
103___

9
Static Construction

Self-Organization

9.1 Initialization

Class descriptions are long-lived objects. They are constant and they exist practi-
cally as long as an application executes. If possible, such objects are initialized at
compile time. However, we have decided in chapter 6 that static initialization
makes class descriptions hard to maintain: the order of the structure components
must agree with all the initializations, and inheritance would force us to reveal
dynamically linked methods outside their implementation files.

For bootstrapping we initialize only the class descriptions Object and Class at
compile time as static structures in the file Object.dc. All other class descriptions
are generated dynamically and the metaclass constructors beginning with
Class_ctor() take care of inheritance and overwriting dynamically linked methods.

ooc generates initialization functions to hide the details of calling new() to gen-
erate class descriptions, but the fact that they must be explicitly called in the appli-
cation code is a source of hard to diagnose errors. As an example, consider init-

Point() and initCircle() from section 6.10:
void initPoint (void) {

if (! PointClass)
PointClass = new(Class, "PointClass",

Class, sizeof(struct PointClass),
ctor, PointClass_ctor,
0);

if (! Point)
Point = new(PointClass, "Point",

Object, sizeof(struct Point),
ctor, Point_ctor,
draw, Point_draw,
0);

}

The function is designed to do its work only once, i.e., even if it is called repeatedly
it will generate a single instance of each class description.

void initCircle (void) {
if (! Circle)
{ initPoint();

Circle = new(PointClass, "Circle",
Point, sizeof(struct Circle),
ctor, Circle_ctor,
draw, Circle_draw,
0);

}
}

104___9 Static Construction — Self-Organization

Both functions implicitly observe the class hierarchy: initPoint() makes sure that
PointClass exists before it uses it to generate the description Point; the call to init-

Point() in initCircle() guarantees that the superclass description Point and its meta-
class description PointClass exist before we use them to generate the description
Circle. There is no danger of recursion: initCircle() calls initPoint() because Point

is the superclass of Circle but initPoint() will not refer to initCircle() because ooc
does not permit cycles in the superclass relationship.

Things go horribly wrong, however, if we ever forget to initialize a class descrip-
tion before we use it. Therefore, in this chapter we look at mechanisms which
automatically prevent this problem.

9.2 Initializer Lists — munch

Class descriptions essentially are static objects. They ought to exist as long as the
main program is active. This is normally accomplished by creating such objects as
global or static variables and initializing them at compile time.

Our problem is that we need to call Class_ctor() and the other metaclass con-
structors to hide the details of inheritance when initializing a class description.
Function calls, however, can only happen at execution time.

The problem is known as static constructor calls — objects with a lifetime equal
to the main program must be constructed as soon as main() is executed. There is
no difference between generating static and dynamic objects. initPoint() and simi-
lar functions simplify the calling conventions and permit calls in any order, but the
actual work is in either case done by new() and the constructors.

At first glance, the solution should be quite trivial. If we assume that every
class description linked into a program is really used we need to call every init-
function at the beginning of main(). Unfortunately, however, this is not just a
source text processing problem. ooc cannot help here because it does not know —
intentionally — how classes are put together for a program. Checking the source
code does not help because the linker might fetch classes from libraries.

Modern linkers such as GNU ld permit a compiler to compose an array of
addresses where each object module can contribute elements as it is linked into a
program. In our case we could collect the addresses of all init-funtions in such an
array and modify main() to call each function in turn. However, this feature is only
available to compiler makers, not to compiler users.

Nevertheless, we should take the hint. We define an array initializers[] and
arrange things in main() as follows:

void (* initializers [])(void) = {
0 };

int main ()
{ extern void (* initializers [])(void);

void (** init)(void) = initializers;

while (* init)
(** init ++)();

...

105___9.2 Initializer Lists — ‘‘munch’’

All that remains is to specify every initialization function of our program as an ele-
ment of initializers[]. If there is a utility like nm which can print the symbol table of
a linked program we can use the following approach to generate the array automati-
cally:

$ cc —o task object... libooc.a
$ nm —p task | munch > initializers.c
$ cc —o task object... initializers.c libooc.a

We assume that libooc.a is a library with a module initializers.o which defines the
array initializers[] as shown above containing only the trailing null pointer. The
library module is only used by the linker if the array has not been defined in a
module preceding libooc.a on the command line invoking the compiler.

nm prints the symbol table of the task resulting from the first compilation.
munch is a small program generating a new module initializers.c which references
all init-functions in task . In the second compilation the linker uses this module
rather than the default module from libooc.a to define the appropriate initializers[]

for task .

Rather than an array, munch could generate a function calling all initialization
functions. However, as we shall see in chapter 12, specifically a list of classes can
be put to other uses than just initialization.

The output from nm generally depends on the brand of UNIX used. Luckily, the
option −p instructs Berkeley-nm to print in symbol table order and System-V-nm to
produce a terse output format which happens to look almost like the output from
Berkeley-nm. Here is munch for both, implemented using awk :

NF != 3 || $2 != "T" || $1 !˜ /ˆ[0—9a—fA—F]+$/ {
next

}
$3 ˜ /ˆ_?init[A—Z][A—Za—z]+$/ {

sub(/ˆ_/, "", $3)
names[$3] = 1

}
END {

for (n in names)
printf "extern void %s (void);\n", n

print "\nvoid (* initializers [])(void) = {"
for (n in names)

printf "\t%s,\n", n
print "0 };"

}

The first condition quickly rejects all symbol table entries except for those such as
00003ea8 T _initPoint

Assuming that a name beginning with init and a capital letter followed only by
letters refers to an initialization function, an optional initial underscore is stripped
(some compilers produce it, others do not) and the rest is saved as index of an
array names[]. Once all names have been found, munch generates function
declarations and defines initializers[].

106___9 Static Construction — Self-Organization

The array names[] is used because each name must be emitted twice. Names
are stored as indices rather than element values to avoid duplication.* munch can
even be used to generate the default module for the library:

$ munch < /dev/null > initializers.c

munch is a kludge in many ways: it takes two runs of the linker to bind a task
correctly; it requires a symbol table dump like nm and it assumes a reasonable out-
put format; and, worst of all, it relies on a pattern to select the initialization func-
tions. However, munch is usually very easy to port and the selection pattern can be
adapted to a variety of static constructor problems. Not surprisingly, the AT&T C++
system has been implemented for some hosts with a (complicated) variant of
munch.

9.3 Functions for Objects

munch is a reasonably portable, if inefficient, solution for all conceivable static initial-
ization problems. Building class descriptions before they are used is a simple case
and it turns out that there is a much easier and completely portable way to accom-
plish that.

Our problem is that we use a pointer variable to refer to an object but we need
a function call to create the object if it does not yet exist. This leads to something
like the following macro definition:

#define Point (Point ? Point : (Point = initPoint()))

The macro Point checks if the class description Point is already initialized. If not, it
calls initPoint() to generate the class description. Unfortunately, if we define Point

as a macro without parameters, we can no longer use the same name for the struc-
ture tag for objects and for the corresponding class description. The following
macro is better:

#define Class(x) (x ? x : (x = init ## x ()))

Now we specify Class(Point) to reference the class description. initPoint() still
calls new() as before but it now has to return the generated class description, i.e.,
each class description needs its own initialization function:

const void * Point;

const void * initPoint (void) {
return new(Class(PointClass),

"Point", Class(Object), sizeof(struct Point),
ctor, Point_ctor,
draw, Point_draw,
(void *) 0);

}

This design still observes the ordering imposed by the class hierarchy: before the
class description PointClass is passed to new(), the macro expansion

__

* Duplication should be impossible to begin with, because a global function cannot be defined twice in
one program, but it is always better to be safe rather than sorry.

107___9.4 Implementation

Class(PointClass) makes sure the description exists. The example shows that for
uniformity we will have to supply empty functions initObject() and initClass().

If every initialization function returns the initialized object, we can do without
macros and simply call the initialization function whenever we want to access the
object — a static object is represented by its initialization function:

static const void * _Point;

const void * const Point (void) {
return _Point ? _Point :

(_Point = new(PointClass(),
"Point", Object(), sizeof(struct Point),
ctor, Point_ctor,
draw, Point_draw,
(void *) 0));

}

We could move the definition of the actual pointer _Point into the function; how-
ever, the global definition is necessary if we still want to implement munch for Sys-
tem V.

Replacing static objects by functions need not be less efficient than using mac-
ros. ANSI-C does not permit the declaration of a const or volatile result for a func-
tion, i.e., the boldfaced const qualifier in the example.* GNU-C allows such a
declaration and uses it during optimization. If a function has a const result its value
must depend only on its arguments and the call must not produce side effects. The
compiler tries to minimize the number of calls to such a function and reuses the
results.

9.4 Implementation

If we choose to replace a class description name such as Point by a call to the ini-
tialization function Point() to generate the class descriptions automatically, we have
to modify each use of a class description and we need to tweak the ooc reports to
generate slightly different files.

Class description names are used in calls to new(), cast(), isA(), isOf(), and in
superclass selector calls. Using functions in place of pointer variables is a new con-
vention, i.e., we will have to modify the application programs and the implementa-
tion files. A good ANSI-C compiler (or the −pedantic option of GNU-C) can be quite
helpful: it should flag all attempts to pass a function name to a void * parameter,
i.e., it should flag all those points in our C code where we have missed adding an
empty argument list to a class name.

Changing the reports is a bit more difficult. It helps to look in the generated
files for references to class descriptions. The representation file Point.r remains
unchanged. The interface file Point.h declares the class and metaclass description
pointers. It is changed from
__

* The first const indicates that the result of the function points to a constant value. Only the second
const indicates that the pointer value itself is constant.

108___9 Static Construction — Self-Organization

extern const void * Point;
extern const void * PointClass;

to
extern const void * const Point (void);
extern const void * const PointClass (void);

where the boldfaced const can only be used with GNU-C. It helps to have a portable
report so we change the relevant lines in h.rep as follows

extern const void * `%const `class (void); `n `n
extern const void * `%const `meta (void); `n `n

and we add a new report to the common file header.rep:
% const // GNUC supports const functions

`{if `GNUC 1 const `}

ooc normally defines the symbol GNUC with value zero but by specifying
$ ooc —DGNUC=1 ...

we can set this symbol to 1 on the command line and generate better code.

The implementation file Point.c contains many changes. All calls to cast() are
changed; for the most part they are produced by the %casts request to ooc and
thus by the casts and checks reports shown in section 8.4. Other calls to cast()

are used in some selectors and superclass selectors and in the metaclass construc-
tors, but these are generated by reports in etc.rep, c.rep, and c-R.rep . It now pays
off that we have used ooc to enforce our coding standard — the standard is easy to
change in a single place.

The significant change is, of course, the new style of initialization functions.
Fortunately, these are also generated in c.rep and we derive the new versions by
converting Point() as shown in the preceding section to report format in c.rep.
Finally, we produce default functions such as

const void * const Object (void) {
return & _Object;

}

by the init report in c-R.rep so that it can benefit from the GNUC conditional for
ooc. This is a bit touchy because, as stated in section 7.5, the static initialization of
_Object must be coded in Object.dc:

extern const struct Class _Object;
extern const struct Class _Class;

%init

static const struct Class _Object = {
{ MAGIC, & _Class },
"Object", & _Object, sizeof(struct Object),
Object_ctor, Object_dtor, Object_differ, Object_puto

};

extern introduces forward references to the descriptions. %init generates the
functions which reference the descriptions as shown above. static, finally, gives

109___9.5 Summary

internal linkage to the initialized descriptions, i.e., they are still hidden inside the
implementation file Object.c.

As an exception, _Object must be the name of the structure itself and not a
pointer to it so that & _Object can be used to initialize the structure. If we do not
introduce a macro such as Class(), this makes little difference, but it does compli-
cate munch a bit:

NF != 3 || $1 !˜ /ˆ[0—9a—f]+$/ { next }
$2 ˜ /ˆ[bs]$/ { bsd[$3] = 1; next }
$2 == "d" { sysv[$3] = 1; next }
$2 == "T" { T[$3] = 1; next }

END {
for (name in T)

if ("_" name in bsd) # eliminate leading _
names[n ++] = substr(name, 2)

else if ("_" name in sysv)
names[n ++] = name

for (i = 0; i < n; ++ i)
printf "extern const void * %s (void);\n", names[i]

print "\nconst void * (* classes [])(void) = {"
for (i = 0; i < n; ++ i)

printf "\t%s,\n", names[i]
print "0 };"

}

A class name should now occur as a global function and with a leading underscore
as a local data item. Berkeley-nm flags initialized local data with s and uninitialized
data with b, System-V-nm uses d in both cases. We simply collect all interesting
symbols in three arrays and match them in the END clause to produce the array
names[] which we actually need. There is even an advantage to this architecture:
we can insert a simple shellsort [K&R88] to produce the class names in alphabetical
order:

for (gap = int(n/2); gap > 0; gap = int(gap/2))
for (i = gap; i < n; ++ i)

for (j = i—gap; j >= 0 && \
names[j] > names[j+gap]; j —= gap)

{ name = names[j]
names[j] = names[j+gap]
names[j+gap] = name

}

If we use function calls in place of class names we do not need munch; however, a
list of the classes in a program may come in handy for some other purpose.

9.5 Summary

Static objects such as class descriptions would normally be initialized at compile
time. If we need constructor calls, we wrap them into functions without parame-
ters and make sure that these functions are called early enough and in the proper

110___9 Static Construction — Self-Organization

order. In order to avoid trivial but hard to diagnose errors, we should provide a
mechanism which performs these function calls automatically — our programs
should be self-organizing.

One solution is to use a linking technique, for example with the aid of a pro-
gram such as munch, to produce an array with the addresses of all initialization
functions and call each array element at the beginning of a main program. A func-
tion main() with a loop executing the array can be part of our project library, and
each program starts with a function mainprog() which is called by main().

Another solution is to let an initialization function return the initialized object. If
the function is locked so that it does the actual work only once we can replace each
reference to a static object by a call to its initialization function. Alternatively, we
can use macros to produce the same effect more efficiently. Either way we can no
longer take the address of a reference to a static object, but because the reference
itself is a pointer value, this should hardly be necessary.

9.6 Exercises

The Class() macro is a more efficient, portable solution for automatic initialization of
class descriptions than using functions. It is implemented by changing reports,
class definitions, and application programs just as described above.

munch may have to be ported to a new system. If it is used together with the
Class() macro, for a production system we can remove the conditional from the
macro and initialize all class descriptions with munch. How do we initialize things in
the right order? Can ooc be used to help here (consult the manual in appendix C
about option −M for occ)? What about cast() in a production system?

All class descriptions should first show up in calls to cast(). We can define a
fake class

typedef const void * (* initializer) (void);

% Class ClassInit: Object {
initializer init;

%}

and use statically initialized instances as ‘‘uninitialized’’ class descriptions:
static struct ClassInit _Point = {

{ MAGIC, 0 }, /* Object without class description */
initPoint /* initialization function */

};

const void * Point = & _Point;

cast() can now discover a class description with a null class description pointer,
assume that it is a struct ClassInit, and call the initialization function. While this
solution reduces the number of unnecessary function calls, how does it influence
the use of cast()?

111___

10
Delegates

Callback Functions

10.1 Callbacks

An object points to its class description. The class description points to all dynami-
cally linked methods applicable to the object. It looks as though we should be able
to ask an object if it can respond to a particular method. In a way this is a safe-
guard measure: given a dubious object we can check at run time if we are really
allowed to apply a specific method to it. If we do not check, the method’s selector
will certainly check and crash our program if the object cannot respond, i.e., if the
object’s class description does not contain the method.

Why would we really want to know? We are out of luck if a method must be
applied unconditionally to an object which does not know about it; therefore, there
is no need to check. However, if it makes no difference to our own algorithm
whether or not the method is applied, being able to ask makes for a more forgiving
interface.

The situation arises in the context of callback functions. For example, if we are
managing a window on a display, some inhabitants of the window might want to be
informed when they are about to be covered up, displayed again, changed in size,
or destroyed. We can inform our client by calling a function on which we both have
agreed: either the client has given us the name of a function to be called for a par-
ticular event, or we have agreed on a specific function name.

Registering a callback function, the first technique, looks like the more flexible
approach. A client registers functions only for those events which are important
from its point of view. Different clients may use different sets of callback func-
tions, and there is no need to observe a common name space. ANSI-C actually
uses some callback functions: bsearch() and qsort() receive the comparison func-
tion relative to which they search and sort and atexit() registers functions to be
called just before a program terminates.

Agreeing on specific function names looks even easier: a recognizer generated
by lex will call a function yywrap() at the end of an input file and it will continue pro-
cessing if this function does not return zero. Of course, this is impractical if we
need more than one such function in a program. If bsearch() assumed its com-
parison function to be called cmp, it would be much less flexible.

10.2 Abstract Base Classes

Once we look at dynamically linked methods, agreeing on specific method names
for callback purposes does not seem to be as limiting. A method is called for a par-
ticular object, i.e., which code is executed for a callback depends on an object in
addition to a specific method name.

112___10 Delegates — Callback Functions

Methods, however, can only be declared for a class. If we want to communi-
cate with a client in the style of a callback function, we have to postulate an
abstract base class with the necessary communication methods and the client
object must belong to a subclass to implement these methods. For example:

% OrderedClass: Class OrderedArray: Object {
%—

int cmp (const _self, int a, int b);
void swap (_self, int a, int b);

%}

A sorting algorithm can use cmp() to check on two array elements by index, and it
can use swap() to rearrange them if they are out of order. The sorting algorithm
can be applied to any subclass of OrderedArray which implements these methods.
OrderedArray itself is called an abstract base class because it serves only to
declare the methods; this class should have no objects if the methods are not
defined.

Abstract base classes are quite elegant to encapsulate calling conventions. For
example, in an operating system there could be an abstract base class for a certain
variety of device drivers. The operating system communicates with each driver
using the methods of the base class and each driver is expected to implement all of
these methods to communicate with the actual device.

The catch is that all methods of an abstract base class must be implemented
for the client because they will be called. For a device driver this is perhaps obvi-
ous, but a device driver is not exactly a representative scenario for callback func-
tions. A window is much more typical: some clients have to worry about expo-
sures and others could not care less — why should they all have to implement all
methods?

An abstract base class restricts the architecture of a class hierarchy. Without
multiple inheritance a client must belong to a particular part of the class tree headed
by the abstract base class, regardless of its actual role within an application. As an
example, consider a client of a window managing a list of graphical objects. The
elegant solution is to let the client belong to a subclass of List but the implementa-
tion of a window forces the client to be something like a WindowHandler. As we
discussed in section 4.9 we can make an aggregate and let the client contain a List

object, but then our class hierarchy evolves according to the dictate of the system
rather than according to the needs of our application problems.

Finally, an abstract base class defining callback functions tends to define no
private data components for its objects, i.e., the class declares but does not define
methods and the objects have no private state. While this is not ruled out by the
concept of a class it is certainly not typical and it does suggest that the abstract
base class is really just a collection of functions rather than of objects and methods.

113___10.3 Delegates

10.3 Delegates

Having made a case against abstract base classes we need to look for a better idea.
It takes two to callback: the client object wants to be called and the host does the
calling. Clearly, the client object must identify itself to the host, if it wants the host
to send it a message, but this is all that is required if the host can ask the client
what callbacks it is willing to accept, i.e., what methods it can respond to.

It is significant that our viewpoint has shifted: an object is now part of the call-
back scenario. We call such an object a delegate. As soon as a delegate announces
itself to the host, the host checks what callbacks the delegate can handle and later
the host makes precisely those calls which the delegate expects.

As an example we implement a simple framework for a text filter, i.e., a pro-
gram which reads lines from standard input or from files specified as arguments,
manipulates them, and writes the results to standard output. As one application we
look at a program to count lines and characters in a text file. Here is the main pro-
gram which can be specified as part of the implementation file Wc.dc:

int main (int argc, char * argv [])
{ void * filter = new(Filter(), new(Wc()));

return mainLoop(filter, argv);
}

We create a general object filter and give it as a delegate an application-specific Wc

object to count lines and characters. filter receives the arguments of our program
and runs the mainLoop() with callbacks to the Wc object.

% WcClass: Class Wc: Object {
unsigned lines; // lines in current file
unsigned allLines; // lines in previous files
unsigned chars; // bytes in current file
unsigned allChars; // bytes in previous files
unsigned files; // files completed

%—
int wc (_self, const Object @ filter, \

const char * fnm, char * buf);
int printFile (_self, const Object @ filter, \

const char * fnm);
int printTotal (_self, const Object @ filter);

%}

The methods in Wc do nothing but line and character counting and reporting the
results. wc() is called with a buffer containing one line:

% Wc wc { // (self, filter, fnm, buf)
%casts

++ self —> lines;
self —> chars += strlen(buf);
return 0;

}

Once a single file has been processed, printFile() reports the statistics and adds
them to the running total:

114___10 Delegates — Callback Functions

% Wc printFile { // (self, filter, fnm)
%casts

if (fnm && strcmp(fnm, "—"))
printf("%7u %7u %s\n",

self —> lines, self —> chars, fnm);
else

printf("%7u %7u\n", self —> lines, self —> chars);

self —> allLines += self —> lines, self —> lines = 0;
self —> allChars += self —> chars, self —> chars = 0;
++ self —> files;
return 0;

}

fnm is an argument with the current filename. It can be a null pointer or a minus
sign; in this case we do not show a filename in the output.

Finally, printTotal() reports the running total if printFile() has been called more
than once:

% Wc printTotal { // (self, filter)
%casts

if (self —> files > 1)
printf("%7u %7u in %u files\n",

self —> allLines, self —> allChars, self —> files);
return 0;

}

Wc only deals with counting. It does not worry about command line argu-
ments, opening or reading files, etc. Filenames are only used to label the output,
they have no further significance.

10.4 An Application Framework — Filter

Processing a command line is a general problem common to all filter programs. We
have to pick off bundled or separated flags and option values, we must recognize
two minus signs −− as the end of the option list and a single minus sign − addition-
ally as standard input, and we may need to read standard input or each file argu-
ment. Every filter program contains more or less the same code for this purpose,
and macros such as MAIN [Sch87, chapter 15] or functions such as getopt(3) help
to maintain standards, but why regurgitate the code in the first place?

The class Filter is designed as a uniform implementation of command line pro-
cessing for all filter programs. It can be called an application framework because it
establishes the ground rules and basic structure for a large family of applications.
The method mainLoop() contains command line processing once and for all and
uses callback functions to let a client deal with the extracted arguments:

% mainLoop { // (self, argv)
%casts

self —> progname = * argv ++;

115___10.4 An Application Framework — ‘‘Filter’’

while (* argv && ** argv == ’—’)
{ switch (* ++ * argv) {

case 0: // single —
—— * argv; // ... is a filename
break; // ... and ends options

case ’—’:
if (! (* argv)[1]) // two ——
{ ++ argv; // ... are ignored

break; // ... and end options
}

default: // rest are bundled flags
do

if (self —> flag)
{ self —> argv = argv;

self —> flag(self —> delegate,
self, ** argv);

argv = self —> argv;
}
else
{ fprintf(stderr,

"%s: —%c: no flags allowed\n",
self —> progname, ** argv);

return 1;
}

while (* ++ * argv);
++ argv;
continue;

}
break;

}

The outer loop processes arguments until we reach the null pointer terminating the
array argv[] or until an argument does not start with a minus sign. One or two
minus signs terminate the outer loop with break statements.

The inner loop passes each character of one argument to the flag-function pro-
vided by the delegate. If the delegate decides that a flag introduces an option with
a value, the method argval() provides a callback from the delegate to the filter to
retrieve the option value:

% argval { // (self)
const char * result;

%casts
assert(self —> argv && * self —> argv);

if ((* self —> argv)[1]) // —fvalue
result = ++ * self —> argv;

else if (self —> argv[1]) // —f value
result = * ++ self —> argv;

else // no more argument
result = NULL;

116___10 Delegates — Callback Functions

while ((* self —> argv)[1]) // skip text
++ * self —> argv;

return result;
}

The option value is either the rest of the flag argument or the next argument if any.
self −> argv is advanced so that the inner loop of mainLoop() terminates.

Once the options have been picked off the command line, the filename argu-
ments remain. If there are none, a filter program works with standard input. main-

Loop() continues as follows:
if (* argv)

do
result = doit(self, * argv);

while (! result && * ++ argv);
else

result = doit(self, NULL);

if (self —> quit)
result = self —> quit(self —> delegate, self);

return result;
}

We let a method doit() take care of a single filename argument. A null pointer
represents the situation that there are no arguments. doit() produces an exit code:
only if it is zero do we process more arguments.

% doit { // (self, arg)
FILE * fp;
int result = 0;

%casts
if (self —> name)

return self —> name(self —> delegate, self, arg);

if (! arg || strcmp(arg, "—") == 0)
fp = stdin, clearerr(fp);

else if (! * arg)
{ fprintf(stderr, "%s: null filename\n",

self —> progname);
return 1;

}
else if (! (fp = fopen(arg, "r")))
{ perror(arg);

return 1;
}

The client may supply a function to process the filename argument. Otherwise,
doit() connects to stdin for a null pointer or a minus sign as an argument; other
filenames are opened for reading. Once the file is opened the client can take over
with yet another callback function or doit() allocates a dynamic buffer and starts
reading lines:

117___10.5 The ‘‘respondsTo’’ Method

if (self —> file)
result = self —> file(self —> delegate, self, arg, fp);

else
{ if (! self —> buf)

{ self —> blen = BUFSIZ;
self —> buf = malloc(self —> blen);
assert(self —> buf);

}

while (fgets(self —> buf, self —> blen, fp))
if (self —> line && (result =

self —> line(self —> delegate, self, arg,
self —> buf)))

break;

if (self —> wrap)
result = self —> wrap(self —> delegate, self, arg);

}

if (fp != stdin)
fclose(fp);

if (fflush(stdout), ferror(stdout))
{ fprintf(stderr, "%s: output error\n", self —> progname);

result = 1;
}
return result;

}

With two more callback functions the client can receive each text line and perform
cleanup actions once the file is complete, respectively. These are the functions that
wc uses. doit() recycles the file pointer and checks that the output has been suc-
cessfully written.

If a client class implements line-oriented callbacks from the Filter class, it
should be aware of the fact that it deals with text lines. fgets() reads input until its
buffer overflows or until a newline character is found. Additional code in doit()

extends the dynamic buffer as required, but it only passes the buffer to the client,
not a buffer length. fgets() does not return the number of characters read, i.e., if
there is a null byte in the input, the client has no way to get past it because the null
byte might actually mark the end of the last buffer of a file with no terminating new-
line.

10.5 The respondsTo Method

How does an object reach its delegate? When a Filter object is constructed it
receives the delegate object as an argument. The class description Filter.d defines
function types for the possible callback functions and object components to hold
the pointers:

typedef void (* flagM) (void *, void *, char);
typedef int (* nameM) (void *, const void *, const char *);
typedef int (* fileM) (void *, const void *, const char *,

FILE *);

118___10 Delegates — Callback Functions

typedef int (* lineM) (void *, const void *, const char *,
char *);

typedef int (* wrapM) (void *, const void *, const char *);
typedef int (* quitM) (void *, const void *);

% Class Filter: Object {
Object @ delegate;
flagM flag; // process a flag
nameM name; // process a filename argument
fileM file; // process an opened file
lineM line; // process a line buffer
wrapM wrap; // done with a file
quitM quit; // done with all files

const char * progname; // argv[0]
char ** argv; // current argument and byte

char * buf; // dynamic line buffer
unsigned blen; // current maximum length

%
int mainLoop (_self, char ** argv);
const char * argval (_self);
const char * progname (const _self);
int doit (_self, const char * arg);

%}

Unfortunately, ANSI-C does not permit a typedef to be used to define a function
header, but a client class like Wc can still use the function type to make sure its
callback function matches the expectations of Filter:

#include "Filter.h"

% Wc wc { // (self, filter, fnm, buf)
%casts

assert((lineM) wc == wc);
...

The assertion is trivially true but a good ANSI-C compiler will complain about a type
mismatch if lineM does not match the type of wc():

In function `Wc_wc’:
warning: comparison of distinct pointer types lacks a cast

We still have not seen why our filter knows to call wc() to process an input
line. Filter_ctor() receives the delegate object as an argument and it can set the
interesting components for filter:

% Filter ctor {
struct Filter * self = super_ctor(Filter(), _self, app);

self —> delegate = va_arg(* app, void *);

self —> flag = (flagM) respondsTo(self —> delegate, "flag");
...
self —> quit = (quitM) respondsTo(self —> delegate, "quit");

return self;
}

119___10.6 Implementation

The trick is a new statically linked method respondsTo() which may be applied to
any Object. It takes an object and a search argument and returns a suitable function
pointer if the object has a dynamically linked method corresponding to the search
argument.

The returned function pointer could be a selector or the method itself. If we
opt for the method, we avoid the selector call when the callback function is called;
however, we also avoid the parameter checking which the selector performs. It is
better to be safe than to be sorry; therefore, respondsTo() returns a selector.

Designing the search argument is more difficult. Because respondsTo() is a
general method for all types of methods we cannot perform type checking at com-
pile time, but we have already shown how the delegate can protect itself. Regard-
less of type checking we could still let respondsTo() look for the selector it is sup-
posed to return, i.e., the search argument could be the desired selector. Selector
names, however, are part of the global name space of a program, i.e., if we look for
a selector name we are implicitly restricted to subclasses of the class where the
selector was introduced. However, the idea was not to be restricted by inheritance
aspects. Therefore, respondsTo() uses a string as the search argument.

We are left with the problem of associating a string with a dynamically linked
method. Logically this can be done in one of two places: when the method is
declared in the class description file or when it is implemented in the implementa-
tion file. Either way it is a job for ooc because the association between the string
tag and the method name must be stored in the class description so that
respondsTo() can find it there. The class description, however, is constructed by
ooc. We use a simple syntax extension:

% WcClass: Class Wc: Object {
...

%—
line: int wc (_self, const Object @ filter, \

const char * fnm, char * buf);
wrap: int printFile (_self, const Object @ filter, \

const char * fnm);
quit: int printTotal (_self, const Object @ filter);
%}

In a class description file like Wc.d a tag may be specified as a label preceding a
dynamically linked method. By default, the method name would be used as a tag.
An empty label suppresses a tag altogether — in this case respondsTo() cannot
find the method. Tags apply to dynamically linked methods, i.e., they are inherited.
To make things more flexible, a tag can also be specified as a label in a method
header in the implementation file. Such a tag is valid only for the current class.

10.6 Implementation

respondsTo() must search the class description for a tag and return the
corresponding selector. Thus far, the class description only contains pointers to the
methods. Clearly, the method entry in a class description must be extended:

120___10 Delegates — Callback Functions

typedef void (* Method) (); // for respondsTo()

%prot

struct Method {
const char * tag; // for respondsTo()
Method selector; // returned by respondsTo()
Method method; // accessed by the selector

};

% Class Object {
...

Method respondsTo (const _self, const char * tag);

Method is a simple function type defined in the interface file for Object. Each
method is recorded in a class description as a component of type struct Method

which contains pointers to the tag, the selector, and the actual method.
respondsTo() returns a Method. ANSI-C compilers will gripe about implicit casts
from and to this type.

Given this design, a few more changes are required. In Object.dc we need to
change the static initialization of the class descriptions Object and Class to use
struct Method:

static const struct Class _Object = {
{ MAGIC, & _Class },
"Object", & _Object, sizeof(struct Object),
{ "", (Method) 0, (Method) Object_ctor },
{ "", (Method) 0, (Method) Object_dtor },
{ "differ", (Method) differ,(Method) Object_differ },
...

};

The -r report in r.rep uses the link report in va.rep to generate an entry in the class
description for the class representation file. The new version of the link report is
very simple:

% link // component of metaclass structure

struct Method `method ;

Finally, the init report in c.rep and c-R.rep uses the meta-ctor-loop in etc.rep to
generate the loop which dynamically fills the class description. Here we also have
to work with the new types:

% meta—ctor—loop // selector/tag/method tuples for `class

`t while ((selector = va_arg(ap, Method))) `n
`t { `t const char * tag = va_arg(ap, ` \

const char *); `n
`t `t Method method = va_arg(ap, Method); `n `n

`{%— `%link—it `}
`t } `n

121___10.6 Implementation

% link—it // check and insert one selector/method pair

`t `t if (selector == (Method) `method) `n
`t `t { `t if (tag) `n
`t `t `t `t self —> `method .tag = tag, `n
`t `t `t `t self —> `method .selector = selector; `n
`t `t `t self —> `method .method = method; `n
`t `t `t continue; `n
`t `t } `n

Rather than selector/method pairs we now specify selector/tag/method tuples as
arguments to the metaclass constructor. This must be built into the init report in
c.rep. Here is the initialization function for Wc generated by ooc:

static const void * _Wc;

const void * Wc (void) {
return _Wc ? _Wc :

(_Wc = new(WcClass(),
"Wc", Object(), sizeof(struct Wc),
wc, "line", Wc_wc,
printFile, "wrap", Wc_printFile,
printTotal, "quit", Wc_printTotal,
(void *) 0));

}

Given the selector/tag/method tuples in a class description, respondsTo() is
easy to write. Thanks to the class hierarchy, we can compute how many methods
a class description contains and we can implement respondsTo() entirely in the
Object class, even though it handles arbitrary classes:

% respondsTo {
if (tag && * tag) {

const struct Class * class = classOf(_self);
const struct Method * p = & class —> ctor; // first
int nmeth =

(sizeOf(class) — offsetof(struct Class, ctor))
/ sizeof(struct Method); // # of Methods

do
if (p —> tag && strcmp(p —> tag, tag) == 0)

return p —> method ? p —> selector : 0;
while (++ p, —— nmeth);

}
return 0;

}

The only drawback is that respondsTo() explicitly contains the first method name
ever, ctor, in order to calculate the number of methods from the size of the class
description. While ooc could obtain this name from the class description of Object,
it would be quite messy to construct a report for ooc to generate respondsTo() in a
general fashion.

122___10 Delegates — Callback Functions

10.7 Another application — sort

Let us implement a small text sorting program to check if Filter really is reusable, to
see how command line options are handled, and to appreciate that a delegate can
belong to an arbitrary class.

A sort filter must collect all text lines, sort the complete set, and finally write
them out. Section 7.7 introduced a List based on a dynamic ring buffer which we
can use to collect the lines as long as we add a sorting method. In section 2.5 we
implemented a simple String class; if we integrate it with our class hierarchy we
can use it to store each line in the List.

Let us start with the main program which merely creates the filter with its
delegate:

int main (int argc, char * argv [])
{ void * filter = new(Filter(), new(Sort(), 0));

return mainLoop(filter, argv);
}

Because we can attach the callback methods to any class, we can create the
delegate directly in a subclass of List:

% SortClass: ListClass Sort: List {
char rflag;

%—
void flags (_self, Object @ filter, char flag);
int line (_self, const Object @ filter, const char * fnm, \

char * buf);
int quit (_self, const Object @ filter);

%}

To demonstrate option handling we recognize −r as a request to sort in reverse
order. All other flags are rejected by the flags() method which has flag as a tag for
respondsTo():

% flag: Sort flags {
%casts

assert((flagM) flags == flags);

if (flag == ’r’)
self —> rflag = 1;

else
fprintf(stderr, "usage: %s [—r] [file...]\n",

progname(filter)),
exit(1);

}

Given String and List, collecting lines is trivial:
% Sort line {
%casts

assert((lineM) line == line);

addLast(self, new(String(), buf));
return 0;

}

123___10.8 Summary

Once all lines are in, the quit callback takes care of sorting and writing. If there are
any lines at all, we let a new method sort() worry about sorting the list, and then
we remove each line in turn and let the String object display itself. We can sort in
reverse order simply by removing the lines from the back of the list:

% Sort quit {
%casts

assert((quitM) quit == quit);

if (count(self))
{ sort(self);

do
puto(self —> rflag ? takeLast(self)

: takeFirst(self), stdout);
while (count(self));

}
return 0;

}

What about sort()? ANSI-C defines the library function qsort() for sorting arbitrary
arrays based on a comparison function. Luckily, List is implemented as a ring
buffer in an array, i.e., if we implement sort() as a method of List we should have
very little trouble:

static int cmp (const void * a, const void * b)
{

return differ(* (void **) a, * (void **) b);
}

% List sort {
%casts

if (self —> count)
{ while (self —> begin + self —> count > self —> dim)

addFirst(self, takeLast(self));
qsort(self —> buf + self —> begin, self —> count,

sizeof self —> buf[0], cmp);
}

}

If there are any list elements, we rotate the list until it is a single region of the
buffer and then pass the list to qsort(). The comparison function sends differ() to
the list elements themselves — String_differ was based on strcmp() and can,
therefore, be (ab-)used as a comparison function.

10.8 Summary

An object points to its class description and the class description points to all the
dynamically linked methods for the object. Therefore, an object can be asked if it
will respond to a particular method. respondsTo() is a statically linked method for
Object. It takes an object and a string tag as search argument and returns the
appropriate selector if the tag matches a method for the object.

Tags can be specified to ooc as labels on the prototypes of dynamically linked
methods in the class definition file, and as labels on a method header in the imple-

124___10 Delegates — Callback Functions

mentation file; the latter have precedence. By default, the method name is used as
a tag. Empty tags cannot be found. For the implementation of respondsTo() a
method is passed to a metaclass constructor as a triple selector/tag/method.

Given respondsTo(), we can implement delegates: a client object announces
itself as a delegate object to a host object. The host queries the client with
respondsTo() if it can answer certain method calls. If it does, the host will use
these methods to inform the client of some state changes.

Delegates are preferable to registering callback functions and to abstract base
classes for defining the communication between a host and a client. A callback
function cannot be a method because the host does not have an object to call the
method with. An abstract base class imposes unnecessary restrictions on
application-oriented development of the class hierarchy. Similar to callback func-
tions, we can implement for delegates just those methods which are interesting for
a particular situation. The set of possible methods can be much larger.

An application framework consists of one or more objects which provide the
typical structure of an application. If it is well designed, it can save a great deal of
routine coding. Delegates are a very convenient technique to let the application
framework interact with the problem-specific code.

10.9 Exercises

Filter implements a standard command line where options precede filename argu-
ments, where flags can be bundled, and where option values can be bundled or
specified as separate arguments. Unfortunately, pr(1) is a commonly available pro-
gram that does not fit this pattern. Is there a general solution? Can a flag introduce
two or more argument values which all appear as separate arguments?

The line callback should be modified so that binary files can be handled
correctly. Does it make sense to provide a byte callback? What is an alternative?

A much more efficient, although not portable, implementation would try to map
a file into memory if possible. The callback interface does not necessarily have to
be modified but a modification would make it more robust.

respondsTo() has to know the name of the first struct Method component of
every class description. The reports -r in r-R.rep or rather init in c-R.rep can be
modified to define a structure to circumvent this problem.

The init report can be modified to generate a puto() method for Class which
uses the same technique as respondsTo() to display all method tags and
addresses.

Piping the output of our sort program into the official sort(1) for checking may
produce a surprise:

$ sort —r Sort.d | /usr/bin/sort —c —r
sort: disorder: int quit (_self, const Object @ filter);

There are more efficient ways for List_sort() to compact the list in the ring
buffer before passing it to qsort(). Are we really correct in rotating it?

125___

11
Class Methods

Plugging Memory Leaks

Modern workstations have lots of memory. If a program looses track of a byte here
and there it will probably not make a whole lot of difference. However, memory
leaks are usually indicative of algorithmic errors — either the program reacts in
unexpected ways to strange input or, worse, the program was inadvertently
designed to break connections to dynamically allocated memory. In this chapter we
will look at a general technology available with object-oriented programming which
can be used, among other things, to combat memory leaks.

11.1 An Example

All resources acquired by a program should be properly recycled. Dynamic memory
is a resource and production programs should certainly be checked for memory
leaks. As an example, consider what happens when we make a syntax error while
using the calculator developed in the third and fifth chapter:

$ value
(3 * 4) — —
bad factor: ’’ 0x0

The recursive descent algorithm tries to build an expression tree. If something
goes wrong, the error() function uses longjmp() to eliminate whatever is on the
stack and continue processing in the main program. The stack, however, contains
the pieces of the expression tree built thus far. If there is a syntax error, these
pieces are lost: we have a memory leak. This is, of course, a standard problem in
constructing interpreters.

NeXTSTEP provides a simple application MallocDebug which can be used to
locate at least some of the more serious problems. If we link value with −lMalloc-

Debug, the standard versions of malloc() and related functions are replaced by a
module that can communicate with the MallocDebug application. We start Malloc-
Debug after value, connect the two, and push a button Leaks once we have
received the first error message. Unfortunately, the output is simply:

No nodes.

MallocDebug uses a fairly naive method to check for leaks: it has a list of all allo-
cated areas and scans the words in the client task to see if they point to allocated
areas. Only areas to which no word in the client task points are considered to be
memory leaks. For the input

(3 * 4) — —

sum() will have the first subtree built by product() before factor() runs into the end
of the input line. However, when error() clips the stack from factor() back to
main(), the address of the root of this subtree is still in the local variable result of
sum() and, by chance, does not get overwritten in the longjmp(). The remaining

126___11 Class Methods — Plugging Memory Leaks

nodes are connected to the root, i.e., from the point of view of MallocDebug, all
nodes can still be reached. However, if we enter another expression the old stack
is overwritten and MallocDebug will find the leak.

value:
$ value
(3 * 4) — —
bad factor: ’’ 0x0
1 + 3

4

MallocDebug:
Zone: Address: Size: Function:
default 0x050ec35c 12 mkBin, new, product, sum,

factor, product, sum, stmt

If value is compiled with debugging information, we can start a debugger in a
second window and investigate the leak:

$ gdb value
GDB is free software ...
(gdb) attach 746
Attaching program `value’, pid 746
0x5007be2 in read ()
(gdb) print * (struct Bin *) 0x050ec35c
Reading in symbols for mathlib.c...done.
$1 = {

type = 0x8024,
left = 0x50ec334,
right = 0x50ec348

}
(gdb) print process(0x050ec35c)
Reading in symbols for value.c...done.
$3 = void
(gdb)

The GNU debugger can be attached to a running process. With print we can display
the contents of the leaky node if we copy the address from the MallocDebug win-
dow and supply the proper type: mkBin() was the original caller of malloc(), i.e.,
we must have obtained a struct Bin. As the output shows, print can even call a
method like process() in value and display the result. The output from process()

appears in the window where value is running:
$ value
(3 * 4) — —
bad factor: ’’ 0x0
1 + 3

4
12

The memory leak is alive and well.

127___11.2 Class Methods

11.2 Class Methods

How do we plug this specific memory leak? The leak has occurred by the time
error() returns to the main loop. Either we collect and release all expression pieces
before longjmp() is executed, or we need a different way to reclaim the allocated
nodes.

Collecting the pieces is a lost cause because they are held by various activa-
tions of the functions involved in the recursive descent algorithm. Only each activa-
tion knows what must be released, i.e., in place of a longjmp() we would have to
cope with error returns in every function. This is likely to be botched once the pro-
gram is later extended.

Designing a reclamation mechanism is a much more systematic approach for
solving this problem. If we know what nodes are currently allocated for the expres-
sion tree we can easily release them and reclaim the memory in case of an error.
What we need are versions of new() and delete() which maintain a linear list of
allocated nodes which a function like reclaim() can traverse to free memory. In
short, for expression tree nodes we should overwrite what new() and delete() do.

delete() is sent to objects, i.e., it is a method that can be given dynamic linkage
so that it may be overwritten for a subtree of the class hierarchy. new(), however,
is sent to a class description. If we want to give new() dynamic linkage, we must
add its pointer to the class description of the class description object, to which we
want to send new():

NodeClass

?

"NodeClass"

?

sizeof Node

fill Node

return 0

make aNode

struct NodeMetaClass

ctor:

dtor:

new:

Node

•

"Node"

Object

sizeof aNode

fill aNode

empty aNode

free aNode

evaluate aNode

struct NodeClass

ctor:

dtor:

delete:

exec:

aNode

•

...

struct Node

With this arrangement we can give new() dynamic linkage for the call
new(Node, ...)

However, we create a problem for the descriptions of class descriptions, i.e., at the
right edge of this picture. If we start to introduce new method components in
metaclass descriptions such as NodeClass, we can no longer use struct Class to
store them, i.e., our diagram must be extended at least one more level to the right
before we might be able to tie it to the original Class.

128___11 Class Methods — Plugging Memory Leaks

Why did we decide to store methods in class descriptions? We assume that
we have many objects and few classes. Storing methods in class descriptions
rather than in the objects themselves costs one level of indirection, i.e., the dere-
ferencing of the pointer from the object to its class description, but it avoids the
high memory requirement of letting each object contain all method pointers directly.

There are fewer class descriptions than other objects; therefore, the expense of
storing a method address directly in the class description to which the method is
applied is not as prohibitive as it would be for other objects. We call such methods
class methods — they are applied to the class description in which they are stored
rather than to the objects sharing this class description.

A typical class method is new() which would be overwritten to manipulate
memory allocation: provide statistics or a reclamation mechanism; allocate objects
in memory zones to improve the paging behavior of a program; share memory
between objects, etc. Other class methods can be introduced, for example, if we
want to circumvent the convention that new() always calls the constructor ctor().

11.3 Implementing Class Methods

The internal difference between a class method and another dynamically linked
method is encapsulated in the selector. Consider exec(), a dynamically linked
method to evaluate a node. The selector applies classOf() to get the class descrip-
tion and looks for .exec in there:

double exec (const void * _self) {
const struct NodeClass * class =

cast(NodeClass(), classOf(_self));

assert(class —> exec.method);
return ((double (*) ()) class —> exec.method)(_self);

}

In contradistinction, consider new(), a class method which is applied to a class
description. In this case self refers to the class description itself and the selector
looks for .new as a component of *self:

struct Object * new (const void * _self, ...) {
struct Object * result;
va_list ap;
const struct Class * self = cast(Class(), _self);

assert(self —> new.method);
va_start(ap, _self);
result = ((struct Object * (*) ()) self —> new.method)

(_self, & ap);
va_end(ap);
return result;

}

129___11.3 Implementing Class Methods

Here is a picture describing the linkage of exec() and new():

NodeClass

Class

"NodeClass"

Class

sizeof Node

fill Node

cannot happen

no operation

make Node

struct Class

ctor:

dtor:

delete:

new:

Node

•

"Node"

Object

sizeof aNode

fill aNode

empty aNode

free aNode

make aNode

evaluate aNode

struct NodeClass

ctor:

dtor:

delete:

new:

exec:

aNode

•

...

struct Node

Both, class methods and dynamically linked methods, employ the same super-
class selector because it receives the class description pointer as an explicit argu-
ment.

struct Object * super_new (const void * _class,
const void * _self, va_list * app) {

const struct Class * superclass = super(_class);

assert(superclass —> new.method);
return

((struct Object * (*) ()) superclass —> new.method)
(_self, app);

}

Selectors are generated by ooc under control of the selectors report in etc.rep.
Because the selectors differ for class methods and dynamically linked methods, ooc
needs to know the method linkage. Therefore, class methods are specified in the
class description file following the dynamically linked methods and the separator
%+. Here is an excerpt from Object.d:

% Class Object {
...

%
const Class @ classOf (const _self); // object’s class

...
%—

void * ctor (_self, va_list * app); // constructor
...

void delete (_self); // reclaim instance
%+

Object @ new (const _self, ...); // create instance
%}

130___11 Class Methods — Plugging Memory Leaks

delete() is moved to the dynamically linked methods and new() is introduced as a
class method.

% Class Class: Object {
...

%
Object @ allocate (const _self); // memory for instance
...

%}

Once we remove new() as a statically linked method for Class, we package the
memory allocation part as a new statically linked method allocate().

Given %− and %+ as separators, ooc knows the linkage of every method and
the report selectors can be extended to generate the selectors shown above.
Other reports generate selector declarations for the interface file, superclass selec-
tor declarations and the layout of the metaclass description for the representation
file, the loop in the metaclass constructor which recognizes selector/tag/method tri-
ples and enters them into the class description, and, finally, the initialization func-
tions for class and metaclass descriptions. All of these reports need to be
extended. For example, in the report −h in h.rep the declarations of dynamically
linked methods are generated with

`{%— `%header ; `n `}n

A new loop adds the class method declarations:
`{%+ `%header ; `n `}n

`{+ is a loop over the class methods of the current class.

Once we access new() and delete() through selectors, we have to implement
them for Object in Object.dc:

% Object new {
%casts

return ctor(allocate(self), app);
}

new() creates the area for the new object and calls the appropriate constructor to
initialize it. allocate() contains most of the old code of new(). It obtains dynamic
memory and installs the class description pointer so that the dynamic linkage of
ctor() in new() works correctly:

% allocate {
struct Object * object;

%casts
assert(self —> size);
object = calloc(1, self —> size);
assert(object);
object —> magic = MAGIC;
object —> class = self;
return object;

}

131___11.4 Programming Savvy — A Classy Calculator

delete() calls the destructor dtor() as before and passes the result to free():
% Object delete {
%casts

free(dtor(self));
}

Whenever we add new methods to Object which are accessed through selectors,
we must not forget to install them by hand in the class descriptions in Object.dc.
As an example here is _Object:

static const struct Class _Object = {
{ MAGIC, & _Class },
"Object", & _Object, sizeof(struct Object),
{ "", (Method) 0, (Method) Object_ctor },
...
{ "delete", (Method) delete,(Method) Object_delete },
...
{ "", (Method) 0, (Method) Object_new },

};

11.4 Programming Savvy — A Classy Calculator

With the technology for plugging memory leaks in place, we can now engineer our
calculator to take advantage of the class hierarchy. First we need to add the
descriptions from chapter 5 to the hierarchy.

Node

The basic building block for the expression tree is Node, an abstract base class. A
Number is a Node which contains a floating point constant:

// new(Number(), value)

% NodeClass Number: Node {
double value;

%}

Our tree can grow if we have nodes with subtrees. A Monad has just one subtree,
a Dyad has two:

% NodeClass Monad: Node {
void * down;

%}
%prot
#define down(x) (((struct Monad *)(x)) —> down)

% NodeClass Dyad: Node {
void * left;
void * right;

%}
%prot
#define left(x) (((struct Dyad *)(x)) —> left)
#define right(x) (((struct Dyad *)(x)) —> right)

132___11 Class Methods — Plugging Memory Leaks

Technically, .down, .left and .right should only be filled by the constructors for
these nodes, but if we plan to copy a tree, a subclass may need to modify the
pointers.

We use single subtrees to build two entirely different things. Val is used to get
the value from a symbol in the symbol table and Unary represents an operator such
as a minus sign:

% NodeClass Val: Monad {
%}

// new(Minus(), subtree)

% NodeClass Unary: Monad {
%}

% NodeClass Minus: Unary {
%}

One kind of Val is a Global which points to a Var or Const symbol and obtains its
value from there. If we implement user defined functions we use a Parm to fetch
the value of a single parameter.

// new(Global(), constant—or—variable)
// new(Parm(), function)

% NodeClass Global: Val {
%}

% NodeClass Parm: Val {
%}

We will derive symbol table entries from a base class Symbol which is independent
of Node. Therefore, we need Val and its subclasses because we can no longer let
an expression tree point directly to a Symbol which would not understand the
exec() method.

There are many nodes with two subtrees. Add, Sub, Mult, and Div combine
the values of their subtrees; we can simplify things by inserting Binary as a com-
mon base class for these:

// new(Add(), left—subtree, right—subtree)
...

% NodeClass Binary: Dyad {
%}

% NodeClass Add: Binary {
%}
...

Just as Val is used to access symbol values, Ref is used to combine a symbol and
an expression tree: Assign points to a Var and stores the value of its other subtree
there; Builtin points to a Math symbol which computes the value of a library func-
tion for the value of Builtin’s right subtree as an argument; User, finally, points to a
Fun symbol which computes the value of a user defined function for the value of
User’s other subtree as an argument.

133___11.4 Programming Savvy — A Classy Calculator

// new(Assign(), var, right—subtree)
// new(Builtin(), math, arg—subtree)
// new(User(), fun, arg—subtree)

% NodeClass Ref: Dyad {
%}

% NodeClass Assign: Ref {
%}

% NodeClass Builtin: Ref {
%}

% NodeClass User: Ref {
%}

For the most part, the methods for Node subclasses can be copied from the solu-
tion in chapter 5. Very little adapting is required. The following table shows how
the various methods are linked into Node and its subclasses:

CLASS DATA METHODS

Node see below
Number value ctor, exec

Monad down ctor

Val exec

Global

Parm

Unary dtor

Minus exec

Dyad left, right ctor

Ref dtor

Assign exec

Builtin exec

User exec

Binary dtor

Add exec

Sub exec

Mult exec

Div exec

While we are violating the principle that constructors and destructors should be bal-
anced, we do so for a reason: the destructors send delete() to their subtrees. This
is acceptable as long as we delete an expression subtree, but we clearly should not
send delete() into the symbol table. Val and Ref were introduced exactly to factor
the destruction process.

At this point it looks as if we need not distinguish Global and Parm. However,
depending on the representation of their symbols, we may have to implement dif-
ferent exec() methods for each. Introducing the subclasses keeps our options
open.

134___11 Class Methods — Plugging Memory Leaks

Symbol

Looking at possible expression trees we have discovered the necessary nodes. In
turn, once we design the nodes we find most of the symbols which we need.
Symbol is the abstract base class for all symbols that can be entered into a symbol
table and located by name. A Reserved is a reserved word:

// new(Reserved(), "name", lex)

% Class Reserved: Symbol {
%}

A Var is a symbol with a floating point value. Global will point to a Var symbol and
use value() to obtain the current value; Assign similarly uses setvalue() to deposit
a new value:

// new(Var(), "name", VAR)

% Class Var: Symbol {
double value;

%
double value (const _self);
double setvalue (_self, double value);

%}

A Const is a Var with a different constructor:
// new(Const(), "name", CONST, value)

% Class Const: Var {
%}

If we make Const a subclass of Var we avoid the glitches that setvalue() would
have to access .value in the base class and that we would have to initialize a Var

during construction. We will syntactically protect Const from being the target of an
Assign.

A Math represents a library function. Builtin uses mathvalue() to pass an
argument in and receive the function value as a result:

// new(Math(), "name", MATH, function—name)

typedef double (* function) (double);

% Class Math: Symbol {
function fun;

%
double mathvalue (const _self, double value);

%}

Finally, a Fun represents a user defined function with a single parameter. This sym-
bol points to an expression tree which can be originally set or later replaced with
setfun() and evaluated by a User node with funvalue():

135___11.4 Programming Savvy — A Classy Calculator

// new(Fun(), "name", FUN)

% Class Fun: Var {
void * fun;

%
void setfun (_self, Node @ fun);
double funvalue (_self, double value);

%}

Ignoring recursion problems, we define Fun as a subclass of Var so that we can
store the argument value with setvalue() and build a Parm node into the expres-
sion wherever the value of the parameter is required. Here is the class hierarchy
for Symbol:

CLASS DATA METHODS

Symbol name, lex see below
Reserved delete

Var value % value, setvalue

Const ctor, delete

Fun fun % setfun, funvalue

Math fun ctor, delete

% mathvalue

Again, almost all the code can be copied from chapter 5 and requires little adapting
to the class hierarchy. Const and Math should never be deleted; therefore, we can
add dummy methods to protect them:

% : Const delete { // don’t respondTo delete
}

The only new idea are user defined functions which are implemented in the class
Fun:

% Fun setfun {
%casts

if (self —> fun)
delete(self —> fun);

self —> fun = fun;
}

If we replace a function definition we must first delete the old expression tree, if
any.

% Fun funvalue {
%casts

if (! self —> fun)
error("undefined function");

setvalue(self, value); // argument for parameter
return exec(self —> fun);

}

In order to compute the function value, we import the argument value so that Parm

can use value() to retrieve it as a parameter value. exec() can then compute the
function value from the expression tree.

136___11 Class Methods — Plugging Memory Leaks

Symtab

We could try to extend a List as a symbol table, but the binary search function used
in chapter 5 must be applied to arrays and we only need the methods screen() and
install():

// new(Symtab(), minimal—dimension)

#include <stddef.h>

% Class Symtab: Object {
const void ** buf; // const void * buf [dim]
size_t dim; // current buffer dimension
size_t count; // # elements in buffer

%
void install (_self, const Symbol @ entry);
Symbol @ screen (_self, const char * name, int lex);

%}

The array is allocated just as for a List:
% Symtab ctor {

struct Symtab * self = super_ctor(Symtab(), _self, app);

if (! (self —> dim = va_arg(* app, size_t)))
self —> dim = 1;

self —> buf = malloc(self —> dim * sizeof(void *));
assert(self —> buf);
return self;

}

search() is an internal function which uses binary() to search for a symbol with a
particular name or to enter the name itself into the table:

static void ** search (struct Symtab * self, const char ** np)
{

if (self —> count >= self —> dim)
{ self —> buf = realloc(self —> buf,

(self —> dim *= 2) * sizeof(void *));
assert(self —> buf);

}
return binary(np, self —> buf, & self —> count,

sizeof(void *), cmp);
}

This is an internal function; therefore, we use a little trick: binary() will look for a
symbol, but if it is not found binary() will enter the string at *np rather than a sym-
bol. cmp() compares the string to a symbol — if we used a string class like Atom

we could implement cmp() with differ():
static int cmp (const void * _key, const void * _elt)
{ const char * const * key = _key;

const void * const * elt = _elt;

return strcmp(* key, name(* elt));
}

137___11.4 Programming Savvy — A Classy Calculator

name() is a Symbol method returning the name of a symbol. We compare it to the
string argument of search() and do not create a symbol before we know that the
search really is unsuccessful.

With table search and entry in place, the actual Symtab methods are quite sim-
ple to implement. install() is called with a second argument produced by new().
This way we can enter arbitrary Symbol objects into the symbol table:

% Symtab install {
const char * nm;
void ** pp;

%casts
nm = name(entry);
pp = search(self, & nm);
if (* pp != nm) // found entry

delete(* pp);
* pp = (void *) entry;

}

install() is willing to replace a symbol in the table.
% Symtab screen {

void ** pp;
%casts

pp = search(self, & name);
if (* pp == name) // entered name
{ char * copy = malloc(strlen(name) + 1);

assert(copy);
* pp = new(Symbol(), strcpy(copy, name), lex);

}
return * pp;

}

screen() either finds an entry by name or makes a new Symbol with a dynamically
stored name. If we later decide that the table entry should rather belong to a sub-
class of Symbol we can call install() to replace an entry in the table. While this is a
bit inefficient, it requires no new functions for the symbol table interface.

The Abstract Base Classes

Symbol is the base class for symbol table entries. A Symbol consists of a name
and a token value for the parser which are both passed in during construction:

Symbol.d
// new(Symbol(), "name", lex) "name" must not change

% Class Symbol: Object {
const char * name;
int lex;

%
const char * name (const _self);
int lex (const _self);

%}

138___11 Class Methods — Plugging Memory Leaks

Symbol.dc
% Symbol ctor {

struct Symbol * self = super_ctor(Symbol(), _self, app);

self —> name = va_arg(* app, const char *);
self —> lex = va_arg(* app, int);
return self;

}

We let Symbol assume that external arrangements have been made for a symbol
name to be reasonably permanent: either the name is a static string or the name
must be saved dynamically before a symbol is constructed with it. Symbol neither
saves the name nor deletes it. If screen() saves a name dynamically, and if we
decide to replace a symbol using install(), we can simply copy the name from the
previous symbol which is deleted by install() and avoid more traffic in dynamic
memory. Using a class like Atom would be a much better strategy, however.

The really interesting class is Node, the abstract base class for all parts of an
expression tree. All new nodes are collected into a linear list so that we can reclaim
them in case of an error:

Node.d
% NodeClass: Class Node: Object {

void * next;
%

void sunder (_self);
%—

double exec (const _self);
%+

void reclaim (const _self, Method how);
%}

Node.dc
static void * nodes; // chains all nodes

% Node new {
struct Node * result =

cast(Node(), super_new(Node(), _self, app));

result —> next = nodes, nodes = result;
return (void *) result;

}

According to Webster’s, sunder means to ‘‘sever finally and completely or with
violence’’ and this is precisely what we are doing:

% Node sunder {
%casts

if (nodes == self) // first node
nodes = self —> next;

139___11.4 Programming Savvy — A Classy Calculator

else if (nodes) // other node
{ struct Node * np = nodes;

while (np —> next && np —> next != self)
np = np —> next;

if (np —> next)
np —> next = self —> next;

}
self —> next = 0;

}

Before we delete a node, we remove it from the chain:
% Node delete {
%casts

sunder(self);
super_delete(Node(), self);

}

Plugging the Memory Leaks

Normally, the parser in parse.c will call delete() after it is done with an expression:
if (setjmp(onError))
{ ++ errors;

reclaim(Node(), delete);
}

while (gets(buf))
if (scan(buf))
{ void * e = stmt();

if (e)
{ printf("\t%g\n", exec(e));

delete(e);
}

}

If something goes wrong and error() is called, reclaim() is used to apply delete() to
all nodes on the chain:

% Node reclaim {
%casts

while (nodes)
how(nodes);

}

This plugs the memory leak described at the beginning of this chapter — MallocDe-
bug does not find any leaks, neither immediately after an error nor later. For test
purposes we can

reclaim(Node, sunder);

after an error and let MallocDebug demonstrate that we really have lost nodes.

The elegance of the scheme lies in the fact that the entire mechanism is encap-
sulated in the base class Node and inherited by the entire expression tree. Given

140___11 Class Methods — Plugging Memory Leaks

class functions, we can replace new() for a subtree of the class hierarchy. Replac-
ing new() exactly for all nodes, but not for symbols or the symbol table, provides
reclamation for broken expressions without damaging variables, functions, and the
like.

Technically, reclaim() is declared as a class method. We do not need the ability
to overwrite this function for a subclass of Node, but it does leave room for expan-
sion. reclaim() permits a choice as to what should be applied to the chain. In case
of an error this will be delete(); however, if we save an expression for a user
defined function in a Fun symbol, we need to apply sunder() to the chain to keep
the next error from wiping out the expression stored in the symbol table. When a
function is replaced, setfun() will delete the old expression and delete() still uses
sunder() — this is why sunder() does not demand to find its argument on the
chain.

11.5 Summary

Class Methods are applied to class descriptions, rather than to other objects. We
need at least one class method: new() creates objects from a class description.

Just like other methods, class methods can have static or dynamic linkage, but
the syntax of ooc only permits static linkage for class methods that apply to the root
metaclass. Therefore, the term class method has been introduced here to only
describe a method with dynamic linkage that is applied to a class description.

Since there are relatively few class descriptions, we can provide the dynamic
linkage for a class method by storing it in the class description itself to which it
applies. This has two advantages: we can overwrite class methods for a subclass
without introducing a new metaclass to store it; and our basic scheme remains
intact where objects point to class descriptions, class descriptions point to their
own descriptions, and the latter can all be stored in struct Class, i.e., they will all
point to Class, thus completing the class hierarchy in a clean fashion.

Defining new() as a class method for Object rather than as a method with
static linkage for Class permits redefining new() for subtrees of the class hierarchy.
This can be used for memory allocation tracking, memory sharing, etc. ooc makes
no provisions for extending the data part of a class description. If it did, a class
method could have local data applicable to its class as a whole and we could count
objects per class, etc. static variables in an implementation file are not quite the
same because they exist once for the class and all its subclasses.

There is a tradeoff between new() and a constructor. It is tempting to do all
the work in new() and leave the constructor empty, but then invariants normally
established by the constructor can break once new() is overwritten. Similarly, a
constructor is technically capable of substituting a different memory area in place of
the one passed in from new() — this was demonstrated in the implementation of
Atom in section 2.6 — but a proper life cycle for this memory is difficult to main-
tain.

141___11.6 Exercises

As a rule of thumb, class methods like new() should only connect an allocation
function with a constructor and refrain from doing any initializations themselves.
Allocation functions such as allocate() should initialize the class description pointer
— too much can go horribly wrong if they do not. Reclamation functions such as
delete() should let the destructor dispose of the resources which the constructor
and the object’s life cycle have accumulated, and only pass the empty memory area
to a recycler function like free():

allocate()

anObject

ctor()

aThing

new() delete()

aThing

dtor()

anObject

free()

aThing

There is a balance: allocate() and free() deal with the same region of memory; by
default, new() gives it to its constructor, delete() to its destructor; and the con-
structor and destructor only deal with resources represented inside the object.
new() and delete() should only be overwritten to interfere with the flow of memory
from allocate() to free().

11.6 Exercises

For the ooc parser it makes absolutely no difference, if class methods are described
before or after dynamically linked methods in the class description file, i.e., if %+

precedes or follows %−. There is, however, a convincing point in favor of the
arrangement described in this chapter. Why can the separators not be repeated to
achieve an arbitrary mix of both types of methods?

There is a rather significant difference once delete() is implemented with
dynamic linkage. What can no longer be passed to delete()?

It is not helpful to move value() back into the abstract base class Symbol and
give it dynamic linkage there. mathvalue() is applied to a Math symbol and
requires a function argument, value() is applied to a Var or Const symbol and has
no use for an argument. Should we use variable argument lists?

We can detect recursion among user defined functions. We can use words like
$1 to support functions with more than one parameter. We can even add parame-
ters with names that hide global variables.

If we add a generic pointer to the data area of Class in Object.d class methods
can attach a chain of private data areas there. This can be used, e.g., to count
objects or to provide object lists per class.

143___

12
Persistent Objects

Storing and Loading Data Structures

Section 6.3 introduced the dynamically linked method puto() in class Object which
takes an object and describes it on a stream. For example,

void * anObject = new(Object());
...
puto(anObject, stdout);

produces about the following standard output:
Object at 0x5410

If we implement puto() for every class in a hierarchy we can display every object.
If the output is designed well enough, we should be able to recreate the objects
from it, i.e., objects can be parked in files and continue to exist from one invocation
of an application to another. We call such objects persistent. Object oriented data-
bases consist of persistent objects and mechanisms to search for them by name or
content.

12.1 An Example

Our calculator contains a symbol table with variables, constants, and functions.
While constants and mathematical functions are predefined, we loose all variable
values and user defined function definitions whenever we terminate execution. As
a realistic example for using persistent objects we add two statements to the calcu-
lator: save stores some or all variables and function definitions in files; load

retrieves them again.
$ value
def sqr = $ * $
def one = sqr(sin($)) + sqr(cos($))
let n = one(10)

1
save

In this session with value we define the functions sqr() and one() to test that
sin2x + cos2x ≡ 1. Additionally, we create the variable n with value 1. save

without arguments writes the three definitions into a file value.stb.
$ value
load
n + one(20)

2

Once we start value again we can use load to retrieve the definitions. The expres-
sion demonstrates that we recover the value of the variable and both function defin-
itions.

144___12 Persistent Objects — Storing and Loading Data Structures

save is implemented in the parser function stmt() just like let or def. With no
argument we have to store all variables and functions; therefore, we simply pass
the problem to Symtab:

#define SYMTABFILE "value.stb"
#define SYMBOLFILE "%s.sym"

static void * stmt (void)
{ void * sym, * node;

switch (token) {
...

case SAVE:
if (! scan(0)) /* entire symbol table */
{ if (save(table, 0, SYMTABFILE))

error("cannot save symbol table");
}
else /* list of symbols */

do
{ char fnm [BUFSIZ];

sprintf(fnm, SYMBOLFILE, name(symbol));
if (save(table, symbol, fnm))

error("cannot save %s", name(symbol));
} while (scan(0));

return 0;

A more complicated syntax could permit a file name specification as part of save.
As it is, we predefine SYMTABFILE and SYMBOLFILE: the entire symbol table is
saved in value.stb and a single symbol like one would be filed in one.sym. The
application controls the file name, i.e., it is constructed in parse.c and passed to
save().

Symtab.d
% Class Symtab: Object {

...
%

...
int save (const _self, const Var @ entry, const char * fnm);
int load (_self, Symbol @ entry, const char * fnm);

%}

Symtab.dc
% Symtab save {

const struct Symtab * self = cast(Symtab(), _self);
FILE * fp;

if (entry) // one symbol
{ if (! respondsTo(entry, "move"))

return EOF;
if (! (fp = fopen(fnm, "w")))

return EOF;
puto(entry, fp);

}

145___12.1 An Example

A single symbol is passed as entry. There is no point in saving undefined symbols,
constants, or math functions. Therefore, we only save symbols which support the
method move(); as we shall see below, this method is used in loading a symbol
from a file. save() opens the output file and lets puto() do the actual work. Saving
all symbols is almost as easy:

else // entire table
{ int i;

if (! (fp = fopen(fnm, "w")))
return EOF;

for (i = 0; i < self —> count; ++ i)
if (respondsTo(self —> buf[i], "move"))

puto(self —> buf[i], fp);
}

return fclose(fp); // 0 or EOF
}

save() is defined as a method of Symtab because we need to loop over the ele-
ments in .buf[]. The test whether or not a symbol should be stored in a file is not
repeated outside of save(). However, Symtab should not know what kinds of sym-
bols we have. This is why the decision to store is based on the acceptance of a
move() and not on membership in certain subclasses of Symbol.

It looks like loading should be totally symmetrical to storing. Again, parse.c
decides on the file name and lets load() do the actual work:

case LOAD:
if (! scan(0)) /* entire symbol table */
{ if (load(table, 0, SYMTABFILE))

error("cannot load symbol table");
}
else /* list of symbols */

do
{ char fnm [BUFSIZ];

sprintf(fnm, SYMBOLFILE, name(symbol));
if (load(table, symbol, fnm))

error("cannot load %s", name(symbol));
} while (scan(0));

reclaim(Node(), sunder);
return 0;

Unfortunately, load() is entirely different from save(). There are two reasons: we
should at least try to protect our calculator from somebody who tinkers with file
names or contents; and while save() can just display something in the symbol table
by applying puto(), it is quite likely that we have to enter or modify symbols in the
table during the course of a save(). Retrieving persistent objects is very much like
allocating and constructing them in the first place.

Let us walk through load(). If a single symbol is to be loaded, its name is
already in the symbol table. Therefore, we are either looking at an undefined Sym-

bol or the symbol knows how to answer a move():

146___12 Persistent Objects — Storing and Loading Data Structures

% Symtab load {
struct Symtab * self = cast(Symtab(), _self);
const char * target = NULL;
FILE * fp;
int result = EOF;
void * in;

if (entry)
if (isOf(entry, Symbol())

|| respondsTo(entry, "move"))
target = name(entry);

else
return EOF;

If there is an entry, checking it early keeps us from working entirely in vain. Next,
we access the file and try to read as many symbols from it as we can:

if (! (fp = fopen(fnm, "r")))
return EOF;

while (in = retrieve(fp))
...

if (! target && feof(fp))
result = 0;

fclose(fp);
return result;

}

If we are not looking for a particular entry, we are happy if we reach the end of file.
retrieve() returns an object from a stream; this will be discussed in section 12.4.

The body of the while loop deals with one symbol at a time. We are in real
trouble if the retrieved object does not know about move(), because the stream
cannot possibly have been written by save(). If that happens, it is time to quit the
loop and let load() return EOF. Otherwise, if we are looking for a particular entry,
we skip all symbols with different names.

{ const char * nm;
void ** pp;

if (! respondsTo(in, "move"))
break;

if (target && strcmp(name(in), target))
continue;

Technically, parse.c has set things up so that a file should either contain the desired
single entry or an entire symbol table, but the strcmp() protects us from renamed
or modified files.

We are ready to bring the retrieved symbol into the symbol table. This is why
load() is a Symtab method. The process is quite similar to screen(): we assume
that retrieve() has taken care to dynamically save the name and we use search() to
locate the name in the table. If we rediscover the retrieved name, we have just
read a new symbol and we can simply insert it into the table.

147___12.1 An Example

nm = name(in);
pp = search(self, & nm);

if (* pp == nm) // not yet in table
* pp = in;

Most likely, however, load has been given the name of a new symbol to load. In
this case, the name is already in the symbol table as an undefined Symbol with a
dynamically saved name. We remove it completely and insert the retrieved symbol
in its place.

else if (isA(* pp, Symbol()))
// not yet defined

{ nm = name(* pp), delete(* pp), free((void *) nm);
* pp = in;

} // might free target, but then we exit below

If we reach this point we are faced with an existing symbol, i.e., a variable gets a
new value or a function is redefined. However, we only overwrite a symbol that
knows about move(), to protect against somebody changing the contents of our
input file.

else if (! respondsTo(* pp, "move"))
{ nm = name(in); delete(in); free((void *) nm);

continue; // should not happen
}
else
{ move(* pp, in);

delete(in), free((void *) nm);
}

if (target)
{ result = 0;

break;
}

}

If we found the desired entry we can leave the loop.

We have to be very careful not to replace an existing symbol, because some
expression might already point to it. This is why move() is introduced as a dynami-
cally linked method to transfer the value from one symbol to another.

Symbol.d
% VarClass: Class Var: Symbol {

...
%—

void move (_self, _from);
%}

Symbol.dc
% Var move {
%casts

setvalue(self, from —> value);
}

148___12 Persistent Objects — Storing and Loading Data Structures

% : Const move { // don’t respondTo move
}

% Fun move {
%casts

setfun(self, from —> fun), from —> fun = 0;
}

Var and Fun are willing to move(), but Const is not. move() is similar to a shallow
copy operation: for a Fun which points to an expression, it transfers the pointer but
does not copy the entire expression. move() actually clears the source pointer so
that the source object may be deleted without destroying the transferred expres-
sion.

12.2 Storing Objects — puto()

puto() is an Object method which writes the representation of an object to a FILE

pointer and returns the number of bytes written.

Object.d
% Class Object {

...
%—

int puto (const _self, FILE * fp); // display

Object.dc
% Object puto {
%casts

class = classOf(self);
return fprintf(fp, "%s at %p\n", class —> name, self);

}

As we shall see in section 12.3, it is essential that the output starts with the class
name of the object. Emitting the object’s address is not strictly necessary.

While each subclass is free to implement its own version of puto(), the easiest
solution is to let puto() operate just like a constructor, i.e., to cascade calls up the
superclass chain all the way back to Object_puto() and thus guarantee that the out-
put starts with the class name and picks up the instance information from each
class involved. This way each puto method only needs to worry about the informa-
tion that is added in its own class and not about the complete content of an object.
Consider a Var and a Symbol:

% Var puto {
int result;

%casts
result = super_puto(Var(), _self, fp);
return result + fprintf(fp, "\tvalue %g\n", self —> value);

}

149___12.2 Storing Objects — ‘‘puto()’’

% Symbol puto {
int result;

%casts
result = super_puto(Symbol(), _self, fp);
return result + fprintf(fp, "\tname %s\n\tlex %d\n",

self —> name, self —> lex);
}

This produces something like the following output:
Var at 0x50ecb18 Object

name x Symbol
lex 118
value 1 Var

It is tempting to streamline the code to avoid the int variable:
% Var puto { // WRONG
%casts

return super_puto(Var(), _self, fp)
+ fprintf(fp, "\tvalue %g\n", self —> value);

}

However, ANSI-C does not guarantee that the operands of an operator like + are
evaluated from left to right, i.e., we might find the order of the output lines scram-
bled.

Designing the output of puto() is easy for simple objects: we print each com-
ponent with a suitable format and we use puto() to take care of pointers to other
objects — at least as long as we are sure not to run into a loop.

A container class, i.e., a class that manages other objects, is more difficult to
handle. The output must be designed so that it can be restored properly, especially
if an unknown number of objects must be written and read back; unlike save()

shown in section 12.1 we cannot rely on end of file to indicate that there are no
more objects.

In general, we need a prefix notation: either we write the number of objects
prior to the sequence of actual objects, or we prefix each object by a character such
as a plus sign and use, e.g., a period in place of the plus to indicate that there are
no more objects. We could use ungetc(getc(fp), fp) to peek at the next character,
but if we use the absence of a particular lead character to terminate a sequence,
we are effectively relying on other objects not to accidentally break our scheme.

Fun in our calculator is a different kind of container class: it is a symbol contain-
ing an expression composed of Node symbols. puto() outputs the expression tree
in preorder, nodes before subtrees; if the degree of each node is known, it can be
easily restored from this information:

% Binary puto {
int result;

%casts
result = super_puto(Binary(), self, fp);
result += puto(left(self), fp);
return result + puto(right(self), fp);

}

150___12 Persistent Objects — Storing and Loading Data Structures

The only catch is a function which references other functions. If we blindly apply
puto() to the reference, and if we don’t forbid recursive functions, we can easily
get stuck. The Ref and Val classes were introduced to mark symbol table refer-
ences in the expression tree. For a reference to a function we only write the func-
tion name:

% Ref puto {
int result;

%casts
result = super_puto(Ref(), self, fp);
result += putsymbol(left(self), fp);
return result + puto(right(self), fp);

}

For reasons that will become clear in the next section, putsymbol() is defined in
parse.c :

int putsymbol (const void * sym, FILE * fp)
{

return fprintf(fp, "\tname %s\n\tlex %d\n",
name(sym), lex(sym));

}

It is sufficient to write the reference name and token value.

12.3 Filling Objects — geto()

geto() is an Object method which reads information from a FILE pointer and fills an
object with it. geto() is applied to the uninitialized object; therefore, its job is quite
similar to that of a constructor like ctor(). However, ctor() takes the information for
the new object from its argument list; geto() reads it from the input stream.

Object.d
% Class Object {

...
%—
: void * geto (_self, FILE * fp); // construct from file

An empty tag is specified by the leading colon because it does not make sense for
an initialized object to respondTo the method geto.

Symbol.dc
% Var geto {

struct Var * self = super_geto(Var(), _self, fp);

if (fscanf(fp, "\tvalue %lg\n", & self —> value) != 1)
assert(0);

return self;
}

Var_geto() lets the superclass methods worry about the initial information and sim-
ply reads back what Var_puto() has written. Normally, the same formats can be
specified for fprintf() in the puto method and for fscanf() in the geto method.
However, floating point values reveal a slight glitch in ANSI-C: fprintf() uses %g to

151___12.4 Loading Objects — ‘‘retrieve()’’

convert a double, but fscanf() requires %lg to convert back. Strings usually have
to be placed into dynamic memory:

% Symbol geto {
struct Symbol * self = super_geto(Symbol(), _self, fp);
char buf [BUFSIZ];

if (fscanf(fp, "\tname %s\n\tlex %d\n",
buf, & self —> lex) != 2)

assert(0);
self —> name = malloc(strlen(buf) + 1);
assert(self —> name);
strcpy((char *) self —> name, buf);
return self;

}

Normally, geto() reads exactly what the corresponding puto() has written, and just
like constructors, both methods call their superclass methods all the way back to
Object. There is one very important difference, however: we saw that
Object_puto() writes the class name followed by an address:

Var at 0x50ecb18 Object
name x Symbol
lex 118
value 1 Var

Object_geto() is the first method to fill the Var object on input. The class name
Var written by puto() must be read and used to allocate a Var object before geto()

is called to fill the object, i.e., Object_geto() starts reading just after the class
name:

% Object geto {
void * dummy;

%casts
if (fscanf(fp, " at %p\n", & dummy) != 1)

assert(0);
return self;

}

This is the only place where geto and puto methods do not match exactly. The
variable dummy is necessary: we could avoid it with the format element %*p, but
then we could not discover if the address really was part of the input.

12.4 Loading Objects — retrieve()

Who reads the class name, allocates the object, and calls geto() to fill it? Perhaps
strangely, this is accomplished by the function retrieve() which is declared in the
class description file Object.d, but which is not a method:

void * retrieve (FILE * fp); // object from file

retrieve() reads a class name as a string from a stream; somehow finds the
appropriate class description pointer; uses allocate() to create room for the object;
and asks geto() to fill it. Because allocate() inserts the final class description
pointer, geto() can actually be applied to the allocated area:

152___12 Persistent Objects — Storing and Loading Data Structures

struct classList { const char * name; const void * class; };

void * retrieve (FILE * fp)
{ char buf [BUFSIZ];

static struct classList * cL; // local copy
static int cD = —1; // # classes

if (cD < 0)
... build classList in cL[0..cD—1] ...

if (! cD)
fputs("no classes known\n", stderr);

else if (fp && ! feof(fp) && fscanf(fp, "%s", buf) == 1)
{ struct classList key, * p;

key.name = buf;
if (p = bsearch(& key, cL, cD, sizeof key,

(int (*) (const void *, const void *)) cmp))
return geto(allocate(p —> class), fp);

fprintf(stderr, "%s: cannot retrieve\n", buf);
}
return 0;

}

retrieve() needs a list of class names and class description pointers. The class
descriptions point to the methods and selectors, i.e., the list actually guarantees
that the code for the classes is bound with the program using retrieve(). If the data
for an object is read in, the methods for the object are available in the program —
geto() is just one of them.

Where does the class list come from? We could craft one by hand, but in
chapter 9 we looked at munch, a simple awk program to extract class names from
a listing of object modules produced by nm. Because nm can be applied to a library
of object modules, we can even extract the class list supported by an entire library.
The result is an array classes[] with a list of pointers to the class initialization func-
tions, alphabetically sorted by class names.

retrieve() could search this list by calling each function to receive the initialized
class description and applying nameOf() to the result to get the string representa-
tion of the class name. This is not very efficient if we have to retrieve many
objects. Therefore, retrieve() builds a private list as follows:

extern const void * (* classes[]) (void); // munch

if (cD < 0)
{ for (cD = 0; classes[cD]; ++ cD)

; // count classes
if (cD > 0) // collect name/desc
{ cL = malloc(cD * sizeof(struct classList));

assert(cL);
for (cD = 0; classes[cD]; ++ cD)

cL[cD].class = classes[cD](),
cL[cD].name = nameOf(cL[cD].class);

}
}

153___12.5 Attaching Objects — ‘‘value’’ Revisited

The private class list has the additional advantage that it avoids further calls to the
class initialization functions.

12.5 Attaching Objects — value Revisited

Writing and reading a strictly tree-structured, self-contained set of objects can be
accomplished with puto(), retrieve(), and matching geto methods. Our calculator
demonstrates that there is a problem once a collection of objects is written which
references other objects, written in a different context or not written at all. Con-
sider:

$ value
def sqr = $ * $
def one = sqr(sin($)) + sqr(cos($))
save one

The output file one.sym contains references to sqr but no definition:
$ cat one.sym
Fun at 0x50ec9f8

name one
lex 102
value 10

=
Add at 0x50ed168
User at 0x50ed074 Ref

name sqr putsymbol
lex 102

Builtin at 0x50ecfd0 Ref
name sin putsymbol
lex 109

Parm at 0x50ecea8 Val
name one putsymbol
lex 102

User at 0x50ed14c
name sqr
lex 102

Builtin at 0x50ed130
name cos
lex 109

Parm at 0x50ed118
name one
lex 102

User is a Ref, and Ref_puto() has used putsymbol() in parse.c to write just the
symbol name and token value. This way, the definition for sqr() is intentionally not
stored into one.sym.

Once a symbol table reference is read in, it must be attached to the symbol
table. Our calculator contains a single symbol table table which is created and
managed in parse.c , i.e., a reference from the expression tree to the symbol table
must employ getsymbol() from parse.c to attach the reference to the current sym-

154___12 Persistent Objects — Storing and Loading Data Structures

bol table. Each kind of reference employs a different subclass of Node so that the
proper subclass of Symbol can be found or created by getsymbol(). This is why
we must distinguish Global as a reference to a Var and Parm as a reference to a
Fun, from where the parameter value is fetched.

% Global geto {
struct Global * self = super_geto(Global(), _self, fp);

down(self) = getsymbol(Var(), fp);
return self;

}

% Parm geto {
struct Parm * self = super_geto(Parm(), _self, fp);

down(self) = getsymbol(Fun(), fp);
return self;

}

Similarly, Assign looks for a Var; Builtin looks for a Math; and User looks for a
Fun. They all employ getsymbol() to find a suitable symbol in table, create one, or
complain if there is a symbol with the right name but the wrong class:

void * getsymbol (const void * class, FILE * fp)
{ char buf [BUFSIZ];

int token;
void * result;

if (fscanf(fp, "\tname %s\n\tlex %d\n", buf, & token) != 2)
assert(0);

result = screen(table, buf, UNDEF);
if (lex(result) == UNDEF)

install(table, result =
new(class, name(result), token));

else if (lex(result) != token)
{ fclose(fp);

error("%s: need a %s, got a %s",
buf, nameOf(class), nameOf(classOf(result)));

}
return result;

}

It helps that when a Fun symbol is created we need not yet supply the defining
expression:

$ value
load one
one(10)
undefined function

one() tries to call sqr() but this is undefined.
let sqr = 9
bad assignment

An undefined Symbol could be overwritten and assigned to, i.e., sqr() really is an
undefined function.

155___12.5 Attaching Objects — ‘‘value’’ Revisited

def sqr = $ * $
one(10)

1
def sqr = 1
one(10)

2

Here is the class hierarchy of the calculator with most method definitions. Meta-
classes have been omitted; boldface indicates where a method is first defined.

CLASS DATA METHODS

Object magic, ... % classOf, ...

%- delete, puto, geto, ...

%+ new

Node % sunder

%- delete, exec

%+ new, reclaim

Number value %- ctor, puto, geto, exec

Monad down %- ctor

Val %- puto, exec

Global %- geto

Parm %- geto

Unary %- dtor, puto, geto

Minus %- exec

Dyad left, right %- ctor

Ref %- dtor, puto

Assign %- geto, exec

Builtin %- geto, exec

User %- geto, exec

Binary %- dtor, puto, geto

Add %- exec

Sub %- exec

Mult %- exec

Div %- exec

Symbol name, lex % name, lex

%- ctor, puto, geto

Reserved %- delete

Var value % value, setvalue

%- puto, geto, move

Const %- ctor, delete, move

Fun fun % setfun, funvalue

%- puto, geto, move

Math fun % mathvalue

%- ctor, delete

Symtab buf, ... % save, load, ...

%- ctor, puto, delete

156___12 Persistent Objects — Storing and Loading Data Structures

A slight blemish remains, to be addressed in the next chapter: getsymbol()

apparently knows enough to close the stream fp before it uses error() to return to
the main loop.

12.6 Summary

Objects are called persistent, if they can be stored in files to be loaded later by the
same or another application. Persistent objects can be stored either by explicit
actions, or implicitly during destruction. Loading takes the place of allocation and
construction.

Implementing persistence requires two dynamically linked methods and a func-
tion to drive the loading process:

int puto (const _self, FILE * fp);
void * geto (_self, FILE * fp);
void * retrieve (FILE * fp);

puto() is implemented for every class of persistent objects. After calling up the
superclass chain it writes the class’ own instance variables to a stream. Thus, all
information about an object is written to the stream beginning with information
from the ultimate superclass.

geto() is also implemented for all persistent objects. The method is normally
symmetric to puto(), i.e., after calling up the superclass chain it fills the object with
values for the class’ own instance variables as recorded by puto() in the stream.
geto() operates like a constructor, i.e., it does not allocate its object, it merely fills
it.

Output produced by puto() starts with the class name of the object. retrieve()

reads the class name, locates the corresponding class description, allocates
memory for an object, and calls geto() to fill the object. As a consequence, while
puto() in the ultimate superclass writes the class name of each object, geto() starts
reading after the class name. It should be noted that retrieve() can only load
objects for which it knows class descriptions, i.e., with ANSI-C, methods for per-
sistent objects must be available a priori in a program that intends to retrieve()

them.

Apart from an initial class name, there is no particular restriction on the output
format produced by puto(). However, if the output is plain text, puto() can also aid
in debugging, because it can be applied to any object with a suitable debugger.

For simple objects it is best to display all instance variable values. For container
objects pointing to other objects, puto() can be applied to write the client objects.
However, if objects can be contained in more than one other object, puto() or
retrieve() must be designed carefully to avoid the effect of a deep copy, i.e., to
make sure that the client objects are unique. A reasonably foolproof solution for
loading objects produced by a single application is for retrieve() to keep a table of
the original addresses of all loaded objects and to create an object only, if it is not
already in the table.

157___12.7 Exercises

12.7 Exercises

If retrieve() keeps track of the original address of each object and constructs only
new ones, we need a way to skip along the stream to the end of an object.

System V provides the functions dlopen(), dlsym(), and dlclose() for dynamic
loading of shared objects. retrieve() could employ this technology to load a class
module by name. The class module contains the class description together with all
methods. It is not clear, however, how we would efficiently access the newly
loaded selectors.

value can be extended with control structures so that functions are more
powerful. In this case stmt() needs to be split into true statements such as let and
commands like save, load, or def.

159___

13
Exceptions

Disciplined Error Recovery

Thirteen seems quite appropriate as the chapter number for coping with misfor-
tune. If we get lost inside a single function, the much maligned goto is a boon for
bailing out. ANSI-C’s setjmp() and longjmp() do away with a nest of function
activations if we discover a problem deep inside. However, if cleanup operations
must be inserted at various levels of a bailout we need to harness the crude
approach of setjmp().

13.1 Strategy

If our calculator has trouble loading a function definition we run into a typical error
recovery problem: an open stream has to be closed before we can call error() to
produce a message and return to the main loop. The following picture indicates
that a simple risky action should be wrapped into some error handling logic:

risky action

on error

error handler

First, an error handler is set up. Either the risky action completes correctly or the
error handler gets a chance to clean up before the compound action completes. In
ANSI-C, setjmp() and longjmp() are used to implement this error recovery scheme:

#include <setjmp.h>

static jmp_buf onError;

static void cause() {
longjmp(onError, 1);

}

action () {
if (! setjmp(onError))

risky action
else

error handler
}

setjmp() initializes onError and returns zero. If something goes wrong in risky
action, or in a function called from there, we signal the error by calling cause(). The
longjmp() in this function uses the information in onError to effect a second return
from the call to setjmp() which initialized onError. The second return delivers the
second argument of longjmp() as a function value; one is returned if this value is
zero. Things go horribly wrong if the function which called setjmp() is no longer
active.

160___13 Exceptions — Disciplined Error Recovery

In the terminology of the picture above, on error refers to calling setjmp() to
deposit the information for error handling. risky action is executed if setjmp()

returns zero; or otherwise, error handler is executed. cause() is called to initiate
error recovery by transferring control to error handler.

We have used this simple model to recover from syntax errors deep inside
recursive descent in our calculator. Things get more complicated if error handlers
must be nested. Here is what happens during a load operation in the calculator:

load file

on load error

close file

on error

message

main loop

In this case we need two longjmp() targets for recovery: onError returns to the
main loop and onLoadError is used to clean up after a bad loading operation:

jmp_buf onError, onLoadError;

#define cause(x) longjmp(x, 1)

mainLoop () {
if (! setjmp(onError))

loadFile();
else

some problem
}

loadFile () {
if (! setjmp(onLoadError))

work with file
else

close file
cause(onError);

}

The code sketch shows that cause() somehow needs to know how far recovery
should go. We can use an argument or a hidden global structure for this purpose.

If we give cause() an explicit argument, it is likely that it has to refer to a global
symbol so that it may be called from other files. Obviously, the global symbol must
not be used at the wrong time. It has the additional drawback that it is part of the
client code, i.e., while the symbol is only meaningful for a particular error handler, it
is written into the code protected by the handler. If this code is called from some
other place, we have to make sure that it does not inadvertently refer to an inactive
recovery point.

161___13.2 Implementation — ‘‘Exception’’

A much better strategy is a stack of jmp_buf values. A function establishes an
error handler by pushing this stack, and cause() uses the top entry. Of course, the
error handler has to be popped from the stack before the corresponding function
terminates.

13.2 Implementation — Exception

Exception is a class that provides nestable exception handling. Exception objects
must be deleted in the reverse order of their creation. Normally, the newest object
represents the error handler which receives control from a call to cause().

// new(Exception())

#include <setjmp.h>

void cause (int number); // if set up, goto catch()

% Class Exception: Object {
int armed; // set by a catch()
jmp_buf label; // used by a catch()

%
void * catchException (_self);

%}

new(Exception()) creates an exception object which is pushed onto a hidden stack
of all such objects:

#include "List.h"

static void * stack;

% Exception ctor {
void * self = super_ctor(Exception(), _self, app);

if (! stack)
stack = new(List(), 10);

addLast(stack, self);
return self;

}

We use a List object from section 7.7 to implement the exception stack.

Exception objects must be deleted exactly in the opposite order of creation.
The destructor pops them from the stack:

% Exception dtor {
void * top;

%casts
assert(stack);
top = takeLast(stack);
assert(top == self);
return super_dtor(Exception(), self);

}

An exception is caused by calling cause() with a nonzero argument, the exception
code. If possible, cause() will execute a longjmp() to the exception object on top
of the stack, i.e., the most recently created such object. Note that cause() may or
may not return to its caller.

162___13 Exceptions — Disciplined Error Recovery

void cause (int number) {
unsigned cnt;

if (number && stack && (cnt = count(stack)))
{ void * top = lookAt(stack, cnt—1);

struct Exception * e = cast(Exception(), top);

if (e —> armed)
longjmp(e —> label, number);

}
}

cause() is a function, not a method. However, it is implemented as part of the
implementation of Exception and it definitely has access to the internal data of this
class. Such a function is often referred to as a friend of the class.

cause() employs a number of safeguards: the argument must not be zero; the
exception stack must exist, must contain objects, and the top object must be an
exception; and finally, the exception object must have been armed to receive the
exception. If any of the safeguards fails, cause() returns and its caller must cope
with the situation.

An exception object must be armed before it can be used, i.e., the jmp_buf

information must be deposited with setjmp() before the object will be used by
cause(). For several reasons, creating and arming the object are two separate
operations. An object is usually created with new(), and the object is the result of
this operation. An exception object must be armed with setjmp(), and this function
will return two integer values: first a zero, and the second time the value handed to
longjmp(). It is hard to see how we could combine the two operations.

More importantly, ANSI-C imposes severe restrictions as to where setjmp()

may be called. It has to pretty much be specified alone as an expression and the
expression can only be used as a statement or to govern a loop or selection state-
ment. An elegant solution for arming an exception object is the following macro,
defined in Exception.d:

#define catch(e) setjmp(catchException(e))

catch() is used where setjmp() would normally be specified, i.e., the restrictions
imposed by ANSI-C on setjmp() can be observed for catch(). It will later return the
value handed to cause(). The trick lies in calling the method catchException() to
supply the argument for setjmp():

% catchException {
%casts

self —> armed = 1;
return self —> label;

}

catchException() simply sets .armed and returns the jmp_buf so that setjmp()

can initialize it. According to the ANSI-C standard, jmp_buf is an array type, i.e., the
name of a jmp_buf represents its address. If a C system erroneously defined
jmp_buf as a structure, we would simply have to return its address explicitly. We
do not require catch() to be applied to the top element on the exception stack.

163___13.3 Examples

13.3 Examples

In our calculator we can replace the explicit setjmp() in parse.c with an exception
object:

int main (void)
{ volatile int errors = 0;

char buf [BUFSIZ];
void * retry = new(Exception());
...

if (catch(retry))
{ ++ errors;

reclaim(Node(), delete);
}

while (gets(buf))
...

Causing an exception will now restart the main loop. error() is modified so that it
ends by causing an exception:

void error (const char * fmt, ...)
{ va_list ap;

va_start(ap, fmt);
vfprintf(stderr, fmt, ap), putc(’\n’, stderr);
va_end(ap);
cause(1);
assert(0);

}

error() is called for any error discovered in the calculator. It prints an error message
and causes an exception which will normally directly restart the main loop. How-
ever, while Symtab executes its load method, it nests its own exception handler:

% Symtab load {
FILE * fp;
void * in;
void * cleanup;
...
if (! (fp = fopen(fnm, "r")))

return EOF;

cleanup = new(Exception());
if (catch(cleanup))
{ fclose(fp);

delete(cleanup);
cause(1);
assert(0);

}

while (in = retrieve(fp))
...

fclose(fp);
delete(cleanup);
return result;

}

164___13 Exceptions — Disciplined Error Recovery

We saw in section 12.5 that we have a problem if load() is working on an expres-
sion and if getsymbol() cannot attach a name to the appropriate symbol in table:

else if (lex(result) != token)
error("%s: need a %s, got a %s",

buf, nameOf(class), nameOf(classOf(result)));

All it takes now is to call error() to print a message. error() causes an exception
which is at this point caught through the exception object cleanup in load(). In this
handler it is known that the stream fp must be closed before load() can be ter-
minated. When cleanup is deleted and another exception is caused, control finally
reaches the normal exception handler established with retry in main() where super-
fluous nodes are reclaimed and the main loop is restarted.

This example demonstrates it is best to design cause() as a function which only
passes an exception code. error() can be called from different protected contexts
and it will automatically return to the appropriate exception handler. By deleting the
corresponding exception object and calling cause() again, we can trigger all handlers
up the chain.

Exception handling smells of goto with all its unharnessed glory. The following,
gruesome example uses a switch and two exception objects to produce the output

$ except
caused —1
caused 1
caused 2
caused 3
caused 4

Here is the code; extra points are awarded if you trace it with a pencil...
int main ()
{ void * a = new(Exception()), * b = new(Exception());

cause(—1); puts("caused —1");

switch (catch(a)) {
case 0:

switch (catch(b)) {
case 0:

cause(1); assert(0);
case 1:

puts("caused 1");
cause(2); assert(0);

case 2:
puts("caused 2");
delete(b);
cause(3); assert(0);

default:
assert(0);

}

165___13.4 Summary

case 3:
puts("caused 3");
delete(a);
cause(4);
break;

default:
assert(0);

}
puts("caused 4");
return 0;

}

This code is certainly horrible and incomprehensible. However, if exception
handling is used to construct the package shown at the beginning of this chapter

risky action

on error

error handler

we still maintain a resemblance of the one entry, one exit paradigm for control
structures which is at the heart of structured programming. The Exception class
provides a clean, encapsulated mechanism to nest exception handlers and thus to
nest one protected risky action inside another.

13.4 Summary

Modern programming languages like Eiffel or C++ support special syntax for excep-
tion handling. Before a risky action is attempted, an exception handler is esta-
blished. During the risky action, software or hardware (interrupts, signals) can
cause the exception and thus start execution of the exception handler. Theoreti-
cally, upon completion of the exception handler there are three choices: terminate
both, the exception handler and the risky action; resume the risky action immedi-
ately following the point where the exception was caused; or retry that part of the
risky action which caused the exception.

In practice, the most likely choice is termination and that may be the only
choice which a programming language supports. However, a language should
definitely support nesting the ranges where an exception handler is effective, and it
must be possible to chain exception handling, i.e., when one exception handler ter-
minates, it should be possible to invoke the next outer handler.

Exception handling with termination can easily be implemented in ANSI-C with
setjmp(). Exception handlers can be nested by stacking the jmp_buf information
set up by setjmp() and used by longjmp(). A stack of jmp_buf values can be
managed as objects of an Exception class. Objects are created to nest exception
handlers, and they must be deleted in the opposite order. An exception object is
armed with catch(), which will return a second time with the nonzero exception
code. An exception is caused by calling cause() with the exception code that
should be delivered to catch() for the newest exception object.

166___13 Exceptions — Disciplined Error Recovery

13.5 Exercises

It seems likely that one could easily forget to delete some nested exceptions.
Therefore, Exception_dtor() could implicitly pop exceptions from the stack until it
finds self. Is it a good idea to delete() them to avoid memory leaks? What should
happen if self cannot be found?

Similarly, catch() could search the stack for the nearest armed exception.
Should it pop the unarmed ones?

setjmp() is a dangerous feature, because it does not guard against attempting
to return into a function that has itself returned. Normally, ANSI-C uses an activa-
tion record stack to allocate local variables for each active function invocation. Obvi-
ously, cause() must be called at a higher level on that stack than the function it tries
to longjmp() into. If catchException() passes the address of a local variable of its
caller, we could store it with the jmp_buf and use it as a coarse verification of the
legality of the longjmp(). A fancier technique would be to store a magic number in
the local variable and check if it is still there. As a nonportable solution, we might
be able to follow a chain along the activation record stack and check from cause() if
the stack frame of the caller of catchException() is still there.

167___

14
Forwarding Messages

A GUI Calculator

In this chapter we look at a rather typical problem: one object hierarchy we build
ourselves to create an application, and another object hierarchy is more or less
imposed upon us, because it deals with system facilities such as a graphical user
interface (GUI, the pronunciation indicates the generally charming qualities). At this
point, real programmers turn to multiple inheritance, but, as our example of the obli-
gatory moused calculator demonstrates, an elegant solution can be had at a fraction
of the cost.

14.1 The Idea

Every dynamically linked method is called through its selector, and we saw in
chapter 8 that the selector checks if its method can be found for the object. As an
example, consider the selector add() for the method to add an object to a List:

struct Object * add (void * _self, const void * element) {
struct Object * result;
const struct ListClass * class =

cast(ListClass(), classOf(_self));

assert(class —> add.method);
cast(Object(), element);

result = ((struct Object * (*) ())
class —> add.method)(_self, element);

return result;
}

classOf() tries to make sure that _self references an object; the surrounding call to
cast() ascertains that the class description of _self belongs to the metaclass
ListClass, i.e., that it really contains a pointer to an add method; finally, assert()

guards against a null value masquerading as this pointer, i.e., it makes sure that an
add method has been implemented somewhere up the inheritance chain.

What happens if add() is applied to an object that has never heard of this
method, i.e., what happens if _self flunks the various tests in the add() selector?
As it stands, an assert() gets triggered somewhere, the problem is contained, and
our program quits.

Suppose we are working on a class X of objects which themselves are not des-
cendants of List but which know some List object to which they could logically
pass a request to add(). As it stands, it would be the responsibility of the user of X
objects, to know (or to find out with respondsTo()) that add() cannot be applied to
them and to reroute the call accordingly. However, consider the following, slightly
revised selector:

168___14 Forwarding Messages — A GUI Calculator

struct Object * add (void * _self, const void * element) {
struct Object * result;
const struct ListClass * class =

(const void *) classOf(_self);

if (isOf(class, ListClass()) && class —> add.method) {
cast(Object(), element);
result = ((struct Object * (*) ())

class —> add.method)(_self, element);
} else

forward(_self, & result, (Method) add, "add",
_self, element);

return result;
}

Now, _self can reference any object. If its class happens to contain a valid add

pointer, the method is called as before. Otherwise, all the information is passed to
a new method forward(): the object itself; an area for the expected result; a pointer
to and the name of the selector which failed; and the values in the original argu-
ment list. forward() is itself a dynamically linked method declared in Object:

% Class Object {
...

%—
void forward (const _self, void * result, \

Method selector, const char * name, ...);

Obviously, the initial definition is a bit helpless:
% Object forward {
%casts

fprintf(stderr, "%s at %p does not answer %s\n",
nameOf(classOf(self)), self, name);

assert(0);
}

If an Object itself does not understand a method, we are out of luck. However,
forward() is dynamically linked: if a class wants to forward messages, it can
accomplish this by redefining forward(). As we shall see in the example in section
14.6, this is almost as good as an object belonging to several classes at the same
time.

14.2 Implementation

Fortunately, we decided in chapter 7 to enforce our coding standard with a prepro-
cessor ooc, and selectors are a part of the coding standard. In section 8.4 we
looked at the selector report which generates all selectors. Message forwarding is
accomplished by declaring forward() as shown above, by defining a default imple-
mentation, and by modifying the selector report in etc.rep so that all generated
selectors reroute what they do not understand:*
__

* As before, the presentation is simplified so that it does not show the parts which deal with variable
argument lists.

169___14.2 Implementation

`%header { `n
`%result
`%classOf

`%ifmethod
`%checks
`%call
`t } else `n
`%forward
`%return
} `n `n

This is almost the same code as in section 8.4: as we saw above, the cast() in the
classOf report is turned into a call to isOf() as part of the ifmethod report and an
else clause is added with the forward report to generate the call to forward().

The call to forward() is routed through another selector for argument checking.
It is probably not helpful to get stuck in recursion here, so if the selector forward()

itself is generated, we stop things with an assert():
% forward // forward the call, but don’t forward forward

`{if `method forward
`t `t assert(0);
`} `{else
`t `t forward(_self, \

`{if `result void 0, `} `{else & result, `} \
(Method) `method , " `method ", `%args);

`} `n

The additional `{if concerns the fact that a selector eventually has to return the
result expected by its caller. This result will have to be produced by forward(). The
general approach is to pass the result area to forward() to get it filled somehow. If,
however, our selector returns void, we have no result variable. In this case we
pass a null pointer.

It looks as if we could write slightly better code by hand: in some cases we
could avoid the result variable, assignment, and a separate return statement.
However, tuning would complicate the ooc reports unnecessarily because any rea-
sonable compiler will generate the same machine code in either case.

classOf is the other report that gets modified significantly. A call to cast() is
removed, but the interesting question is what happens if a call to a class method
needs to be forwarded. Let us look at the selector which ooc generates for new():

struct Object * new (const void * _self, ...) {
struct Object * result;
va_list ap;
const struct Class * class = cast(Class(), _self);

va_start(ap, _self);
if (class —> new.method) {

result = ((struct Object * (*) ()) class —> new.method)
(_self, & ap);

170___14 Forwarding Messages — A GUI Calculator

} else
forward((void *) _self, & result, (Method) new, "new",

_self, & ap);
va_end(ap);
return result;

}

new() is called for a class description like List. Calling a class method for something
other than a class description is probably a very bad idea; therefore, cast() is used
to forbid this. new belongs into Class; therefore, no call to isOf() is needed.

Let’s assume that we forgot to define the initial Object_new(), i.e., that List

has not even inherited a new method, and that, therefore, new.method is a null
pointer. In this case, forward() is applied to List. However, forward() is a dynami-
cally linked method, not a class method. Therefore, forward() looks in the class
description of List for a forward method, i.e., it tries to find ListClass_forward():

ListClass

Class

"ListClass"

Class

sizeof List

fill List

cannot happen

no operation

forward for List

make List

struct Class

ctor:

dtor:

delete:

forward:

new:

List

•

"List"

Object

sizeof aList

fill aList

empty aList

free aList

forward for aList

make aList

add to aList

take from aList

struct ListClass

ctor:

dtor:

delete:

forward:

new:

add:

take:

aList

•

...

struct List

This is perfectly reasonable: List_forward() is responsible for all messages which
aList does not understand; ListClass_forward() is responsible for all those which
List cannot handle. Here is the classOf report in etc.rep:

`{if `linkage %—
`{if `meta `metaroot
`t const struct `meta * class = classOf(_self); `n
`} `{else
`t const struct `meta * class = ` \

(const void *) classOf(_self); `n
`}

171___14.3 Object-Oriented Design by Example

`} `{else
`t const struct `meta * class = ` \

cast(`metaroot (), _self); `n
`} `n

For dynamically linked methods `linkage is %−. In this case we get the class
description as a struct Class from classOf(), but we cast it to the class description
structure which it will be once isOf() has verified the type, so that we can select
the appropriate method component.

For a class method, `linkage evaluates as %+, i.e., we advance to the second
half of the report and simply check with cast() that _self is at least a Class. This is
the only difference in a selector for a class method with forwarding.

14.3 Object-Oriented Design by Example

GUIs are everybody’s favorite demonstration ground for the power of object-oriented
approaches. A typical benchmark is to create a small calculator that can be
operated with mouse clicks or from the keyboard:

display C

7 8 9 +

4 5 6 −

1 2 3 *

Q 0 = /

We will now build such a calculator for the curses and X11 screen managers. We
use an object-oriented approach to design, implement, and test a general solution.
Once it works, we connect it to two completely incompatible graphical environ-
ments. In due course, we shall see how elegantly message forwarding can be
used.

It helps to get the application’s algorithm working, before we head for the GUI
library. It also helps to decompose the application’s job into interacting objects.
Therefore, let us just look at what objects we can identify in the calculator pictured
above.

Our calculator has buttons, a computing chip, and a display. The display is an
information sink: it receives something and displays it. The computing chip is an
information filter: it receives something, changes its own state, and passes modi-
fied information on. A button is an information source or even a filter: if it is prop-
erly stimulated, it will send information on.

Thus far, we have identified at least four classes of objects: the display, the
computing chip, buttons, and information passed between them. There may be a
fifth kind of object, namely the source of the stimulus for a button, which models
our keyboard, a mouse, etc.

172___14 Forwarding Messages — A GUI Calculator

There is a common aspect that fits some of these classes: a display, comput-
ing chip, or button may be wired to one next object, and the information is transmit-
ted along this wire. An information sink like the display only receives information,
but that does not hurt the general picture. So far, we get the following design:

CLASS DATA METHODS

Object base class

Event information to pass
kind type of data
data text, position, etc.

Ic base class for application
out object I am connected to

wire connect me to another object
gate send information to out

LineOut model the display
wire not used
gate display incoming information

Button model an input device
text label, defines interesting information

gate look at incoming information:
if it matches text, send it on

Calc computing chip
state current value, etc.

gate change state based on information,
pass new current value on, if any

This looks good enough for declaring the principal methods and trying to write a
main program to test the decomposition of our problem world into classes.

Ic.d
enum react { reject, accept };

% IcClass: Class Ic: Object {
void * out;

%—
void wire (Object @ to, _self);
enum react gate (_self, const void * item);

%}

% IcClass LineOut: Ic {
%}

% IcClass Button: Ic {
const char * text;

%}

173___14.3 Object-Oriented Design by Example

run.c
int main ()
{ void * calc = new(Calc());

void * lineOut = new(LineOut());
void * mux = new(Mux());
static const char * const cmd [] = { "C", "Q",

"0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
"+", "—", "*", "/", "=", 0 };

const char * const * cpp;

wire(lineOut, calc);
for (cpp = cmd; * cpp; ++ cpp)
{ void * button = new(Button(), * cpp);

wire(calc, button), wire(button, mux);
}

Close. We can set up a computing chip, a display, and any number of buttons, and
connect them. However, if we want to test this setup with character input from a
keyboard, we will have to wrap every character as an Event and offer it to each
Button until one is interested and returns accept when we call its gate() method.
One more class would help:

CLASS DATA METHODS

Object base class

Ic base class for application

Mux multiplexer, one input to many outputs
list List of objects

wire connects me to another object
gate passes information until some object wants it

The main program shown above already uses a Mux object and connects it to each
Button. We are ready for the main loop:

while ((ch = getchar()) != EOF)
if (! isspace(ch))
{ static char buf [2];

void * event;

buf[0] = ch;
gate(mux, event = new(Event(), 0, buf));
delete(event);

}
return 0;

}

White space is ignored. Every other character is wrapped as an Event with kind

zero and the character as a string. The event is handed to the multiplexer and the
computation takes its course.

174___14 Forwarding Messages — A GUI Calculator

Summary

This design was motivated by the Class-Responsibility-Collaborator technique
described in [Bud91]: We identify objects more or less by looking at the problem.
An object is given certain responsibilities to carry out. This leads to other objects
which collaborate in carrying out the work. Once the objects are known, they are
collected into classes and, hopefully, a hierarchical pattern can be found that is
deeper than just one level.

The key idea for this application is the Ic class with the capability of receiving,
changing, and routing information. This idea was inspired by the Interface Builder
of NeXTSTEP where much of the information flow, even to application-specific
classes, can be ‘‘wired’’ by mouse-dragging when the graphical user interface is
designed with a graphics editor.

14.4 Implementation — Ic

Obviously, gate() is a dynamically bound method, because the subclasses of Ic use
it to receive and process information. Ic itself owns out, the pointer to another
object to which information must be sent. Ic itself is mostly an abstract base class,
but Ic_gate() can access out and actually pass information on:

% Ic gate {
%casts

return self —> out ? gate(self —> out, item) : reject;
}

This is motivated by information hiding: if a subclass’ gate method wants to send
information on, it can simply call super_gate().

wire() is trivial: it connects an Ic to another object by storing the object
address in out:

% Ic wire {
%casts

self —> out = to;
}

Once the multiplexer class Mux is invented, we realize that wire(), too, must be
dynamically linked. Mux overwrites wire() to add its target object to a List:

% Mux wire { // add another receiver
%casts

addLast(self —> list, to);
}

Mux_gate() can be defined in various ways. Generally, it has to offer the incoming
information to some target objects; however, we can still decide in which order we
do this and whether or not we want to quit once an object accepts the information
— there is room for subclasses!

175___14.4 Implementation — ‘‘Ic’’

% Mux gate { // sends to first responder
unsigned i, n;
enum react result = reject;

%casts
n = count(self —> list);
for (i = 0; i < n; ++ i)
{ result = gate(lookAt(self —> list, i), item);

if (result == accept)
break;

}
return result;

}

This solution proceeds sequentially through the list in the order in which it was
created, and it quits as soon as one invocation of gate() returns accept.

LineOut is needed so that we can test a computing chip without connecting it
to a graphical user interface. gate() has been defined leniently enough so that
LineOut_gate() is little more than a call to puts():

% LineOut gate {
%casts

assert(item);
puts(item); // hopefully, it is a string
return accept;

}

Of course, LineOut would be more robust, if we used a String object as input.

The classes built thus far can actually be tested. The following example hello
connects an Ic to a Mux and from there first to two more Ic objects and then twice
to a LineOut. Finally, a string is sent to the first Ic:

int main ()
{ void * ic = new(Ic());

void * mux = new(Mux());
int i;
void * lineOut = new(LineOut());

for (i = 0; i < 2; ++ i)
wire(new(Ic()), mux);

wire(lineOut, mux);
wire(lineOut, mux);
wire(mux, ic);
puto(ic, stdout);
gate(ic, "hello, world");
return 0;

}

The output shows the connections described by puto() and the string displayed by
the LineOut:

176___14 Forwarding Messages — A GUI Calculator

$ hello
Ic at 0x182cc
wired to Mux at 0x18354
wired to [nil]
list List at 0x18440

dim 4, count 4 {
Ic at 0x184f0

wired to [nil]
Ic at 0x18500

wired to [nil]
LineOut at 0x184e0

wired to [nil]
LineOut at 0x184e0

wired to [nil]
}
hello, world

Although the Mux object is connected to the LineOut object twice, hello, world is
output only once, because the Mux object passes its information only until some
gate() returns accept.

Before we can implement Button we have to make a few assumptions about
the Event class. An Event object contains the information that is normally sent
from one Ic to another. Information from the keyboard can be represented as a
string, but a mouse click or a cursor position looks different. Therefore, we let an
Event contain a number kind to characterize the information and a pointer data

which hides the actual values:
% Event ctor { // new(Event(), 0, "text") etc.

struct Event * self = super_ctor(Event(), _self, app);

self —> kind = va_arg(* app, int);
self —> data = va_arg(* app, void *);
return self;

}

Now we are ready to design a Button as an information filter: if the incoming
Event is a string, it must match the button’s text; any other information is accepted
sight unseen, as it should have been checked elsewhere already. If the Event is
accepted, Button will send its text on:

% Button ctor { // new(Button(), "text")
struct Button * self = super_ctor(Button(), _self, app);

self —> text = va_arg(* app, const char *);
return self;

}

% Button gate {
%casts

if (item && kind(item) == 0
&& strcmp(data(item), self —> text))

return reject;
return super_gate(Button(), self, self —> text);

}

177___14.4 Implementation — ‘‘Ic’’

This, too, can be checked with a small test program button in which a Button is
wired to a LineOut:

int main ()
{ void * button, * lineOut;

char buf [100];

lineOut = new(LineOut());
button = new(Button(), "a");
wire(lineOut, button);
while (gets(buf))
{ void * event = new(Event(), 0, buf);

if (gate(button, event) == accept)
break;

delete(event);
}
return 0;

}

button ignores all input lines until a line contains the a which is the text of the but-
ton:

$ button
ignore
a
a

Only one a is input, the other one is printed by the LineOut.

LineOut and Button were implemented mostly to check the computing chip
before it is connected to a graphical interface. The computing chip Calc can be as
complicated as we wish, but for starters we stick with a very primitive design:
digits are assembled into a value in the display; the arithmetic operators are exe-
cuted as soon as possible without precedence; = produces a total; C clears the
current value; and Q terminates the program by calling exit(0);.

This algorithm can be executed by a finite state machine. A practical approach
uses a variable state as an index selecting one of two values, and a variable op to
remember the current operator which will be applied after the next value is com-
plete:

%prot
typedef int values[2]; // left and right operand stack

% IcClass Calc: Ic {
values value; // left and right operand
int op; // operator
int state; // FSM state

%}

178___14 Forwarding Messages — A GUI Calculator

The following table summarizes the algorithm that has to be coded:

input state value[] op super_gate()

digit any v[any] *= 10

v[any] += digit value[any]

0 → 1 v[1] = 0 input

1 v[0] op= v[1] input value[0]+ - * /

v[1] = 0

0 v[0] = 0

1 → 0 v[0] op= v[1] value[0]=

v[0] = 0

C any v[any] = 0 value[any]

And it really works:
$ run
12 + 34 * 56 = Q
1
12
3
34
46
5
56
2576

Summary

The Ic classes are very simple to implement. A trivial LineOut and an input loop,
which reads from the keyboard, enable us to check Calc before it is inserted into a
complicated interface.

Calc communicates with its input buttons and output display by calling gate().
This is coupled loosely enough so that Calc can send fewer (or even more) mes-
sages to the display than it receives itself.

Calc operates very strictly bottom-up, i.e., it reacts to every input passed in
through Calc_gate(). Unfortunately, this rules out the recursive descent technique
introduced in the third chapter, or other syntax-driven mechanisms such as yacc
grammars, but this is a characteristic of the message-based design. Recursive des-
cent and similar mechanisms start from the main program down, and they decide
when they want to look at input. In contradistinction, message-driven applications
use the main program as a loop to gather events, and the objects must react to
these events as they are sent in.

If we insist on a top-down approach for Calc, we must give it its own thread of
control, i.e., it must be a coroutine, a thread under Mach and similar systems, or
even another process under UNIX, and the message paradigm must be subverted by
process communication.

179___14.5 A Character-Based Interface — ‘‘curses’’

14.5 A Character-Based Interface — curses

curses is an ancient library, which manages character-based terminals and hides the
idiosyncracies of various terminals by using the termcap or terminfo databases
[Sch90]. Originally, Ken Arnold at Berkeley extracted the functions from Bill Joy’s vi
editor. Meanwhile, there are several, optimized implementations, even for DOS;
some are in the public domain.

If we want to connect our calculator to curses, we have to implement replace-
ments for LineOut and Button and connect them with a Calc object. curses pro-
vides a WINDOW data type, and it turns out that our best bet is to use a WINDOW

for each graphical object. The original version of curses does not use a mouse or
even provide functions to move a cursor under control of something like arrow
keys. Therefore, we will have to implement another object that runs the cursor and
sends cursor positions as events to the buttons.

It looks like we have two choices. We can define a subclass of Ic to manage
the cursor and the main loop of the application, and subclasses of Button and of
LineOut to provide the graphical objects. Every one of these three classes will own
its own WINDOW. Alternatively, as shown at right below, we can start a new hierar-
chy with a subclass of Ic which owns a WINDOW and can run the cursor. Addition-
ally we create two more subclasses which then may have to own a Button and a
LineOut, respectively.

Object Object
Ic Ic

Button Button
CButton

LineOut LineOut
CLineOut

Crt Crt
CButton
CLineOut

Neither solution looks quite right. The first one seems perhaps closer to our appli-
cation, but we don’t encapsulate the existence of the WINDOW data type in a single
class, and it does not look like we package curses in a way that can be reused for
the next project. The second solution seems to encapsulate curses mostly in Crt;
however, the subclasses need to contain objects that are very close to the applica-
tion, i.e., once again we are likely to end up with a once-only solution.

Let us stick with the second approach. We will see in the next section how we
can produce a better design with message forwarding. Here are the new classes:

180___14 Forwarding Messages — A GUI Calculator

CLASS DATA METHODS

Object base class

Ic base class for application

Crt base class for screen management
window curses WINDOW

rows, cols size
makeWindow create my window
addStr display a string in my window
crtBox run a frame around my window
gate run cursor, send text or positions

CLineOut output window
gate display text in my window

CButton box with label to click
button a Button to accept and forward events
x, y my position

gate if text event, send to button

if position event matches,
send null pointer to button

Implementing these classes requires a certain familiarity with curses; therefore, we
will not look at the details of the code here. The curses package has to be initial-
ized; this is taken care of by a hook in Crt_ctor(): the necessary curses functions
are called when the first Crt object is created.

Crt_gate() contains the main loop of the program. It ignores its incoming event
and it reads from the keyboard until it sees a control-D as an end of input indication.
At this point it will return reject and the main program terminates.

A few input characters are used to control the cursor. If return is pressed,
Crt_gate() calls super_gate() to send out an event with kind one and with an
integer array with the current row and column position of the cursor. All other char-
acters are sent out as events with kind zero and the character as a string.

The interesting class is CButton. When an object is constructed, a box appears
on the screen with the button name inside.

% CButton ctor { // new(CButton(), "text", row, col)
struct CButton * self = super_ctor(CButton(), _self, app);

self —> button =
new(Button(), va_arg(* app, const char *));

self —> y = va_arg(* app, int);
self —> x = va_arg(* app, int);

makeWindow(self, 3, strlen(text(self —> button)) + 4,
self —> y, self —> x);

addStr(self, 1, 2, text(self —> button));
crtBox(self);
return self;

}

181___14.5 A Character-Based Interface — ‘‘curses’’

The window is created large enough for the text surrounded by spaces and a frame.
wire() must be overwritten so that the internal button gets connected:

% CButton wire {
%casts

wire(to, self —> button);
}

Finally, CButton_gate() passes text events directly on to the internal button. For a
position event we check if the cursor is within our own box:

% CButton gate {
%casts

if (kind(item) == 1) // kind == 1 is click event
{ int * v = data(item); // data is an array [x, y]

if (v[0] >= self —> x && v[0] < self —> x + cols(self)
&& v[1] >= self —> y && v[1] < self —> y + rows(self))

return gate(self —> button, 0);
return reject;

}
return gate(self —> button, item);

}

If so, we send a null pointer to the internal button which responds by sending on its
own text.

Once again, we can check the new classes with a simple program cbutton
before we wire up the entire calculator application.

int main ()
{ void * crt = new(Crt());

void * lineOut = new(CLineOut(), 5, 10, 40);
void * button = new(CButton(), "a", 10, 40);

makeWindow(crt, 0, 0, 0, 0); /* total screen */
gate(lineOut, "hello, world");

wire(lineOut, button), wire(button, crt);
gate(crt, 0); /* main loop */

return 0;
}

This program displays hello, world on the fifth line and a small button with the label
a near the middle of our terminal screen. If we move the cursor into the button and
press return, or if we press a, the display will change and show the a. cbutton ends
if interrupted or if we input control-D.

Once this works, our calculator will, too. It just has more buttons and a com-
puting chip:

int main ()
{ void * calc = new(Calc());

void * crt = new(Crt());
void * lineOut = new(CLineOut(), 1, 1, 12);
void * mux = new(Mux());

182___14 Forwarding Messages — A GUI Calculator

static const struct tbl { const char * nm; int y, x; }
tbl [] = { "C", 0, 15,

"1", 3, 0, "2", 3, 5, "3", 3, 10, "+", 3, 15,
"4", 6, 0, "5", 6, 5, "6", 6, 10, "—", 6, 15,
"7", 9, 0, "8", 9, 5, "9", 9, 10, "*", 9, 15,
"Q", 12, 0, "0", 12, 5, "=", 12, 10, "/", 12, 15,

0 };
const struct tbl * tp;

makeWindow(crt, 0, 0, 0, 0);
wire(lineOut, calc);
wire(mux, crt);

for (tp = tbl; tp —> nm; ++ tp)
{ void * o = new(CButton(), tp —> nm, tp —> y, tp —> x);

wire(calc, o), wire(o, mux);
}

gate(crt, 0);
return 0;

}

The solution is quite similar to the last one. A CButton object needs coordinates;
therefore, we extend the table from which the buttons are created. We add a Crt

object, connect it to the multiplexer, and let it run the main loop.

Summary

It should not come as a great surprise that we reused the Calc class. That is the
least we can expect, no matter what design technique we use for the application.
However, we also reused Button, and the Ic base class helped us to concentrate
totally on coping with curses rather than with adapting the computing chip to a dif-
ferent variety of inputs.

The glitch lies in the fact, that we have no clean separation between curses and
the Ic class. Our class hierarchy forces us to compromise and (more or less) use
two Ic objects in a CButton. If the next project does not use the Ic class, we can-
not reuse the code developed to hide the details of curses.

14.6 A Graphical Interface — Xt

The X Window System (X11) is the de facto standard for graphical user interfaces
on UNIX and other systems.* X11 controls a terminal with a bitmap screen, a
mouse, and a keyboard and provides input and output facilities. Xlib is a library of
functions implementing a communication protocol between an application program
and the X11 server controlling the terminal.

__

* The standard source for information about X11 programming is the X Window System series published
by O’Reilly and Associates. Background material for the current section can be found in volume 4,
manual pages are in volume 5, ISBN 0-937175-58-7.

183___14.6 A Graphical Interface — ‘‘Xt’’

X11 programming is quite difficult because application programs are expected
to behave responsibly in sharing the facilities of the server. Therefore, there is the
X toolkit, a small class hierarchy which mostly serves as a foundation for libraries of
graphical objects. The toolkit is implemented in C. Toolkit objects are called wid-
gets.

The base class of the toolkit is Object, i.e., we will have to fix our code to avoid
that name. Another important class in the toolkit is ApplicationShell: a widget
from this class usually provides the framework for a program using the X11 server.

The toolkit itself does not contain classes with widgets that are visible on the
screen. However, Xaw, the Athena Widgets, are a generally available, primitive
extension of the toolkit class hierarchy which provides enough functionality to
demonstrate our calculator.

The widgets of an application program are arranged in a tree. The root of this
tree is an ApplicationShell object. If we work with Xaw, a Box or Form widget is
next, because it is able to control further widgets within its screen area. For our
calculator display we can use a Label widget from Xaw, and a button can be imple-
mented with a Command widget.

On the screen, the Command widget appears as a frame with a text in it. If
the mouse enters or leaves the frame, it changes its visual appearance. If a mouse
button is clicked inside the frame, the widget will invoke a callback function which
must have been registered previously.

So-called translation tables connect events such as mouse clicks and key
presses on the keyboard to so-called action functions connected with the widget at
which the mouse currently points. Command has action functions which change
its visual appearance and cause the callback function to be invoked. These actions
are used in the Command translation table to implement the reaction to a mouse
click. The translation tables of a particular widget can be changed or augmented,
i.e., we can decide that the key press 0 influences a particular Command widget as
if a mouse button had been clicked inside its frame.

So-called accelerators are essentially redirections of translation tables from one
widget to another. Effectively, if the mouse is inside a Box widget, and if we press
a key such as +, we can redirect this key press from the Box widget to some Com-

mand widget inside the box, and recognize it as if a mouse button had been clicked
inside the Command widget itself.

To summarize: we will need an ApplicationShell widget as a framework; a
Box or Form widget to contain other widgets; a Label widget as a display; several
Command widgets with suitable callback functions for our buttons; and certain
magical convolutions permit us to arrange for key presses to cause the same
effects as mouse clicks on specific Command widgets.

The standard approach is to create classes of our own to communicate with the
classes of the toolkit hierarchy. Such classes are usually referred to as wrappers
for a foreign hierarchy or system. Obviously, the wrappers should be as indepen-
dent of any other considerations as possible, so that we can use them in arbitrary

184___14 Forwarding Messages — A GUI Calculator

toolkit projects. In general, we should wrap everything in the toolkit; but, to keep
this book within reason, here is the minimal set for the calculator:

CLASS DATA METHODS

Objct our base class (renamed)

Xt base class for X toolkit wrappers
widget my X toolkit widget

makeWidget create my widget
addAllAccelerators

setLabel change label resource
addCallback add callback function

(widget may or may not change)

XtApplicationShell framework
mainLoop X11 event loop

XawBox wraps Athena’s Box

XawForm wraps Athena’s Form

XawLabel wraps Athena’s Label

XawCommand wraps Athena’s Command

These classes are very simple to implement. They exist mostly to hide the uglier
X11 and toolkit incantation from our own applications. There are some design
choices. For example, setLabel() could be defined for XawLabel rather than for
Xt, because a new label is only meaningful for XawLabel and XawCommand but
not for ApplicationShell, Box, or Form. However, by defining setLabel() for Xt we
model how the toolkit works: widgets are controlled by so-called resources which
can be supplied during creation or later by calling XtSetValues(). It is up to the wid-
get if it knows a particular resource and decides to act when it receives a new value
for it. Being able to send the value is a property of the toolkit as such, not of a par-
ticular widget.

Given this foundation, we need only two more kinds of objects: an XLineOut

receives a string and displays it and an XButton sends out text events for mouse
clicks or keyboard characters. XLineOut is a subclass of XawLabel which behaves
like a LineOut, i.e., which must do something about gate().

Xt.d
% Class XLineOut: XawLabel {
%}

Xt.dc
% XLineOut ctor { // new(XLineOut(), parent, "name", "text")

struct XLineOut * self =
super_ctor(XLineOut(), _self, app);

const char * text = va_arg(* app, const char *);

gate(self, text);
return self;

}

185___14.6 A Graphical Interface — ‘‘Xt’’

Three arguments must be specified when an XLineOut is created: the superclass
constructor needs a parent Xt object which supplies the parent widget for the
application’s widget hierarchy; the new widget should be given a name for the qual-
ification of resource names in an application default file; and, finally, the new
XLineOut is initially set to some text which may imply its size on the screen. The
constructor is brave and simply uses gate() to send this initial text to itself.

Because XLineOut does not descend from Ic, it cannot respond directly to
gate(). However, the selector will forward the call; therefore, we overwrite for-

ward() to do the work that would be done by a gate method if XLineOut could
have one:

% XLineOut forward {
%casts

if (selector == (Method) gate)
{ va_arg(* app, void *);

setLabel((void *) self, va_arg(* app, const void *));
* (enum react *) result = accept;

}
else

super_forward(XLineOut(), _self, result,
selector, name, app);

}

We cannot be sure that every call to XLineOut_forward() is a gate() in dis-
guise. Every forward method should check and only respond to expected calls.
The others can, of course, be forwarded up along the inheritance chain with
super_forward().

Just as for new(), forward() is declared with a variable argument list; however,
the selector can only pass an initialized va_list value to the actual method, and the
superclass selector must receive such a pointer. To simplify argument list sharing,
specifically in deference to the metaclass constructor, ooc generates code to pass a
pointer to an argument list pointer, i.e., the parameter va_list * app.

As a trivial example for forwarding the gate() message to an XLineOut, here is
the xhello test program:

void main (int argc, char * argv [])
{ void * shell = new(XtApplicationShell(), & argc, argv);

void * lineOut = new(XLineOut(), shell, 0, "hello, world");

mainLoop(shell);
}

The program displays a window with the text hello, world and waits to be killed
with a signal. Here, we have not given the widget in the XLineOut object an expli-
cit name, because we are not specifying any resources.

XButton is a subclass of XawCommand so that we can install a callback func-
tion to receive mouse clicks and key presses:

186___14 Forwarding Messages — A GUI Calculator

Xt.d
% Class XButton: XawCommand {

void * button;
%}

Xt.dc
% XButton ctor { // new(XButton(), parent, "name", "text")

struct XButton * self = super_ctor(XButton(), _self, app);
const char * text = va_arg(* app, const char *);

self —> button = new(Button(), text);
setLabel(self, text);
addCallback(self, tell, self —> button);
return self;

}

XButton has the same construction arguments as XLineOut: a parent Xt object, a
widget name, and the text to appear on the button. The widget name may well be
different from the text, e.g., the operators for our calculator are unsuitable as com-
ponents in resource path names.

The interesting part is the callback function. We let an XButton own a Button

and arrange for the callback function tell() to send a null pointer with gate() to it:
static void tell (Widget w, XtPointer client_data,

XtPointer call_data)
{

gate(client_data, NULL);
}

client_data is registered with the callback function for the widget to pass it in later.
We use it to designate the target of gate().

We could actually avoid the internal button, because we could set up XButton

itself to be wired to some other object; client_data could point to a pointer to this
target and a pointer to the text, and then tell() could send the text directly to the
target. It is simpler, however, to reuse the functionality of Button, especially,
because it opens up the possibility for XButton to receive text via a forwarded
gate() and pass it to the internal Button for filtering.

Message forwarding is, of course, the key to XButton as well: the internal but-
ton is inaccessible, but it needs to respond to a wire() that is originally directed at
an XButton:

% XButton forward {
%casts

if (selector == wire)
wire(va_arg(* app, void *), self —> button);

else
super_forward(XButton(), _self, result,

selector, name, app);
}

187___14.6 A Graphical Interface — ‘‘Xt’’

Comparing the two forward methods we notice that forward() receives self with
the const qualifier but circumvents it in the case of XLineOut_forward(). The basic
idea is that the implementor of gate() must know if this is safe.

Once again, we can test XButton with a simple program xbutton. This program
places an XLineOut and an XButton into an XawBox and another pair into an
XawForm. Both containers are packed into another XawBox:

void main (int argc, char * argv [])
{ void * shell = new(XtApplicationShell(), & argc, argv);

void * box = new(XawBox(), shell, 0);
void * composite = new(XawBox(), box, 0);
void * lineOut = new(XLineOut(), composite, 0, "—long—");
void * button = new(XButton(), composite, 0, "a");

wire(lineOut, button);
puto(button, stdout); /* Box will move its children */

composite = new(XawForm(), box, "form");
lineOut = new(XLineOut(), composite,"lineOut", "—long—");
button = new(XButton(), composite, "button", "b");

wire(lineOut, button);
puto(button, stdout); /* Form won’t move its children */

mainLoop(shell);
}

The result appears approximately as follows on the screen:

-long-

a

-long- b

Once the button a is pressed in the top half, the XLineOut receives and displays
the text a. The Athena Box widget used as a container will resize the Label widget,
i.e., the top box changes to display two squares, each with the text a inside. The
button with text b is contained in an Athena Form widget, where the resource

*form.button.fromHoriz: lineOut

controls the placement. The Form widget maintains the appearance of the bottom
rectangle even when b is pressed and the short text b appears inside the
XLineOut.

The test program demonstrates that XButton can operate with mouse clicks
and wire(); therefore, it is time to wire the calculator xrun:

188___14 Forwarding Messages — A GUI Calculator

void main (int argc, char * argv [])
{ void * shell = new(XtApplicationShell(), & argc, argv);

void * form = new(XawForm(), shell, "form");
void * lineOut = new(XLineOut(), form, "lineOut",

"........");
void * calc = new(Calc());
static const char * const cmd [] = { "C", "C",

"1", "1", "2", "2", "3", "3", "a", "+",
"4", "4", "5", "5", "6", "6", "s", "—",
"7", "7", "8", "8", "9", "9", "m", "*",
"Q", "Q", "0", "0", "t", "=", "d", "/", 0 };

const char * const * cpp;

wire(lineOut, calc);
for (cpp = cmd; * cpp; cpp += 2)
{ void * button = new(XButton(), form, cpp[0], cpp[1]);

wire(calc, button);
}
addAllAccelerators(form);
mainLoop(shell);

}

This program is even simpler than the curses version, because the table only con-
tains the name and text for each button. The arrangement of the buttons is han-
dled by resources:

*form.C.fromHoriz: lineOut
*form.1.fromVert: lineOut
*form.2.fromVert: lineOut
*form.3.fromVert: lineOut
*form.a.fromVert: C
*form.2.fromHoriz: 1
*form.3.fromHoriz: 2
*form.a.fromHoriz: 3
...

The resource file also contains the accelerators which are loaded by addAllAc-

celerators():
*form.C.accelerators: <KeyPress>c: set() notify() unset()
*form.Q.accelerators: <KeyPress>q: set() notify() unset()
*form.0.accelerators: :<KeyPress>0: set() notify() unset()
...

If the resources are in a file Xapp, the calculator can, for example, be started with
the following Bourne shell command:

$ XENVIRONMENT=Xapp xrun

14.7 Summary

In this chapter we have looked at an object-oriented design for a simple calculator
with a graphical user interface. The CRC design technique summarized at the end of
section 14.3 leads to some classes that can be reused unchanged for each of the
three solutions.

189___14.8 Exercises

The first solution tests the actual calculator without a graphical interface. Here,
the encapsulation as a class permits an easy test setup. Once the calculator class
is functional we can concentrate solely on the idiosyncrasies of the graphics
libraries imposed upon us.

Both, curses and X11 require that we design some wrapper classes to merge
the external library with our class hierarchy. The curses example demonstrates that
without message forwarding we have to compromise: wrappers that are more
likely reusable for the next project do not function too well in conjunction with an
existing, application-oriented class hierarchy; wrappers that mesh well with our
problem know too much about it to be generally reusable for dealing with curses.

The X11 solution shows the convenience of message forwarding. Wrappers
just about completely hide the internals of X11 and the toolkit widgets. Problem-
oriented classes like XButton combine the necessary functionality from the
wrappers with the Ic class developed for our calculator. Message forwarding lets
classes like XButton function as if they were descendants of Ic. In this example,
message forwarding permits objects to act as if they belonged to two classes at
the same time, but we do not incur the overhead and complexity of multiple inheri-
tance as supported in C++.

Message forwarding is quite simple to implement. All that needs to be done is
to modify the selector generation in the appropriate ooc reports to redirect non-
understood selector calls to a new dynamically linked method forward() which
classes like XButton overwrite to receive and possibly redirect forwarded mes-
sages.

14.8 Exercises

Obviously, wrapping curses into a suitable class hierarchy is an interesting exercise
for character terminal aficionados. Similarly, our X11 calculator experiment can be
redone with OSF/Motif or another toolkit.

Using accelerators is perhaps not the most natural way to map key presses into
input to our calculators. One would probably think of action functions first. How-
ever, it turns out that while an action function knows the widget it applies to, it has
no reasonable way to get from the widget to our wrapper. Either somebody recom-
piles the X toolkit with an extra pointer for user data in the Object instance record,
or we have to subclass some toolkit widgets to provide just such a pointer. Given
the pointer, however, we can create a powerful technology based on action func-
tions and our gate().

The idea to gate() and wire() was more or less lifted from NeXTSTEP. How-
ever, in NeXTSTEP a class can have more than one outlet, i.e., pointer to another
object, and during wiring both, the actual outlet and the method to be used at the
receiving end, can be specified.

Comparing sections 5.5 and 11.4, we can see that Var should really inherit from
Node and Symbol. Using forward(), we could avoid Val and its subclasses.

191___

Appendix A
ANSI-C Programming Hints

C was originally defined by Dennis Ritchie in the appendix of [K&R78]. The ANSI-C
standard [ANSI] appeared about ten years later and introduced certain changes and
extensions. The differences are summarized very concisely in appendix C of
[K&R88]. Our style of object-oriented programming with ANSI-C relies on some of
the extensions. As an aid to classic C programmers, this appendix explains those
innovations in ANSI-C which are important for this book. The appendix is certainly
not a definition of the ANSI-C programming language.

A.1 Names and Scope

ANSI-C specifies that names can have almost arbitrary length. Names starting with
an underscore are reserved for libraries, i.e., they should not be used in application
programs.

Globally defined names can be hidden in a translation unit, i.e., in a source file,
by using static:

static int f (int x) { ... } only visible in source file
int g; visible throughout the program

Array names are constant addresses which can be used to initialize pointers even if
an array references itself:

struct table { struct table * tp; }
v [] = { v, v+1, v+2 };

It is not entirely clear how one would code a forward reference to an object which
is still to be hidden in a source file. The following appears to be correct:

extern struct x object; forward reference
f() { object = value; } using the reference
static struct x object; hidden definition

A.2 Functions

ANSI-C permits — but does not require — that the declaration of a function contains
parameter declarations right inside the parameter list. If this is done, the function is
declared together with the types of its parameters. Parameter names may be
specified as part of the function declaration, but this has no bearing on the parame-
ter names used in the function definition.

double sqrt (); classic version
double sqrt (double); ANSI-C
double sqrt (double x); ... with parameter names
int getpid (void); no parameters, ANSI-C

If an ANSI-C function prototype has been introduced, an ANSI-C compiler will try to
convert argument values into the types declared for the parameters.

192___Appendix A ANSI-C Programming Hints

Function definitions may use both variants:

double sqrt (double arg) ANSI-C
{ ... }

double sqrt (arg) classic
double arg;

{ ... }

There are exact rules for the interplay between ANSI-C and classic prototypes and
definitions; however, the rules are complicated and error-prone. It is best to stick
with ANSI-C prototypes and definitions, only.

With the option −Wall the GNU-C compiler warns about calls to functions that
have not been declared.

A.3 Generic Pointers — void *

Every pointer value can be assigned to a pointer variable with type void * and vice
versa, except for const qualifiers. The assignments do not change the pointer
value. Effectively, this turns off type checking in the compiler:

int iv [] = { 1, 2, 3 };

int * ip = iv; ok, same type
void * vp = ip; ok, arbitrary to void *

double * dp = vp; ok, void * to arbitrary

%p is used as a format specification for printf() and (theoretically) for scanf() to
write and read pointer values. The corresponding argument type is void * and thus
any pointer type:

void * vp;

printf("%p\n", vp); display value
scanf("%p", & vp); read value

Arithmetic operations involving void * are not permitted:

void * p, ** pp;

p + 1 wrong
pp + 1 ok, pointer to pointer

The following picture illustrates this situation:

•

••

p

pp void

193___A.4 ‘‘const’’

A.4 const

const is a qualifier indicating that the compiler should not permit an assignment.
This is quite different from truly constant values. Initialization is allowed; const

local variables may even be initialized with variable values:
int x = 10;
int f () { const int xsave = x; ... }

One can always use explicit typecast operations to circumvent the compiler checks:

const int cx = 10;

(int) cx = 20; wrong
* (int *) & cx = 20; not forbidden

These conversions are sometimes necessary when pointer values are assigned:

vp • const voidconst void * vp;

int * ip;

int * const p = ip; ok for local variable

vp = ip; ok, blocks assignment
ip = vp; wrong, allows assignment
ip = (void *) vp; ok, brute force
* (const int **) & ip = vp; ok, overkill
p = ip; wrong, pointer is blocked
* p = 10; ok, target is not blocked

const normally binds to the left; however, const may be specified before the type
name in a declaration:

int const v [10]; ten constant elements
const int * const cp = v; constant pointer to constant value

const is used to indicate that one does not want to change a value after initialization
or from within a function:

char * strcpy (char * target, const char * source);

The compiler may place global objects into a write-protected segment if they have
been completely protected with const. This means, for example, that the com-
ponents of a structure inherit const:

const struct { int i; } c;

c.i = 10; wrong

This precludes the dynamic initialization of the following pointer, too:
void * const String;

It is not clear if a function can produce a const result. ANSI-C does not permit this.
GNU-C assumes that in this case the function does not cause any side effects and
only looks at its arguments and neither at global variables nor at values behind
pointers. Calls to this kind of a function can be removed during common subex-
pression elimination in the compilation process.

194___Appendix A ANSI-C Programming Hints

Because pointer values to const objects cannot be assigned to unprotected
pointers, ANSI-C has a strange declaration for bsearch():

void * bsearch (const void * key,
const void * table, size_t nel, size_t width,
int (* cmp) (const void * key, const void * elt));

table[] is imported with const, i.e., its elements cannot be modified and a constant
table can be passed as an argument. However, the result of bsearch() points to a
table element and does not protect it from modification.

As a rule of thumb, the parameters of a function should be pointers to const

objects exactly if the objects will not be modified by way of the pointers. The same
applies to pointer variables. The result of a function should (almost) never involve
const.

A.5 typedef and const

typedef does not define macros. const may be bound in unexpected ways in the
context of a typedef:

const struct Class { ... } * p; protects contents of structure
typedef struct Class { ... } * ClassP;

const ClassP cp; contents open, pointer protected

How one would protect and pass the elements of a matrix remains a puzzle:
main ()
{ typedef int matrix [10][20];

matrix a;
int b [10][20];

int f (const matrix);
int g (const int [10][20]);

f(a);
f(b);
g(a);
g(b);

}

There are compilers that do not permit any of the calls...

A.6 Structures

Structures collect components of different types. Structures, components, and
variables may all have the same name:

struct u { int u; double v; } u;
struct v { double u; int v; } * vp;

Structure components are selected with a period for structure variables and with an
arrow for pointers to structures:

u.u = vp —> v;

195___A.7 Pointers to Functions

A pointer to a structure can be declared even if the structure itself has not yet been
introduced. A structure may be declared without objects being declared:

struct w * wp;
struct w { ... };

A structure may contain a structure:
struct a { int x; };
struct b { ... struct a y; ... } b;

The complete sequence of component names is required for access:
b.y.x = 10;

The first component of a structure starts right at the beginning of the structure;
therefore, structures can be lengthened or shortened:

struct a { int x; };
struct c { struct a a; ... } c, * cp = & c;
struct a * ap = & c.a;

assert((void *) ap == (void *) cp);

ANSI-C permits neither implicit conversions of pointers to different structures nor
direct access to the components of an inner structure:

ap = cp; wrong
c.x, cp -> x wrong
cp -> a.x ok, fully specified
((struct a *) cp) -> x ok, explicit conversion

A.7 Pointers to Functions

The declaration of a pointer to a function is constructed from the declaration of a
function by adding one level of indirection, i.e., a * operator, to the function name.
Parentheses are used to control precedence:

void * f (void *); function
void * (* fp) (void *) = f; pointer to function

These pointers are usually initialized with function names that have been declared
earlier. In function calls, function names and pointers are used identically:

int x;

f (& x); using a function name
fp (& x); using a pointer, ANSI-C
(* fp)(& x); using a pointer, classic

A pointer to a function can be a structure component:
struct Class { ...

void * (* ctor) (void * self, va_list * app);
... } * cp, ** cpp;

In a function call, −> has precedence over the function call, but is has no pre-
cedence over dereferencing with *, i.e., the parentheses are necessary in the
second example:

196___Appendix A ANSI-C Programming Hints

cp —> ctor (...);
(* cpp) —> ctor (...);

A.8 Preprocessor

ANSI-C no longer expands #define recursively; therefore, function calls can be hid-
den or simplified by macros with the same name:

#define malloc(type) (type *) malloc(sizeof(type))

int * p = malloc(int);

If a macro is defined with parameters, ANSI-C only recognizes its invocation if the
macro name appears before a left parenthesis; therefore, macro recognition can be
suppressed in a function header by surrounding the function name with an extra set
of parentheses:

#include <stdio.h> defines putchar(ch) as a macro

int (putchar) (int ch) { ... } name is not replaced

Similarly, the definition of a parametrized macro no longer collides with a variable of
the same name:

#define x(p) (((const struct Object *)(p)) -> x)

int x = 10; name is not replaced

A.9 Verification — assert.h

#include <assert.h>

assert(condition);

If condition is false, this macro call terminates the program with an appropriate
error message.

The option −DNDEBUG can be specified to most C compilers to remove all calls
to assert() during compilation. Therefore, condition should not contain side
effects.

A.10 Global Jumps — setjmp.h

#include <setjmp.h>

jmp_buf onError;
int val;

if (val = setjmp(onError))
error handling

else
first call

...

longjmp(onError, val);

197___A.11 Variable Argument Lists — ‘‘stdarg.h’’

These functions are used to effect a global jump from one function back to another
function which was called earlier and is still active. Upon the first call, setjmp()

notes the situation in jmp_buf and returns zero. longjmp() later returns to this
situation; then setjmp() returns whatever value was specified as second argument
of longjmp(); if this value is zero, setjmp() will return one.

There are additional conditions: the context from which setjmp() was called
must still be active; this context cannot be very complicated; variable values are not
set back; jumping back to the point from which longjmp() was called is not possi-
ble; etc. However, recursion levels are handled properly.

A.11 Variable Argument Lists — stdarg.h

#include <stdarg.h>

void fatal (const char * fmt, ...)

{ va_list ap;

int code;

va_start(ap, fmt); last explicit parameter name
code = va_arg(ap, int); next argument value
vprintf(fmt, ap);

va_end(ap); reinitialize
exit(code);

}

If the parameter list in a function prototype and in a function definition ends with
three periods, the function may be called with arbitrarily many arguments. The
number of arguments specified in a particular call is not available; therefore, a
parameter like the format of printf() or a specific trailing argument value must be
used to determine when there are no more arguments.

The macros from stdarg.h are used to process the argument list. va_list is a
type to define a variable for traversing the argument list. The variable is initialized
by calling va_start(); the last explicitly specified parameter name must be used as
an argument for initialization. va_arg() is a macro which produces the next argu-
ment value; it takes the type of this value as an argument. va_end() terminates
processing of the argument list; following this call, the argument list may be
traversed again.

Values of type va_list can be passed to other functions. In particular, there are
versions of the printf functions which accept va_list values in place of the usual list
of values to be converted.

The values in the variable part of the argument list are subject to the classic
conversion rules: integral values are passed as int or long; floating point values are
passed as double. The argument type specified as a second argument of va_arg()

cannot be very complicated — if necessary, typedef can be used.

198___Appendix A ANSI-C Programming Hints

A.12 Data Types — stddef.h

stddef.h contains some data type declarations which may differ between platforms
or compilers. The types specify the results of certain operations:

size_t result of sizeof
ptrdiff_t difference of two pointers

Additionally, there is a macro to compute the distance of a component from the
start of a structure:

struct s { ... int a; ... };

offsetof(struct s, a) returns size_t value

A.13 Memory Management — stdlib.h

void * calloc (size_t nel, size_t len);
void * malloc (size_t size);
void * realloc (void * p, size_t size);
void free (void * p);

These functions are declared in stdlib.h. calloc() returns a zeroed memory region
with nel elements of len bytes each. malloc() returns an uninitialized memory
region with size bytes. realloc() accepts a memory region allocated by calloc() or
malloc() and makes sure that size bytes are available; the area may be lengthened
or shortened in place, or it may be copied to a new, larger region. free() releases a
memory region allocated by the other function; a null pointer may now be used with
impunity.

A.14 Memory Functions — string.h

In addition to the well-known string functions, string.h defines functions for manipu-
lating memory regions with explicit lengths, in particular:

void * memcpy (void * to, const void * from, size_t len);
void * memmove (void * to, const void * from, size_t len);
void * memset (void * area, int value, size_t len);

memcpy() and memmove() both copy a region; source and target may overlap for
memmove() but not for memcpy(). Finally, memset() initializes a region with a
byte value.

199___

Appendix B
The ooc Preprocessor

Hints on awk Programming

awk was originally delivered with the Seventh Edition of the UNIX system. Around
1985 the authors extended the language significantly and described the result in
[AWK88]. Today, there is a POSIX standard emerging and the new language is avail-
able in various implementations, e.g., as nawk on System V; as awk , adapted from
the same sources, with the MKS-Tools for MSDOS; and as gawk from the Free
Software Foundation (GNU). This appendix assumes a basic knowledge of the (new)
awk programming language and provides an overview of the implementation of the
ooc preprocessor. The implementation uses several features of the POSIX standard,
and it has been developed with gawk.

B.1 Architecture

ooc is implemented as a shell script to load and execute an awk program. The shell
script facilitates passing ooc command arguments to the awk program and it per-
mits storing the various modules in a central place.

The awk program collects a database of information about classes and methods
from the class description files, and produces C code from the database for inter-
face and representation files and for method headers, selectors, parameter import,
and initialization in the implementation files. The awk program is based on two
design concepts: modularisation and report generation.

A module contains a number of functions and a BEGIN clause defining the glo-
bal data maintained by the functions. awk does not support information hiding, but
the modules are kept in separate files to simplify maintenance. The ooc command
script can use AWKPATH to locate the files in a central place.

All work is done under control of BEGIN clauses which awk will execute in order
of appearance. Consequently, main.awk must be loaded last, because it processes
the ooc command line.

Pattern clauses are not used. They cannot be used for all files anyway,
because ooc consults for each class description all class description files leading up
to it. The algorithm to read lines, remove comments, and glue continuation lines
together is implemented in a single function get() in io.awk . If pattern clauses were
used, the same algorithm would have to be replicated in pattern clauses.

The database can be inspected if certain debugging modules are loaded as part
of the awk program. These debugging modules use pattern clauses for control, i.e.,
debugging starts once the command line processing of ooc has been completed.
Debugging statements are entered from standard input and they are executed by
the pattern clauses.

Regular output is produced only by interpreting reports. The design goal is that
the awk program contain as little information about the generated code as possible.

200___Appendix B The ‘‘ooc’’ Preprocessor — Hints on ‘‘awk’’ Programming

Code generation should be controlled totally by means of changing the report files.
Since the ooc command script permits substitution of report files, the application
programmer may modify all output, at least theoretically, without having to change
the awk program.

B.2 File Management — io.awk

This module is responsible for accessing all files. It maintains FileStack[] with
name and line number of all open files. openFile(fnm) pushes FILENAME and FNR

onto this stack and uses system() to find out if a file fnm can be read. The com-
plete name is then set into FILENAME and FNR is reset. The function get() reads
from FILENAME and returns a complete input line with no comments and continua-
tions or the special value EOF at end of file. This value starts with % to simplify cer-
tain loops. closeFile() closes FILENAME and pops the stack.

openFile() implements a search path OOCPATH for all files. This way, reports,
class descriptions, and implementations can be stored in a central place for an in-
stallation or a project.

io.awk contains two more functions: error() to output an error message, and
fatal() to issue a message and terminate execution with the exit code 1. error()

also sets the exit code 1 as value of a global variable status. Debugging modules
will eventually return status with an END clause.

If main.awk contained an END clause, awk would wait for input after processing
all BEGIN clauses. Therefore, we set an awk variable debug from the ooc com-
mand script to indicate if we have loaded debug modules with pattern clauses. If
debug is not set, the BEGIN clause in main.awk is terminated by executing exit and
passing status.

B.3 Recognition — parse.awk

parse.awk extracts the database from the class description files. The top level
function load(desc) processes a class description file desc.d. Each such file is only
read once. The internal function classDeclaration() parses a class description;
structDeclarator() takes care of one line in the representation of a class; method-

Declaration() handles a single method declaration; and declarator() is called to pro-
cess each declarator.

All of these functions are quite straightforward. They use sub() and gsub() to
massage input lines for recognition and split() to tokenize them. This is insufficient
for analyzing a general C declarator; therefore, we limit ourselves to simple declara-
tors where the type precedes the name.

The debugging module parse.dbg understands the inputs classes and descrip-

tions to dump information about all classes and description files, or all to do both.
For an input like desc.d it will load a class description file. Other inputs should be
class, description, or method names to dump individual entries in the database.

201___B.4 The Database

B.4 The Database

For a class description file, we save the individual lines so that we can copy them to
the interface or representation file. Among these lines we need to remember
where which classes and metaclasses were defined. The latter information is also
required to generate appropriate initializations. Therefore, we produce three arrays:
Pub[desc, n] contains lines for the interface file, Prot[desc, n] contains lines for the
representation file, and Dcl[desc, n] only records the class and metaclass defini-
tions. For each description name desc the index 0 holds the number of lines and
the lines are stored with indices from 1 on up. Dcl[desc, 0] exists exactly, if we
have read the description for desc. The lines are stored unchanged, we only replace
a complete class definition by a line starting with % and containing the metaclass
name, if any, and then the class name.

For a class, our database contains its meta- and superclass name, the com-
ponents of its representation, and the names of its methods. We use a total of six
arrays: Meta[class] contains the metaclass name, Super[class] contains the
superclass name, Struct[class, n] is a list of the component declarator indices, and
Static[class, n], Dynamic[class, n], and Class[class, n] contain lists of the various
method names. Again, index 0 holds the list length, and the list elements are
stored with indices from 1 on up. Class[class, 0] exists exactly, if we know class
to be a class or metaclass name.

For a method, we need to remember its name, result, parameter list, linkage,
and tag for the respondsTo() method. This information is represented with the fol-
lowing six arrays: Method[method] is the first declarator index; it describes the
method name and result type. The parameter declarators follow with ascending
indices; Nparm[method] is the number of parameters. There has to be at least the
self parameter. Var[method] is true if method permits a variable number of param-
eters, Linkage[method] is one of %, %−, or %+ and records in which linkage sec-
tion the method was declared. Owner[method] is important for statically linked
methods; it contains the class to which the method belongs, i.e., the class of the
method’s self parameter. Finally, Tag[method] records the default tag of the
method for the purposes of respondsTo(), and Tag[method, class] holds the actual
tag of a method for a class.

Class representation components and method names and parameters are
described as indices into a list of declarators. The list is represented by four arrays:
Name[index] is the name of the declarator, Const[index] contains the const prefix
of the declarator, if any. As[index] is true if @ was used in the declarator, i.e., if
the declarator specifies a reference to an object. In this case Type[index] is either
a class name or it is empty if the object is in the owner class of the method. If
As[index] is false, Type[index] is the type part of the declarator.

Finally, if the global variable lines is set, the database contains four more
arrays: Filename[name] and Fnr[name] indicate where a class or a method was
described, SFilename[name] and SFnr[name] indicate where a class component
was declared. This is used in report.awk to implement #line stamps.

202___Appendix B The ‘‘ooc’’ Preprocessor — Hints on ‘‘awk’’ Programming

B.5 Report Generation — report.awk

report.awk contains functions to load reports from files and to generate output from
reports. This is the only module which prints to standard output; therefore, the
tracking of line numbers happens in this module. A simple function puts() is avail-
able to print a string followed by a newline.

Reports are loaded by calling loadReports() with the name of the file to load
reports from. To simplify debugging, reports may not be overwritten.

Reports are generated by calling gen() with the name of a report. A certain
effort is made to avoid emitting leading spaces or more than one empty line in a
row: a global variable newLine is 0 at the left margin or 1 once we have printed
something; an internal function lf() prints a newline and decrements newLine by 1.
Spaces are only emitted if newLine is 1, i.e., if we are inside a line. Newlines are
only emitted if newLine is not -1, i.e., if we have not just emitted an empty line.

Report generation is based on a few simple observations: It is cheap to read
report lines, use split() to take them apart into words separated by single blanks or
tabs, and store them in a big array Token[]. Another array Report[] holds for each
report name the index of its first word in Token[]. The internal function endReport()

checks that braces are balanced in each report and terminates each report by an
extra closing brace.

If a single blank or tab character is used as the split character, and if we emit a
single blank for an empty word, a report closely resembles the generated output:
two blanks represent one blank in the output. Generation is reasonably efficient if
we can quickly identify words to be left unchanged (they do not start with a back
quote) and if we have a fast way to search for replacements (they are stored in an
array Replace[] indexed by the words to be replaced). Elements of Replace[] are
mostly set by functions defined in parse.awk which look at the database:
setClass(), setMethod(), and setDeclarator() set the information described in the
table at the end of the manual page of ooc in section C.1.

Groups are simple to implement. When reading the report lines, after each
word starting with `{, i.e., at the beginning of each group, we store the index of the
word following the matching `}, i.e., the index past the end of the group. This
requires maintaining a stack of open braces, but the stack can be stored in the
same places where we later store the indices of the corresponding closing braces.

During execution, we run the report generator recursively. The contents of a
group are interpreted by a call to genGroup() that returns at the closing brace. For
a loop we can issue as many calls as necessary, and eventually we continue execu-
tion by following the index to the position past the group. At the global level, each
report is terminated by one extra closing brace token. `{if groups are just as easy:

`{if • a b group `}

If the comparison works out, we recursively execute group. In any case we con-
tinue execution past the group. For an `{else we have the following arrangement:

203___B.6 Line Numbering

`{if • a b group `} `{else • group `}

If the comparison works out, we recursively execute its group. Afterwards, we can
follow both index values or we can arrange for an `{else group to always be skipped
when it is encountered directly. If the comparison fails, and if the index after `{if

points to `{else, we position to the `{else and recursively execute its group. After-
wards we follow the index as usual.

The termination token `} can contain arbitrary text following the brace. How-
ever, there are two special cases. The loop over the parameters of a method calls
genGroup() with an extra parameter more set to 1 as long as there are some
method parameters yet to be processed. If more is set, genGroup() emits a
comma and a space for the termination token `},. This simplifies generating parame-
ter lists.

The other special termination token is `}n which results in an extra newline if
anything was output for the group. genGroup() returns a truth value indicating
whether it was terminated by the token `}n or not. Functions such as genLoop-

Methods(), which drive a loop over calls to genGroup(), return the value of gen-

Group() if the loop was entered and false otherwise. Finally, genGroup() will emit
the extra newline exactly if the loop function returns true, i.e., if the loop was
entered and terminated by `}n. This simplifies block arrangements in the generated
code.

The debugging module report.dbg accepts a filename like c.rep and loads the
reports from the file. Given a valid report name, it will symbolically display the
report. Given all or reports, it will show all reports.

B.6 Line Numbering

A preprocessor should output #line stamps so that the C compiler can relate its
error messages to the original source files. Unfortunately, ooc consults several
input files to produce certain output lines, i.e., there appears to be no implicit rela-
tionship between class description files, source files, and an output line. Moreover,
if report files are formatted to be legible they tend to generate many blank lines
which in turn could result in many #line stamps.

We compromise and only generate a #line stamp if a report requests it. The
stamp can be based on a class, method, or structure component name, or it can
record the current input file name and line number. The current input file position is
available as FILENAME and FNR from the io.awk module. The other positions have
been recorded by parse.awk . A function genLineStamp() in report.awk collects the
required information and produces the #line stamp.

We could optimize by counting the output lines — all the information is available
in report.awk . However, experience indicates that this slows ooc down consider-
ably. A few extra #line stamps or newlines will not delay compilation very much.

204___Appendix B The ‘‘ooc’’ Preprocessor — Hints on ‘‘awk’’ Programming

The entire feature is only enabled by setting the global variable lines to a
nonzero value. This is under control of an option −l passed to the ooc command
script.

B.7 The Main Program — main.awk

The BEGIN clause in main.awk should be the last one executed. It processes each
argument in ARGV[] and deletes it from the array. A name like c.rep is interpreted
as a report file to be loaded with loadReports(). A name like Object.dc is an imple-
mentation to be preprocessed. −dc, −h, and −r result in reports by these names to
be interpreted. Any other argument should be a class name for which the descrip-
tion is loaded with load(); the name is set as replacement for `desc. Such an argu-
ment must precede most of the other arguments, because `desc is remembered
for report generation.

load() recursively loads all class descriptions back to the root class. If the awk
variable makefile is set by the ooc command script, the report −M is generated for
each class name specified as an argument. This normally produces lines for a
makefile to indicate how class description files depend on each other. However,
ooc cannot detect that as a result of preprocessing an implementation file class.c
depends on the class description file class.d in addition to the file class.dc . This
dependency must be added to a makefile separately.

main.awk contains two functions. preprocess() takes care of the preprocess-
ing of an implementation file. It generates the report include at the beginning of
the implementation file. It calls methodHeader() for the various ways in which a
method header can be requested, and it generates the reports casts and init for
the preprocessor statements %casts and %init.

methodHeader() generates the report methodHeader and it records the
method definition in the database: Links[class, n] is the list of method names
defined for a class and Tags[method, class] is the actual tag defined for a method
in a class. These lists are used in the initialization report.

B.8 Report Files

Reports are stored in several files to simplify maintenance. h.rep and r.rep contain
the reports for the interface and representation files. c.rep contains the reports for
preprocessing an implementation file. There are two versions of each of these
files, one for the root class, and one for all other classes. m.rep contains the report
for the makefile option −M and dc.rep contains the report for −dc. Three other files,
etc.rep, header.rep, and va.rep , contain reports that are called from more than one
other file.

Dividing the reports among several files according to command line options has
the advantage that we can check the command line in the ooc command script and
only load those files which are really needed. Checking is a lot cheaper than loading
and searching through many unused reports.

205___B.9 The ‘‘ooc’’ Command

With `{if groups and report calls through `% we can produce more or less con-
voluted solutions. The basic idea was to make things easier to read and more effi-
cient by duplicating some decisions in the reports called by the selector report and
by separating the reports for the root class and the other classes. As ooc evolves
through the chapters, we modify some reports anyway.

B.9 The ooc Command

ooc can load an arbitrary number of reports and descriptions, output several inter-
face and representation files, and suggest or preprocess various implementation
files, all in one run. This is a consequence of the modular implementation. How-
ever, ooc is a genuine filter, i.e., it will read files as directed by the command line,
but it will only write to standard output. If several outputs are produced in one run,
they would have to be split and written to different files by a postprocessor based
on awk or csplit. Here are some typical invocations of ooc:

$ ooc —R Object —h > Object.h # root class
$ ooc —R Object —r > Object.r
$ ooc —R Object Object.dc > Object.c

$ ooc Point —h > Point.h # other class
$ ooc —M Point Circle >> makefile # dependencies
$ echo ’Point.c: Point.d’ >> makefile
$ ooc Circle —dc > Circle.dc # start an implementation
$ ooc Circle —dc | ooc Circle — > Circle.c # fake...

If ooc is called without arguments, it produces the following usage description:
$ ooc
usage: ooc [option ...] [report ...] description target ...

options: —d arrange for debugging
—l make #line stamps
—Dnm=val define val for `nm (one word)
—M make dependency for each description
—R process root description
—7 —8 ... versions for book chapters

report: report.rep load alternative report file
description: class load class description file
targets: —dc make thunks for last ’class’

—h make interface for last ’class’
—r make representation for last ’class’
— preprocess stdin for last ’class’
source.dc preprocess source for last ’class’

It should be noted that if any report file is loaded, the standard reports are not
loaded. The way to replace only a single standard report file is to provide a file by
the same name earlier on OOCPATH.

The ooc command script needs to be reviewed during installation. It contains
AWKPATH, the path for the awk processor to locate the modules, and OOCPATH to
locate the reports. This last variable is set to look in a standard place as a last
resort; if ooc is called with OOCPATH already defined, this value is prefixed to the
standard place.

206___Appendix B The ‘‘ooc’’ Preprocessor — Hints on ‘‘awk’’ Programming

To speed things up, the command script checks the entire command line and
loads only the necessary report files. If ooc is not used correctly, the script emits
the usage description shown above. Otherwise awk is executed by the same pro-
cess.

207___

Appendix C
Manual

This appendix contains UNIX manual pages describing the final version of ooc and
some classes developed in this book.

C.1 Commands

munch — produce class list

nm −p object... archive... | munch

munch reads a Berkeley-style nm(1) listing from standard input and produces as
standard output a C source file defining a null-terminated array classes[] with
pointers to the class functions found in each object and archive. The array is sorted
by class function names.

A class function is any name that appears with type T and, preceded with an under-
score, with type b, d, or s.

This is a hack to simplify retrieval programs. The compatible effect of option −p in
Berkeley and System V nm is quite a surprise.

Because HP/UX nm does not output static symbols, munch is not very useful on this
system.

ooc — preprocessor for object-oriented coding in ANSI C

ooc [option ...] [report ...] description target ...

ooc is an awk program which reads class descriptions and performs the routine
coding tasks necessary to do object-oriented coding in ANSI C. Code generated by
ooc is controlled by reports which may be changed. This manual page describes
the effects of the standard reports.

description is a class name. ooc loads a class description file with the name
description.d and recursively class description files for all superclasses back to the
root class. If −h or −r is specified as a target, a C header file for the public interface
or the private representation of description is written to standard output. If
source.dc or − is specified as a target, #include statements for the description
header files are written to standard output and source.dc or standard input is read,
preprocessed, and copied to standard output. If −dc is specified as a target, a
source skeleton for description is written to standard output, which contains all pos-
sible methods.

The output is produced by report generation from standard report files. If file.rep is
specified as a report, the standard files are not loaded.

208___Appendix C Manual

There are some global options to control ooc:

−Dname[=value]
defines value or an empty string as replacement for `name. The name
should be a single word. ooc predefines GNUC with value 0.

−d

arranges for debugging to follow normal processing. Debugging com-
mands are read from standard input: class.d loads a class description file;
report.rep loads a report file; a description, report, class, or method name
produces a dump of the appropriate information; and all, classes, descrip-

tions, or reports dump all information in the respective category.

−l

produces #line stamps as directed by the reports.

−M

produces a makefile dependency line between each description and its
superclass description files.

−R

must be specified if the root class is processed. Other standard reports are
loaded in this case.

Lexical Conventions

All input lines are processed as follows: first, a comment is removed; next, lines
are glued together as long as they end with a backslash; finally, trailing white space
is removed.

A comment extends from // to the end of a line. It is removed together with
preceding white space before glueing takes place.

In glueing, the backslash marks the contact point and is removed. All white space
around the contact point is replaced with a single space.

Identifiers significant to ooc follow the conventions of C, except that they may not
use underscore characters. The underscore is used to avoid clashes between
ooc’s and the user’s code.

Declarators significant to ooc are simplified relative to C. They may start with const

and the type information must precede the name. The type information may use *

but no parentheses. In general, an arbitrary declarator can be adapted for ooc by
introducing a type name with typedef.

A line starting with %% acts as end of file.

Class Description File

The class description file has the following format:
header
% meta class {

components

209___C.1 Commands

%

methods with static linkage
%−

methods with dynamic linkage
%+

class methods
%}

...

header is arbitrary information which is copied to standard output if the interface file
is produced. Information following %prot is copied to standard output if the
representation file is produced.

components are C structure component declarations with one declarator per line.
They are copied into the struct generated in the representation file for the class.
They also determine the order of the construction parameters for the root meta-
class.

The first set of methods has static linkage, i.e., they are functions with at least one
object as a parameter; the second set has dynamic linkage and has an object as a
parameter for which the method is selected; the third set are class methods, i.e.,
they have a class as a parameter for which the method is selected. The selection
object is always called self. The method declarations define C function headers,
selectors, and information for the metaclass constructor.

The class header line % meta class { has one of three forms. The first form is used
to introduce the root class only:

% meta class {

class is the root class, indicated by the fact that it has no superclass. The
superclass is then defined to be the root class itself. meta should be intro-
duced later as the root metaclass, indicated by the fact that it has itself as
metaclass.

% meta class: super {

class is a new class with meta as its metaclass and super as its superclass.
This would also be used to introduce the root metaclass, which has itself as
metaclass and the root class as superclass. If super is undefined, ooc will
recursively (but only once) load the class description file super.d and then
super and meta must have been defined so that class can be defined. If
this form of the class header is used, only methods with static linkage can
be introduced.

% meta: supermeta class: super {

This additionally defines meta as a new metaclass with supermeta as its
superclass. If super is undefined, ooc will recursively (but only once) load
the class description file super.d and then super and supermeta must have
been defined so that meta and class can be defined.

A method declaration line has the following form, where braces indicate zero or
more occurrences and brackets indicate an optional item:

210___Appendix C Manual

[tag :] declarator (declarator { , declarator } [, ...]);

The optional tag is an identifier involved in locating a method with
respondsTo(). The first declarator introduces the method name and result
type, the remaining declarators introduce parameter names and types.
Exactly one parameter name must be self to indicate the receiver of the
method call.

A declarator is a simplified C declarator as described above, but there are two spe-
cial cases:

_name
introduces name as the declarator name. The type is a pointer to an
instance of the current class or to the class for which a dynamically linked
method is overwritten. Such a pointer will be dereferenced by %casts as
name within a method. Therefore, self must be introduced as _self, where
self is the dereferenced object or class for class methods and _self is the
raw pointer.

class @ name
introduces name as a pointer to an instance of class. Such a pointer will not
be dereferenced but it will be checked by %casts.

The result type of a method can employ class @. In this case, the result type is
generated as a pointer to a struct class which is useful when implementing
methods, and which cannot be used other than for assignments to void * in appli-
cation code. The result type should be void * for constructors and similar methods
to emphasize the generic aspects of construction.

Preprocessing

Subject to the lexical conventions described above, an implementation file
source.dc is copied to standard output. Lines starting with % are preprocessed as
follows:

% class method {

This is replaced by a C function header for method; the header is declared
static with the name class_method, unless method has static linkage. In
the latter case, class is optional. ooc checks in all cases that the method
can be specified for class. Function names are remembered as necessary
for initialization of the description of class and the corresponding metaclass
if any. There can be an optional tag preceding class unless method has
static linkage.

%casts

This is replaced by definitions of local variables to securely dereference
parameter pointers to objects in the current class. For statically linked
methods this is followed by checks to verify the parameters pointing to
objects of other classes. %casts should be used where local variables can
be defined; for statically linked methods it must be the last definition. Note
that null pointers flunk the checks and terminate the calling program.

211___C.1 Commands

%init

This should be near the end of the implementation file. If the description
introduced a new metaclass, a constructor for the metaclass, selectors for
the class, and initializations for the metaclass are generated. In either case,
an initialization for the class is generated.

If a method m does not have static linkage, there are two selectors: m with the
same parameters as the method selecting the method defined for self, and
super_m with an explicit class description as an additional first parameter. The
second selector is used to pass a method call to the superclass of the class where
the method is defined.

If a dynamically linked or class method has a variable argument list, the selector
passes va_list * app to the actual method.

If a selector recognizes that it cannot be applied to its object, it calls forward and
passes its object, a pointer to a result area, or a null pointer, its own address, its
name as a string, and its entire argument list. forward should be a dynamically
linked method in the root class; it can be used to forward a message from one
object to another.

Tags

respondsTo() is a method in the root class which takes an object and a tag, i.e., a C
string containing an identifier, and returns either a null pointer or a selector which
will accept the object and other parameters and call the method corresponding to
the tag.

The tag under which a class or dynamically linked method can be found is defined
as follows. The default is either the method name or tag in the method header in
the class description file:

[tag :] declarator (declarator { , declarator } [, ...]);

The method header in the implementation may overwrite the tag:
% mtag: class method {

The effective tag is mtag if specified, or tag if not. If mtag or tag is empty but the
colon is specified, respondsTo() cannot find the method.

Report File

ooc uses report files containing all code fragments which ooc will generate. Names
such as app for an argument list pointer can be changed in the report file. Only self

is built into ooc itself.

A report file contains one or more reports. The usual lexical conventions apply.
Each report is preceded by a line starting with % and containing the report name
which may be enclosed by white space. The report name is arbitrary text but it
must be unique.

A report consists of lines of words separated by single blanks or tabs, called
spaces. An empty word results between any two adjacent spaces or if a space
starts or ends a line.

212___Appendix C Manual

An empty word, not at the beginning of an output line, is printed as a blank. In par-
ticular, this means that two successive spaces in a report represent a single blank
to be printed. Any word not starting with a back quote ` is printed as is.

A word starting with `% causes a report to be printed. The report name is the
remainder of the word.

`#line followed by a word causes a line stamp to be printed if option −l is specified;
the phrase is ignored otherwise. If the word is a class, method, or class com-
ponent name, the line stamp refers to its position in a class description file. Other-
wise, and in particular for empty words, the line stamp refers to the current input
file position.

A word starting with `{ starts a group. The group is terminated with a word starting
with `}. All other words starting with a back quote ` are replaced during printing.
Some replacements are globally defined, others are set up by certain groups. A
table of replacements follows at the end of this section.

Groups are either loops over parts of the database collected by ooc or they are con-
ditionals based on a comparison. Words inside a group are printed under control of
the loop or the comparison. Afterwards, printing continues with the word following
the group. Groups can be nested, but that may not make sense for some parts of
the database. Here is a table of words starting a loop:

`{% static methods for the current `class

`{%− dynamic methods for the current `class

`{%+ class methods for the current `class

`{() parameters for the current `method

`{dcl class headers in the `desc description file
`{pub public lines in the `desc description file
`{prot protected lines in the `desc description file
`{links class dynamic and class methods defined for class
`{struct class components for class
`{super `desc and all its superclasses back to `root

A loop is terminated with a word starting with `}. If the terminating word is `}, in the
loop over parameters, and if the loop will continue for more parameters, a comma
followed by a blank is printed for this word. If the terminating word is `}n and if the
group has produced any output, a newline is printed for this word. Otherwise,
nothing is printed for termination.

A conditional group starts with `{if or `{ifnot followed by two words. The words are
replaced if necessary and compared. If they are equal, the group starting with `{if is
executed; if they are not equal, the group starting with `{ifnot is executed. If either
group is not executed and if it is followed by a group starting with `{else, this group
is executed. Otherwise the `{else group is skipped.

In general it is best if the `} terminating the `{if group immediately precedes `{else

on the same line of the report.

Here is a table of replaced words together with the events that set up the replace-
ments:

213___C.1 Commands

set up globally
` no text (empty string)
`` ` (back quote)
`t tab
`n newline (limited to one blank line)

set up once class descriptions are loaded
`desc last description from command line
`root root class’ name
`metaroot root’s metaclass name

set up for a class % %− %+ `{dcl `{prot `{pub `{super

`class class’ name
`super class’ superclass name
`meta class’ metaclass name
`supermeta metaclass’ superclass name

set up for a method `{% `{%− `{%+ `{links class
`method method’s name
`result method’s result type
`linkage method’s linkage: %, %−, or %+

`tag method’s tag
`,... , ... if variable arguments are declared,

empty if not
`_last last parameter’s name if variable arguments,

undefined if not

set up for a declarator `{() `{struct class
`name name in declarator
`const const followed by a blank, if so declared
`type void * for objects, declared type otherwise
`_ _ if used in declaration, empty otherwise
`cast object’s class name, empty otherwise

set up for lines from the description file `{dcl `{prot `{pub

`class set up for a class description, empty otherwise
`line line’s text if not class description, undefined otherwise
`newmeta 1 if new metaclass is defined, 0 if not

A description on the command line of ooc sets up for a class. Requesting a method
header in a source file sets up for a class and a method. The loops `{dcl, `{prot,
and `{pub set up for lines from a class description file. The loops `{%, `{%−, `{%+,
and `{links class set up for a method. The loop `{() sets up for a parameter declara-
tor. The loop `{struct class sets up for the declarator of a component of a class.
The loop `{super runs from description through all its superclasses.

Environment

OOCPATH is a colon-separated list of paths. If a file name does not contain path
delimiters, ooc looks for the file (class descriptions, sources, and report files) by

214___Appendix C Manual

prefixing each entry of OOCPATH to the required file name. By default, OOCPATH

consists of the working directory and a standard place.

FILES class.d description for class
class.dc implementation for class
report.rep report file
AWKPATH/ *.awk modules
AWKPATH/ *.dbg debugger modules
OOCPATH/ c.rep implementation file reports
OOCPATH/ dc.rep implementation thunks report
OOCPATH/ etc.rep common reports
OOCPATH/ h.rep interface file report
OOCPATH/ header.rep common reports
OOCPATH/ m.rep makefile dependency report
OOCPATH/ r.rep representation file reports
OOCPATH/ va.rep common reports
OOCPATH/ [chr]-R.rep root class versions

The C preprocessor is applied to the output of ooc, not to the input, i.e., conditional
compilation should not be applied to ooc controls.

C.2 Functions

retrieve — get object from file

void * retrieve (FILE * fp)

retrieve() returns an object read in from the input stream represented by fp. At end
of file or in case of an error, retrieve() returns a null pointer.

retrieve() requires a sorted table of class function pointers that can be produced
with munch(1). Once the class description has been located, retrieve() applies the
method geto to an area obtained with allocate.

SEE ALSO munch(1), Object(3)

C.3 Root Classes

intro — introduction to the root classes

Object Class
Exception

Object(3) is the root class; Class(3) is the root metaclass. Most of the methods
defined for Object are used in the standard reports for ooc(1), i.e., they cannot be
changed without changing the reports.

Exception(3) manages a stack of exception handlers. This class is not mandatory
for working with ooc.

215___C.3 Root Classes

Class Class: Object - root metaclass

Object
Class

new(Class(), name, superclass, size, selector, tag, method, ... , 0);

Object @ allocate (const self)
const Class @ super (const self)
const char * nameOf (const self)

A metaclass object describes a class, i.e., it contains the class name, a pointer to
the class’ super class description, the size of an object in the class, and information
about all dynamically linked methods which can be applied to objects of the class.
This information consists of a pointer to the selector function, a tag string for the
respondsTo method (which may be empty), and a pointer to the actual method
function for objects of the class.

A metaclass is a collection of metaclass objects which all contain the same variety
of method informations, where, of course, each metaclass object may point to dif-
ferent methods. A metaclass description describes a metaclass.

Class is the root metaclass. There is a metaclass object Class which describes the
metaclass Class. Every other metaclass X is described by some other metaclass
object X which is a member of Class.

The metaclass Class contains a metaclass object Object which describes the root
class Object. A new class Y, which has the same dynamically bound methods as
the class Object, is described by a metaclass object Y, which is a member of
Class.

A new class Z, which has more dynamically bound methods than Object, requires a
metaclass object Z, which is a member of a new metaclass M. This new metaclass
has a metaclass description M, which is a member of Class.

The Class constructor is used to build new class description objects like Y and
metaclass description objects like M. The M constructor is used to build new class
description objects like Z. The Y constructor builds objects which are members of
class Y, and the Z constructor builds objects in class Z.

allocate reserves memory for an object of its argument class and installs this class
as the class description pointer. Unless overwritten, new calls allocate and applies
ctor to the result. retrieve calls allocate and applies geto to the result.

super returns the superclass from a class description.

nameOf returns the name from a class description.

The Class constructor ctor handles method inheritance. Only information about
overwritten methods needs to be passed to new. The information consists of the
address of the selector to locate the method, a tag string which may be empty, and
the address of the new method. The method information tuples may appear in any
order of methods; zero in place of a selector terminates the list.

delete, dtor, and geto are inoperative for class descriptions.

216___Appendix C Manual

Class descriptions are only accessed by means of functions which initialize the
description during the first call.

SEE ALSO ooc(1), retrieve(2)

Class Exception: Object — manage a stack of exception handlers

Object
Exception

new(Exception());

int catch (self)
void cause (int number)

Exception is a class for managing a stack of exception handlers. After it is armed
with catch, the newest Exception object can receive a nonzero exception number
sent with cause().

ctor pushes the new Exception object onto the global exception stack, dtor

removes it. These calls must be balanced.

catch arms its object for receiving an exception number. Once the number is sent,
catch will return it. This function is implemented as a macro with setjmp(3) and is
subject to the same restrictions; in particular, the function containing the call to
catch must still be active when the exception number is sent.

Other methods should generally not be applied to an Exception object.

SEE ALSO setjmp(3)

Class Object — root class

Object

Class

new(Object());

typedef void (* Method) ();

const void * classOf (const self)
size_t sizeOf (const self)
int isA (const self, const Class @ class)

int isOf (const self, const Class @ class)

void * cast (const Class @ class, const self)
Method respondsTo (const self, const char * tag)

%−
void * ctor (self, va_list * app)

void delete (self)
void * dtor (self)
int puto (const self, FILE * fp)

void * geto (self, FILE * fp)

void forward (self, void * result, Method selector, const char * name, ...)

%+

Object @ new (const self, ...)

217___C.3 Root Classes

Object is the root class; all classes and metaclasses have Object as their ultimate
superclass. Metaclasses have Class as their penultimate superclass.

classOf returns the class description of an object; sizeOf returns the size in bytes.

isA returns true if an object is described by a specific class description, i.e., if it
belongs to that class. isA is false for null pointers. isOf returns true, if an object
belongs to a specific class or has it as a superclass. isOf is false for null pointers
and true for any object and the class Object.

cast checks if its second argument is described, directly or ultimately, by the first.
If not, and in particular for null pointers, the calling program is terminated. cast nor-
mally returns its second argument unchanged; for efficiency, cast could be replaced
by a macro.

respondsTo returns zero or a method selector corresponding to a tag for some
object. If the result is not null, the object with other arguments as appropriate can
be passed to this selector.

ctor is the constructor. It receives the additional arguments from new. It should
first call super_ctor, which may use up part of the argument list, and then handle
its own initialization from the rest of the argument list.

Unless overwritten, delete destroys an object by calling dtor and sending the result
to free(3). Null pointers may not be passed to delete.

dtor is responsible for reclaiming resources acquired by the object. It will normally
call super_dtor and let it determine its result. If a null pointer is returned, delete

will effectively not reclaim the space for the object.

puto writes an ASCII representation of an object to a stream. It will normally call
puto for the superclass so that the output starts with the class name. The
representation must be designed so that geto can retrieve all but the class name
from the stream and place the information into the area passed as first argument.
geto works just like ctor and will normally let the superclass geto handle the part
written by the superclass puto.

forward is called by a selector if it cannot be applied to an object. The method can
be overwritten to forward messages.

Unless overwritten, new calls allocate and passes the result to ctor together with
its remaining arguments.

SEE ALSO ooc(1), retrieve(2), Class(3)

218___Appendix C Manual

C.4 GUI Calculator Classes

intro — introduction to the calculator application

Objct Class
Event
Ic IcClass

Button
Calc
Crt

CButton
CLineOut

LineOut
Mux

List ListClass
Xt

XawBox
XawCommand

XButton
XawForm
XawLabel

XLineOut
XtApplicationShell

Object(3) is the root class. Object needs to be renamed as Objct because the ori-
ginal name is used by X11.

Event(4) is a class to represent input data such as key presses or mouse clicks.

Ic(4) is the base class to represent objects that can receive, process, and send
events. Button converts incoming events to events with definite text values. Calc

processes texts and sends a result on. LineOut displays an incoming text. Mux

tries to send an incoming event to one of several objects.

Crt(4) is a class to work with the curses terminal screen function package. It sends
position events for a cursor and text events for other key presses. CButton imple-
ments Button on a curses screen. CLineOut implements LineOut.

List manages a list of objects and is taken from chapter 7.

Xt(4) is a class to work with the X Toolkit. The subclasses wrap toolkit and Athena
widgets. XButton implements a Button with a Command widget. XLineOut

implements a LineOut with a Label widget.

SEE ALSO curses(3), X(1)

219___C.4 GUI Calculator Classes

IcClass Crt: Ic — input/output objects for curses

Objct
Ic

Crt

CButton
CLineout

new(Crt());

new(CButton(), "text", y, x);

new(CLineOut(), y, x, len);

void makeWindow (self, int rows, int cols, int x, int y)

void addStr (self, int y, int x, const char * s)

void crtBox (self)

A Crt object wraps a curses(3) window. curses is initialized when the first Crt

object is created.

Crt_gate() is the event loop: it monitors the keyboard; it implements a vi-style cur-
sor move for the keys hjkl, and possibly, for the arrow keys; if return is pressed, it
sends an Event object with kind 1 and an array with column and row position; if
control-D is pressed, gate returns reject; any other key is sent on as an Event

object with a string containing the key character.

A CLineOut object implements a LineOut object on a curses screen. Incoming
strings should not exceed len bytes.

A CButton object implements a Button object on a curses screen. If it receives a
matching text, it sends it. Additionally, if it receives a position event, e.g., from a
Crt object, and if the coordinates are within its window, it sends its text on.

SEE ALSO Event(4)

Class Event: Objct — input item

Objct
Event

new(Event(), kind, data);

int kind (self)
void * data (self)

An Event object represents an input item such as a piece of text, a mouse click,
etc.

kind is zero if data is a static string. kind is not zero if data is a pointer. In particu-
lar, a mouse click can be represented with kind 1 and data pointing to an array with
two integer coordinates.

SEE ALSO Ic(4)

220___Appendix C Manual

IcClass: Class Ic: Objct — basic input/output/transput objects

Objct
Ic

Button
Calc
LineOut
Mux

new(Ic());

new(Button(), "text");

new(Calc());

new(LineOut());

new(Mux());

%−
void wire (Objct @ to, self)
enum { reject, accept } gate (self, const void * item)

An Ic object has an output pin and an input action. wire() connects the output to
some other object. If an Ic object is sent a data item with gate(), it will perform
some action and send some result to its output pin; some Ic objects only create
output and others only consume input. gate() returns accept if the receiver
accepts the data.

Ic is a base class. Subclasses overwrite gate() to implement their own processing.
Ic_gate() takes item and uses gate() to send it on to the output pin, i.e., a subclass
will use super_gate() to send something to its output pin.

A Button object contains a text which is sent out in response to certain inputs. It
expects an Event object as input. If the Event contains a matching text or a null
pointer or other data, the Button accepts the input and sends its own text on. A
non-matching text is rejected.

Button is designed as a base class. Subclasses should match mouse positions,
etc., and use super_gate() to send out the appropriate text.

A Calc object receives a string, computes a result, and sends the current result on
as a string. The first character of the input string is processed: digits are assem-
bled into a non-negative decimal number; +, −, *, and / perform arithmetic opera-
tions on two operands; = completes an arithmetic operation; C resets the calculator;
and Q quits the application. The calculator is a simple, precedence-free, finite state
machine: the first set of digits defines a first operand; the first operator is saved;
more digits define another operand; if another operator is received, the saved
operator is executed and the new operator is saved. Invalid inputs are accepted
and silently ignored.

A LineOut object accepts a string and displays it.

A Mux object can be wired to a list of outputs. It sends its input to each of these
outputs until one of them accepts the input. The list is built and searched in order
of the wire() calls.

SEE ALSO Crt(4), Event(4), Xt(4)

221___C.4 GUI Calculator Classes

Class Xt: Object — input/output objects for X11

Objct
Xt

XawBox
XawCommand

XButton
XawForm
XawLabel

XLineOut
XtApplicationShell

new(Xt());

new(XtApplicationShell(), & argc, argv);

new(XawBox(), parent, "name");

new(XawCommand(), parent, "name");

new(XawForm(), parent, "name");

new(XawLabel(), parent, "name");

new(XButton(), parent, "name", "label");

new(XLineOut(), parent, "name", "label");

void * makeWidget (self, WidgetClass wc, va_list * app)

void addAllAccelerators (self)
void setLabel (self, const char * label)
void addCallback (self, XtCallbackProc fun, XtPointer data)

void mainLoop (self)

An Xt object wraps a widget from the X toolkit. makeWidget() is used to create
and install the widget in the hierarchy; it takes a parent Xt object and a widget
name from the argument list pointer to which app points. addAllAccelerators() is
used to install the accelerators below the Xt object. setLabel() sets the label

resource. addCallback() adds a callback function to the callback list.

An XtApplicationShell object wraps an application shell widget from the X toolkit.
When it is created, the shell widget is also created and X toolkit options are
removed from the main program argument list passed to new(). The application
main loop is mainLoop().

XawBox, XawCommand, XawForm, and XawLabel objects wrap the correspond-
ing Athena widgets. When they are created, the widgets are also created. setLa-

bel() is accepted by XawCommand and XawLabel. A callback function can be
registered with an XawCommand object by addCallback().

An XButton object is a Button object implemented with an XawCommand object.
It forwards wire() to its internal Button object and it sets a callback to gate() to this
button so that it sends its text on if notify() is executed, i.e., if the button is clicked.
Accelerators can be used to arrange for other calls to notify().

222___Appendix C Manual

An XLineOut object is a LineOut object implemented with an XawLabel object. It
forwards gate() to itself to receive and display a string. If permitted by the parent
widget, its widget will change its size according to the string.

SEE ALSO Event(4)

223___

Bibliography

[ANSI] American National Standard for Information Systems — Programming
Language C X3.159-1989.

[AWK88] A. V. Aho, B. W. Kernighan und P. J. Weinberger The awk Programming
Language Addison-Wesley 1988, ISBN 0-201-07981-X.

[Bud91] T. Budd An Introduction to Object-Oriented Programming Prentice
Hall 1991, ISBN 0-201-54709-0.

[Ker82] B. W. Kernighan ‘‘pic — A Language for Typesetting Graphics’’ Software
— Practice and Experience January 1982.

[K&P84] B. W. Kernighan and R. Pike The UNIX Programming Environment Pren-
tice Hall 1984, ISBN 0-13-937681-X.

[K&R78] B. W. Kernighan and D. M. Ritchie The C Programming Language Pren-
tice Hall 1978, ISBN 0-13-110163-3.

[K&R88] B. W. Kernighan and D. M. Ritchie The C Programming Language Second
Edition, Prentice Hall 1988, ISBN 0-13-110362-8.

[Sch87] A. T. Schreiner UNIX Sprechstunde Hanser 1987, ISBN 3-446-14894-9.

[Sch90] A. T. Schreiner Using C with curses, lex, and yacc Prentice Hall 1990,
ISBN 0-13-932864-5.

