawImage method comes in. The fourth parameter is something called an Ima-
geObserver. When a piece of the image becomes available to be drawn, the system
will inform the ImageObserver, and that piece of the image will appear on the screen.
Any JComponent object can act as an ImageObserver. The drawImage method re-
turns a boolean value to indicate whether the image has actually been drawn or not
when the method returns. When drawing an image that you have created in the com-
puter’s memory, or one that you are sure has already been completely loaded, you can
set the ImageObserver parameter to null.

There are a few useful variations of the drawImage() method. For example, it is
possible to scale the image as it is drawn to a specified width and height. This is done
with the command

g.drawImage(img, x, y, width, height, imageObserver);

The parameters width and height give the size of the rectangle in which the image
is displayed. Another version makes it possible to draw just part of the image. In the
command:

153

g.drawImage(img, dest_x1, dest_y1, dest_x2, dest_y2,
source_x1, source_y1, source_x2, source_y2, imageObserver);

the integers source x1, source y1, source x2, and source y2 specify the top-left and
bottom-right corners of a rectangular region in the source image. The integers dest x1,
dest y1, dest x2, and dest y2 specify the corners of a region in the destination graph-
ics context. The specified rectangle in the image is drawn, with scaling if necessary,
to the specified rectangle in the graphics context. For an example in which this is
useful, consider a card game that needs to display 52 different cards. Dealing with
52 image files can be cumbersome and inefficient, especially for downloading over the
Internet. So, all the cards might be put into a single image:

(This image is from the Gnome desktop project, http://www.gnome.org, and is
shown here much smaller than its actual size.) Now, only one Image object is needed.
Drawing one card means drawing a rectangular region from the image. This tech-
nique is used in a variation of the sample program HighLowGUI.java. In the original
version, the cards are represented by textual descriptions such as “King of Hearts.”
In the new version, HighLowWithImages.java, the cards are shown as images. Here
is an applet version of the program:

In the program, the cards are drawn using the following method. The instance
variable cardImages is a variable of type Image that represents the image that is
shown above, containing 52 cards, plus two Jokers and a face-down card. Each card
is 79 by 123 pixels. These numbers are used, together with the suit and value of the
card, to compute the corners of the source rectangle for the drawImage() command:

154

/∗ ∗
∗ Draws a card i n a 79x123 p i x e l rec tang le w i th i t s
∗ upper l e f t corner a t a s p e c i f i e d po in t (x , y) . Drawing the card
∗ requ i res the image f i l e " cards . png " .
∗ @param g The graphics contex t used f o r drawing the card .
∗ @param card The card t h a t i s to be drawn . I f the value i s n u l l , then a
∗ face−down card i s drawn .
∗ @param x the x−coord o f the upper l e f t corner o f the card
∗ @param y the y−coord o f the upper l e f t corner o f the card
∗ /

public void drawCard(Graphics g, Card card, int x, int y) {
int cx; / / x−coord o f upper l e f t corner o f the card i n s i d e cardsImage
int cy; / / y−coord o f upper l e f t corner o f the card i n s i d e cardsImage
if (card == null) {

cy = 4∗123; / / coords f o r a face−down card .
cx = 2∗79;

}
else {

cx = (card.getValue()−1)∗79;
switch (card.getSuit()) {
case Card.CLUBS:

cy = 0;
break;

case Card.DIAMONDS:
cy = 123;
break;

case Card.HEARTS:
cy = 2∗123;
break;

default: / / spades
cy = 3∗123;
break;

}
}
g.drawImage(cardImages,x,y,x+79,y+123,cx,cy,cx+79,cy+123,this);

}

I will tell you later in this section how the image file, cards.png, can be loaded into
the program.

6.8.2 Image File I/O

The class javax.imageio.ImageIO makes it easy to save images from a program into
files and to read images from files into a program. This would be useful in a program
such as PaintWithOffScreenCanvas, so that the users would be able to save their
work and to open and edit existing images. (See Exercise12.1.)

There are many ways that the data for an image could be stored in a file. Many
standard formats have been created for doing this. Java supports at least three
standard image formats: PNG, JPEG, and GIF. (Individual implementations of Java
might support more.) The JPEG format is “lossy,” which means that the picture that
you get when you read a JPEG file is only an approximation of the picture that was
saved. Some information in the picture has been lost. Allowing some information
to be lost makes it possible to compress the image into a lot fewer bits than would
otherwise be necessary. Usually, the approximation is quite good. It works best for

155

photographic images and worst for simple line drawings. The PNG format, on the
other hand is “lossless,” meaning that the picture in the file is an exact duplicate of
the picture that was saved. A PNG file is compressed, but not in a way that loses
information. The compression works best for images made up mostly of large blocks
of uniform color; it works worst for photographic images. GIF is an older format that
is limited to just 256 colors in an image; it has mostly been superseded by PNG.

Suppose that image is a BufferedImage. The image can be saved to a file simply
by calling ImageIO.write(image, format, file) where format is a String that
specifies the image format of the file and file is a File that specifies the file that is to
be written. The format string should ordinarily be either “PNG” or “JPEG”, although
other formats might be supported.

ImageIO.write() is a static method in the ImageIO class. It returns a boolean
value that is false if the image format is not supported. That is, if the specified image
format is not supported, then the image is not saved, but no exception is thrown.
This means that you should always check the return value! For example:

boolean hasFormat = ImageIO.write(OSC,format,selectedFile);
if (! hasFormat)

throw new Exception(format + " format i s not available . ");

If the image format is recognized, it is still possible that that an IOExcption might
be thrown when the attempt is made to send the data to the file.

The ImageIO class also has a static read() method for reading an image from a file
into a program. The method ImageIO.read(inputFile) takes a variable of type
File as a parameter and returns a BufferedImage. The return value is null if the file
does not contain an image that is stored in a supported format. Again, no exception
is thrown in this case, so you should always be careful to check the return value. It is
also possible for an IOException to occur when the attempt is made to read the file.
There is another version of the read() method that takes an InputStream instead of
a file as its parameter, and a third version that takes a URL.

Earlier in this section, we encountered another method for reading an image
from a URL, the createImage() method from the Toolkit class. The difference is
that ImageIO.read() reads the image data completely and stores the result in a
BufferedImage. On the other hand, createImage() does not actually read the data;
it really just stores the image location and the data won’t be read until later, when
the image is used. This has the advantage that the createImage() method itself can
complete very quickly. ImageIO.read(), on the other hand, can take some time to
execute.

156

Chapter 7
A Solitaire Game -

Klondike

In this chapter will build a version of the Solitaire game. We’ll use the case study
investigate the object-oriented concepts of encapsulation, inheritance, and polymor-
phism. The game is inspired by Timothy Budd’s version in his book AN INTRODUC-
TION TO OBJECT-ORIENTED PROGRAMMING.

7.1 Klondike Solitaire

The most popular solitare game is called klondike. It can be described as follows:
The layout of the game is shown in the figure below. A single standard pack of 52

cards is used. (i.e. 4 suits (spades ♠, diamonds ♦, hearts ♥, clubs ♣) and 13 cards (13
ranks) in each suit.).

The tableau, or playing table, consists of 28 cards in 7 piles. The first pile has 1
card, the second 2, the third 3, and so on up to 7. The top card of each pile is initially
face up; all other cards are face down.

The suit piles (sometimes called foundations) are built up from aces to kings in
suits. They are constructed above the tableau as the cards become available. The
object of the game is to build all 52 cards into the suit piles.

The cards that are not part of the tableau are initially all in the deck. Cards in
the deck are face down, and are drawn one by one from the deck and placed, face up,
on the discard pile. From there, they can be moved onto either a tableau pile or a
foundation. Cards are drawn from the deck until the pile is empty; at this point, the
game is over if no further moves can be made.

Cards can be placed on a tableau pile only on a card of next-higher rank and
opposite color. They can be placed on a foundation only if they are the same suit and
next higher card or if the foundation is empty and the card is an ace. Spaces in the
tableau that arise during play can be filled only by kings.

The topmost card of each tableau pile and the topmost card of the discard pile are
always available for play. The only time more than one card is moved is when an
entire collection of face-up cards from a tableau (called a build) is moved to another
tableau pile. This can be done if the bottommost card of the build can be legally
played on the topmost card of the destination. Our initial game will not support the
transfer of a build. The topmost card of a tableau is always face up. If a card is moved

157

Figure 7.1: Layout of the Solitaire Game

from a tableau, leaving a face-down card on the top, the latter card can be turned face
up.

7.2 Card Games

In this section and the next we will explore games that employ playing cards, and use
them to build our simplified game of Klondike Solitaire.

To start off we will program two classes, a Card class and a Deck class. These two
classes will be useful in almost all card games. Create and new project (CardGames
is good name) and write these classes in a package called cardGames.

The Card class

The aim is to build an ABSTRACTION of a playing card. Objects of type Card represent
a single playing card. The class has the following responsibilites:

Know its suit, rank and whether it is black or red

Create a card specified by rank and suit

Know if it is face down or up

Display itself (face up or down)

Flip itself (change from face down to face up and vice versa)

Your tasks is to design the Card class and program it. It is also necessary to test
your class.

158

Using Images

In order to program the class, we need to use images of cards.
There are several ways to work with images. Heres a quick how-to describing one

way...

(a) Copy the images folder into the project folder. It should be copied into the top
level of the CardGames folder.

(b) Using an image is a three step process:

* Declare a variable of type Image e.g. Image backImage;

* Read an image into this variable: (This must be done within a try/catch
block and assumes the images are stored in the images folder in the project.)

try{
backImage = ImageIO.read(new File(" images/ b1fv . g i f "));

}
catch (IOException i){

System.err.println(" Image load er ro r ");
}

* Draw the image (Off course, you draw method will be different since you
have to worry about whether the card is face up and face down and the
image you draw depends on the particular card.):

public void draw(Graphics g, int x, int y) {
g.drawImage(backImage,x,y,null); }

(c) The naming convention of the image files is straight forward: ’xnn.gif’ is the
format were ’x’ is a letter of the suit (s=spades ♠, d=diamonds ♦, h=hearts ♥,
c=clubs ♣) and ’nn’ is a one or two digit number representing the card’s rank
(1=ACE, 2-10=cards 2 to 10, 11=JACK, 12=QUEEN, 13=KING). e.g. c12 is the
Queen of clubs; d1 is the Ace of Diamonds; h8=8 of hearts. There are two images
of the back of a card (b1fv.gif and b2fv.gif).

The testing of the Card class can be done by setting up a test harness. This could
simply be a main method in the Card class like this one. You will off course make
changes to this to do various tests.:

public static void main(String[] args) {

class Panel extends JPanel { / / a method l o c a l i nne r c lass
Card c;
Panel(){ c = new Card(1,13); }

public void PanelTest(){ / / method to t e s t Cards
repaint(); c.flip(); repaint();

}
public void paintComponent(Graphics g){

super.paintComponent(g);
c.draw(g,20,10);

}
} \\end of class Panel

159

JFrame frame = new JFrame();
frame.setSize(new Dimension(500,500));
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Panel p = new Panel();
frame.setContentPane(p);
frame.show();
p.PanelTest();

}\\end of main method

7.2.1 The CardNames Interface

The CardNames class is an interface defining names.

public interface CardNames {
public static final int heart = 0;
public static final int diamond = 1;
public static final int club = 2;
public static final int spade = 3;
public static final int ace = 1;
public static final int jack = 11;
public static final int queen = 12;
public static final int king = 13;
public static final int red = 0;
public static final int black = 1;

}

Its a convenience class that allows us to use these names in a consistent man-
ner. Thus, we can use the name CardNames.ace throughout the program consis-
tently (i. e. Different parts of the program will mean the same thing when they say
CardNames.ace).

7.2.2 The Deck class

This class is meant to represent a deck of 52 cards. (A Deck is composed of 52 Cards).
Its responsibilities are:

Create a deck of 52 cards

Know the cards in the deck

Shuffle a deck

Deal a card from the deck

Know how many cards are in the deck

Design, write and test the Deck class.

7.3 Implementation of Klondike

To program the game, we notice that we basically need to keep track of several piles
of cards. The piles have similar functionality, so inheritance is strongly suggested.
What we do is write all the common functionality in a base class called CardPile. We
then specialise this class to create the concrete classes for each pile.

A class diagram for this application is shown above:

160

Figure 7.2: Class diagram for the Solitaire app

7.3.1 The CardPile class (the base class)

package solitaire;

import java.awt.Graphics;
import java.util.LinkedList;
import java.util.List;

public abstract class CardPile {

protected List pile;
protected int x;
protected int y;

/∗ ∗ ∗ Make an Empty P i l e ∗ /
public CardPile(int x, int y) {

pile = new LinkedList();
this.x = x;
this.y = y;

}

public boolean empty(){
return pile.isEmpty();

}

161

public Card topCard() {
if (!empty())

return (Card)pile.get(pile.size()−1);
else

return null;
}

public Card pop() {
if (!empty())

return (Card)pile.remove(pile.size()−1);
else

return null;
}

public boolean includes(int tx, int ty) {
return x<=tx && tx <= x + Card.width

&& y <= ty && ty <= y + Card.height;
}

public void addCard(Card aCard){
pile.add(aCard);

}

public void draw (Graphics g){
if (empty()) {

g.drawRect(x,y,Card.width,Card.height);
}
else

topCard().draw(g,x,y);
}

public abstract boolean canTake(Card aCard);

public abstract void select ();
}

Notice that this class is abstract. It has three protected attributes (What does
protected mean?). The x and y are coordinates of this pile on some drawing surface
and the pile attribute is Collection of Cards. Most of the methods are self explanatory
;).

* The includes method is given a point (a coordinate) and returns true if this
point is contained within the space occupied by the cards in the pile. We intend
to use this method to tell us if the user has clicked on this particular pile of
cards. The idea is to get the coordinates of the point the user has clicked on and
then ask each pile if this coordinate falls within the space it occupies.

* The canTake abstract method should tell us whether a particular pile of cards
can accept a card. Different piles will have different criteria for accepting a
Card. For example, suit piles will accept a card if it is the same suit as all
others in the pile and if its rank is one more that its topCard. The table piles
will accept a card if its suit is opposite in color and its rank is one less than the
pile’s topCard.

* The select abstract method is the action this pile takes if it can accept a Card.
Usually, this means adding it to its pile and making the new Card the topCard.

162

7.3.2 The Solitaire class

The Solitaire class is the one that runs. It creates and maintains the different piles of
cards. Notice that most of its attributes are static and visible to other classes in the
package. Study it carefully and make sure you understand it fully (FULLY!) before
you continue.

package solitaire;

import javax.swing.∗;
import java.awt.∗;

public class Solitaire extends JPanel implements MouseListener {

static DeckPile deckPile;
static DiscardPile discardPile;
static TablePile tableau[];
static SuitPile suitPile[];
static CardPile allPiles[];

public Solitaire(){
setBackground(Color.green);
addMouseListener(this);
allPiles = new CardPile[13];
suitPile = new SuitPile[4];
tableau = new TablePile[7];

int deckPos = 600;
int suitPos = 15;
allPiles[0] = deckPile = new DeckPile(deckPos, 5);
allPiles[1] = discardPile =

new DiscardPile(deckPos − Card.width − 10, 5);
for (int i = 0; i < 4; i++)

allPiles[2+i] = suitPile[i] =
new SuitPile(suitPos + (Card.width + 10) ∗ i, 5);

for (int i = 0; i < 7; i++)
allPiles[6+i] = tableau[i] =

new TablePile(suitPos + (Card.width + 10) ∗ i,
Card.height + 20, i+1);

repaint();
}

public void paintComponent(Graphics g) {
super.paintComponent(g);
for (int i = 0; i < 13; i++)

allPiles[i].draw(g);
}

163

public static void main(String[] args) {
JFrame frame = new JFrame();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);
frame.setSize(800,600);
frame.setTitle(" S o l i t a i r e ");

Solitaire s = new Solitaire();
frame.add(s);
frame.validate();
s.repaint();

}

public void mouseClicked(MouseEvent e) {
int x = e.getX();
int y = e.getY();
for (int i = 0; i < 12; i++)

if (allPiles[i].includes(x, y)) {
allPiles[i].select();
repaint();

}
}

public void mousePressed(MouseEvent e) { }

public void mouseReleased(MouseEvent e) { }

public void mouseEntered(MouseEvent e) { }

public void mouseExited(MouseEvent e) { }
}

7.3.3 Completing the Implementation

Write the classes TablePile, SuitPile, DiscardPile, DeckPile. I suggest that
you create all the classes first and then work with them one at a time. They all
extend the CardPile class. You must take care to consider situations when the pile
is empty. The following will guide you in writing these classes:

* the DeckPile Class This class extends the CardPile class. It must create
a full deck of cards (stored in its super class’s pile attribute.) The cards
should be shuffled after creation (use Collections.shuffle(...)). You
never add cards to the DeckPile so its canTake method always returns false.
The select method removes a card from the deckPile and adds it to the
discardPile (In the Solitaire class).

* The DiscardPile Class This maintains a pile of cards that do not go into any
of the other piles. Override the addCard method to check first if the card is
faceUp and flip it if its not. Then add the card to the pile. You never add cards
to the DiscardPile so its canTake method always returns false. The select
method requires careful thought. Remember that this method runs when the
user selects this pile. Now, what happens when the user clicks on the topCard
in the discardPile? We must check if any SuitPile (4 of them) or any TablePile

164

(7 of them) (all in the Solitaire class) can take the card. If any of these piles can
take the card we add the Card to that pile. If not, we leave it on the discardPile.

* The SuitPile Class The select method is empty (Cards are never removed
from this pile). The canTake method should return true if the Card is the same
suit as all others in the pile and if its rank is one more that its topCard.

* The TablePile Class Write the constructor to initialize the table pile. The
constructor accepts three parameters, the x and y coordinates of the pile, and
an integer that tell it how many cards it contains. (remember that the first
tablePile contains 1 card, the second 2 Cards etc.). It takes Cards from the deck-
Pile. The table pile is displayed differently from the other piles (the cards over-
lap). We thus need to override the includes the method and the draw method.
The canTake method is also different. The table piles will accept a card if its
suit is opposite in color and its rank is one less than the pile’s topCard. The
select method is similar to the one in DiscardPile. We must check if any
SuitPile (4 of them) or any TablePile (7 of them) (all in the Solitaire class) can
take the card. If any of these piles can take the card we add the Card to that
pile otherwise we leave it in this tabePile.

165

166

Chapter 8
Generic Programming

Contents
8.1 Generic Programming in Java . 168

8.2 ArrayLists . 168

8.3 Parameterized Types . 170

8.4 The Java Collection Framework 172

8.5 Iterators and for-each Loops . 174

8.6 Equality and Comparison . 176

8.7 Generics and Wrapper Classes . 179

8.8 Lists . 179

A DATA STRUCTURE IS A COLLECTION OF DATA ITEMS, considered as a unit. For exam-
ple, a list is a data structure that consists simply of a sequence of items. Data struc-
tures play an important part in programming. Various standard data structures have
been developed including lists, sets, and trees. Most programming libraries provide
built-in data structures that may be used with very little effort from the programmer.
Java has the Collection Framework that provides standard data structures for use
by programmers.

Generic programming refers to writing code that will work for many types of data.
The source code presented there for working with dynamic arrays of integers works
only for data of type int. But the source code for dynamic arrays of double, String,
JButton, or any other type would be almost identical, except for the substitution of
one type name for another. It seems silly to write essentially the same code over
and over. Java goes some distance towards solving this problem by providing the
ArrayList class. An ArrayList is essentially a dynamic array of values of type
Object. Since every class is a subclass of Object, objects of any type can be stored
in an ArrayList. Java goes even further by providing “parameterized types.” The
ArrayList type can be parameterized, as in “ArrayList<String>”, to limit the val-
ues that can be stored in the list to objects of a specified type. Parameterized types
extend Java’s basic philosophy of type-safe programming to generic programming.

167

8.1 Generic Programming in Java

JAVA’S GENERIC PROGRAMMING FEATURES are represented by group of generic classes
and interfaces as a group are known as the Java Collection Framework. These
classes represents various data structure designed to hold Objects can be used with
objects of any type. Unfortunately the result is a category of errors that show up
only at run time, rather than at compile time. If a programmer assumes that all the
items in a data structure are strings and tries to process those items as strings, a
run-time error will occur if other types of data have inadvertently been added to the
data structure. In JAVA, the error will most likely occur when the program retrieves
an Object from the data structure and tries to type-cast it to type String. If the
object is not actually of type String, the illegal type-cast will throw an error of type
ClassCastException.

JAVA 5.0 introduced parameterized types, such as ArrayList<String>. This made
it possible to create generic data structures that can be type-checked at compile time
rather than at run time. With these data structures, type-casting is not necessary, so
ClassCastExceptions are avoided. The compiler will detect any attempt to add an
object of the wrong type to the data structure; it will report a syntax error and will
refuse to compile the program. In Java 5.0, all of the classes and interfaces in the
Collection Framework, and even some classes that are not part of that framework,
have been parameterized. In this chapter, I will use the parameterized types almost
exclusively, but you should remember that their use is not mandatory. It is still legal
to use a parameterized class as a non-parameterized type, such as a plain ArrayList.

With a Java parameterized class, there is only one compiled class file. For exam-
ple, there is only one compiled class file, ArrayList.class, for the parameterized class
ArrayList. The parameterized types ArrayList<String> and ArrayList<Integer>
both use the some compiled class file, as does the plain ArrayList type. The type
parameter—String or Integer—just tells the compiler to limit the type of object that
can be stored in the data structure. The type parameter has no effect at run time and
is not even known at run time. The type information is said to be “erased” at run
time. This type erasure introduces a certain amount of weirdness. For example, you
can’t test “if (list instanceof {ArrayList<String>)” because the instanceof
operator is evaluated at run time, and at run time only the plain ArrayList ex-
ists. Even worse, you can’t create an array that has base type ArrayList<String>
using the new operator, as in “new ArrayList<String>(N)”. This is because the
new operator is evaluated at run time, and at run time there is no such thing as
“ArrayList<String>”; only the non-parameterized type ArrayList exists at run time.

Fortunately, most programmers don’t have to deal with such problems, since they
turn up only in fairly advanced programming. Most people who use the Java Collec-
tion Framework will not encounter them, and they will get the benefits of type-safe
generic programming with little difficulty.

8.2 ArrayLists

IN THIS SECTION we discuss ArrayLists that are part of the Collection Framework.
Arrays in JAVA have two disadvantages: they have a fixed size and their type

must be must be specified when they are created.
The size of an array is fixed when it is created. In many cases, however, the

number of data items that are actually stored in the array varies with time. Consider

168

the following examples: An array that stores the lines of text in a word-processing
program. An array that holds the list of computers that are currently downloading
a page from a Web site. An array that contains the shapes that have been added to
the screen by the user of a drawing program. Clearly, we need some way to deal with
cases where the number of data items in an array is not fixed.

Specifying the type when arrays are created means that one can only put primi-
tives or objects of the specified into the array—for example, an array of int can only
hold integers. One way to work around this is to declare Object as the type of an ar-
ray. In this case one can place anything into the array because, in JAVA, every class is
a subclass of the class named Object. This means that every object can be assigned
to a variable of type Object. Any object can be put into an array of type Object[].

An ArrayList serves much the same pupose as arrays do. It allows you to store
objects of any type. The ArrayList class is in the package java.util, so if you want
to use it in a program, you should put the directive “import java.util.ArrayList;”
at the beginning of your source code file.

The ArrayList class always has a definite size, and it is illegal to refer to a po-
sition in the ArrayList that lies outside its size. In this, an ArrayList is more like
a regular array. However, the size of an ArrayList can be increased at will. The
ArrayList class defines many instance methods. I’ll describe some of the most use-
ful. Suppose that list is a variable of type ArrayList. Then we have:

• list.size()–This method returns the current size of the ArrayList. The only
valid positions in the list are numbers in the range 0 to list.size()−1. Note
that the size can be zero. A call to the default constructor new ArrayList()
creates an ArrayList of size zero.

• list.add(obj)–Adds an object onto the end of the list, increasing the size by 1.
The parameter, obj, can refer to an object of any type, or it can be null.

• list.get(N)–returns the value stored at position N in the ArrayList. N must be
an integer in the range 0 to list.size()−1. If N is outside this range, an error
of type IndexOutOfBoundsException occurs. Calling this method is similar to
referring to A[N] for an array, A, except you can’t use list.get(N) on the left
side of an assignment statement.

• list.set(N, obj)–Assigns the object, obj, to position N in the ArrayList, re-
placing the item previously stored at position N. The integer N must be in the
range from 0 to list.size()−1. A call to this method is equivalent to the com-
mand A[N] = obj for an array A.

• list.remove(obj)–If the specified object occurs somewhere in the ArrayList,
it is removed from the list. Any items in the list that come after the removed
item are moved down one position. The size of the ArrayList decreases by 1. If
obj occurs more than once in the list, only the first copy is removed.

• list.remove(N)–For an integer, N, this removes the N-th item in the ArrayList.
N must be in the range 0 to list.size()−1. Any items in the list that come
after the removed item are moved down one position. The size of the ArrayList
decreases by 1.

• list.indexOf(obj)–A method that searches for the object, obj, in the ArrayList.
If the object is found in the list, then the position number where it is found is
returned. If the object is not found, then −1 is returned.

169

For example, suppose that players in a game are represented by objects of type
Player. The players currently in the game could be stored in an ArrayList named
players. This variable would be declared as ArrayList players; and initialized
to refer to a new, empty ArrayList object with players = new ArrayList();. If
newPlayer is a variable that refers to a Player object, the new player would be added
to the ArrayList and to the game by saying players.add(newPlayer); and if player
number i leaves the game, it is only necessary to say players.remove(i);. Or, if
player is a variable that refers to the Player that is to be removed, you could say
players.remove(player);.

All this works very nicely. The only slight difficulty arises when you use the
method players.get(i) to get the value stored at position i in the ArrayList. The
return type of this method is Object. In this case the object that is returned by the
method is actually of type Player. In order to do anything useful with the returned
value, it’s usually necessary to type-cast it to type Player by saying:
Player plr = (Player)players.get(i);.

For example, if the Player class includes an instance method makeMove() that is
called to allow a player to make a move in the game, then the code for letting every
player make a move is

for (int i = 0; i < players.size(); i++) {
Player plr = (Player)players.get(i);
plr.makeMove();

}

The two lines inside the for loop can be combined to a single line:
((Player)players.get(i)).makeMove();.
This gets an item from the list, type-casts it, and then calls the makeMove() method
on the resulting Player. The parentheses around “(Player)players.get(i)” are re-
quired because of Java’s precedence rules. The parentheses force the type-cast to be
performed before the makeMove() method is called.

for−each loops work for ArrayLists just as they do for arrays. But note that
since the items in an ArrayList are only known to be Objects, the type of the loop
control variable must be Object. For example, the for loop used above to let each
Player make a move could be written as the for−each loop

for (Object plrObj : players) {
Player plr = (Player)plrObj;
plr.makeMove();

}

In the body of the loop, the value of the loop control variable, plrObj, is one of the
objects from the list, players. This object must be type-cast to type Player before it
can be used.

8.3 Parameterized Types

THE MAIN DIFFERENCE BETWEEN true generic programming and the ArrayList examples
in the previous subsection is the use of the type Object as the basic type for objects
that are stored in a list. This has at least two unfortunate consequences: First,
it makes it necessary to use type-casting in almost every case when an element is
retrieved from that list. Second, since any type of object can legally be added to the
list, there is no way for the compiler to detect an attempt to add the wrong type

170

of object to the list; the error will be detected only at run time when the object is
retrieved from the list and the attempt to type-cast the object fails. Compare this
to arrays. An array of type BaseType[] can only hold objects of type BaseType.
An attempt to store an object of the wrong type in the array will be detected by the
compiler, and there is no need to type-cast items that are retrieved from the array
back to type BaseType.

To address this problem, Java 5.0 introduced parameterized types. ArrayList
is an example: Instead of using the plain “ArrayList” type, it is possible to use
ArrayList<BaseType>, where BaseType is any object type, that is, the name of a
class or of an interface. (BaseType cannot be one of the primitive types.)

ArrayList<BaseType> can be used to create lists that can hold only objects of
type BaseType. For example, ArrayList<ColoredRect> rects;. declares a variable
named rects of type ArrayList<ColoredRect>, and
rects = new ArrayList<ColoredRect>();
sets rects to refer to a newly created list that can only hold objects belonging to the
class ColoredRect (or to a subclass). The funny-looking “ArrayList<ColoredRect>”
is being used here in the same way as an ordinary class name–don’t let the
“<ColoredRect>” confuse you; it’s just part of the name of the type. When a state-
ments such as rects.add(x); occurs in the program, the compiler can check whether
x is in fact of type ColoredRect. If not, the compiler will report a syntax error. When
an object is retrieved from the list, the compiler knows that the object must be of type
ColoredRect, so no type-cast is necessary. You can say simply:
ColoredRect rect = rects.get(i).

You can even refer directly to an instance variable in the object, such as
rects.get(i).color. This makes using ArrayList<ColoredRect> very similar to
using ColoredRect[] with the added advantage that the list can grow to any size.
Note that if a for-each loop is used to process the items in rects, the type of the loop
control variable can be ColoredRect, and no type-cast is necessary. For example,
when using ArrayList<ColoredRect> as the type for the list rects, the code for
drawing all the rectangles in the list could be rewritten as:

for (ColoredRect rect : rects) {
g.setColor(rect.color);
g.fillRect(rect.x, rect.y, rect.width, rect.height);
g.setColor(Color.BLACK);
g.drawRect(rect.x, rect.y, rect.width − 1, rect.height − 1);

}

You can use ArrayList<ColoredRect> anyplace where you could use a normal
type: to declare variables, as the type of a formal parameter in a method, or as the
return type of a method. ArrayList<ColoredRect> is not considered to be a separate
class from ArrayList. An object of type ArrayList<ColoredRect> actually belongs to
the class ArrayList, but the compiler restricts the type of objects that can be added
to the list.)

The only drawback to using parameterized types is that the base type cannot be
a primitive type. For example, there is no such thing as “ArrayList<int>”. However,
this is not such a big drawback as it might seem at first, because of the “wrapper
types” and “autoboxing”. A wrapper type such as Double or Integer can be used
as a base type for a parameterized type. An object of type ArrayList<Double> can
hold objects of type Double. Since each object of type Double holds a value of type
double, it’s almost like having a list of doubles. If numlist is declared to be of type

171

ArrayList<Double> and if x is of type double, then the value of x can be added to the
list by saying: numlist.add(new Double(x));.

Furthermore, because of autoboxing, the compiler will automatically do double-to-
Double and Double-to-double type conversions when necessary. This means that the
compiler will treat “numlist.add(x)” as begin equivalent to the statement
“numlist.add(new Double(x))”. So, behind the scenes, “numlist.add(x)” is ac-
tually adding an object to the list, but it looks a lot as if you are working with a list
of doubles.

The ArrayList class is just one of several standard classes that are used for
generic programming in Java. We will spend the next few sections looking at these
classes and how they are used, and we’ll see that there are also generic methods
and generic interfaces. All the classes and interfaces discussed in these sections
are defined in the package java.util, and you will need an import statement at
the beginning of your program to get access to them. (Before you start putting
“importăjava.util.∗” at the beginning of every program, you should know that
some things in java.util have names that are the same as things in other packages.
For example, both java.util.List and java.awt.List exist, so it is often better to
import the individual classes that you need.)

8.4 The Java Collection Framework

JAVA’S GENERIC DATA STRUCTURES can be divided into two categories: collections and
maps. A collection is more or less what it sound like: a collection of objects. An
ArrayList is an example of a collection. A map associates objects in one set with
objects in another set in the way that a dictionary associates definitions with words
or a phone book associates phone numbers with names. In Java, collections and maps
are represented by the parameterized interfaces Collection<T> and Map<T,S>. Here,
“T” and “S” stand for any type except for the primitive types.

We will discuss only collections in this course.
There are two types of collections: lists and sets. A list is a collection in which the

objects are arranged in a linear sequence. A list has a first item, a second item, and
so on. For any item in the list, except the last, there is an item that directly follows
it. The defining property of a set is that no object can occur more than once in a set;
the elements of a set are not necessarily thought of as being in any particular or-
der. The ideas of lists and sets are represented as parameterized interfaces List<T>
and Set<T>. These are sub−interfaces of \code{Collection<T>. That is, any
object that implements the interface List<T> or Set<T> automatically implements
Collection<T> as well. The interface Collection<T> specifies general operations
that can be applied to any collection at all. List<T> and Set<T> add additional oper-
ations that are appropriate for lists and sets respectively.

Of course, any actual object that is a collection, list, or set must belong to a
concrete class that implements the corresponding interface. For example, the class
ArrayList<T> implements the interface List<T> and therefore also implements
Collection<T>. This means that all the methods that are defined in the list and
collection interfaces can be used with, for example, an ArrayList<String> object.
We will look at various classes that implement the list and set interfaces in the next
section. But before we do that, we’ll look briefly at some of the general operations
that are available for all collections.

The interface Collection<T> specifies methods for performing some basic opera-

172

tions on any collection of objects. Since “collection” is a very general concept, oper-
ations that can be applied to all collections are also very general. They are generic
operations in the sense that they can be applied to various types of collections con-
taining various types of objects. Suppose that coll is an object that implements the
interface Collection<T> (for some specific non-primitive type T). Then the following
operations, which are specified in the interface Collection<T>, are defined for coll:

• coll.size()–returns an int that gives the number of objects in the collection.

• coll.isEmpty()–returns a boolean value which is true if the size of the collec-
tion is 0.

• coll.clear()–removes all objects from the collection.

• coll.add(tobject)–adds tobject to the collection. The parameter must be
of type T; if not, a syntax error occurs at compile time. This method returns
a boolean value which tells you whether the operation actually modified the
collection. For example, adding an object to a Set has no effect if that object was
already in the set.

• coll.contains(object)–returns a boolean value that is true if object is in the
collection. Note that object is not required to be of type T, since it makes sense
to check whether object is in the collection, no matter what type object has. (For
testing equality, null is considered to be equal to itself. The criterion for testing
non-null objects for equality can differ from one kind of collection to another.)

• coll.remove(object)–removes object from the collection, if it occurs in the
collection, and returns a boolean value that tells you whether the object was
found. Again, object is not required to be of type T.

• coll.containsAll(coll2)–returns a boolean value that is true if every object
in coll2 is also in the coll. The parameter can be any collection.

• coll.addAll(coll2)–adds all the objects in coll2 to coll. The parameter,
coll2, can be any collection of type Collection<T>. However, it can also be
more general. For example, if T is a class and S is a sub-class of T, then coll2
can be of type Collection<S>. This makes sense because any object of type S is
automatically of type T and so can legally be added to coll.

• coll.removeAll(coll2)–removes every object from coll that also occurs in
the collection coll2. coll2 can be any collection.

• coll.retainAll(coll2)–removes every object from coll that does not occur
in the collection coll2. It “retains” only the objects that do occur in coll2.
coll2 can be any collection.

• coll.toArray()–returns an array of type Object[] that contains all the items
in the collection. The return value can be type-cast to another array type, if
appropriate. Note that the return type is Object[], not T[]! However, you
can type-cast the return value to a more specific type. For example, if you know
that all the items in coll are of type String, then String[])coll.toArray()
gives you an array of Strings containing all the strings in the collection.

173

Since these methods are part of the Collection<T> interface, they must be de-
fined for every object that implements that interface. There is a problem with this,
however. For example, the size of some kinds of collection cannot be changed af-
ter they are created. Methods that add or remove objects don’t make sense for
these collections. While it is still legal to call the methods, an exception will be
thrown when the call is evaluated at run time. The type of the exception thrown is
UnsupportedOperationException. Furthermore, since Collection<T> is only an in-
terface, not a concrete class, the actual implementation of the method is left to the
classes that implement the interface. This means that the semantics of the methods,
as described above, are not guaranteed to be valid for all collection objects; they are
valid, however, for classes in the Java Collection Framework.

There is also the question of efficiency. Even when an operation is defined for sev-
eral types of collections, it might not be equally efficient in all cases. Even a method
as simple as size() can vary greatly in efficiency. For some collections, computing
the size() might involve counting the items in the collection. The number of steps
in this process is equal to the number of items. Other collections might have instance
variables to keep track of the size, so evaluating size() just means returning the
value of a variable. In this case, the computation takes only one step, no matter how
many items there are. When working with collections, it’s good to have some idea of
how efficient operations are and to choose a collection for which the operations that
you need can be implemented most efficiently. We’ll see specific examples of this in
the next two sections.

8.5 Iterators and for-each Loops

THE INTERFACE Collection<T> defines a few basic generic algorithms, but suppose
you want to write your own generic algorithms. Suppose, for example, you want to do
something as simple as printing out every item in a collection. To do this in a generic
way, you need some way of going through an arbitrary collection, accessing each item
in turn. We have seen how to do this for specific data structures: For an array, you
can use a for loop to iterate through all the array indices. For a linked list, you can
use a while loop in which you advance a pointer along the list.

Collections can be represented in any of these forms and many others besides.
With such a variety of traversal mechanisms, how can we even hope to come up with
a single generic method that will work for collections that are stored in wildly differ-
ent forms? This problem is solved by iterators. An iterator is an object that can be
used to traverse a collection. Different types of collections have iterators that are im-
plemented in different ways, but all iterators are used in the same way. An algorithm
that uses an iterator to traverse a collection is generic, because the same technique
can be applied to any type of collection. Iterators can seem rather strange to someone
who is encountering generic programming for the first time, but you should under-
stand that they solve a difficult problem in an elegant way.

The interface Collection<T> defines a method that can be used to obtain an it-
erator for any collection. If coll is a collection, then coll.iterator() returns an
iterator that can be used to traverse the collection. You should think of the iter-
ator as a kind of generalized pointer that starts at the beginning of the collection
and can move along the collection from one item to the next. Iterators are defined
by a parameterized interface named Iterator<T>. If coll implements the interface
Collection<T> for some specific type T, then coll.iterator() returns an iterator

174

of type Iterator<T> , with the same type T as its type parameter. The interface
Iterator<T> defines just three methods. If iter refers to an object that implements
Iterator<T>, then we have:

• iter.next()–returns the next item, and advances the iterator. The return
value is of type T. This method lets you look at one of the items in the col-
lection. Note that there is no way to look at an item without advancing the
iterator past that item. If this method is called when no items remain, it will
throw a NoSuchElementException.

• iter.hasNext()–returns a boolean value telling you whether there are more
items to be processed. In general, you should test this before calling iter.next().

• iter.remove()–if you call this after calling iter.next(), it will remove the
item that you just saw from the collection. Note that this method has no pa-
rameter . It removes the item that was most recently returned by iter.next().
This might produce an UnsupportedOperationException, if the collection does
not support removal of items.

Using iterators, we can write code for printing all the items in any collection.
Suppose, for example, that coll is of type Collection<String>. In that case, the
value returned by coll.iterator() is of type Iterator<String>, and we can say:

Iterator<String> iter; / / Declare the i t e r a t e r v a r i a b l e .
iter = coll.iterator(); / / Get an i t e r a t o r f o r the c o l l e c t i o n .
while (iter.hasNext()) {

String item = iter.next(); / / Get the next i tem .
System.out.println(item);

}

The same general form will work for other types of processing. For example, the
following code will remove all null values from any collection of type
Collection<JButton> (as long as that collection supports removal of values):

Iterator<JButton> iter = coll.iterator():
while (iter.hasNext()) {

JButton item = iter.next();
if (item == null)

iter.remove();
}

(Note, by the way, that when Collection<T>, Iterator<T>, or any other param-
eterized type is used in actual code, they are always used with actual types such
as String or JButton in place of the “formal type parameter” T. An iterator of type
Iterator<String> is used to iterate through a collection of Strings; an iterator of
type Iterator<JButton> is used to iterate through a collection of JButtons; and so
on.)

An iterator is often used to apply the same operation to all the elements in a
collection. In many cases, it’s possible to avoid the use of iterators for this purpose
by using a for−each loop. A for−each loop can also be used to iterate through any
collection. For a collection coll of type Collection<T>, a for−each loop takes the
form:

for (T x : coll) { / / " f o r each ob jec t x , o f type T , i n c o l l "
/ / process x

}

175

Here, x is the loop control variable. Each object in coll will be assigned to x in
turn, and the body of the loop will be executed for each object. Since objects in
coll are of type T, x is declared to be of type T. For example, if namelist is of type
Collection<String>, we can print out all the names in the collection with:

for (String name : namelist) {
System.out.println(name);

}

This for-each loop could, of course, be written as a while loop using an iterator, but
the for-each loop is much easier to follow.

8.6 Equality and Comparison

THERE ARE SEVERAL METHODS in the collection interface that test objects for equality.
For example, the methods coll.contains(object) and coll.remove(object) look
for an item in the collection that is equal to object. However, equality is not such
a simple matter. The obvious technique for testing equality–using the == operator–
does not usually give a reasonable answer when applied to objects. The == operator
tests whether two objects are identical in the sense that they share the same location
in memory. Usually, however, we want to consider two objects to be equal if they
represent the same value, which is a very different thing. Two values of type String
should be considered equal if they contain the same sequence of characters. The
question of whether those characters are stored in the same location in memory is
irrelevant. Two values of type Date should be considered equal if they represent the
same time.

The Object class defines the boolean-valued method equals(Object) for testing
whether one object is equal to another. This method is used by many, but not by
all, collection classes for deciding whether two objects are to be considered the same.
In the Object class, obj1.equals(obj2) is defined to be the same as obj1 == obj2.
However, for most sub-classes of Object, this definition is not reasonable, and it
should be overridden. The String class, for example, overrides equals() so that for
a String str, str.equals(obj) if obj is also a String and obj contains the same
sequence of characters as str.

If you write your own class, you might want to define an equals() method in that
class to get the correct behavior when objects are tested for equality. For example, a
Card class that will work correctly when used in collections could be defined as shown
below. Without the equals() method in this class, methods such as contains() and
remove() in the interface Collection<Card> will not work as expected.

176

public class Card { / / Class to represent p lay ing cards .

int suit; / / Number from 0 to 3 t h a t codes f o r the s u i t −−
/ / spades , diamonds , c lubs or hear ts .

int value; / / Number from 1 to 13 t h a t represents the value .

public boolean equals(Object obj) {
try {

Card other = (Card)obj; / / Type−cast ob j to a Card .
if (suit == other.suit && value == other.value) {

/ / The other card has the same s u i t and value as
/ / t h i s card , so they should be considered equal .

return true;
}
else

return false;
}
catch (Exception e) {

/ / This w i l l catch the Nu l lPo in te rExcep t ion t h a t occurs i f ob j
/ / i s n u l l and the ClassCastExcept ion t h a t occurs i f ob j i s
/ / not o f type Card . In these cases , ob j i s not equal to
/ / t h i s Card , so r e t u r n f a l s e .

return false;
}

}

.

. / / o ther methods and cons t ruc to rs

.
}

A similar concern arises when items in a collection are sorted. Sorting refers to ar-
ranging a sequence of items in ascending order, according to some criterion. The prob-
lem is that there is no natural notion of ascending order for arbitrary objects. Before
objects can be sorted, some method must be defined for comparing them. Objects that
are meant to be compared should implement the interface java.lang.Comparable.
In fact, Comparable is defined as a parameterized interface, Comparable<T>, which
represents the ability to be compared to an object of type T. The interface Comparable<T>
defines one method: public int compareTo(T obj).

The value returned by obj1.compareTo(obj2) should be negative if and only if
obj1 comes before obj2, when the objects are arranged in ascending order. It should
be positive if and only if obj1 comes after obj2. A return value of zero means that the
objects are considered to be the same for the purposes of this comparison. This does
not necessarily mean that the objects are equal in the sense that obj1.equals(obj2)
is true. For example, if the objects are of type Address, representing mailing ad-
dresses, it might be useful to sort the objects by zip code. Two Addresses are consid-
ered the same for the purposes of the sort if they have the same zip code–but clearly
that would not mean that they are the same address.

The String class implements the interface Comparable<String> and define compareTo
in a reasonable way (and in this case, the return value of compareTo is zero if and
only if the two strings that are being compared are equal). If you define your own
class and want to be able to sort objects belonging to that class, you should do the
same. For example:

177

/∗ ∗
∗ Represents a f u l l name c o n s i s t i n g o f a f i r s t name and a l a s t name .
∗ /

public class FullName implements Comparable<FullName> {

private String firstName, lastName; / / Non−n u l l f i r s t and l a s t names .

public FullName(String first, String last) { / / Const ruc tor .
if (first == null || last == null)

throw new IllegalArgumentException("Names must be non−n u l l . ");
firstName = first;
lastName = last;

}

public boolean equals(Object obj) {
try {

FullName other = (FullName)obj; / / Type−cast ob j to type FullName
return firstName.equals(other.firstName)

&& lastName.equals(other.lastName);
}
catch (Exception e) {

return false; / / i f ob j i s n u l l or i s not o f type FirstName
}

}

public int compareTo(FullName other) {
if (lastName.compareTo(other.lastName) < 0) {

/ / I f lastName comes before the l a s t name of
/ / the other ob jec t , then t h i s FullName comes
/ / before the other FullName . Return a negat ive
/ / value to i n d i c a t e t h i s .

return −1;
}
if (lastName.compareTo(other.lastName) > 0) {

/ / I f lastName comes a f t e r the l a s t name of
/ / the other ob jec t , then t h i s FullName comes
/ / a f t e r the other FullName . Return a p o s i t i v e
/ / value to i n d i c a t e t h i s .

return 1;
}
else {

/ / Last names are the same , so base the comparison on
/ / the f i r s t names , using compareTo from c lass S t r i n g .

return firstName.compareTo(other.firstName);
}

}

.

. / / o ther methods

.
}

(Its odd to declare the class as “classFullName implements Comparable<FullName>”,
with “FullName” repeated as a type parameter in the name of the interface. How-
ever, it does make sense. It means that we are going to compare objects that belong
to the class FullName to other objects of the same type. Even though this is the only

178

reasonable thing to do, that fact is not obvious to the Java compiler – and the type
parameter in Comparable<FullName> is there for the compiler.)

There is another way to allow for comparison of objects in Java, and that is
to provide a separate object that is capable of making the comparison. The ob-
ject must implement the interface Comparator<T>, where T is the type of the ob-
jects that are to be compared. The interface Comparator<T> defines the method:
public int compare(T obj1, T obj2).

This method compares two objects of type T and returns a value that is negative,
or positive, or zero, depending on whether obj1 comes before obj2, or comes after
obj2, or is considered to be the same as obj2 for the purposes of this comparison.
Comparators are useful for comparing objects that do not implement the Comparable
interface and for defining several different orderings on the same collection of objects.

In the next two sections, we’ll see how Comparable and Comparator are used in
the context of collections and maps.

8.7 Generics and Wrapper Classes

AS NOTED ABOVE, JAVA’S GENERIC PROGRAMMING does not apply to the primitive types,
since generic data structures can only hold objects, while values of primitive type
are not objects. However, the “wrapper classes” make it possible to get around this
restriction to a great extent.

Recall that each primitive type has an associated wrapper class: class Integer for
type int, class Boolean for type boolean, class Character for type char, and so on.

An object of type Integer contains a value of type int. The object serves as a
“wrapper” for the primitive type value, which allows it to be used in contexts where
objects are required, such as in generic data structures. For example, a list of Inte-
gers can be stored in a variable of type ArrayList<Integer>, and interfaces such as
Collection<Integer> and Set<Integer> are defined. Furthermore, class Integer
defines equals(), compareTo(), and toString() methods that do what you would
expect (that is, that compare and write out the corresponding primitive type values
in the usual way). Similar remarks apply for all the wrapper classes.

Recall also that Java does automatic conversions between a primitive type and
the corresponding wrapper type. (These conversions, are called autoboxing and un-
boxing) This means that once you have created a generic data structure to hold ob-
jects belonging to one of the wrapper classes, you can use the data structure pretty
much as if it actually contained primitive type values. For example, if numbers
is a variable of type Collection<Integer>, it is legal to call numbers.add(17) or
numbers.remove(42). You can’t literally add the primitive type value 17 to num-
bers, but Java will automatically convert the 17 to the corresponding wrapper object,
new Integer(17), and the wrapper object will be added to the collection. (The cre-
ation of the object does add some time and memory overhead to the operation, and
you should keep that in mind in situations where efficiency is important. An array of
int is more efficient than an ArrayList<Integer>)

8.8 Lists

IN THE PREVIOUS SECTION, we looked at the general properties of collection classes in
Java. In this section, we look at a few specific collection classes (lists in particular)

179

and how to use them. A list consists of a sequence of items arranged in a linear order.
A list has a definite order, but is not necessarily sorted into ascending order.

ArrayList and LinkedList

There are two obvious ways to represent a list: as a dynamic array and as a linked
list. Both of these options are available in generic form as the collection classes
java.util.ArrayList and java.util.LinkedList. These classes are part of the
Java Collection Framework. Each implements the interface List<T>, and therefor
the interface Collection<T>. An object of type ArrayList<T> represents an ordered
sequence of objects of type T, stored in an array that will grow in size whenever
necessary as new items are added. An object of type LinkedList<T> also represents
an ordered sequence of objects of type T, but the objects are stored in nodes that are
linked together with pointers.

Both list classes support the basic list operations that are defined in the interface
List<T>, and an abstract data type is defined by its operations, not by its represen-
tation. So why two classes? Why not a single List class with a single representation?
The problem is that there is no single representation of lists for which all list oper-
ations are efficient. For some operations, linked lists are more efficient than arrays.
For others, arrays are more efficient. In a particular application of lists, it’s likely that
only a few operations will be used frequently. You want to choose the representation
for which the frequently used operations will be as efficient as possible.

Broadly speaking, the LinkedList class is more efficient in applications where
items will often be added or removed at the beginning of the list or in the middle of
the list. In an array, these operations require moving a large number of items up or
down one position in the array, to make a space for a new item or to fill in the hole
left by the removal of an item.

On the other hand, the ArrayList class is more efficient when random access to
items is required. Random access means accessing the k-th item in the list, for any
integer k. Random access is used when you get or change the value stored at a
specified position in the list. This is trivial for an array. But for a linked list it means
starting at the beginning of the list and moving from node to node along the list for k
steps.

Operations that can be done efficiently for both types of lists include sorting and
adding an item at the end of the list.

All lists implement the methods from interface Collection<T> that were dis-
cussed in previously. These methods include size(), isEmpty(), remove(Object),
add(T), and clear(). The add(T) method adds the object at the end of the list. The
remove(Object) method involves first finding the object, which is not very efficient
for any list since it involves going through the items in the list from beginning to end
until the object is found. The interface List<T> adds some methods for accessing list
items according to their numerical positions in the list. Suppose that list is an object
of type List<T>. Then we have the methods:

• list.get(index)–returns the object of type T that is at position index in the
list, where index is an integer. Items are numbered 0, 1, 2, ..., list.size()−1.
The parameter must be in this range, or an IndexOutOfBoundsException is
thrown.

• list.set(index,obj)–stores the object obj at position number index in the
list, replacing the object that was there previously. The object obj must be of

180

type T. This does not change the number of elements in the list or move any of
the other elements.

• list.add(index,obj)–inserts an object obj into the list at position number
index, where obj must be of type T. The number of items in the list increases
by one, and items that come after position index move up one position to make
room for the new item. The value of index must be in the range 0 to list.size(),
inclusive. If index is equal to list.size(), then obj is added at the end of the
list.

• list.remove(index)–removes the object at position number index, and returns
that object as the return value of the method. Items after this position move up
one space in the list to fill the hole, and the size of the list decreases by one. The
value of index must be in the range 0 to list.size()−1.

• list.indexOf(obj)–returns an int that gives the position of obj in the list, if
it occurs. If it does not occur, the return value is −1. The object obj can be of
any type, not just of type T. If obj occurs more than once in the list, the index of
the first occurrence is returned.

These methods are defined both in class ArrayList<T> and in class LinkedList<T>,
although some of them–get and set–are only efficient for ArrayLists. The class
LinkedList<T> adds a few additional methods, which are not defined for an ArrayList.
If linkedlist is an object of type LinkedList<T>, then we have

• linkedlist.getFirst()–returns the object of type T that is the first item in
the list. The list is not modified. If the list is empty when the method is called,
an exception of type NoSuchElementException is thrown (the same is true for
the next three methods as well).

• linkedlist.getLast()–returns the object of type T that is the last item in the
list. The list is not modified.

• linkedlist.removeFirst()–removes the first item from the list, and returns
that object of type T as its return value.

• linkedlist.removeLast()–removes the last item from the list, and returns that
object of type T as its return value.

• linkedlist.addFirst(obj)–adds the obj, which must be of type T, to the be-
ginning of the list.

• linkedlist.addLast(obj)–adds the object obj, which must be of type T, to
the end of the list. (This is exactly the same as linkedlist.add(obj) and is
apparently defined just to keep the naming consistent.)

If list is an object of type List<T>, then the method list.iterator(), defined
in the interface Collection<T>, returns an Iterator that can be used to traverse
the list from beginning to end. However, for Lists, there is a special type of Iterator,
called a ListIterator, which offers additional capabilities. ListIterator<T> is an
interface that extends the interface Iterator<T>. The method list.listIterator()
returns an object of type ListIterator<T>.

A ListIterator has the usual Iterator methods, hasNext(), next(), and
remove(), but it also has methods hasPrevious(), previous(), and add(obj) that

181

make it possible to move backwards in the list and to add an item at the current po-
sition of the iterator. To understand how these work, its best to think of an iterator
as pointing to a position between two list elements, or at the beginning or end of
the list. In this diagram, the items in a list are represented by squares, and arrows
indicate the possible positions of an iterator:

If iter is of type ListIterator<T>, then iter.next() moves the iterator one
space to the right along the list and returns the item that the iterator passes as it
moves. The method iter.previous() moves the iterator one space to the left along
the list and returns the item that it passes. The method iter.remove() removes an
item from the list; the item that is removed is the item that the iterator passed most
recently in a call to either iter.next() or iter.previous(). There is also a method
iter.add(obj) that adds the specified object to the list at the current position of the
iterator (where obj must be of type T). This can be between two existing items or at
the beginning of the list or at the end of the list.

As an example of using a ListIterator, suppose that we want to maintain a list
of items that is always sorted into increasing order. When adding an item to the list,
we can use a ListIterator to find the position in the list where the item should be
added. Once the position has been found, we use the same list iterator to place the
item in that position. The idea is to start at the beginning of the list and to move
the iterator forward past all the items that are smaller than the item that is being
inserted. At that point, the iterator’s add() method can be used to insert the item.
To be more definite, suppose that stringList is a variable of type List<String>.
Assume that that the strings that are already in the list are stored in ascending order
and that newItem is a string that we would like to insert into the list. The following
code will place newItem in the list in its correct position, so that the modified list is
still in ascending order:
ListIterator<String> iter = stringList.listIterator();
/ / Move the i t e r a t o r so t h a t i t po in t s to the p o s i t i o n where
/ / newItem should be inse r t ed i n t o the l i s t . I f newItem i s
/ / b igger than a l l the i tems i n the l i s t , then the whi le loop
/ / w i l l end when i t e r . hasNext () becomes fa lse , t h a t is , when
/ / the i t e r a t o r has reached the end of the l i s t .
while (iter.hasNext()) {

String item = iter.next();
if (newItem.compareTo(item) <= 0) {

/ / newItem should come BEFORE item i n the l i s t .
/ / Move the i t e r a t o r back one space so t h a t
/ / i t po in t s to the c o r r e c t i n s e r t i o n po in t ,
/ / and end the loop .

iter.previous();
break;

}
}
iter.add(newItem);

182

Here, stringList may be of type ArrayList<String> or of type LinkedList<String>.
The algorithm that is used to insert newItem into the list will be about equally ef-
ficient for both types of lists, and it will even work for other classes that imple-
ment the interface List<String>. You would probably find it easier to design an
insertion algorithm that uses array-like indexing with the methods get(index) and
add(index,obj). However, that algorithm would be inefficient for LinkedLists be-
cause random access is so inefficient for linked lists. (By the way, the insertion algo-
rithm works when the list is empty. It might be useful for you to think about why
this is true.)

Sorting

Sorting a list is a fairly common operation, and there should really be a sorting
method in the List interface. There is not, presumably because it only makes sense
to sort lists of certain types of objects, but methods for sorting lists are available
as static methods in the class java.util.Collections. This class contains a vari-
ety of static utility methods for working with collections. The methods are generic;
that is, they will work for collections of objects of various types. Suppose that list
is of type List<T>. The command Collections.sort(list); can be used to sort
the list into ascending order. The items in the list should implement the interface
Comparable<T>. The method Collections.sort() will work, for example, for lists
of String and for lists of any of the wrapper classes such as Integer and Double.
There is also a sorting method that takes a Comparator as its second argument:
Collections.sort(list,comparator);.

In this method, the comparator will be used to compare the items in the list. As
mentioned in the previous section, a Comparator is an object that defines a compare()
method that can be used to compare two objects.

The sorting method that is used by Collections.sort() is the so-called “merge
sort” algorithm.

The Collections class has at least two other useful methods for modifying lists.
Collections.shuffle(list) will rearrange the elements of the list into a random
order. Collections.reverse(list) will reverse the order of the elements, so that
the last element is moved to the beginning of the list, the next-to-last element to the
second position, and so on.

Since an efficient sorting method is provided for Lists, there is no need to write
one yourself. You might be wondering whether there is an equally convenient method
for standard arrays. The answer is yes. Array-sorting methods are available as static
methods in the class java.util.Arrays. The statement Arrays.sort(A); will sort
an array, A, provided either that the base type of A is one of the primitive types
(except boolean) or that A is an array of Objects that implement the Comparable
interface. You can also sort part of an array. This is important since arrays are often
only “partially filled.” The command: Arrays.sort(A,fromIndex,toIndex); sorts
the elements A[fromIndex], A[fromIndex+1], ..., A[toIndex−1] into ascending
order. You can use Arrays.sort(A,0,N−1) to sort a partially filled array which has
elements in the first N positions.

Java does not support generic programming for primitive types. In order to imple-
ment the command Arrays.sort(A), the Arrays class contains eight methods: one
method for arrays of Objects and one method for each of the primitive types byte,
short, int, long, float, double, and char.

183

184

Chapter 9
Correctness and

Robustness

Contents
9.1 Introduction . 186

9.1.1 Horror Stories . 186
9.1.2 Java to the Rescue . 187
9.1.3 Problems Remain in Java . 189

9.2 Writing Correct Programs . 190
9.2.1 Provably Correct Programs . 190
9.2.2 Robust Handling of Input . 193

9.3 Exceptions and try..catch . 194
9.3.1 Exceptions and Exception Classes 194
9.3.2 The try Statement . 196
9.3.3 Throwing Exceptions . 199
9.3.4 Mandatory Exception Handling 200
9.3.5 Programming with Exceptions 201

9.4 Assertions . 203

A PROGRAM IS CORRECT if it accomplishes the task that it was designed to per-
form. It is robust if it can handle illegal inputs and other unexpected situations in
a reasonable way. For example, consider a program that is designed to read some
numbers from the user and then print the same numbers in sorted order. The pro-
gram is correct if it works for any set of input numbers. It is robust if it can also deal
with non-numeric input by, for example, printing an error message and ignoring the
bad input. A non-robust program might crash or give nonsensical output in the same
circumstance.

Every program should be correct. (A sorting program that doesn’t sort correctly
is pretty useless.) It’s not the case that every program needs to be completely robust.
It depends on who will use it and how it will be used. For example, a small utility
program that you write for your own use doesn’t have to be particularly robust.

The question of correctness is actually more subtle than it might appear. A pro-
grammer works from a specification of what the program is supposed to do. The
programmer’s work is correct if the program meets its specification. But does that

185

mean that the program itself is correct? What if the specification is incorrect or in-
complete? A correct program should be a correct implementation of a complete and
correct specification. The question is whether the specification correctly expresses
the intention and desires of the people for whom the program is being written. This
is a question that lies largely outside the domain of computer science.

9.1 Introduction

9.1.1 Horror Stories

MOST COMPUTER USERS HAVE PERSONAL EXPERIENCE with programs that don’t work or
that crash. In many cases, such problems are just annoyances, but even on a personal
computer there can be more serious consequences, such as lost work or lost money.
When computers are given more important tasks, the consequences of failure can be
proportionately more serious.

Just a few years ago, the failure of two multi-million space missions to Mars was
prominent in the news. Both failures were probably due to software problems, but
in both cases the problem was not with an incorrect program as such. In September
1999, the Mars Climate Orbiter burned up in the Martian atmosphere because data
that was expressed in English units of measurement (such as feet and pounds) was
entered into a computer program that was designed to use metric units (such as cen-
timeters and grams). A few months later, the Mars Polar Lander probably crashed
because its software turned off its landing engines too soon. The program was sup-
posed to detect the bump when the spacecraft landed and turn off the engines then.
It has been determined that deployment of the landing gear might have jarred the
spacecraft enough to activate the program, causing it to turn off the engines when
the spacecraft was still in the air. The unpowered spacecraft would then have fallen
to the Martian surface. A more robust system would have checked the altitude before
turning off the engines!

There are many equally dramatic stories of problems caused by incorrect or poorly
written software. Let’s look at a few incidents recounted in the book Computer Ethics
by Tom Forester and Perry Morrison. (This book covers various ethical issues in
computing. It, or something like it, is essential reading for any student of computer
science.)

In 1985 and 1986, one person was killed and several were injured by excess ra-
diation, while undergoing radiation treatments by a mis-programmed computerized
radiation machine. In another case, over a ten-year period ending in 1992, almost
1,000 cancer patients received radiation dosages that were 30% less than prescribed
because of a programming error.

In 1985, a computer at the Bank of New York started destroying records of on-
going security transactions because of an error in a program. It took less than 24
hours to fix the program, but by that time, the bank was out $5,000,000 in overnight
interest payments on funds that it had to borrow to cover the problem.

The programming of the inertial guidance system of the F-16 fighter plane would
have turned the plane upside-down when it crossed the equator, if the problem had
not been discovered in simulation. The Mariner 18 space probe was lost because of
an error in one line of a program. The Gemini V space capsule missed its scheduled
landing target by a hundred miles, because a programmer forgot to take into account
the rotation of the Earth.

186

In 1990, AT&T’s long-distance telephone service was disrupted throughout the
United States when a newly loaded computer program proved to contain a bug.

These are just a few examples. Software problems are all too common. As pro-
grammers, we need to understand why that is true and what can be done about it.

9.1.2 Java to the Rescue

Part of the problem, according to the inventors of Java, can be traced to programming
languages themselves. Java was designed to provide some protection against certain
types of errors. How can a language feature help prevent errors? Let’s look at a few
examples.

Early programming languages did not require variables to be declared. In such
languages, when a variable name is used in a program, the variable is created au-
tomatically. You might consider this more convenient than having to declare every
variable explicitly. But there is an unfortunate consequence: An inadvertent spelling
error might introduce an extra variable that you had no intention of creating. This
type of error was responsible, according to one famous story, for yet another lost
spacecraft. In the FORTRAN programming language, the command “DO 20 I = 1,5”
is the first statement of a counting loop. Now, spaces are insignificant in FORTRAN,
so this is equivalent to “DO20I=1,5”. On the other hand, the command “DO20I=1.5”,
with a period instead of a comma, is an assignment statement that assigns the value
1.5 to the variable DO20I. Supposedly, the inadvertent substitution of a period for a
comma in a statement of this type caused a rocket to blow up on take-off. Because
FORTRAN doesn’t require variables to be declared, the compiler would be happy to
accept the statement “DO20I=1.5.” It would just create a new variable named DO20I.
If FORTRAN required variables to be declared, the compiler would have complained
that the variable DO20I was undeclared.

While most programming languages today do require variables to be declared,
there are other features in common programming languages that can cause problems.
Java has eliminated some of these features. Some people complain that this makes
Java less efficient and less powerful. While there is some justice in this criticism, the
increase in security and robustness is probably worth the cost in most circumstances.
The best defense against some types of errors is to design a programming language in
which the errors are impossible. In other cases, where the error can’t be completely
eliminated, the language can be designed so that when the error does occur, it will
automatically be detected. This will at least prevent the error from causing further
harm, and it will alert the programmer that there is a bug that needs fixing. Let’s
look at a few cases where the designers of Java have taken these approaches.

An array is created with a certain number of locations, numbered from zero up to
some specified maximum index. It is an error to try to use an array location that is
outside of the specified range. In Java, any attempt to do so is detected automatically
by the system. In some other languages, such as C and C++, it’s up to the programmer
to make sure that the index is within the legal range. Suppose that an array, A, has
three locations, A[0], A[1], and A[2]. Then A[3], A[4], and so on refer to memory
locations beyond the end of the array. In Java, an attempt to store data in A[3] will
be detected. The program will be terminated (unless the error is “caught”. In C or
C++, the computer will just go ahead and store the data in memory that is not part of
the array. Since there is no telling what that memory location is being used for, the
result will be unpredictable. The consequences could be much more serious than a
terminated program. (See, for example, the discussion of buffer overflow errors later

187

in this section.)
Pointers are a notorious source of programming errors. In Java, a variable of ob-

ject type holds either a pointer to an object or the special value null. Any attempt
to use a null value as if it were a pointer to an actual object will be detected by the
system. In some other languages, again, it’s up to the programmer to avoid such
null pointer errors. In my old Macintosh computer, a null pointer was actually im-
plemented as if it were a pointer to memory location zero. A program could use a
null pointer to change values stored in memory near location zero. Unfortunately,
the Macintosh stored important system data in those locations. Changing that data
could cause the whole system to crash, a consequence more severe than a single failed
program.

Another type of pointer error occurs when a pointer value is pointing to an object
of the wrong type or to a segment of memory that does not even hold a valid object at
all. These types of errors are impossible in Java, which does not allow programmers
to manipulate pointers directly. In other languages, it is possible to set a pointer to
point, essentially, to any location in memory. If this is done incorrectly, then using
the pointer can have unpredictable results.

Another type of error that cannot occur in Java is a memory leak. In Java, once
there are no longer any pointers that refer to an object, that object is “garbage col-
lected” so that the memory that it occupied can be reused. In other languages, it
is the programmer’s responsibility to return unused memory to the system. If the
programmer fails to do this, unused memory can build up, leaving less memory for
programs and data. There is a story that many common programs for older Windows
computers had so many memory leaks that the computer would run out of memory
after a few days of use and would have to be restarted.

Many programs have been found to suffer from buffer overflow errors. Buffer
overflow errors often make the news because they are responsible for many network
security problems. When one computer receives data from another computer over
a network, that data is stored in a buffer. The buffer is just a segment of memory
that has been allocated by a program to hold data that it expects to receive. A buffer
overflow occurs when more data is received than will fit in the buffer. The question is,
what happens then? If the error is detected by the program or by the networking soft-
ware, then the only thing that has happened is a failed network data transmission.
The real problem occurs when the software does not properly detect buffer overflows.
In that case, the software continues to store data in memory even after the buffer is
filled, and the extra data goes into some part of memory that was not allocated by the
program as part of the buffer. That memory might be in use for some other purpose.
It might contain important data. It might even contain part of the program itself.
This is where the real security issues come in. Suppose that a buffer overflow causes
part of a program to be replaced with extra data received over a network. When the
computer goes to execute the part of the program that was replaced, it’s actually ex-
ecuting data that was received from another computer. That data could be anything.
It could be a program that crashes the computer or takes it over. A malicious pro-
grammer who finds a convenient buffer overflow error in networking software can try
to exploit that error to trick other computers into executing his programs.

For software written completely in Java, buffer overflow errors are impossible.
The language simply does not provide any way to store data into memory that has
not been properly allocated. To do that, you would need a pointer that points to
unallocated memory or you would have to refer to an array location that lies outside

188

the range allocated for the array. As explained above, neither of these is possible
in Java. (However, there could conceivably still be errors in Java’s standard classes,
since some of the methods in these classes are actually written in the C programming
language rather than in Java.)

It’s clear that language design can help prevent errors or detect them when they
occur. Doing so involves restricting what a programmer is allowed to do. Or it re-
quires tests, such as checking whether a pointer is null, that take some extra process-
ing time. Some programmers feel that the sacrifice of power and efficiency is too high
a price to pay for the extra security. In some applications, this is true. However, there
are many situations where safety and security are primary considerations. Java is
designed for such situations.

9.1.3 Problems Remain in Java

There is one area where the designers of Java chose not to detect errors automati-
cally: numerical computations. In Java, a value of type int is represented as a 32-bit
binary number. With 32 bits, it’s possible to represent a little over four billion dif-
ferent values. The values of type int range from −2147483648 to 2147483647. What
happens when the result of a computation lies outside this range? For example, what
is 2147483647 + 1? And what is 2000000000 ∗ 2? The mathematically correct result
in each case cannot be represented as a value of type int. These are examples of
integer overflow. In most cases, integer overflow should be considered an error. How-
ever, Java does not automatically detect such errors. For example, it will compute
the value of 2147483647 + 1 to be the negative number, −2147483648. (What happens
is that any extra bits beyond the 32-nd bit in the correct answer are discarded. Val-
ues greater than 2147483647 will “wrap around” to negative values. Mathematically
speaking, the result is always “correct modulo 232”.)

For example, consider the 3N +1 program. Starting from a positive integer N, the
program computes a certain sequence of integers:

while (N != 1) {
if (N % 2 == 0) / / I f N i s even . . .

N = N / 2;
else

N = 3 ∗ N + 1;
System.out.println(N);

}

But there is a problem here: If N is too large, then the value of 3 ∗ N + 1 will not
be mathematically correct because of integer overflow. The problem arises whenever
3 ∗ N + 1 > 2147483647, that is when N > 2147483646/3. For a completely correct
program, we should check for this possibility before computing 3 ∗N + 1:

while (N != 1) {
if (N % 2 == 0) / / I f N i s even . . .

N = N / 2;
else {

if (N > 2147483646/3) {
System.out.println(" Sorry , value of N has become too large ! ");
break;

}
N = 3 ∗ N + 1;

}
System.out.println(N); }

189

The problem here is not that the original algorithm for computing 3N + 1 se-
quences was wrong. The problem is that it just can’t be correctly implemented using
32-bit integers. Many programs ignore this type of problem. But integer overflow
errors have been responsible for their share of serious computer failures, and a com-
pletely robust program should take the possibility of integer overflow into account.
(The infamous “Y2K” bug was, in fact, just this sort of error.)

For numbers of type double, there are even more problems. There are still over-
flow errors, which occur when the result of a computation is outside the range of val-
ues that can be represented as a value of type double. This range extends up to about
1.7× 10308. Numbers beyond this range do not “wrap around” to negative values. In-
stead, they are represented by special values that have no real numerical equivalent.
The special values Double.POSITIVE_INFINITY and Double.NEGATIVE_INFINITY rep-
resent numbers outside the range of legal values. For example, 20×10308 is computed
to be Double.POSITIVE_INFINITY. Another special value of type double, Double.NaN,
represents an illegal or undefined result. (“NaN” stands for “Not a Number”.) For ex-
ample, the result of dividing by zero or taking the square root of a negative number
is Double.NaN. You can test whether a number x is this special non-a-number value
by calling the boolean-valued method Double.isNaN(x).

For real numbers, there is the added complication that most real numbers can
only be represented approximately on a computer. A real number can have an infi-
nite number of digits after the decimal point. A value of type double is only accu-
rate to about 15 digits. The real number 1/3, for example, is the repeating decimal
0.333333333333..., and there is no way to represent it exactly using a finite number of
digits. Computations with real numbers generally involve a loss of accuracy. In fact,
if care is not exercised, the result of a large number of such computations might be
completely wrong! There is a whole field of computer science, known as numerical
analysis, which is devoted to studying algorithms that manipulate real numbers.

So you see that not all possible errors are avoided or detected automatically in
Java. Furthermore, even when an error is detected automatically, the system’s de-
fault response is to report the error and terminate the program. This is hardly robust
behavior! So, a Java programmer still needs to learn techniques for avoiding and
dealing with errors. These are the main topics of the rest of this chapter.

9.2 Writing Correct Programs

CORRECT PROGRAMS DON’T JUST HAPPEN. It takes planning and attention to detail to
avoid errors in programs. There are some techniques that programmers can use to
increase the likelihood that their programs are correct.

9.2.1 Provably Correct Programs

In some cases, it is possible to prove that a program is correct. That is, it is possible
to demonstrate mathematically that the sequence of computations represented by the
program will always produce the correct result. Rigorous proof is difficult enough that
in practice it can only be applied to fairly small programs. Furthermore, it depends
on the fact that the “correct result” has been specified correctly and completely. As
I’ve already pointed out, a program that correctly meets its specification is not useful
if its specification was wrong. Nevertheless, even in everyday programming, we can
apply the ideas and techniques that are used in proving that programs are correct.

190

The fundamental ideas are process and state. A state consists of all the informa-
tion relevant to the execution of a program at a given moment during its execution.
The state includes, for example, the values of all the variables in the program, the
output that has been produced, any input that is waiting to be read, and a record of
the position in the program where the computer is working. A process is the sequence
of states that the computer goes through as it executes the program. From this point
of view, the meaning of a statement in a program can be expressed in terms of the
effect that the execution of that statement has on the computer’s state. As a simple
example, the meaning of the assignment statement “x = 7;” is that after this state-
ment is executed, the value of the variable x will be 7. We can be absolutely sure of
this fact, so it is something upon which we can build part of a mathematical proof.

In fact, it is often possible to look at a program and deduce that some fact must
be true at a given point during the execution of a program. For example, consider the
do loop:

do {
Scanner keyboard = new Scanner(System.in);
System.out.prinln(" Enter a pos i t i ve integer : ");
N = keyboard.nextInt();

} while (N <= 0);

After this loop ends, we can be absolutely sure that the value of the variable N
is greater than zero. The loop cannot end until this condition is satisfied. This fact
is part of the meaning of the while loop. More generally, if a while loop uses the test
“while (condition)”, then after the loop ends, we can be sure that the condition is
false. We can then use this fact to draw further deductions about what happens as
the execution of the program continues. (With a loop, by the way, we also have to
worry about the question of whether the loop will ever end. This is something that
has to be verified separately.)

A fact that can be proven to be true after a given program segment has been
executed is called a postcondition of that program segment. Postconditions are known
facts upon which we can build further deductions about the behavior of the program.
A postcondition of a program as a whole is simply a fact that can be proven to be true
after the program has finished executing. A program can be proven to be correct by
showing that the postconditions of the program meet the program’s specification.

Consider the following program segment, where all the variables are of type dou-
ble:

disc = B∗B − 4∗A∗C;
x = (−B + Math.sqrt(disc)) / (2∗A);

The quadratic formula (from high-school mathematics) assures us that the value
assigned to x is a solution of the equation Ax2+Bx+C = 0, provided that the value of
disc is greater than or equal to zero and the value of A is not zero. If we can assume
or guarantee that B ∗ B − 4 ∗ A ∗ C > = 0 and that A! = 0, then the fact that x is
a solution of the equation becomes a postcondition of the program segment. We say
that the condition, B ∗B− 4 ∗A ∗C > = 0 is a precondition of the program segment.
The condition that A ! = 0 is another precondition. A precondition is defined to be
condition that must be true at a given point in the execution of a program in order
for the program to continue correctly. A precondition is something that you want to
be true. It’s something that you have to check or force to be true, if you want your
program to be correct.

191

We’ve encountered preconditions and postconditions once before. That section
introduced preconditions and postconditions as a way of specifying the contract of a
method. As the terms are being used here, a precondition of a method is just a precon-
dition of the code that makes up the definition of the method, and the postcondition
of a method is a postcondition of the same code. In this section, we have generalized
these terms to make them more useful in talking about program correctness.

Let’s see how this works by considering a longer program segment:
do {

Scanner keyboard = new Scanner(System.in);
System.out.println(" Enter A, B , and C. B∗B−4∗A∗C must be >= 0. ");
System.out.print("A = ");
A = keyboard.nextDouble();
System.out.print(" B = ");
B = keyboard.nextDouble();
System.out.print("C = ");
C = keyboard.nextDouble();
if (A == 0 || B∗B − 4∗A∗C < 0)

System.out.println(" Your input i s i l l e g a l . T r y again . ");
} while (A == 0 || B∗B − 4∗A∗C < 0);

disc = B∗B − 4∗A∗C;
x = (−B + Math.sqrt(disc)) / (2∗A);

After the loop ends, we can be sure that B ∗B − 4 ∗A ∗C >= 0 and that A ! = 0.
The preconditions for the last two lines are fulfilled, so the postcondition that x is a
solution of the equation A ∗ x2 + B ∗ x + C = 0 is also valid. This program segment
correctly and provably computes a solution to the equation. (Actually, because of
problems with representing numbers on computers, this is not 100% true. The algo-
rithm is correct, but the program is not a perfect implementation of the algorithm.

Here is another variation, in which the precondition is checked by an if statement.
In the first part of the if statement, where a solution is computed and printed, we
know that the preconditions are fulfilled. In the other parts, we know that one of the
preconditions fails to hold. In any case, the program is correct.
Scanner keyboard = new Scanner(System.in);
System.out.println(" Enter your values fo r A, B , and C. ");
System.out.print("A = ");
A = keyboard.nextDouble();
System.out.print(" B = ");
B = keyboard.nextDouble();
System.out.print("C = ");
C = keyboard.nextDouble();

if (A != 0 && B∗B − 4∗A∗C >= 0) {
disc = B∗B − 4∗A∗C;
x = (−B + Math.sqrt(disc)) / (2∗A);
System.out.println("A so lu t ion of A∗X∗X + B∗X + C = 0 i s " + x);

}
else if (A == 0) {

System.out.println(" The value of A cannot be zero . ");
}
else {

System.out.println(" Since B∗B − 4∗A∗C i s l e s s than zero , the ");
System.out.println(" equation A∗X∗X + B∗X + C = 0 has no so lu t ion . ");

}

192

Whenever you write a program, it’s a good idea to watch out for preconditions and
think about how your program handles them. Often, a precondition can offer a clue
about how to write the program.

For example, every array reference, such as A[i], has a precondition: The index
must be within the range of legal indices for the array. For A[i], the precondition is
that 0 <= i < A.length. The computer will check this condition when it evaluates
A[i], and if the condition is not satisfied, the program will be terminated. In order to
avoid this, you need to make sure that the index has a legal value. (There is actually
another precondition, namely that A is not null, but let’s leave that aside for the
moment.) Consider the following code, which searches for the number x in the array
A and sets the value of i to be the index of the array element that contains x:

i = 0;
while (A[i] != x) {

i++;
}

As this program segment stands, it has a precondition, namely that x is actually
in the array. If this precondition is satisfied, then the loop will end when A[i] == x.
That is, the value of i when the loop ends will be the position of x in the array.
However, if x is not in the array, then the value of i will just keep increasing until it
is equal to A.length. At that time, the reference to A[i] is illegal and the program will
be terminated. To avoid this, we can add a test to make sure that the precondition
for referring to A[i] is satisfied:

i = 0;
while (i < A.length && A[i] != x) {

i++;
}

Now, the loop will definitely end. After it ends, i will satisfy either i == A.length
or A[i] == x. An if statement can be used after the loop to test which of these con-
ditions caused the loop to end:

i = 0;
while (i < A.length && A[i] != x) {

i++;
}

if (i == A.length)
System.out.println(" x i s not in the array ");

else
System.out.println(" x i s in pos i t ion " + i);

9.2.2 Robust Handling of Input

One place where correctness and robustness are important–and especially difficult–
is in the processing of input data, whether that data is typed in by the user, read from
a file, or received over a network.

Sometimes, it’s useful to be able to look ahead at what’s coming up in the input
without actually reading it. For example, a program might need to know whether the
next item in the input is a number or a word. For this purpose, the Scanner class has
various hasNext methods. These includes hasNextBoolean(); hasNextInteger();
hasNextLine() and hasNextDouble(). For example the hasNextInteger() method

193

returns true if the input’s next token is an integer. Thus, you can check if the expected
input is available before actually reading it.

9.3 Exceptions and try..catch

GETTING A PROGRAM TO WORK under ideal circumstances is usually a lot easier than
making the program robust. A robust program can survive unusual or “exceptional”
circumstances without crashing. One approach to writing robust programs is to an-
ticipate the problems that might arise and to include tests in the program for each
possible problem. For example, a program will crash if it tries to use an array ele-
ment A[i], when i is not within the declared range of indices for the array A. A robust
program must anticipate the possibility of a bad index and guard against it. One way
to do this is to write the program in a way that ensures that the index is in the legal
range. Another way is to test whether the index value is legal before using it in the
array. This could be done with an if statement:

if (i < 0 || i >= A.length) {
... / / Do something to handle the out−of−range index , i

}
else {

... / / Process the ar ray element , A [i]
}

There are some problems with this approach. It is difficult and sometimes impos-
sible to anticipate all the possible things that might go wrong. It’s not always clear
what to do when an error is detected. Furthermore, trying to anticipate all the pos-
sible problems can turn what would otherwise be a straightforward program into a
messy tangle of if statements.

9.3.1 Exceptions and Exception Classes

We have already seen that Java (like its cousin, C++) provides a neater, more struc-
tured alternative method for dealing with errors that can occur while a program is
running. The method is referred to as exception handling. The word “exception” is
meant to be more general than “error.” It includes any circumstance that arises as
the program is executed which is meant to be treated as an exception to the normal
flow of control of the program. An exception might be an error, or it might just be a
special case that you would rather not have clutter up your elegant algorithm.

When an exception occurs during the execution of a program, we say that the ex-
ception is thrown. When this happens, the normal flow of the program is thrown off-
track, and the program is in danger of crashing. However, the crash can be avoided if
the exception is caught and handled in some way. An exception can be thrown in one
part of a program and caught in a different part. An exception that is not caught will
generally cause the program to crash.

By the way, since Java programs are executed by a Java interpreter, having a pro-
gram crash simply means that it terminates abnormally and prematurely. It doesn’t
mean that the Java interpreter will crash. In effect, the interpreter catches any
exceptions that are not caught by the program. The interpreter responds by termi-
nating the program. In many other programming languages, a crashed program will
sometimes crash the entire system and freeze the computer until it is restarted. With

194

Java, such system crashes should be impossible – which means that when they hap-
pen, you have the satisfaction of blaming the system rather than your own program.

When an exception occurs, the thing that is actually “thrown” is an object. This
object can carry information (in its instance variables) from the point where the ex-
ception occurs to the point where it is caught and handled. This information always
includes the method call stack, which is a list of the methods that were being executed
when the exception was thrown. (Since one method can call another, several methods
can be active at the same time.) Typically, an exception object also includes an error
message describing what happened to cause the exception, and it can contain other
data as well. All exception objects must belong to a subclass of the standard class
java.lang.Throwable. In general, each different type of exception is represented by
its own subclass of Throwable, and these subclasses are arranged in a fairly com-
plex class hierarchy that shows the relationship among various types of exceptions.
Throwable has two direct subclasses, Error and Exception. These two subclasses in
turn have many other predefined subclasses. In addition, a programmer can create
new exception classes to represent new types of exceptions.

Most of the subclasses of the class Error represent serious errors within the Java
virtual machine that should ordinarily cause program termination because there is
no reasonable way to handle them. In general, you should not try to catch and handle
such errors. An example is a ClassFormatError, which occurs when the Java virtual
machine finds some kind of illegal data in a file that is supposed to contain a compiled
Java class. If that class was being loaded as part of the program, then there is really
no way for the program to proceed.

On the other hand, subclasses of the class Exception represent exceptions that
are meant to be caught. In many cases, these are exceptions that might naturally be
called “errors,” but they are errors in the program or in input data that a programmer
can anticipate and possibly respond to in some reasonable way. (However, you should
avoid the temptation of saying, “Well, I’ll just put a thing here to catch all the errors
that might occur, so my program won’t crash.” If you don’t have a reasonable way to
respond to the error, it’s best just to let the program crash, because trying to go on
will probably only lead to worse things down the road – in the worst case, a program
that gives an incorrect answer without giving you any indication that the answer
might be wrong!)

The class Exception has its own subclass, RuntimeException. This class groups
together many common exceptions, including all those that have been covered in pre-
vious sections. For example, IllegalArgumentException and NullPointerException
are subclasses of RuntimeException. A RuntimeException generally indicates a bug
in the program, which the programmer should fix. RuntimeExceptions and Errors
share the property that a program can simply ignore the possibility that they might
occur. (“Ignoring” here means that you are content to let your program crash if the
exception occurs.) For example, a program does this every time it uses an array refer-
ence like A[i] without making arrangements to catch a possible
ArrayIndexOutOfBoundsException. For all other exception classes besides Error,
RuntimeException, and their subclasses, exception-handling is “mandatory” in a
sense that I’ll discuss below.

The following diagram is a class hierarchy showing the class Throwable and just a
few of its subclasses. Classes that require mandatory exception-handling are shown
in red:

195

The class Throwable includes several instance methods that can be used with any
exception object. If e is of type Throwable (or one of its subclasses), then
e.getMessage() is a method that returns a String that describes the exception. The
method e.toString(), which is used by the system whenever it needs a string rep-
resentation of the object, returns a String that contains the name of the class to
which the exception belongs as well as the same string that would be returned by
e.getMessage(). And e.printStackTrace() writes a stack trace to standard output
that tells which methods were active when the exception occurred. A stack trace can
be very useful when you are trying to determine the cause of the problem. (Note that
if an exception is not caught by the program, then the system automatically prints
the stack trace to standard output.)

9.3.2 The try Statement

To catch exceptions in a Java program, you need a try statement. The try statements
that we have used so far had a syntax similar to the following example:

try {
double determinant = M[0][0]∗M[1][1] − M[0][1]∗M[1][0];
System.out.println(" The determinant of M i s " + determinant);

}
catch (ArrayIndexOutOfBoundsException e) {

System.out.println("M i s the wrong s i z e to have a determinant . ");
e.printStackTrace();

}

Here, the computer tries to execute the block of statements following the word
“try”. If no exception occurs during the execution of this block, then the “catch” part of
the statement is simply ignored. However, if an exception of type
ArrayIndexOutOfBoundsException occurs, then the computer jumps immediately to
the catch clause of the try statement. This block of statements is said to be an ex-
ception handler for ArrayIndexOutOfBoundsException. By handling the exception
in this way, you prevent it from crashing the program. Before the body of the catch
clause is executed, the object that represents the exception is assigned to the variable
e, which is used in this example to print a stack trace.

196

However, the full syntax of the try statement allows more than one catch clause.
This makes it possible to catch several different types of exceptions with one try state-
ment. In the example above, in addition to the possibility of an
ArrayIndexOutOfBoundsException, there is a possible NullPointerException which
will occur if the value of M is null. We can handle both exceptions by adding a second
catch clause to the try statement:

try {
double determinant = M[0][0]∗M[1][1] − M[0][1]∗M[1][0];
System.out.println(" The determinant of M i s " + determinant);

}
catch (ArrayIndexOutOfBoundsException e) {

System.out.println("M i s the wrong s i z e to have a determinant . ");
}
catch (NullPointerException e) {

System.out.print(" Programming er ro r ! M doesn ’ t e x i s t . " +);
}

Here, the computer tries to execute the statements in the try clause. If no error oc-
curs, both of the catch clauses are skipped. If an ArrayIndexOutOfBoundsException
occurs, the computer executes the body of the first catch clause and skips the sec-
ond one. If a NullPointerException occurs, it jumps to the second catch clause and
executes that.

Note that both ArrayIndexOutOfBoundsException and NullPointerException
are subclasses of RuntimeException. It’s possible to catch all RuntimeExceptions
with a single catch clause. For example:

try {
double determinant = M[0][0]∗M[1][1] − M[0][1]∗M[1][0];
System.out.println(" The determinant of M i s " + determinant);

}
catch (RuntimeException err) {

System.out.println(" Sorry , an er ro r has occurred . ");
System.out.println(" The er ro r was : " + err);

}

The catch clause in this try statement will catch any exception belonging to class
RuntimeException or to any of its subclasses. This shows why exception classes are
organized into a class hierarchy. It allows you the option of casting your net narrowly
to catch only a specific type of exception. Or you can cast your net widely to catch
a wide class of exceptions. Because of subclassing, when there are multiple catch
clauses in a try statement, it is possible that a given exception might match several of
those catch clauses. For example, an exception of type NullPointerException would
match catch clauses for NullPointerException, RuntimeException, Exception, or
Throwable. In this case, only the first catch clause that matches the exception is
executed.

The example I’ve given here is not particularly realistic. You are not very likely
to use exception-handling to guard against null pointers and bad array indices. This
is a case where careful programming is better than exception handling: Just be sure
that your program assigns a reasonable, non-null value to the array M. You would
certainly resent it if the designers of Java forced you to set up a try..catch state-
ment every time you wanted to use an array! This is why handling of potential
RuntimeExceptions is not mandatory. There are just too many things that might
go wrong! (This also shows that exception-handling does not solve the problem of

197

program robustness. It just gives you a tool that will in many cases let you approach
the problem in a more organized way.)

I have still not completely specified the syntax of the try statement. There is one
additional element: the possibility of a finally clause at the end of a try statement.
The complete syntax of the try statement can be described as:

try {
statements

}
optional−catch−clauses
optional−finally−clause

Note that the catch clauses are also listed as optional. The try statement can include
zero or more catch clauses and, optionally, a finally clause. The try statement must
include one or the other. That is, a try statement can have either a finally clause,
or one or more catch clauses, or both. The syntax for a catch clause is

catch (exception−class−name variable−name) {
statements

}

and the syntax for a finally clause is

finally {
statements

}

The semantics of the finally clause is that the block of statements in the finally
clause is guaranteed to be executed as the last step in the execution of the try state-
ment, whether or not any exception occurs and whether or not any exception that
does occur is caught and handled. The finally clause is meant for doing essential
cleanup that under no circumstances should be omitted. One example of this type of
cleanup is closing a network connection. Although you don’t yet know enough about
networking to look at the actual programming in this case, we can consider some
pseudocode:

try {
open a network connection

}
catch (IOException e) {

report the error
return / / Don ’ t cont inue i f connect ion can ’ t be opened !

}

/ / At t h i s po in t , we KNOW t h a t the connect ion i s open .

try {
communicate over the connection

}
catch (IOException e) {

handle the error
}
finally {

close the connection
}

The finally clause in the second try statement ensures that the network con-
nection will definitely be closed, whether or not an error occurs during the commu-

198

nication. The first try statement is there to make sure that we don’t even try to
communicate over the network unless we have successfully opened a connection. The
pseudocode in this example follows a general pattern that can be used to robustly
obtain a resource, use the resource, and then release the resource.

9.3.3 Throwing Exceptions

There are times when it makes sense for a program to deliberately throw an excep-
tion. This is the case when the program discovers some sort of exceptional or error
condition, but there is no reasonable way to handle the error at the point where the
problem is discovered. The program can throw an exception in the hope that some
other part of the program will catch and handle the exception. This can be done with
a throw statement. In this section, we cover the throw statement more fully. The
syntax of the throw statement is: throw exception−object ;

The exception-object must be an object belonging to one of the subclasses of
Throwable. Usually, it will in fact belong to one of the subclasses of Exception. In
most cases, it will be a newly constructed object created with the new operator. For
example: throw new ArithmeticException("Division by zero");

The parameter in the constructor becomes the error message in the exception ob-
ject; if e refers to the object, the error message can be retrieved by calling
e.getMessage(). (You might find this example a bit odd, because you might ex-
pect the system itself to throw an ArithmeticException when an attempt is made
to divide by zero. So why should a programmer bother to throw the exception? Re-
calls that if the numbers that are being divided are of type int, then division by zero
will indeed throw an ArithmeticException. However, no arithmetic operations with
floating-point numbers will ever produce an exception. Instead, the special value
Double.NaN is used to represent the result of an illegal operation. In some situations,
you might prefer to throw an ArithmeticException when a real number is divided
by zero.)

An exception can be thrown either by the system or by a throw statement. The
exception is processed in exactly the same way in either case. Suppose that the ex-
ception is thrown inside a try statement. If that try statement has a catch clause that
handles that type of exception, then the computer jumps to the catch clause and exe-
cutes it. The exception has been handled. After handling the exception, the computer
executes the finally clause of the try statement, if there is one. It then continues nor-
mally with the rest of the program, which follows the try statement. If the exception
is not immediately caught and handled, the processing of the exception will continue.

When an exception is thrown during the execution of a method and the exception
is not handled in the same method, then that method is terminated (after the execu-
tion of any pending finally clauses). Then the method that called that method gets a
chance to handle the exception. That is, if the method was called inside a try state-
ment that has an appropriate catch clause, then that catch clause will be executed
and the program will continue on normally from there. Again, if the second method
does not handle the exception, then it also is terminated and the method that called
it (if any) gets the next shot at the exception. The exception will crash the program
only if it passes up through the entire chain of method calls without being handled.

A method that might generate an exception can announce this fact by adding a
clause “throws exception-class-name” to the header of the method. For example:

/∗ ∗
∗ Returns the l a r g e r o f the two roo ts o f the quadra t i c equat ion

199

∗ A∗x∗x + B∗x + C = 0 , provided i t has any roo ts . I f A == 0 or
∗ i f the d i sc r im inan t , B∗B − 4∗A∗C, i s negat ive , then an except ion
∗ of type I l lega lArgumentExcept ion i s thrown .
∗ /

static public double root(double A, double B, double C)
throws IllegalArgumentException {

if (A == 0) {
throw new IllegalArgumentException("A can’ t be zero . ");

}
else {

double disc = B∗B − 4∗A∗C;
if (disc < 0)

throw new IllegalArgumentException(" Discr iminant < zero . ");
return (−B + Math.sqrt(disc)) / (2∗A);

}
}

As discussed in the previous section, the computation in this method has the pre-
conditions that A! = 0 and B ∗B − 4 ∗A ∗ C >= 0. The method throws an exception
of type IllegalArgumentException when either of these preconditions is violated.
When an illegal condition is found in a method, throwing an exception is often a rea-
sonable response. If the program that called the method knows some good way to
handle the error, it can catch the exception. If not, the program will crash – and the
programmer will know that the program needs to be fixed.

A throws clause in a method heading can declare several different types of excep-
tions, separated by commas. For example:
void processArray(int[] A) throws NullPointerException,

ArrayIndexOutOfBoundsException { ...

9.3.4 Mandatory Exception Handling

In the preceding example, declaring that the method root() can throw an
IllegalArgumentException is just a courtesy to potential readers of this method.
This is because handling of IllegalArgumentExceptions is not “mandatory”. A
method can throw an IllegalArgumentException without announcing the possibil-
ity. And a program that calls that method is free either to catch or to ignore the
exception, just as a programmer can choose either to catch or to ignore an exception
of type NullPointerException.

For those exception classes that require mandatory handling, the situation is dif-
ferent. If a method can throw such an exception, that fact must be announced in a
throws clause in the method definition. Failing to do so is a syntax error that will be
reported by the compiler.

On the other hand, suppose that some statement in the body of a method can
generate an exception of a type that requires mandatory handling. The statement
could be a throw statement, which throws the exception directly, or it could be a call
to a method that can throw the exception. In either case, the exception must be
handled. This can be done in one of two ways: The first way is to place the statement
in a try statement that has a catch clause that handles the exception; in this case,
the exception is handled within the method, so that any caller of the method will
never see the exception. The second way is to declare that the method can throw the
exception. This is done by adding a “throws” clause to the method heading, which
alerts any callers to the possibility that an exception might be generated when the

200

method is executed. The caller will, in turn, be forced either to handle the exception
in a try statement or to declare the exception in a throws clause in its own header.

Exception-handling is mandatory for any exception class that is not a subclass
of either Error or RuntimeException. Exceptions that require mandatory handling
generally represent conditions that are outside the control of the programmer. For ex-
ample, they might represent bad input or an illegal action taken by the user. There is
no way to avoid such errors, so a robust program has to be prepared to handle them.
The design of Java makes it impossible for programmers to ignore the possibility of
such errors.

Among the exceptions that require mandatory handling are several that can occur
when using Java’s input/output methods. This means that you can’t even use these
methods unless you understand something about exception-handling.

9.3.5 Programming with Exceptions

Exceptions can be used to help write robust programs. They provide an organized
and structured approach to robustness. Without exceptions, a program can become
cluttered with if statements that test for various possible error conditions. With
exceptions, it becomes possible to write a clean implementation of an algorithm that
will handle all the normal cases. The exceptional cases can be handled elsewhere, in
a catch clause of a try statement.

When a program encounters an exceptional condition and has no way of han-
dling it immediately, the program can throw an exception. In some cases, it makes
sense to throw an exception belonging to one of Java’s predefined classes, such as
IllegalArgumentException or IOException. However, if there is no standard class
that adequately represents the exceptional condition, the programmer can define a
new exception class. The new class must extend the standard class Throwable or one
of its subclasses. In general, if the programmer does not want to require manda-
tory exception handling, the new class will extend RuntimeException (or one of its
subclasses). To create a new exception class that does require mandatory handling,
the programmer can extend one of the other subclasses of Exception or can extend
Exception itself.

Here, for example, is a class that extends Exception, and therefore requires
mandatory exception handling when it is used:

public class ParseError extends Exception {
public ParseError(String message) {

/ / Create a ParseError ob jec t con ta in ing
/ / the given message as i t s e r r o r message .

super(message);
}

}

The class contains only a constructor that makes it possible to create a ParseError
object containing a given error message. (The statement “super(message)” calls a
constructor in the superclass, Exception.) The class inherits the getMessage() and
printStackTrace() methods from its superclass, off course. If e refers to an object of
type ParseError, then the method call e.getMessage() will retrieve the error mes-
sage that was specified in the constructor. But the main point of the ParseError class
is simply to exist. When an object of type ParseError is thrown, it indicates that a
certain type of error has occurred. (Parsing, by the way, refers to figuring out the

201

syntax of a string. A ParseError would indicate, presumably, that some string that
is being processed by the program does not have the expected form.)

A throw statement can be used in a program to throw an error of type ParseError.
The constructor for the ParseError object must specify an error message. For exam-
ple:

throw new ParseError(" Encountered an i l l e g a l negative number . ");

or

throw new ParseError(" The word ’ " + word
+ " ’ i s not a val id f i l e name. ");

If the throw statement does not occur in a try statement that catches the error,
then the method that contains the throw statement must declare that it can throw a
ParseError by adding the clause “throws ParseError” to the method heading. For
example,

void getUserData() throws ParseError {
. . .

}

This would not be required if ParseError were defined as a subclass of
RuntimeException instead of Exception, since in that case exception handling for
ParseErrors would not be mandatory.

A method that wants to handle ParseErrors can use a try statement with a catch
clause that catches ParseErrors. For example:

try {
getUserData();
processUserData();

}
catch (ParseError pe) {

. . . / / Handle the e r r o r
}

Note that since ParseError is a subclass of Exception, a catch clause of the form
“catch (Exception e)” would also catch ParseErrors, along with any other object of
type Exception.

Sometimes, it’s useful to store extra data in an exception object. For example,

class ShipDestroyed extends RuntimeException {
Ship ship; / / Which sh ip was destroyed .
int where_x, where_y; / / Locat ion where sh ip was destroyed .
ShipDestroyed(String message, Ship s, int x, int y) {

/ / Const ruc tor creates a ShipDestroyed ob jec t
/ / ca r r y i ng an e r r o r message plus the in fo rma t i on
/ / t h a t the sh ip s was destroyed at l o c a t i o n (x , y)
/ / on the screen .

super(message);
ship = s;
where_x = x;
where_y = y;

}
}

Here, a ShipDestroyed object contains an error message and some information
about a ship that was destroyed. This could be used, for example, in a statement:

202

if (userShip.isHit())
throw new ShipDestroyed("You ’ve been h i t ! ", userShip, xPos, yPos);

Note that the condition represented by a ShipDestroyed object might not even be
considered an error. It could be just an expected interruption to the normal flow of a
game. Exceptions can sometimes be used to handle such interruptions neatly.

The ability to throw exceptions is particularly useful in writing general-purpose
methods and classes that are meant to be used in more than one program. In this
case, the person writing the method or class often has no reasonable way of handling
the error, since that person has no way of knowing exactly how the method or class
will be used. In such circumstances, a novice programmer is often tempted to print an
error message and forge ahead, but this is almost never satisfactory since it can lead
to unpredictable results down the line. Printing an error message and terminating
the program is almost as bad, since it gives the program no chance to handle the
error.

The program that calls the method or uses the class needs to know that the error
has occurred. In languages that do not support exceptions, the only alternative is
to return some special value or to set the value of some variable to indicate that an
error has occurred. For example, a method may return the value −1 if the user’s
input is illegal. However, this only does any good if the main program bothers to test
the return value. It is very easy to be lazy about checking for special return values
every time a method is called. And in this case, using −1 as a signal that an error
has occurred makes it impossible to allow negative return values. Exceptions are a
cleaner way for a method to react when it encounters an error.

9.4 Assertions

WE END THIS CHAPTER WITH A SHORT SECTION ON ASSERTIONS, another feature of the
Java programming language that can be used to aid in the development of correct
and robust programs.

Recall that a precondition is a condition that must be true at a certain point in
a program, for the execution of the program to continue correctly from that point.
In the case where there is a chance that the precondition might not be satisfied –
for example, if it depends on input from the user – then it’s a good idea to insert
an if statement to test it. But then the question arises, What should be done if the
precondition does not hold? One option is to throw an exception. This will terminate
the program, unless the exception is caught and handled elsewhere in the program.

In many cases, of course, instead of using an if statement to test whether a precon-
dition holds, a programmer tries to write the program in a way that will guarantee
that the precondition holds. In that case, the test should not be necessary, and the if
statement can be avoided. The problem is that programmers are not perfect. In spite
of the programmer’s intention, the program might contain a bug that screws up the
precondition. So maybe it’s a good idea to check the precondition – at least during
the debugging phase of program development.

Similarly, a postcondition is a condition that is true at a certain point in the pro-
gram as a consequence of the code that has been executed before that point. Assum-
ing that the code is correctly written, a postcondition is guaranteed to be true, but
here again testing whether a desired postcondition is actually true is a way of check-
ing for a bug that might have screwed up the postcondition. This is somthing that
might be desirable during debugging.

203

The programming languages C and C++ have always had a facility for adding
what are called assertions to a program. These assertions take the form
“assert(condition)”, where condition is a boolean-valued expression. This condition
expresses a precondition or postcondition that should hold at that point in the pro-
gram. When the computer encounters an assertion during the execution of the pro-
gram, it evaluates the condition. If the condition is false, the program is terminated.
Otherwise, the program continues normally. This allows the programmer’s belief
that the condition is true to be tested; if if it not true, that indicates that the part
of the program that preceded the assertion contained a bug. One nice thing about
assertions in C and C++ is that they can be “turned off” at compile time. That is, if
the program is compiled in one way, then the assertions are included in the compiled
code. If the program is compiled in another way, the assertions are not included.
During debugging, the first type of compilation is used. The release version of the
program is compiled with assertions turned off. The release version will be more
efficient, because the computer won’t have to evaluate all the assertions.

Although early versions of Java did not have assertions, an assertion facility sim-
ilar to the one in C/C++ has been available in Java since version 1.4. As with the
C/C++ version, Java assertions can be turned on during debugging and turned off
during normal execution. In Java, however, assertions are turned on and off at run
time rather than at compile time. An assertion in the Java source code is always
included in the compiled class file. When the program is run in the normal way,
these assertions are ignored; since the condition in the assertion is not evaluated in
this case, there is little or no performance penalty for having the assertions in the
program. When the program is being debugged, it can be run with assertions en-
abled, as discussed below, and then the assertions can be a great help in locating and
identifying bugs.

An assertion statement in Java takes one of the following two forms:
assert condition ; or assert condition : error−message ; where condition is
a boolean-valued expression and error-message is a string or an expression of type
String. The word “assert” is a reserved word in Java, which cannot be used as an
identifier. An assertion statement can be used anyplace in Java where a statement is
legal.

If a program is run with assertions disabled, an assertion statement is equiva-
lent to an empty statement and has no effect. When assertions are enabled and an
assertion statement is encountered in the program, the condition in the assertion is
evaluated. If the value is true, the program proceeds normally. If the value of the
condition is false, then an exception of type java.lang.AssertionError is thrown,
and the program will crash (unless the error is caught by a try statement). If the
assert statement includes an error-message, then the error message string becomes
the message in the AssertionError.

So, the statement “assert condition : error-message;” is similar to

if (condition == false)
throw new AssertionError(error−message);

except that the if statement is executed whenever the program is run, and the assert
statement is executed only when the program is run with assertions enabled.

The question is, when to use assertions instead of exceptions? The general rule
is to use assertions to test conditions that should definitely be true, if the program
is written correctly. Assertions are useful for testing a program to see whether or
not it is correct and for finding the errors in an incorrect program. After testing

204

and debugging, when the program is used in the normal way, the assertions in the
program will be ignored. However, if a problem turns up later, the assertions are still
there in the program to be used to help locate the error. If someone writes to you to
say that your program doesn’t work when he does such-and-such, you can run the
program with assertions enabled, do such-and-such, and hope that the assertions in
the program will help you locate the point in the program where it goes wrong.

Consider, for example, the root() method that calculates a root of a quadratic
equation. If you believe that your program will always call this method with legal
arguments, then it would make sense to write the method using assertions instead of
exceptions:

/∗ ∗
∗ Returns the l a r g e r o f the two roo ts o f the quadra t i c equat ion
∗ A∗x∗x + B∗x + C = 0 , provided i t has any roo ts .
∗ Precond i t i on : A != 0 and B∗B − 4∗A∗C >= 0.
∗ /

static public double root(double A, double B, double C) {
assert A != 0 : " Leading coeff ic ient of quadratic equation cannot be zero . ";
double disc = B∗B − 4∗A∗C;
assert disc >= 0 : " Discr iminant of quadratic equation cannot be negative . ";
return (−B + Math.sqrt(disc)) / (2∗A);

}

The assertions are not checked when the program is run in the normal way. If you
are correct in your belief that the method is never called with illegal arguments, then
checking the conditions in the assertions would be unnecessary. If your belief is not
correct, the problem should turn up during testing or debugging, when the program
is run with the assertions enabled.

If the root() method is part of a software library that you expect other people to
use, then the situation is less clear. Sun’s Java documentation advises that assertions
should not be used for checking the contract of public methods: If the caller of a
method violates the contract by passing illegal parameters, then an exception should
be thrown. This will enforce the contract whether or not assertions are enabled.
(However, while it’s true that Java programmers expect the contract of a method to
be enforced with exceptions, there are reasonable arguments for using assertions
instead, in some cases.)

On the other hand, it never hurts to use an assertion to check a postcondition of
a method. A postcondition is something that is supposed to be true after the method
has executed, and it can be tested with an assert statement at the end of the method.
If the postcodition is false, there is a bug in the method itself, and that is something
that needs to be found during the development of the method.

To have any effect, assertions must be enabled when the program is run. How to
do this depends on what programming environment you are using. In the usual com-
mand line environment, assertions are enabled by adding the −enableassertions
option to the java command that is used to run the program. For example, if the class
that contains the main program is RootFinder, then the command
java −enableassertions RootFinder
will run the program with assertions enabled. The −enableassertions option can be
abbreviated to −ea, so the command can alternatively be written as
java −ea RootFinder.

In fact, it is possible to enable assertions in just part of a program. An option of
the form “-ea:class-name” enables only the assertions in the specified class. Note that

205

there are no spaces between the -ea, the “:”, and the name of the class. To enable all
the assertions in a package and in its sub-packages, you can use an option of the form
“-ea:package-name...”. To enable assertions in the “default package” (that is, classes
that are not specified to belong to a package, like almost all the classes in this book),
use “-ea:...”. For example, to run a Java program named “MegaPaint” with assertions
enabled for every class in the packages named “paintutils” and “drawing”, you would
use the command:

java −ea:paintutils... −ea:drawing... MegaPaint

If you are using the Eclipse integrated development environment, you can specify
the -ea option by creating a run configuration. Right-click the name of the main
program class in the Package Explorer pane, and select “Run As” from the pop-up
menu and then “Run...” from the submenu. This will open a dialog box where you
can manage run configurations. The name of the project and of the main class will be
already be filled in. Click the “Arguments” tab, and enter -ea in the box under “VM
Arguments”. The contents of this box are added to the java command that is used to
run the program. You can enter other options in this box, including more complicated
enableassertions options such as -ea:paintutils.... When you click the “Run” button,
the options will be applied. Furthermore, they will be applied whenever you run
the program, unless you change the run configuration or add a new configuration.
Note that it is possible to make two run configurations for the same class, one with
assertions enabled and one with assertions disabled.

206

Chapter 10
Input and Output

Contents
10.1 Streams, Readers, and Writers . 207

10.1.1 Character and Byte Streams 207
10.1.2 PrintWriter . 209
10.1.3 Data Streams . 210
10.1.4 Reading Text . 211
10.1.5 The Scanner Class . 212

10.2 Files . 213
10.2.1 Reading and Writing Files . 214
10.2.2 Files and Directories . 217

10.3 Programming With Files . 219
10.3.1 Copying a File . 219

10.1 Streams, Readers, and Writers

Without the ability to interact with the rest of the world, a program would be useless.
The interaction of a program with the rest of the world is referred to as input/output
or I/O. Historically, one of the hardest parts of programming language design has
been coming up with good facilities for doing input and output. A computer can be
connected to many different types of input and output devices. If a programming
language had to deal with each type of device as a special case, the complexity would
be overwhelming. One of the major achievements in the history of programming has
been to come up with good abstractions for representing I/O devices. In Java, the
main I/O abstractions are called streams. Other I/O abstractions, such as “files” and
“channels” also exist, but in this section we will look only at streams. Every stream
represents either a source of input or a destination to which output can be sent.

10.1.1 Character and Byte Streams

When dealing with input/output, you have to keep in mind that there are two broad
categories of data: machine-formatted data and human-readable data. Machine-
formatted data is represented in binary form, the same way that data is represented

207

inside the computer, that is, as strings of zeros and ones. Human-readable data is in
the form of characters. When you read a number such as 3.141592654, you are read-
ing a sequence of characters and interpreting them as a number. The same number
would be represented in the computer as a bit-string that you would find unrecogniz-
able.

To deal with the two broad categories of data representation, Java has two broad
categories of streams: byte streams for machine-formatted data and character streams
for human-readable data. There are many predefined classes that represent streams
of each type.

An object that outputs data to a byte stream belongs to one of the subclasses of
the abstract class OutputStream. Objects that read data from a byte stream belong
to subclasses of InputStream. If you write numbers to an OutputStream, you won’t
be able to read the resulting data yourself. But the data can be read back into the
computer with an InputStream. The writing and reading of the data will be very
efficient, since there is no translation involved: the bits that are used to represent
the data inside the computer are simply copied to and from the streams.

For reading and writing human-readable character data, the main classes are the
abstract classes Reader and Writer. All character stream classes are subclasses of
one of these. If a number is to be written to a Writer stream, the computer must
translate it into a human-readable sequence of characters that represents that num-
ber. Reading a number from a Reader stream into a numeric variable also involves
a translation, from a character sequence into the appropriate bit string. (Even if the
data you are working with consists of characters in the first place, such as words from
a text editor, there might still be some translation. Characters are stored in the com-
puter as 16−bit Unicode values. For people who use Western alphabets, character
data is generally stored in files in ASCII code, which uses only 8 bits per character.
The Reader and Writer classes take care of this translation, and can also handle
non-western alphabets in countries that use them.)

Byte streams can be useful for direct machine-to-machine communication, and
they can sometimes be useful for storing data in files, especially when large amounts
of data need to be stored efficiently, such as in large databases. However, binary data
is fragile in the sense that its meaning is not self-evident. When faced with a long
series of zeros and ones, you have to know what information it is meant to represent
and how that information is encoded before you will be able to interpret it. Of course,
the same is true to some extent for character data, which is itself coded into binary
form. But the binary encoding of character data has been standardized and is well
understood, and data expressed in character form can be made meaningful to human
readers. The current trend seems to be towards increased use of character data,
represented in a way that will make its meaning as self-evident as possible.

I should note that the original version of Java did not have character streams,
and that for ASCII-encoded character data, byte streams are largely interchangeable
with character streams. In fact, the standard input and output streams, System.in
and System.out, are byte streams rather than character streams. However, you
should use Readers and Writers rather than InputStreams and OutputStreams when
working with character data.

The standard stream classes discussed in this section are defined in the package
java.io, along with several supporting classes. You must import the classes from
this package if you want to use them in your program. That means either importing
individual classes or putting the directive “import java.io.*;” at the beginning of your

208

source file. Streams are necessary for working with files and for doing communication
over a network. They can be also used for communication between two concurrently
running threads, and there are stream classes for reading and writing data stored in
the computer’s memory.

The beauty of the stream abstraction is that it is as easy to write data to a file or
to send data over a network as it is to print information on the screen.

The basic I/O classes Reader, Writer, InputStream, and OutputStream provide
only very primitive I/O operations. For example, the InputStream class declares the
instance method public int read() throws IOException for reading one byte of
data, as a number in the range 0 to 255, from an input stream. If the end of the input
stream is encountered, the read() method will return the value −1 instead. If some
error occurs during the input attempt, an exception of type IOException is thrown.
Since IOException is an exception class that requires mandatory exception-handling,
this means that you can’t use the read() method except inside a try statement or in
a method that is itself declared with a “throws IOException” clause.

The InputStream class also defines methods for reading several bytes of data
in one step into an array of bytes. However, InputStream provides no convenient
methods for reading other types of data, such as int or double, from a stream. This
is not a problem because you’ll never use an object of type InputStream itself. In-
stead, you’ll use subclasses of InputStream that add more convenient input methods
to InputStream’s rather primitive capabilities. Similarly, the OutputStream class de-
fines a primitive output method for writing one byte of data to an output stream. The
method is defined as:public void write(int b) throws IOException The param-
eter is of type int rather than byte, but the parameter value is type-cast to type byte
before it is written; this effectively discards all but the eight low order bytes of b.
Again, in practice, you will almost always use higher-level output operations defined
in some subclass of OutputStream.

The Reader and Writer classes provide identical low-level read and write meth-
ods. As in the byte stream classes, the parameter of the write(c) method in Writer
and the return value of the read() method in Reader are of type int, but in these
character-oriented classes, the I/O operations read and write characters rather than
bytes. The return value of read() is−1 if the end of the input stream has been reached.
Otherwise, the return value must be type-cast to type char to obtain the character
that was read. In practice, you will ordinarily use higher level I/O operations pro-
vided by sub-classes of Reader and Writer, as discussed below.

10.1.2 PrintWriter

One of the neat things about Java’s I/O package is that it lets you add capabilities to
a stream by “wrapping” it in another stream object that provides those capabilities.
The wrapper object is also a stream, so you can read from or write to it–but you can
do so using fancier operations than those available for basic streams.

For example, PrintWriter is a subclass of Writer that provides convenient meth-
ods for outputting human-readable character representations of all of Java’s basic
data types. If you have an object belonging to the Writer class, or any of its sub-
classes, and you would like to use PrintWriter methods to output data to that
Writer, all you have to do is wrap the Writer in a PrintWriter object. You do this by
constructing a new PrintWriter object, using the Writer as input to the constructor.
For example, if charSink is of type Writer, then you could say

209

PrintWriter printableCharSink = new PrintWriter(charSink);

When you output data to printableCharSink, using the high-level output meth-
ods in PrintWriter, that data will go to exactly the same place as data written di-
rectly to charSink. You’ve just provided a better interface to the same output stream.
For example, this allows you to use PrintWriter methods to send data to a file or over
a network connection.

For the record, if out is a variable of type PrintWriter, then the following methods
are defined:

• out.print(x)–prints the value of x, represented in the form of a string of char-
acters, to the output stream; x can be an expression of any type, including both
primitive types and object types. An object is converted to string form using its
toString() method. A null value is represented by the string “null”.

• out.println()–outputs an end-of-line to the output stream.

• out.println(x)–outputs the value of x, followed by an end-of-line; this is equiv-
alent to out.print(x) followed by out.println().

• out.printf(formatString, x1, x2, ...)–does formated output of x1, x2, . . .
to the output stream. The first parameter is a string that specifies the format of
the output. There can be any number of additional parameters, of any type, but
the types of the parameters must match the formatting directives in the format
string.

Note that none of these methods will ever throw an IOException. Instead, the
PrintWriter class includes the method public boolean checkError() which will
return true if any error has been encountered while writing to the stream. The
PrintWriter class catches any IOExceptions internally, and sets the value of an
internal error flag if one occurs. The checkError() method can be used to check
the error flag. This allows you to use PrintWriter methods without worrying about
catching exceptions. On the other hand, to write a fully robust program, you should
call checkError() to test for possible errors whenever you used a PrintWriter.

10.1.3 Data Streams

When you use a PrintWriter to output data to a stream, the data is converted into
the sequence of characters that represents the data in human-readable form. Sup-
pose you want to output the data in byte-oriented, machine-formatted form? The
java.io package includes a byte-stream class, DataOutputStream that can be used
for writing data values to streams in internal, binary-number format.
DataOutputStream bears the same relationship to OutputStream that PrintWriter
bears to Writer. That is, whereas OutputStream only has methods for outputting
bytes, DataOutputStream has methods writeDouble(double x) for outputting val-
ues of type double, writeInt(int x) for outputting values of type int, and so on.
Furthermore, you can wrap any OutputStream in a DataOutputStream so that you
can use the higher level output methods on it. For example, if byteSink is of type
classname, you could say

DataOutputStream dataSink = new DataOutputStream(byteSink);

to wrap byteSink in a DataOutputStream, dataSink.

210

For input of machine-readable data, such as that created by writing to a
DataOutputStream, java.io provides the class DataInputStream. You can wrap
any InputStream in aDataInputStream object to provide it with the ability to read
data of various types from the byte-stream. The methods in theDataInputStream
for reading binary data are called readDouble(), readInt(), and so on. Data writ-
ten by a DataOutputStream is guaranteed to be in a format that can be read by a
DataInputStream. This is true even if the data stream is created on one type of
computer and read on another type of computer. The cross-platform compatibility of
binary data is a major aspect of Java’s platform independence.

In some circumstances, you might need to read character data from an
InputStream or write character data to an OutputStream. This is not a problem,
since characters, like all data, are represented as binary numbers. However, for
character data, it is convenient to use Reader and Writer instead of InputStream
and OutputStream. To make this possible, you can wrap a byte stream in a charac-
ter stream. If byteSource is a variable of type InputStream and byteSink is of type
OutputStream, then the statements

Reader charSource = new InputStreamReader(byteSource);
Writer charSink = new OutputStreamWriter(byteSink);

create character streams that can be used to read character data from and write char-
acter data to the byte streams. In particular, the standard input stream System.in,
which is of type InputStream for historical reasons, can be wrapped in a Reader to
make it easier to read character data from standard input:

Reader charIn = new InputStreamReader(System.in);

As another application, the input and output streams that are associated with
a network connection are byte streams rather than character streams, but the byte
streams can be wrapped in character streams to make it easy to send and receive
character data over the network.

10.1.4 Reading Text

Still, the fact remains that much I/O is done in the form of human-readable charac-
ters. In view of this, it is surprising that Java does not provide a standard character
input class that can read character data in a manner that is reasonably symmet-
rical with the character output capabilities of PrintWriter. There is one basic case
that is easily handled by a standard class. The BufferedReader class has a method
public String readLine() throws IOException that reads one line of text from
its input source. If the end of the stream has been reached, the return value is null.
When a line of text is read, the end-of-line marker is read from the input stream,
but it is not part of the string that is returned. Different input streams use different
characters as end-of-line markers, but the readLine method can deal with all the
common cases.

Line-by-line processing is very common. Any Reader can be wrapped in a
BufferedReader to make it easy to read full lines of text. If reader is of type Reader,
then a BufferedReader wrapper can be created for reader with
BufferedReader in = new BufferedReader(reader);.

This can be combined with the InputStreamReader class that was mentioned
above to read lines of text from an InputStream. For example, we can apply this
to System.in:

211

BufferedReader in; / / BufferedReader f o r reading from standard i npu t .
in = new BufferedReader(new InputStreamReader(System.in));
try {

String line = in.readLine();
while (line != null && line.length() > 0) {

processOneLineOfInput(line);
line = in.readLine();

}
}
catch (IOException e) {
}

This code segment reads and processes lines from standard input until either an
empty line or an end-of-stream is encountered. (An end-of-stream is possible even for
interactive input. For example, on at least some computers, typing a Control-D gen-
erates an end-of-stream on the standard input stream.) The try..catch statement is
necessary because the readLine method can throw an exception of type IOException,
which requires mandatory exception handling; an alternative to try..catch would be to
declare that the method that contains the code “throws IOException”. Also, remem-
ber that BufferedReader, InputStreamReader, and IOException must be imported
from the package java.io.

10.1.5 The Scanner Class

Since its introduction, Java has been notable for its lack of built-in support for basic
input, and for its reliance on fairly advanced techniques for the support that it does
offer. (This is my opinion, at least.) The Scanner class was introduced in Java 5.0
to make it easier to read basic data types from a character input source. It does not
(again, in my opinion) solve the problem completely, but it is a big improvement. The
Scanner class is in the package java.util.

Input methods are defined as instance methods in the Scanner class, so to use the
class, you need to create a Scanner object. The constructor specifies the source of the
characters that the Scanner will read. The scanner acts as a wrapper for the input
source. The source can be a Reader, an InputStream, a String, or a File. (If a String
is used as the input source, the Scanner will simply read the characters in the string
from beginning to end, in the same way that it would process the same sequence of
characters from a stream. The File class will be covered in the next section.) For
example, you can use a Scanner to read from standard input by saying:
Scanner standardInputScanner = new Scanner(System.in);

and if charSource is of type Reader, you can create a Scanner for reading from char-
Source with:
Scanner scanner = new Scanner(charSource);

When processing input, a scanner usually works with tokens. A token is a mean-
ingful string of characters that cannot, for the purposes at hand, be further broken
down into smaller meaningful pieces. A token can, for example, be an individual
word or a string of characters that represents a value of type double. In the case of
a scanner, tokens must be separated by “delimiters.” By default, the delimiters are
whitespace characters such as spaces and end-of-line markers. In normal processing,
whitespace characters serve simply to separate tokens and are discarded by the scan-
ner. A scanner has instance methods for reading tokens of various types. Suppose
that scanner is an object of type Scanner. Then we have:

212

• scanner.next()–reads the next token from the input source and returns it as
a String.

• scanner.nextInt(), scanner.nextDouble(), and so on–reads the next token
from the input source and tries to convert it to a value of type int, double, and
so on. There are methods for reading values of any of the primitive types.

• scanner.nextLine()–reads an entire line from the input source, up to the next
end-of-line and returns the line as a value of type String. The end-of-line
marker is read but is not part of the return value. Note that this method is
not based on tokens. An entire line is read and returned, including any whites-
pace characters in the line.

All of these methods can generate exceptions. If an attempt is made to read past
the end of input, an exception of type NoSuchElementException is thrown. Methods
such as scanner.getInt() will throw an exception of type InputMismatchException
if the next token in the input does not represent a value of the requested type. The
exceptions that can be generated do not require mandatory exception handling.

The Scanner class has very nice look-ahead capabilities. You can query a scanner
to determine whether more tokens are available and whether the next token is of a
given type. If scanner is of type Scanner:

• scanner.hasNext()–returns a boolean value that is true if there is at least one
more token in the input source.

• scanner.hasNextInt(), scanner.hasNextDouble(), and so on–returns a
boolean value that is true if there is at least one more token in the input source
and that token represents a value of the requested type.

• scanner.hasNextLine()–returns a boolean value that is true if there is at least
one more line in the input source.

Although the insistence on defining tokens only in terms of delimiters limits the
usability of scanners to some extent, they are easy to use and are suitable for many
applications.

10.2 Files

The data and programs in a computer’s main memory survive only as long as the
power is on. For more permanent storage, computers use files, which are collections
of data stored on a hard disk, on a USB memory stick, on a CD-ROM, or on some
other type of storage device. Files are organized into directories (sometimes called
folders). A directory can hold other directories, as well as files. Both directories and
files have names that are used to identify them.

Programs can read data from existing files. They can create new files and can
write data to files. In Java, such input and output can be done using streams.
Human-readable character data is read from a file using an object belonging to the
class FileReader, which is a subclass of Reader. Similarly, data is written to a
file in human-readable format through an object of type FileWriter, a subclass of
Writer. For files that store data in machine format, the appropriate I/O classes
are FileInputStream and FileOutputStream. In this section, I will only discuss
character-oriented file I/O using the FileReader and FileWriter classes. However,

213

FileInputStream and FileOutputStream are used in an exactly parallel fashion. All
these classes are defined in the java.io package.

It’s worth noting right at the start that applets which are downloaded over a net-
work connection are not allowed to access files (unless you have made a very foolish
change to your web browser’s configuration). This is a security consideration. You can
download and run an applet just by visiting a Web page with your browser. If down-
loaded applets had access to the files on your computer, it would be easy to write an
applet that would destroy all the data on a computer that downloads it. To prevent
such possibilities, there are a number of things that downloaded applets are not al-
lowed to do. Accessing files is one of those forbidden things. Standalone programs
written in Java, however, have the same access to your files as any other program.
When you write a standalone Java application, you can use all the file operations
described in this section.

10.2.1 Reading and Writing Files

The FileReader class has a constructor which takes the name of a file as a parameter
and creates an input stream that can be used for reading from that file. This construc-
tor will throw an exception of type FileNotFoundException if the file doesn’t exist.
It requires mandatory exception handling, so you have to call the constructor in a
try..catch statement (or inside a method that is declared to throw the exception).
For example, suppose you have a file named “data.txt”, and you want your program
to read data from that file. You could do the following to create an input stream for
the file:

FileReader data; / / (Declare the v a r i a b l e before the
/ / t r y statement , or e lse the v a r i a b l e
/ / i s l o c a l to the t r y b lock and you won ’ t
/ / be able to use i t l a t e r i n the program .)

try {
data = new FileReader(" data . t x t "); / / c reate the stream

}
catch (FileNotFoundException e) {

... / / do something to handle the e r r o r −− maybe , end the program
}

The FileNotFoundException class is a subclass of IOException, so it would be
acceptable to catch IOExceptions in the above try...catch statement. More gener-
ally, just about any error that can occur during input/output operations can be caught
by a catch clause that handles IOException.

Once you have successfully created a FileReader, you can start reading data from
it. But since FileReaders have only the primitive input methods inherited from the
basic Reader class, you will probably want to wrap your FileReader in a Scanner, or
in some other wrapper class.

Working with output files is no more difficult than this. You simply create an
object belonging to the class FileWriter. You will probably want to wrap this output
stream in an object of type PrintWriter. For example, suppose you want to write
data to a file named “result.dat”. Since the constructor for FileWriter can throw an
exception of type IOException, you should use a try..catch statement:

214

PrintWriter result;

try {
result = new PrintWriter(new FileWriter(" r e s u l t . dat "));

}
catch (IOException e) {

... / / handle the except ion
}

If no file named result.dat exists, a new file will be created. If the file already exists,
then the current contents of the file will be erased and replaced with the data that
your program writes to the file. This will be done without any warning. To avoid
overwriting a file that already exists, you can check whether a file of the same name
already exists before trying to create the stream, as discussed later in this section.
An IOException might occur in the PrintWriter constructor if, for example, you are
trying to create a file on a disk that is “write-protected,” meaning that it cannot be
modified.

After you are finished using a file, it’s a good idea to close the file, to tell the oper-
ating system that you are finished using it. You can close a file by calling the close()
method of the associated stream. Once a file has been closed, it is no longer possible
to read data from it or write data to it, unless you open it again as a new stream.
(Note that for most stream classes, the close() method can throw an IOException,
which must be handled; PrintWriter overrides this method so that it cannot throw
such exceptions.) If you forget to close a file, the file will ordinarily be closed automat-
ically when the program terminates or when the file object is garbage collected, but
in the case of an output file, some of the data that has been written to the file might
be lost. This can occur because data that is written to a file can be buffered; that
is, the data is not sent immediately to the file but is retained in main memory (in a
“buffer”) until a larger chunk of data is ready to be written. This is done for efficiency.
The close() method of an output stream will cause all the data in the buffer to be
sent to the file. Every output stream also has a flush() method that can be called to
force any data in the buffer to be written to the file without closing the file.

As a complete example, here is a program that will read numbers from a file
named data.dat, and will then write out the same numbers in reverse order to an-
other file named result.dat. It is assumed that data.dat contains only one number
on each line. Exception-handling is used to check for problems along the way. Al-
though the application is not a particularly useful one, this program demonstrates
the basics of working with files. (By the way, at the end of this program, you’ll find
our first example of a finally clause in a try statement. When the computer executes
a try statement, the commands in its finally clause are guaranteed to be executed, no
matter what.)

215

import java.io.∗;
import java.util.ArrayList;
/∗ ∗
∗ Reads numbers from a f i l e named data . dat and w r i t e s them to a f i l e
∗ named r e s u l t . dat i n reverse order . The inpu t f i l e should conta in
∗ exac t l y one r e a l number per l i n e .
∗ /

public class ReverseFile {

public static void main(String[] args) {
TextReader data; / / Character i npu t stream f o r reading data .
PrintWriter result; / / Character output stream f o r w r i t i n g data .
ArrayList<Double> numbers; / / An A r r a y L i s t f o r ho ld ing the data .
numbers = new ArrayList<Double>();

try { / / Create the i npu t stream .
data = new TextReader(new FileReader(" data . dat "));

}
catch (FileNotFoundException e) {

System.out.println("Can’ t f ind f i l e data . dat ! ");
return; / / End the program by r e t u r n i n g from main () .

}

try { / / Create the output stream .
result = new PrintWriter(new FileWriter(" r e s u l t . dat "));

}
catch (IOException e) {

System.out.println("Can’ t open f i l e r e s u l t . dat ! ");
System.out.println(" E r r o r : " + e);
data.close(); / / Close the i npu t f i l e .
return; / / End the program .

}
try {

/ / Read numbers from the inpu t f i l e , adding them to the A r r a y L i s t .
while (data.eof() == false) { / / Read u n t i l end−of− f i l e .

double inputNumber = data.getlnDouble();
numbers.add(inputNumber);

}
/ / Output the numbers i n reverse order .

for (int i = numbers.size()−1; i >= 0; i−−)
result.println(numbers.get(i));

System.out.println("Done! ");
}
catch (IOException e) {

/ / Some problem reading the data from the inpu t f i l e .
System.out.println(" Input E r r o r : " + e.getMessage());

}
finally {

/ / F in i sh by c los ing the f i l e s , whatever e lse may have happened .
data.close();
result.close();

}
} / / end of main ()

} / / end of c lass

216

10.2.2 Files and Directories

The subject of file names is actually more complicated than I’ve let on so far. To fully
specify a file, you have to give both the name of the file and the name of the directory
where that file is located. A simple file name like “data.dat” or “result.dat” is taken
to refer to a file in a directory that is called the current directory (also known as the
“default directory” or “working directory”). The current directory is not a permanent
thing. It can be changed by the user or by a program. Files not in the current direc-
tory must be referred to by a path name, which includes both the name of the file and
information about the directory where it can be found.

To complicate matters even further, there are two types of path names, absolute
path names and relative path names. An absolute path name uniquely identifies one
file among all the files available to the computer. It contains full information about
which directory the file is in and what the file’s name is. A relative path name tells
the computer how to locate the file starting from the current directory.

It’s reasonably safe to say, though, that if you stick to using simple file names only,
and if the files are stored in the same directory with the program that will use them,
then you will be OK.

It is possible for a Java program to find out the absolute path names for two
important directories, the current directory and the user’s home directory. The names
of these directories are system properties, and they can be read using the method
calls:

• System.getProperty(‘‘user.dir’’)–returns the absolute path name of the cur-
rent directory as a String.

• System.getProperty(‘‘user.home’’)–returns the absolute path name of the
user’s home directory as a String.

To avoid some of the problems caused by differences in path names between plat-
forms, Java has the class java.io.File. An object belonging to this class represents
a file. More precisely, an object of type File represents a file name rather than a file
as such. The file to which the name refers might or might not exist. Directories are
treated in the same way as files, so a File object can represent a directory just as
easily as it can represent a file.

A File object has a constructor, new File(String), that creates a File object
from a path name. The name can be a simple name, a relative path, or an absolute
path. For example, new File(“data.dat”) creates a File object that refers to a file
named data.dat, in the current directory. Another constructor has two parameters:
new File(File, String). The first is a File object that refers to the directory that
contains the file. The second can be the name of the file or a relative path from the
directory to the file.

File objects contain several useful instance methods. Assuming that file is a
variable of type File, here are some of the methods that are available:

• file.exists()–This boolean-valued method returns true if the file named by
the File object already exists. You can use this method if you want to avoid
overwriting the contents of an existing file when you create a new FileWriter.

• file.isDirectory()–This boolean-valued method returns true if the File ob-
ject refers to a directory. It returns false if it refers to a regular file or if no file
with the given name exists.

217

• file.delete()–Deletes the file, if it exists. Returns a boolean value to indicate
whether the file was successfully deleted.

• file.list()–If the File object refers to a directory, this method returns an
array of type String[] containing the names of the files in that directory. Oth-
erwise, it returns null.

Here, for example, is a program that will list the names of all the files in a di-
rectory specified by the user. Just for fun, I have used a Scanner to read the user’s
input:

import java.io.File;
import java.util.Scanner;

/∗ ∗
∗ This program l i s t s the f i l e s i n a d i r e c t o r y s p e c i f i e d by
∗ the user . The user i s asked to type i n a d i r e c t o r y name .
∗ I f the name entered by the user i s not a d i r e c t o r y , a
∗ message i s p r i n t e d and the program ends .
∗ /

public class DirectoryList {

public static void main(String[] args) {

String directoryName; / / D i r e c t o r y name entered by the user .
File directory; / / F i l e ob jec t r e f e r r i n g to the d i r e c t o r y .
String[] files; / / Array o f f i l e names i n the d i r e c t o r y .
Scanner scanner; / / For reading a l i n e o f i npu t from the user .

scanner = new Scanner(System.in); / / scanner reads from standard i npu t .

System.out.print(" Enter a di rectory name: ");
directoryName = scanner.nextLine().trim();
directory = new File(directoryName);

if (directory.isDirectory() == false) {
if (directory.exists() == false)

System.out.println(" There i s no such directory ! ");
else

System.out.println(" That f i l e i s not a di rectory . ");
}
else {

files = directory.list();
System.out.println(" F i l e s in di rectory \" " + directory + " \ " : ");
for (int i = 0; i < files.length; i++)

System.out.println(" " + files[i]);
}

} / / end main ()

} / / end c lass D i r e c t o r y L i s t

All the classes that are used for reading data from files and writing data to files
have constructors that take a File object as a parameter. For example, if file is a

218

variable of type File, and you want to read character data from that file, you can
create a FileReader to do so by saying new FileReader(file). If you want to use a
TextReader to read from the file, you could say:

TextReader data;

try {
data = new TextReader(new FileReader(file));

}
catch (FileNotFoundException e) {

... / / handle the except ion
}

10.3 Programming With Files

IN THIS SECTION, we look at several programming examples that work with files, using
the techniques that were introduced previously.

10.3.1 Copying a File

As a first example, we look at a simple command-line program that can make a copy
of a file. Copying a file is a pretty common operation, and every operating system
already has a command for doing it. However, it is still instructive to look at a Java
program that does the same thing. Many file operations are similar to copying a file,
except that the data from the input file is processed in some way before it is written
to the output file. All such operations can be done by programs with the same general
form.

Since the program should be able to copy any file, we can’t assume that the
data in the file is in human-readable form. So, we have to use InputStream and
OutputStream to operate on the file rather than Reader and Writer. The program
simply copies all the data from the InputStream to the OutputStream, one byte at
a time. If source is the variable that refers to the InputStream, then the method
source.read() can be used to read one byte. This method returns the value−1 when all
the bytes in the input file have been read. Similarly, if copy refers to the OutputStream,
then copy.write(b) writes one byte to the output file. So, the heart of the program is a
simple while loop. As usual, the I/O operations can throw exceptions, so this must be
done in a TRY..CATCH statement:

while(true) {
int data = source.read();
if (data < 0)

break;
copy.write(data);

}

The file-copy command in an operating system such as UNIX uses command
line arguments to specify the names of the files. For example, the user might say
“copy original.dat backup.dat” to copy an existing file, original.dat, to a file
named backup.dat. Command-line arguments can also be used in Java programs.
The command line arguments are stored in the array of strings, args, which is a
parameter to the main() method. The program can retrieve the command-line argu-
ments from this array. For example, if the program is named CopyFile and if the user

219

runs the program with the command “java CopyFile work.dat oldwork.dat”, then
in the program, args[0] will be the string “work.dat” and args[1] will be the string
“oldwork.dat”. The value of args.length tells the program how many command-line
arguments were specified by the user.

My CopyFile program gets the names of the files from the command-line argu-
ments. It prints an error message and exits if the file names are not specified. To
add a little interest, there are two ways to use the program. The command line can
simply specify the two file names. In that case, if the output file already exists, the
program will print an error message and end. This is to make sure that the user
won’t accidently overwrite an important file. However, if the command line has three
arguments, then the first argument must be “-f” while the second and third argu-
ments are file names. The -f is a command-line option, which is meant to modify
the behavior of the program. The program interprets the -f to mean that it’s OK to
overwrite an existing program. (The “f” stands for “force,” since it forces the file to be
copied in spite of what would otherwise have been considered an error.) You can see
in the source code how the command line arguments are interpreted by the program:

import java.io.∗;
/∗ ∗ Makes a copy of a f i l e . The o r i g i n a l f i l e and the name of the
∗ copy must be given as command− l i n e arguments . In add i t i on , the
∗ f i r s t command− l i n e argument can be "− f " ; i f present , the program
∗ w i l l ove rwr i t e an e x i s t i n g f i l e ; i f not , the program w i l l r e p o r t
∗ an e r r o r and end i f the output f i l e a l ready e x i s t s . The number
∗ of bytes t h a t are copied i s repor ted . ∗ /

public class CopyFile {
public static void main(String[] args) {

String sourceName; / / Name of the source f i l e , s p e c i f i e d on the command l i n e .
String copyName; / / Name of the copy s p e c i f i e d on the command l i n e .
InputStream source; / / Stream f o r reading from the source f i l e .
OutputStream copy; / / Stream f o r w r i t i n g the copy .
boolean force; / / This i s set to t r ue i f the "− f " op t ion

/ / i s s p e c i f i e d on the command l i n e .
int byteCount; / / Number o f bytes copied from the source f i l e .

/∗ Get f i l e names from the command l i n e and check f o r the
presence of the − f op t ion . I f the command l i n e i s not one
of the two poss ib le l e g a l forms , p r i n t an e r r o r message and
end t h i s program . ∗ /

if (args.length == 3 && args[0].equalsIgnoreCase("−f ")) {
sourceName = args[1];
copyName = args[2];
force = true;

}
else if (args.length == 2) {

sourceName = args[0];
copyName = args[1];
force = false;

}
else {

System.out.println("Usage : java CopyFile <source−f i l e > <copy−name> ");
System.out.println(" or java CopyFile −f <source−f i l e > <copy−name> ");
return;

}

220

/∗ Create the i npu t stream . I f an e r r o r occurs , end the program . ∗ /
try {

source = new FileInputStream(sourceName);
}
catch (FileNotFoundException e) {

System.out.println("Can’ t f ind f i l e \" " + sourceName + " \ " . ");
return;

}
/∗ I f the output f i l e a l ready e x i s t s and the − f op t ion was not

spec i f i ed , p r i n t an e r r o r message and end the program . ∗ /
File file = new File(copyName);
if (file.exists() && force == false) {

System.out.println(
" Output f i l e e x i s t s . Use the −f option to replace i t . ");

return;
}
/∗ Create the output stream . I f an e r r o r occurs , end the program . ∗ /

try {
copy = new FileOutputStream(copyName);

}
catch (IOException e) {

System.out.println("Can’ t open output f i l e \" " + copyName + " \ " . ");
return;

}

/∗ Copy one byte a t a t ime from the inpu t stream to the output
stream , ending when the read () method re tu rns −1 (which i s
the s i g n a l t h a t the end of the stream has been reached) . I f any
e r r o r occurs , p r i n t an e r r o r message . Also p r i n t a message i f
the f i l e has been copied suc cess fu l l y . ∗ /

byteCount = 0;
try {

while (true) {
int data = source.read();
if (data < 0)

break;
copy.write(data);
byteCount++;

}
source.close();
copy.close();
System.out.println(" Success fu l ly copied " + byteCount + " bytes . ");

}
catch (Exception e) {

System.out.println(" E r r o r occurred while copying . "
+ byteCount + " bytes copied . ");

System.out.println(" E r r o r : " + e);
}

} / / end main ()
} / / end c lass CopyFi le

221

