
Table of Contents
Dive Into Python...1

Chapter 1. Installing Python...2
1.1. Which Python is right for you?..2
1.2. Python on Windows...2
1.3. Python on Mac OS X...3
1.4. Python on Mac OS 9..5
1.5. Python on RedHat Linux...5
1.6. Python on Debian GNU/Linux..6
1.7. Python Installation from Source..6
1.8. The Interactive Shell..7
1.9. Summary..8

Chapter 2. Your First Python Program...9
2.1. Diving in..9
2.2. Declaring Functions...9
2.3. Documenting Functions...10
2.4. Everything Is an Object...11
2.5. Indenting Code...13
2.6. Testing Modules...14

Chapter 3. Native Datatypes...15
3.1. Introducing Dictionaries..15
3.2. Introducing Lists..17
3.3. Introducing Tuples...22
3.4. Declaring variables..23
3.5. Formatting Strings...25
3.6. Mapping Lists..26
3.7. Joining Lists and Splitting Strings...28
3.8. Summary..29

Chapter 4. The Power Of Introspection...31
4.1. Diving In..31
4.2. Using Optional and Named Arguments...32
4.3. Usingtype, str, dir, and Other Built−In Functions..33
4.4. Getting Object References With getattr...36
4.5. Filtering Lists...38
4.6. The Peculiar Nature of and andor...39
4.7. Usinglambda Functions..41
4.8. Putting It All Together...43
4.9. Summary..45

Chapter 5. Objects and Object−Orientation...47
5.1. Diving In..47
5.2. Importing Modules Usingfrom module import...49
5.3. Defining Classes..50
5.4. Instantiating Classes...53
5.5. ExploringUserDict: A Wrapper Class..54
5.6. Special Class Methods...56
5.7. Advanced Special Class Methods..59

Dive Into Python i

Table of Contents
Chapter 5. Objects and Object−Orientation

5.8. Introducing Class Attributes..60
5.9. Private Functions...62
5.10. Summary..63

Chapter 6. Exceptions and File Handling..64
6.1. Handling Exceptions..64
6.2. Working with File Objects...66
6.3. Iterating with for Loops...70
6.4. Usingsys.modules...72
6.5. Working with Directories..74
6.6. Putting It All Together...77
6.7. Summary..78

Chapter 7. Regular Expressions...81
7.1. Diving In..81
7.2. Case Study: Street Addresses...81
7.3. Case Study: Roman Numerals...83
7.4. Using the{n,m} Syntax...85
7.5. Verbose Regular Expressions..88
7.6. Case study: Parsing Phone Numbers...89
7.7. Summary..93

Chapter 8. HTML Processing...94
8.1. Diving in..94
8.2. Introducingsgmllib.py...98
8.3. Extracting data from HTML documents..100
8.4. IntroducingBaseHTMLProcessor.py..102
8.5. locals andglobals...104
8.6. Dictionary−based string formatting...107
8.7. Quoting attribute values...108
8.8. Introducingdialect.py..109
8.9. Putting it all together..111
8.10. Summary..113

Chapter 9. XML Processing..115
9.1. Diving in..115
9.2. Packages...121
9.3. Parsing XML..123
9.4. Unicode..125
9.5. Searching for elements...129
9.6. Accessing element attributes..131
9.7. Segue..132

Chapter 10. Scripts and Streams..133
10.1. Abstracting input sources...133
10.2. Standard input, output, and error...136
10.3. Caching node lookups..140
10.4. Finding direct children of a node...141
10.5. Creating separate handlers by node type...141

Dive Into Python ii

Table of Contents
Chapter 10. Scripts and Streams

10.6. Handling command−line arguments..143
10.7. Putting it all together..146
10.8. Summary..148

Chapter 11. HTTP Web Services..149
11.1. Diving in..149
11.2. How not to fetch data over HTTP..151
11.3. Features of HTTP...152
11.4. Debugging HTTP web services...153
11.5. Setting theUser−Agent..155
11.6. HandlingLast−Modified andETag...156
11.7. Handling redirects..159
11.8. Handling compressed data...163
11.9. Putting it all together..165
11.10. Summary..167

Chapter 12. SOAP Web Services..168
12.1. Diving In..168
12.2. Installing the SOAP Libraries..169
12.3. First Steps with SOAP...171
12.4. Debugging SOAP Web Services...172
12.5. Introducing WSDL...173
12.6. Introspecting SOAP Web Services with WSDL..174
12.7. Searching Google...176
12.8. Troubleshooting SOAP Web Services...179
12.9. Summary..182

Chapter 13. Unit Testing...183
13.1. Introduction to Roman numerals...183
13.2. Diving in..184
13.3. Introducingromantest.py...184
13.4. Testing for success...187
13.5. Testing for failure..189
13.6. Testing for sanity...190

Chapter 14. Test−First Programming..193
14.1. roman.py, stage 1...193
14.2. roman.py, stage 2...196
14.3. roman.py, stage 3...199
14.4. roman.py, stage 4...202
14.5. roman.py, stage 5...205

Chapter 15. Refactoring..208
15.1. Handling bugs..208
15.2. Handling changing requirements...210
15.3. Refactoring...216
15.4. Postscript..219
15.5. Summary..221

Dive Into Python iii

Table of Contents
Chapter 16. Functional Programming...223

16.1. Diving in..223
16.2. Finding the path...224
16.3. Filtering lists revisited..226
16.4. Mapping lists revisited...228
16.5. Data−centric programming..229
16.6. Dynamically importing modules..230
16.7. Putting it all together..231
16.8. Summary..234

Chapter 17. Dynamic functions..235
17.1. Diving in..235
17.2. plural.py, stage 1..235
17.3. plural.py, stage 2..237
17.4. plural.py, stage 3..239
17.5. plural.py, stage 4..240
17.6. plural.py, stage 5..242
17.7. plural.py, stage 6..243
17.8. Summary..246

Chapter 18. Performance Tuning...247
18.1. Diving in..247
18.2. Using thetimeit Module..249
18.3. Optimizing Regular Expressions...250
18.4. Optimizing Dictionary Lookups..253
18.5. Optimizing List Operations..256
18.6. Optimizing String Manipulation..258
18.7. Summary..260

Appendix A. Further reading...261

Appendix B. A 5−minute review...268

Appendix C. Tips and tricks...282

Appendix D. List of examples...289

Appendix E. Revision history..302

Appendix F. About the book...314

Appendix G. GNU Free Documentation License..315
G.0. Preamble..315
G.1. Applicability and definitions...315
G.2. Verbatim copying..316
G.3. Copying in quantity...316
G.4. Modifications..317
G.5. Combining documents..318
G.6. Collections of documents..318
G.7. Aggregation with independent works...318

Dive Into Python iv

Table of Contents
Appendix G. GNU Free Documentation License

G.8. Translation..318
G.9. Termination...319
G.10. Future revisions of this license..319
G.11. How to use this License for your documents..319

Appendix H. Python license..320
H.A. History of the software...320
H.B. Terms and conditions for accessing or otherwise using Python..320

Dive Into Python v

Dive Into Python
20 May 2004

Copyright © 2000, 2001, 2002, 2003, 2004 Mark Pilgrim (mailto:mark@diveintopython.org)

This book lives at http://diveintopython.org/. If you're reading it somewhere else, you may not have the latest version.

Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front−Cover Texts, and no Back−Cover Texts. A copy of the license is included in
Appendix G, GNU Free Documentation License.

The example programs in this book are free software; you can redistribute and/or modify them under the terms of the
Python license as published by the Python Software Foundation. A copy of the license is included in Appendix H,
Python license.

Dive Into Python 1

mailto:mark@diveintopython.org
http://diveintopython.org/

Chapter 1. Installing Python
Welcome to Python. Let's dive in. In this chapter, you'll install the version of Python that's right for you.

1.1. Which Python is right for you?

The first thing you need to do with Python is install it. Or do you?

If you're using an account on a hosted server, your ISP may have already installed Python. Most popular Linux
distributions come with Python in the default installation. Mac OS X 10.2 and later includes a command−line version
of Python, although you'll probably want to install a version that includes a more Mac−like graphical interface.

Windows does not come with any version of Python, but don't despair! There are several ways to point−and−click
your way to Python on Windows.

As you can see already, Python runs on a great many operating systems. The full list includes Windows, Mac OS,
Mac OS X, and all varieties of free UNIX−compatible systems like Linux. There are also versions that run on Sun
Solaris, AS/400, Amiga, OS/2, BeOS, and a plethora of other platforms you've probably never even heard of.

What's more, Python programs written on one platform can, with a little care, run on any supported platform. For
instance, I regularly develop Python programs on Windows and later deploy them on Linux.

So back to the question that started this section, "Which Python is right for you?" The answer is whichever one runs
on the computer you already have.

1.2. Python on Windows

On Windows, you have a couple choices for installing Python.

ActiveState makes a Windows installer for Python called ActivePython, which includes a complete version of Python,
an IDE with a Python−aware code editor, plus some Windows extensions for Python that allow complete access to
Windows−specific services, APIs, and the Windows Registry.

ActivePython is freely downloadable, although it is not open source. It is the IDE I used to learn Python, and I
recommend you try it unless you have a specific reason not to. One such reason might be that ActiveState is generally
several months behind in updating their ActivePython installer when new version of Python are released. If you
absolutely need the latest version of Python and ActivePython is still a version behind as you read this, you'll want to
use the second option for installing Python on Windows.

The second option is the "official" Python installer, distributed by the people who develop Python itself. It is freely
downloadable and open source, and it is always current with the latest version of Python.

Procedure 1.1. Option 1: Installing ActivePython

Here is the procedure for installing ActivePython:

Download ActivePython from http://www.activestate.com/Products/ActivePython/.1.
If you are using Windows 95, Windows 98, or Windows ME, you will also need to download and install
Windows Installer 2.0
(http://download.microsoft.com/download/WindowsInstaller/Install/2.0/W9XMe/EN−US/InstMsiA.exe)
before installing ActivePython.

2.

Dive Into Python 2

http://www.activestate.com/Products/ActivePython/
http://download.microsoft.com/download/WindowsInstaller/Install/2.0/W9XMe/EN-US/InstMsiA.exe

Double−click the installer, ActivePython−2.2.2−224−win32−ix86.msi.3.
Step through the installer program.4.
If space is tight, you can do a custom installation and deselect the documentation, but I don't recommend this
unless you absolutely can't spare the 14MB.

5.

After the installation is complete, close the installer and choose Start−>Programs−>ActiveState ActivePython
2.2−>PythonWin IDE. You'll see something like the following:

6.

PythonWin 2.2.2 (#37, Nov 26 2002, 10:24:37) [MSC 32 bit (Intel)] on win32.
Portions Copyright 1994−2001 Mark Hammond (mhammond@skippinet.com.au) −
see 'Help/About PythonWin' for further copyright information.
>>>

Procedure 1.2. Option 2: Installing Python from Python.org (http://www.python.org/)

Download the latest Python Windows installer by going to http://www.python.org/ftp/python/ and selecting
the highest version number listed, then downloading the .exe installer.

1.

Double−click the installer, Python−2.xxx.yyy.exe. The name will depend on the version of Python
available when you read this.

2.

Step through the installer program.3.
If disk space is tight, you can deselect the HTMLHelp file, the utility scripts (Tools/), and/or the test suite
(Lib/test/).

4.

If you do not have administrative rights on your machine, you can select Advanced Options, then choose
Non−Admin Install. This just affects where Registry entries and Start menu shortcuts are created.

5.

After the installation is complete, close the installer and select Start−>Programs−>Python 2.3−>IDLE (Python
GUI). You'll see something like the following:

6.

Python 2.3.2 (#49, Oct 2 2003, 20:02:00) [MSC v.1200 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.

 **
 Personal firewall software may warn about the connection IDLE
 makes to its subprocess using this computer's internal loopback
 interface. This connection is not visible on any external
 interface and no data is sent to or received from the Internet.
 **

IDLE 1.0
>>>

1.3. Python on Mac OS X

On Mac OS X, you have two choices for installing Python: install it, or don't install it. You probably want to install it.

Mac OS X 10.2 and later comes with a command−line version of Python preinstalled. If you are comfortable with the
command line, you can use this version for the first third of the book. However, the preinstalled version does not come
with an XML parser, so when you get to the XML chapter, you'll need to install the full version.

Rather than using the preinstalled version, you'll probably want to install the latest version, which also comes with a
graphical interactive shell.

Procedure 1.3. Running the Preinstalled Version of Python on Mac OS X

To use the preinstalled version of Python, follow these steps:

Open the /Applications folder.1.

Dive Into Python 3

http://www.python.org/
http://www.python.org/ftp/python/

Open the Utilities folder.2.
Double−click Terminal to open a terminal window and get to a command line.3.
Typepython at the command prompt.4.

Try it out:

Welcome to Darwin!
[localhost:~] you% python
Python 2.2 (#1, 07/14/02, 23:25:09)
[GCC Apple cpp−precomp 6.14] on darwin
Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
[localhost:~] you%

Procedure 1.4. Installing the Latest Version of Python on Mac OS X

Follow these steps to download and install the latest version of Python:

Download the MacPython−OSX disk image from http://homepages.cwi.nl/~jack/macpython/download.html.1.
If your browser has not already done so, double−click MacPython−OSX−2.3−1.dmg to mount the disk
image on your desktop.

2.

Double−click the installer, MacPython−OSX.pkg.3.
The installer will prompt you for your administrative username and password.4.
Step through the installer program.5.
After installation is complete, close the installer and open the /Applications folder.6.
Open the MacPython−2.3 folder7.
Double−click PythonIDE to launch Python.8.

The MacPython IDE should display a splash screen, then take you to the interactive shell. If the interactive shell does
not appear, select Window−>Python Interactive (Cmd−0). The opening window will look something like this:

Python 2.3 (#2, Jul 30 2003, 11:45:28)
[GCC 3.1 20020420 (prerelease)]
Type "copyright", "credits" or "license" for more information.
MacPython IDE 1.0.1
>>>

Note that once you install the latest version, the pre−installed version is still present. If you are running scripts from
the command line, you need to be aware which version of Python you are using.

Example 1.1. Two versions of Python

[localhost:~] you% python
Python 2.2 (#1, 07/14/02, 23:25:09)
[GCC Apple cpp−precomp 6.14] on darwin
Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
[localhost:~] you% /usr/local/bin/python
Python 2.3 (#2, Jul 30 2003, 11:45:28)
[GCC 3.1 20020420 (prerelease)] on darwin
Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
[localhost:~] you%

Dive Into Python 4

http://homepages.cwi.nl/~jack/macpython/download.html

1.4. Python on Mac OS 9

Mac OS 9 does not come with any version of Python, but installation is very simple, and there is only one choice.

Follow these steps to install Python on Mac OS 9:

Download the MacPython23full.bin file from
http://homepages.cwi.nl/~jack/macpython/download.html.

1.

If your browser does not decompress the file automatically, double−click MacPython23full.bin to
decompress the file with Stuffit Expander.

2.

Double−click the installer, MacPython23full.3.
Step through the installer program.4.
AFter installation is complete, close the installer and open the /Applications folder.5.
Open the MacPython−OS9 2.3 folder.6.
Double−click Python IDE to launch Python.7.

The MacPython IDE should display a splash screen, and then take you to the interactive shell. If the interactive shell
does not appear, select Window−>Python Interactive (Cmd−0). You'll see a screen like this:

Python 2.3 (#2, Jul 30 2003, 11:45:28)
[GCC 3.1 20020420 (prerelease)]
Type "copyright", "credits" or "license" for more information.
MacPython IDE 1.0.1
>>>

1.5. Python on RedHat Linux

Installing under UNIX−compatible operating systems such as Linux is easy if you're willing to install a binary
package. Pre−built binary packages are available for most popular Linux distributions. Or you can always compile
from source.

Download the latest Python RPM by going to http://www.python.org/ftp/python/ and selecting the highest version
number listed, then selecting the rpms/ directory within that. Then download the RPM with the highest version
number. You can install it with the rpm command, as shown here:

Example 1.2. Installing on RedHat Linux 9

localhost:~$ su −
Password: [enter your root password]
[root@localhost root]# wget http://python.org/ftp/python/2.3/rpms/redhat−9/python2.3−2.3−5pydotorg.i386.rpm
Resolving python.org... done.
Connecting to python.org[194.109.137.226]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 7,495,111 [application/octet−stream]
...
[root@localhost root]# rpm −Uvh python2.3−2.3−5pydotorg.i386.rpm
Preparing... ### [100%]
 1:python2.3 ### [100%]
[root@localhost root]# python
Python 2.2.2 (#1, Feb 24 2003, 19:13:11)
[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2−4)] on linux2
Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to exit]
[root@localhost root]# python2.3

Dive Into Python 5

http://homepages.cwi.nl/~jack/macpython/download.html
http://www.python.org/ftp/python/

Python 2.3 (#1, Sep 12 2003, 10:53:56)
[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2−5)] on linux2
Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to exit]
[root@localhost root]# which python2.3
/usr/bin/python2.3

Whoops! Just typingpython gives you the older version of Python −− the one that was installed by
default. That's not the one you want.

At the time of this writing, the newest version is calledpython2.3. You'll probably want to change the
path on the first line of the sample scripts to point to the newer version.

This is the complete path of the newer version of Python that you just installed. Use this on the #! line
(the first line of each script) to ensure that scripts are running under the latest version of Python, and be
sure to typepython2.3 to get into the interactive shell.

1.6. Python on Debian GNU/Linux

If you are lucky enough to be running Debian GNU/Linux, you install Python through the apt command.

Example 1.3. Installing on Debian GNU/Linux

localhost:~$ su −
Password: [enter your root password]
localhost:~# apt−get install python
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
 python2.3
Suggested packages:
 python−tk python2.3−doc
The following NEW packages will be installed:
 python python2.3
0 upgraded, 2 newly installed, 0 to remove and 3 not upgraded.
Need to get 0B/2880kB of archives.
After unpacking 9351kB of additional disk space will be used.
Do you want to continue? [Y/n] Y
Selecting previously deselected package python2.3.
(Reading database ... 22848 files and directories currently installed.)
Unpacking python2.3 (from .../python2.3_2.3.1−1_i386.deb) ...
Selecting previously deselected package python.
Unpacking python (from .../python_2.3.1−1_all.deb) ...
Setting up python (2.3.1−1) ...
Setting up python2.3 (2.3.1−1) ...
Compiling python modules in /usr/lib/python2.3 ...
Compiling optimized python modules in /usr/lib/python2.3 ...
localhost:~# exit
logout
localhost:~$ python
Python 2.3.1 (#2, Sep 24 2003, 11:39:14)
[GCC 3.3.2 20030908 (Debian prerelease)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> [press Ctrl+D to exit]

1.7. Python Installation from Source

If you prefer to build from source, you can download the Python source code from http://www.python.org/ftp/python/.
Select the highest version number listed, download the .tgz file), and then do the usualconfigure, make, make

Dive Into Python 6

http://www.python.org/ftp/python/

install dance.

Example 1.4. Installing from source

localhost:~$ su −
Password: [enter your root password]
localhost:~# wget http://www.python.org/ftp/python/2.3/Python−2.3.tgz
Resolving www.python.org... done.
Connecting to www.python.org[194.109.137.226]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 8,436,880 [application/x−tar]
...
localhost:~# tar xfz Python−2.3.tgz
localhost:~# cd Python−2.3
localhost:~/Python−2.3# ./configure
checking MACHDEP... linux2
checking EXTRAPLATDIR...
checking for −−without−gcc... no
...
localhost:~/Python−2.3# make
gcc −pthread −c −fno−strict−aliasing −DNDEBUG −g −O3 −Wall −Wstrict−prototypes
−I. −I./Include −DPy_BUILD_CORE −o Modules/python.o Modules/python.c
gcc −pthread −c −fno−strict−aliasing −DNDEBUG −g −O3 −Wall −Wstrict−prototypes
−I. −I./Include −DPy_BUILD_CORE −o Parser/acceler.o Parser/acceler.c
gcc −pthread −c −fno−strict−aliasing −DNDEBUG −g −O3 −Wall −Wstrict−prototypes
−I. −I./Include −DPy_BUILD_CORE −o Parser/grammar1.o Parser/grammar1.c
...
localhost:~/Python−2.3# make install
/usr/bin/install −c python /usr/local/bin/python2.3
...
localhost:~/Python−2.3# exit
logout
localhost:~$ which python
/usr/local/bin/python
localhost:~$ python
Python 2.3.1 (#2, Sep 24 2003, 11:39:14)
[GCC 3.3.2 20030908 (Debian prerelease)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
localhost:~$

1.8. The Interactive Shell

Now that you have Python installed, what's this interactive shell thing you're running?

It's like this: Python leads a double life. It's an interpreter for scripts that you can run from the command line or run
like applications, by double−clicking the scripts. But it's also an interactive shell that can evaluate arbitrary statements
and expressions. This is extremely useful for debugging, quick hacking, and testing. I even know some people who
use the Python interactive shell in lieu of a calculator!

Launch the Python interactive shell in whatever way works on your platform, and let's dive in with the steps shown
here:

Example 1.5. First Steps in the Interactive Shell

>>> 1 + 1

Dive Into Python 7

2
>>> print 'hello world'
hello world
>>> x = 1
>>> y = 2
>>> x + y
3

The Python interactive shell can evaluate arbitrary Python expressions, including any basic arithmetic
expression.

The interactive shell can execute arbitrary Python statements, including the print statement.

You can also assign values to variables, and the values will be remembered as long as the shell is open
(but not any longer than that).

1.9. Summary

You should now have a version of Python installed that works for you.

Depending on your platform, you may have more than one version of Python intsalled. If so, you need to be aware of
your paths. If simply typing python on the command line doesn't run the version of Python that you want to use, you
may need to enter the full pathname of your preferred version.

Congratulations, and welcome to Python.

Dive Into Python 8

Chapter 2. Your First Python Program
You know how other books go on and on about programming fundamentals and finally work up to building a
complete, working program? Let's skip all that.

2.1. Diving in

Here is a complete, working Python program.

It probably makes absolutely no sense to you. Don't worry about that, because you're going to dissect it line by line.
But read through it first and see what, if anything, you can make of it.

Example 2.1. odbchelper.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

def buildConnectionString(params):
 """Build a connection string from a dictionary of parameters.

 Returns string."""
 return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

if __name__ == "__main__":
 myParams = {"server":"mpilgrim", \
 "database":"master", \
 "uid":"sa", \
 "pwd":"secret" \
 }
 print buildConnectionString(myParams)

Now run this program and see what happens.

In the ActivePython IDE on Windows, you can run the Python program you're editing by choosing File−>Run...
(Ctrl−R). Output is displayed in the interactive window.

In the Python IDE on Mac OS, you can run a Python program with Python−>Run window... (Cmd−R), but there is
an important option you must set first. Open the .py file in the IDE, pop up the options menu by clicking the black
triangle in the upper−right corner of the window, and make sure the Run as __main__ option is checked. This is a
per−file setting, but you'll only need to do it once per file.

On UNIX−compatible systems (including Mac OS X), you can run a Python program from the command line:
python odbchelper.py

The output of odbchelper.py will look like this:

server=mpilgrim;uid=sa;database=master;pwd=secret

2.2. Declaring Functions

Python has functions like most other languages, but it does not have separate header files like C++ or
interface/implementation sections like Pascal. When you need a function, just declare it, like this:

Dive Into Python 9

http://diveintopython.org/download/diveintopython-examples-5.4.zip

def buildConnectionString(params):

Note that the keyword def starts the function declaration, followed by the function name, followed by the arguments
in parentheses. Multiple arguments (not shown here) are separated with commas.

Also note that the function doesn't define a return datatype. Python functions do not specify the datatype of their
return value; they don't even specify whether or not they return a value. In fact, every Python function returns a value;
if the function ever executes a return statement, it will return that value, otherwise it will return None, the Python
null value.

In Visual Basic, functions (that return a value) start with function, and subroutines (that do not return a value)
start with sub. There are no subroutines in Python. Everything is a function, all functions return a value (even if it's
None), and all functions start with def.
The argument, params, doesn't specify a datatype. In Python, variables are never explicitly typed. Python figures out
what type a variable is and keeps track of it internally.

In Java, C++, and other statically−typed languages, you must specify the datatype of the function return value and
each function argument. In Python, you never explicitly specify the datatype of anything. Based on what value you
assign, Python keeps track of the datatype internally.

2.2.1. How Python's Datatypes Compare to Other Programming Languages

An erudite reader sent me this explanation of how Python compares to other programming languages:

statically typed language
A language in which types are fixed at compile time. Most statically typed languages enforce this by requiring
you to declare all variables with their datatypes before using them. Java and C are statically typed languages.

dynamically typed language
A language in which types are discovered at execution time; the opposite of statically typed. VBScript and
Python are dynamically typed, because they figure out what type a variable is when you first assign it a value.

strongly typed language
A language in which types are always enforced. Java and Python are strongly typed. If you have an integer,
you can't treat it like a string without explicitly converting it.

weakly typed language
A language in which types may be ignored; the opposite of strongly typed. VBScript is weakly typed. In
VBScript, you can concatenate the string '12' and the integer 3 to get the string '123', then treat that as
the integer 123, all without any explicit conversion.

So Python is both dynamically typed (because it doesn't use explicit datatype declarations) and strongly typed (because
once a variable has a datatype, it actually matters).

2.3. Documenting Functions

You can document a Python function by giving it a doc string.

Example 2.2. Defining the buildConnectionString Function's doc string

def buildConnectionString(params):
 """Build a connection string from a dictionary of parameters.

Dive Into Python 10

 Returns string."""

Triple quotes signify a multi−line string. Everything between the start and end quotes is part of a single string,
including carriage returns and other quote characters. You can use them anywhere, but you'll see them most often used
when defining a doc string.

Triple quotes are also an easy way to define a string with both single and double quotes, like qq/.../ in Perl.
Everything between the triple quotes is the function's doc string, which documents what the function does. A
doc string, if it exists, must be the first thing defined in a function (that is, the first thing after the colon). You
don't technically need to give your function a doc string, but you always should. I know you've heard this in
every programming class you've ever taken, but Python gives you an added incentive: the doc string is available
at runtime as an attribute of the function.

Many Python IDEs use the doc string to provide context−sensitive documentation, so that when you type a
function name, its doc string appears as a tooltip. This can be incredibly helpful, but it's only as good as the doc
strings you write.
Further Reading on Documenting Functions

PEP 257 (http://www.python.org/peps/pep−0257.html) defines doc string conventions.•
Python Style Guide (http://www.python.org/doc/essays/styleguide.html) discusses how to write a good doc
string.

•

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses conventions for spacing in doc
strings (http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000).

•

2.4. Everything Is an Object

In case you missed it, I just said that Python functions have attributes, and that those attributes are available at
runtime.

A function, like everything else in Python, is an object.

Open your favorite Python IDE and follow along:

Example 2.3. Accessing the buildConnectionString Function's doc string

>>> import odbchelper
>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> print odbchelper.buildConnectionString(params)
server=mpilgrim;uid=sa;database=master;pwd=secret
>>> print odbchelper.buildConnectionString.__doc__
Build a connection string from a dictionary

Returns string.

The first line imports the odbchelper program as a module −− a chunk of code that you can use
interactively, or from a larger Python program. (You'll see examples of multi−module Python programs in
Chapter 4.) Once you import a module, you can reference any of its public functions, classes, or attributes.
Modules can do this to access functionality in other modules, and you can do it in the IDE too. This is an
important concept, and you'll talk more about it later.

Dive Into Python 11

http://www.python.org/peps/pep-0257.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000

When you want to use functions defined in imported modules, you need to include the module name. So you
can't just say buildConnectionString; it must be odbchelper.buildConnectionString. If
you've used classes in Java, this should feel vaguely familiar.

Instead of calling the function as you would expect to, you asked for one of the function's attributes, __doc__.

import in Python is like require in Perl. Once you import a Python module, you access its functions with
module.function; once you require a Perl module, you access its functions with module::function.

2.4.1. The Import Search Path

Before you go any further, I want to briefly mention the library search path. Python looks in several places when you
try to import a module. Specifically, it looks in all the directories defined in sys.path. This is just a list, and you
can easily view it or modify it with standard list methods. (You'll learn more about lists later in this chapter.)

Example 2.4. Import Search Path

>>> import sys
>>> sys.path
['', '/usr/local/lib/python2.2', '/usr/local/lib/python2.2/plat−linux2',
'/usr/local/lib/python2.2/lib−dynload', '/usr/local/lib/python2.2/site−packages',
'/usr/local/lib/python2.2/site−packages/PIL', '/usr/local/lib/python2.2/site−packages/piddle']
>>> sys
<module 'sys' (built−in)>
>>> sys.path.append('/my/new/path')

Importing the sys module makes all of its functions and attributes available.

sys.path is a list of directory names that constitute the current search path. (Yours will look different,
depending on your operating system, what version of Python you're running, and where it was originally
installed.) Python will look through these directories (in this order) for a .py file matching the module name
you're trying to import.

Actually, I lied; the truth is more complicated than that, because not all modules are stored as .py files. Some,
like the sys module, are "built−in modules"; they are actually baked right into Python itself. Built−in modules
behave just like regular modules, but their Python source code is not available, because they are not written in
Python! (The sys module is written in C.)

You can add a new directory to Python's search path at runtime by appending the directory name to
sys.path, and then Python will look in that directory as well, whenever you try to import a module. The
effect lasts as long as Python is running. (You'll talk more about append and other list methods in Chapter 3.)

2.4.2. What's an Object?

Everything in Python is an object, and almost everything has attributes and methods. All functions have a built−in
attribute __doc__, which returns the doc string defined in the function's source code. The sys module is an
object which has (among other things) an attribute called path. And so forth.

Still, this begs the question. What is an object? Different programming languages define "object" in different ways. In
some, it means that all objects must have attributes and methods; in others, it means that all objects are subclassable.
In Python, the definition is looser; some objects have neither attributes nor methods (more on this in Chapter 3), and
not all objects are subclassable (more on this in Chapter 5). But everything is an object in the sense that it can be
assigned to a variable or passed as an argument to a function (more in this in Chapter 4).

This is so important that I'm going to repeat it in case you missed it the first few times: everything in Python is an
object. Strings are objects. Lists are objects. Functions are objects. Even modules are objects.

Dive Into Python 12

Further Reading on Objects

Python Reference Manual (http://www.python.org/doc/current/ref/) explains exactly what it means to say that
everything in Python is an object (http://www.python.org/doc/current/ref/objects.html), because some people
are pedantic and like to discuss this sort of thing at great length.

•

eff−bot (http://www.effbot.org/guides/) summarizes Python objects
(http://www.effbot.org/guides/python−objects.htm).

•

2.5. Indenting Code

Python functions have no explicit begin or end, and no curly braces to mark where the function code starts and
stops. The only delimiter is a colon (:) and the indentation of the code itself.

Example 2.5. Indenting the buildConnectionString Function

def buildConnectionString(params):
 """Build a connection string from a dictionary of parameters.

 Returns string."""
 return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

Code blocks are defined by their indentation. By "code block", I mean functions, if statements, for loops, while
loops, and so forth. Indenting starts a block and unindenting ends it. There are no explicit braces, brackets, or
keywords. This means that whitespace is significant, and must be consistent. In this example, the function code
(including the doc string) is indented four spaces. It doesn't need to be four spaces, it just needs to be consistent.
The first line that is not indented is outside the function.

Example 2.6, �if Statements� shows an example of code indentation with if statements.

Example 2.6. if Statements

def fib(n):
 print 'n =', n
 if n > 1:
 return n * fib(n − 1)
 else:
 print 'end of the line'
 return 1

This is a function named fib that takes one argument, n. All the code within the function is indented.

Printing to the screen is very easy in Python, just use print. print statements can take any data
type, including strings, integers, and other native types like dictionaries and lists that you'll learn about
in the next chapter. You can even mix and match to print several things on one line by using a
comma−separated list of values. Each value is printed on the same line, separated by spaces (the
commas don't print). So when fib is called with 5, this will print "n = 5".

if statements are a type of code block. If the if expression evaluates to true, the indented block is
executed, otherwise it falls to the else block.

Of course if and else blocks can contain multiple lines, as long as they are all indented the same
amount. This else block has two lines of code in it. There is no other special syntax for multi−line
code blocks. Just indent and get on with your life.

Dive Into Python 13

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/objects.html
http://www.effbot.org/guides/
http://www.effbot.org/guides/python-objects.htm

After some initial protests and several snide analogies to Fortran, you will make peace with this and start seeing its
benefits. One major benefit is that all Python programs look similar, since indentation is a language requirement and
not a matter of style. This makes it easier to read and understand other people's Python code.

Python uses carriage returns to separate statements and a colon and indentation to separate code blocks. C++ and
Java use semicolons to separate statements and curly braces to separate code blocks.
Further Reading on Code Indentation

Python Reference Manual (http://www.python.org/doc/current/ref/) discusses cross−platform indentation
issues and shows various indentation errors (http://www.python.org/doc/current/ref/indentation.html).

•

Python Style Guide (http://www.python.org/doc/essays/styleguide.html) discusses good indentation style.•

2.6. Testing Modules

Python modules are objects and have several useful attributes. You can use this to easily test your modules as you
write them. Here's an example that uses the if__name__ trick.

if __name__ == "__main__":

Some quick observations before you get to the good stuff. First, parentheses are not required around the if
expression. Second, the if statement ends with a colon, and is followed by indented code.

Like C, Python uses == for comparison and = for assignment. Unlike C, Python does not support in−line assignment,
so there's no chance of accidentally assigning the value you thought you were comparing.
So why is this particular if statement a trick? Modules are objects, and all modules have a built−in attribute
__name__. A module's __name__ depends on how you're using the module. If you import the module, then
__name__ is the module's filename, without a directory path or file extension. But you can also run the module
directly as a standalone program, in which case __name__ will be a special default value, __main__.

>>> import odbchelper
>>> odbchelper.__name__
'odbchelper'

Knowing this, you can design a test suite for your module within the module itself by putting it in this if statement.
When you run the module directly, __name__ is __main__, so the test suite executes. When you import the
module, __name__ is something else, so the test suite is ignored. This makes it easier to develop and debug new
modules before integrating them into a larger program.

On MacPython, there is an additional step to make the if__name__ trick work. Pop up the module's options menu
by clicking the black triangle in the upper−right corner of the window, and make sure Run as __main__ is checked.
Further Reading on Importing Modules

Python Reference Manual (http://www.python.org/doc/current/ref/) discusses the low−level details of
importing modules (http://www.python.org/doc/current/ref/import.html).

•

Dive Into Python 14

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/indentation.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/import.html

Chapter 3. Native Datatypes
You'll get back to your first Python program in just a minute. But first, a short digression is in order, because you need
to know about dictionaries, tuples, and lists (oh my!). If you're a Perl hacker, you can probably skim the bits about
dictionaries and lists, but you should still pay attention to tuples.

3.1. Introducing Dictionaries

One of Python's built−in datatypes is the dictionary, which defines one−to−one relationships between keys and values.

A dictionary in Python is like a hash in Perl. In Perl, variables that store hashes always start with a % character. In
Python, variables can be named anything, and Python keeps track of the datatype internally.

A dictionary in Python is like an instance of the Hashtable class in Java.

A dictionary in Python is like an instance of the Scripting.Dictionary object in Visual Basic.

3.1.1. Defining Dictionaries

Example 3.1. Defining a Dictionary

>>> d = {"server":"mpilgrim", "database":"master"}
>>> d
{'server': 'mpilgrim', 'database': 'master'}
>>> d["server"]
'mpilgrim'
>>> d["database"]
'master'
>>> d["mpilgrim"]
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
KeyError: mpilgrim

First, you create a new dictionary with two elements and assign it to the variable d. Each element is a
key−value pair, and the whole set of elements is enclosed in curly braces.

'server' is a key, and its associated value, referenced by d["server"], is 'mpilgrim'.

'database' is a key, and its associated value, referenced by d["database"], is 'master'.

You can get values by key, but you can't get keys by value. So d["server"] is 'mpilgrim', but
d["mpilgrim"] raises an exception, because 'mpilgrim' is not a key.

3.1.2. Modifying Dictionaries

Example 3.2. Modifying a Dictionary

>>> d
{'server': 'mpilgrim', 'database': 'master'}
>>> d["database"] = "pubs"
>>> d
{'server': 'mpilgrim', 'database': 'pubs'}
>>> d["uid"] = "sa"
>>> d
{'server': 'mpilgrim', 'uid': 'sa', 'database': 'pubs'}

Dive Into Python 15

You can not have duplicate keys in a dictionary. Assigning a value to an existing key will wipe out the
old value.

You can add new key−value pairs at any time. This syntax is identical to modifying existing values. (Yes,
this will annoy you someday when you think you are adding new values but are actually just modifying
the same value over and over because your key isn't changing the way you think it is.)

Note that the new element (key 'uid', value 'sa') appears to be in the middle. In fact, it was just a coincidence
that the elements appeared to be in order in the first example; it is just as much a coincidence that they appear to be
out of order now.

Dictionaries have no concept of order among elements. It is incorrect to say that the elements are "out of order"; they
are simply unordered. This is an important distinction that will annoy you when you want to access the elements of a
dictionary in a specific, repeatable order (like alphabetical order by key). There are ways of doing this, but they're not
built into the dictionary.
When working with dictionaries, you need to be aware that dictionary keys are case−sensitive.

Example 3.3. Dictionary Keys Are Case−Sensitive

>>> d = {}
>>> d["key"] = "value"
>>> d["key"] = "other value"
>>> d
{'key': 'other value'}
>>> d["Key"] = "third value"
>>> d
{'Key': 'third value', 'key': 'other value'}

Assigning a value to an existing dictionary key simply replaces the old value with a new one.

This is not assigning a value to an existing dictionary key, because strings in Python are case−sensitive, so
'key' is not the same as 'Key'. This creates a new key/value pair in the dictionary; it may look similar to
you, but as far as Python is concerned, it's completely different.

Example 3.4. Mixing Datatypes in a Dictionary

>>> d
{'server': 'mpilgrim', 'uid': 'sa', 'database': 'pubs'}
>>> d["retrycount"] = 3
>>> d
{'server': 'mpilgrim', 'uid': 'sa', 'database': 'master', 'retrycount': 3}
>>> d[42] = "douglas"
>>> d
{'server': 'mpilgrim', 'uid': 'sa', 'database': 'master',
42: 'douglas', 'retrycount': 3}

Dictionaries aren't just for strings. Dictionary values can be any datatype, including strings, integers,
objects, or even other dictionaries. And within a single dictionary, the values don't all need to be the
same type; you can mix and match as needed.

Dictionary keys are more restricted, but they can be strings, integers, and a few other types. You can also
mix and match key datatypes within a dictionary.

Dive Into Python 16

3.1.3. Deleting Items From Dictionaries

Example 3.5. Deleting Items from a Dictionary

>>> d
{'server': 'mpilgrim', 'uid': 'sa', 'database': 'master',
42: 'douglas', 'retrycount': 3}
>>> del d[42]
>>> d
{'server': 'mpilgrim', 'uid': 'sa', 'database': 'master', 'retrycount': 3}
>>> d.clear()
>>> d
{}

del lets you delete individual items from a dictionary by key.

clear deletes all items from a dictionary. Note that the set of empty curly braces signifies a dictionary without
any items.

Further Reading on Dictionaries

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about dictionaries
and shows how to use dictionaries to model sparse matrices
(http://www.ibiblio.org/obp/thinkCSpy/chap10.htm).

•

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) has a lot of example
code using dictionaries (http://www.faqts.com/knowledge−base/index.phtml/fid/541).

•

Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) discusses how to sort the values of
a dictionary by key (http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306).

•

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the dictionary methods
(http://www.python.org/doc/current/lib/typesmapping.html).

•

3.2. Introducing Lists

Lists are Python's workhorse datatype. If your only experience with lists is arrays in Visual Basic or (God forbid) the
datastore in Powerbuilder, brace yourself for Python lists.

A list in Python is like an array in Perl. In Perl, variables that store arrays always start with the @ character; in
Python, variables can be named anything, and Python keeps track of the datatype internally.

A list in Python is much more than an array in Java (although it can be used as one if that's really all you want out of
life). A better analogy would be to the ArrayList class, which can hold arbitrary objects and can expand
dynamically as new items are added.

3.2.1. Defining Lists

Example 3.6. Defining a List

>>> li = ["a", "b", "mpilgrim", "z", "example"]
>>> li
['a', 'b', 'mpilgrim', 'z', 'example']
>>> li[0]
'a'
>>> li[4]
'example'

Dive Into Python 17

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/541
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesmapping.html

First, you define a list of five elements. Note that they retain their original order. This is not an accident. A list
is an ordered set of elements enclosed in square brackets.

A list can be used like a zero−based array. The first element of any non−empty list is always li[0].

The last element of this five−element list is li[4], because lists are always zero−based.

Example 3.7. Negative List Indices

>>> li
['a', 'b', 'mpilgrim', 'z', 'example']
>>> li[−1]
'example'
>>> li[−3]
'mpilgrim'

A negative index accesses elements from the end of the list counting backwards. The last element of
any non−empty list is always li[−1].

If the negative index is confusing to you, think of it this way: li[−n] == li[len(li) − n]. So
in this list, li[−3] == li[5 − 3] == li[2].

Example 3.8. Slicing a List

>>> li
['a', 'b', 'mpilgrim', 'z', 'example']
>>> li[1:3]
['b', 'mpilgrim']
>>> li[1:−1]
['b', 'mpilgrim', 'z']
>>> li[0:3]
['a', 'b', 'mpilgrim']

You can get a subset of a list, called a "slice", by specifying two indices. The return value is a new list
containing all the elements of the list, in order, starting with the first slice index (in this case li[1]), up to but
not including the second slice index (in this case li[3]).

Slicing works if one or both of the slice indices is negative. If it helps, you can think of it this way: reading the
list from left to right, the first slice index specifies the first element you want, and the second slice index
specifies the first element you don't want. The return value is everything in between.

Lists are zero−based, so li[0:3] returns the first three elements of the list, starting at li[0], up to but not
including li[3].

Example 3.9. Slicing Shorthand

>>> li
['a', 'b', 'mpilgrim', 'z', 'example']
>>> li[:3]
['a', 'b', 'mpilgrim']
>>> li[3:]
['z', 'example']
>>> li[:]
['a', 'b', 'mpilgrim', 'z', 'example']

If the left slice index is 0, you can leave it out, and 0 is implied. So li[:3] is the same as li[0:3] from
Example 3.8, �Slicing a List�.

Similarly, if the right slice index is the length of the list, you can leave it out. So li[3:] is the same as
li[3:5], because this list has five elements.

Dive Into Python 18

Note the symmetry here. In this five−element list, li[:3] returns the first 3 elements, and li[3:] returns
the last two elements. In fact, li[:n] will always return the first n elements, and li[n:] will return the rest,
regardless of the length of the list.

If both slice indices are left out, all elements of the list are included. But this is not the same as the original li
list; it is a new list that happens to have all the same elements. li[:] is shorthand for making a complete copy
of a list.

3.2.2. Adding Elements to Lists

Example 3.10. Adding Elements to a List

>>> li
['a', 'b', 'mpilgrim', 'z', 'example']
>>> li.append("new")
>>> li
['a', 'b', 'mpilgrim', 'z', 'example', 'new']
>>> li.insert(2, "new")
>>> li
['a', 'b', 'new', 'mpilgrim', 'z', 'example', 'new']
>>> li.extend(["two", "elements"])
>>> li
['a', 'b', 'new', 'mpilgrim', 'z', 'example', 'new', 'two', 'elements']

append adds a single element to the end of the list.

insert inserts a single element into a list. The numeric argument is the index of the first element that gets
bumped out of position. Note that list elements do not need to be unique; there are now two separate elements
with the value 'new', li[2] and li[6].

extend concatenates lists. Note that you do not call extend with multiple arguments; you call it with one
argument, a list. In this case, that list has two elements.

Example 3.11. The Difference between extend and append

>>> li = ['a', 'b', 'c']
>>> li.extend(['d', 'e', 'f'])
>>> li
['a', 'b', 'c', 'd', 'e', 'f']
>>> len(li)
6
>>> li[−1]
'f'
>>> li = ['a', 'b', 'c']
>>> li.append(['d', 'e', 'f'])
>>> li
['a', 'b', 'c', ['d', 'e', 'f']]
>>> len(li)
4
>>> li[−1]
['d', 'e', 'f']

Lists have two methods, extend and append, that look like they do the same thing, but are in fact
completely different. extend takes a single argument, which is always a list, and adds each of the
elements of that list to the original list.

Here you started with a list of three elements ('a', 'b', and 'c'), and you extended the list with a list
of another three elements ('d', 'e', and 'f'), so you now have a list of six elements.

Dive Into Python 19

On the other hand, append takes one argument, which can be any data type, and simply adds it to the
end of the list. Here, you're calling the append method with a single argument, which is a list of three
elements.

Now the original list, which started as a list of three elements, contains four elements. Why four? Because
the last element that you just appended is itself a list. Lists can contain any type of data, including other
lists. That may be what you want, or maybe not. Don't use append if you mean extend.

3.2.3. Searching Lists

Example 3.12. Searching a List

>>> li
['a', 'b', 'new', 'mpilgrim', 'z', 'example', 'new', 'two', 'elements']
>>> li.index("example")
5
>>> li.index("new")
2
>>> li.index("c")
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
ValueError: list.index(x): x not in list
>>> "c" in li
False

index finds the first occurrence of a value in the list and returns the index.

index finds the first occurrence of a value in the list. In this case, 'new' occurs twice in the list, in li[2]
and li[6], but index will return only the first index, 2.

If the value is not found in the list, Python raises an exception. This is notably different from most languages,
which will return some invalid index. While this may seem annoying, it is a good thing, because it means your
program will crash at the source of the problem, rather than later on when you try to use the invalid index.

To test whether a value is in the list, use in, which returns True if the value is found or False if it is not.

Before version 2.2.1, Python had no separate boolean datatype. To compensate for this, Python accepted almost
anything in a boolean context (like an if statement), according to the following rules:

0 is false; all other numbers are true.•
An empty string ("") is false, all other strings are true.•
An empty list ([]) is false; all other lists are true.•
An empty tuple (()) is false; all other tuples are true.•
An empty dictionary ({}) is false; all other dictionaries are true.•

These rules still apply in Python 2.2.1 and beyond, but now you can also use an actual boolean, which has a value of
True or False. Note the capitalization; these values, like everything else in Python, are case−sensitive.

3.2.4. Deleting List Elements

Example 3.13. Removing Elements from a List

>>> li
['a', 'b', 'new', 'mpilgrim', 'z', 'example', 'new', 'two', 'elements']
>>> li.remove("z")
>>> li
['a', 'b', 'new', 'mpilgrim', 'example', 'new', 'two', 'elements']
>>> li.remove("new")

Dive Into Python 20

>>> li
['a', 'b', 'mpilgrim', 'example', 'new', 'two', 'elements']
>>> li.remove("c")
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
ValueError: list.remove(x): x not in list
>>> li.pop()
'elements'
>>> li
['a', 'b', 'mpilgrim', 'example', 'new', 'two']

remove removes the first occurrence of a value from a list.

remove removes only the first occurrence of a value. In this case, 'new' appeared twice in the list, but
li.remove("new") removed only the first occurrence.

If the value is not found in the list, Python raises an exception. This mirrors the behavior of the index method.

pop is an interesting beast. It does two things: it removes the last element of the list, and it returns the value
that it removed. Note that this is different from li[−1], which returns a value but does not change the list, and
different from li.remove(value), which changes the list but does not return a value.

3.2.5. Using List Operators

Example 3.14. List Operators

>>> li = ['a', 'b', 'mpilgrim']
>>> li = li + ['example', 'new']
>>> li
['a', 'b', 'mpilgrim', 'example', 'new']
>>> li += ['two']
>>> li
['a', 'b', 'mpilgrim', 'example', 'new', 'two']
>>> li = [1, 2] * 3
>>> li
[1, 2, 1, 2, 1, 2]

Lists can also be concatenated with the + operator. list = list + otherlist has the
same result as list.extend(otherlist). But the + operator returns a new (concatenated)
list as a value, whereas extend only alters an existing list. This means that extend is faster,
especially for large lists.

Python supports the += operator. li += ['two'] is equivalent to li.extend(['two']).
The += operator works for lists, strings, and integers, and it can be overloaded to work for
user−defined classes as well. (More on classes in Chapter 5.)

The * operator works on lists as a repeater. li = [1, 2] * 3 is equivalent to li = [1,
2] + [1, 2] + [1, 2], which concatenates the three lists into one.

Further Reading on Lists

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about lists and
makes an important point about passing lists as function arguments
(http://www.ibiblio.org/obp/thinkCSpy/chap08.htm).

•

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to use lists as stacks and queues
(http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000).

•

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) answers common
questions about lists (http://www.faqts.com/knowledge−base/index.phtml/fid/534) and has a lot of example
code using lists (http://www.faqts.com/knowledge−base/index.phtml/fid/540).

•

Dive Into Python 21

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap08.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/534
http://www.faqts.com/knowledge-base/index.phtml/fid/540

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the list methods
(http://www.python.org/doc/current/lib/typesseq−mutable.html).

•

3.3. Introducing Tuples

A tuple is an immutable list. A tuple can not be changed in any way once it is created.

Example 3.15. Defining a tuple

>>> t = ("a", "b", "mpilgrim", "z", "example")
>>> t
('a', 'b', 'mpilgrim', 'z', 'example')
>>> t[0]
'a'
>>> t[−1]
'example'
>>> t[1:3]
('b', 'mpilgrim')

A tuple is defined in the same way as a list, except that the whole set of elements is enclosed in parentheses
instead of square brackets.

The elements of a tuple have a defined order, just like a list. Tuples indices are zero−based, just like a list, so
the first element of a non−empty tuple is always t[0].

Negative indices count from the end of the tuple, just as with a list.

Slicing works too, just like a list. Note that when you slice a list, you get a new list; when you slice a tuple, you
get a new tuple.

Example 3.16. Tuples Have No Methods

>>> t
('a', 'b', 'mpilgrim', 'z', 'example')
>>> t.append("new")
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute 'append'
>>> t.remove("z")
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute 'remove'
>>> t.index("example")
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute 'index'
>>> "z" in t
True

You can't add elements to a tuple. Tuples have no append or extend method.

You can't remove elements from a tuple. Tuples have no remove or pop method.

You can't find elements in a tuple. Tuples have no index method.

You can, however, use in to see if an element exists in the tuple.
So what are tuples good for?

Tuples are faster than lists. If you're defining a constant set of values and all you're ever going to do with it is•

Dive Into Python 22

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-mutable.html

iterate through it, use a tuple instead of a list.
It makes your code safer if you "write−protect" data that does not need to be changed. Using a tuple instead of
a list is like having an implied assert statement that shows this data is constant, and that special thought
(and a specific function) is required to override that.

•

Remember that I said that dictionary keys can be integers, strings, and "a few other types"? Tuples are one of
those types. Tuples can be used as keys in a dictionary, but lists can't be used this way.Actually, it's more
complicated than that. Dictionary keys must be immutable. Tuples themselves are immutable, but if you have
a tuple of lists, that counts as mutable and isn't safe to use as a dictionary key. Only tuples of strings, numbers,
or other dictionary−safe tuples can be used as dictionary keys.

•

Tuples are used in string formatting, as you'll see shortly.•

Tuples can be converted into lists, and vice−versa. The built−in tuple function takes a list and returns a tuple with
the same elements, and the list function takes a tuple and returns a list. In effect, tuple freezes a list, and list
thaws a tuple.
Further Reading on Tuples

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about tuples and
shows how to concatenate tuples (http://www.ibiblio.org/obp/thinkCSpy/chap10.htm).

•

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) shows how to sort a
tuple (http://www.faqts.com/knowledge−base/view.phtml/aid/4553/fid/587).

•

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to define a tuple with one
element (http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000).

•

3.4. Declaring variables

Now that you know something about dictionaries, tuples, and lists (oh my!), let's get back to the sample program from
Chapter 2, odbchelper.py.

Python has local and global variables like most other languages, but it has no explicit variable declarations. Variables
spring into existence by being assigned a value, and they are automatically destroyed when they go out of scope.

Example 3.17. Defining the myParams Variable

if __name__ == "__main__":
 myParams = {"server":"mpilgrim", \
 "database":"master", \
 "uid":"sa", \
 "pwd":"secret" \
 }

Notice the indentation. An if statement is a code block and needs to be indented just like a function.

Also notice that the variable assignment is one command split over several lines, with a backslash ("\") serving as a
line−continuation marker.

When a command is split among several lines with the line−continuation marker ("\"), the continued lines can be
indented in any manner; Python's normally stringent indentation rules do not apply. If your Python IDE auto−indents
the continued line, you should probably accept its default unless you have a burning reason not to.

Dive Into Python 23

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/4553/fid/587
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000

Strictly speaking, expressions in parentheses, straight brackets, or curly braces (like defining a dictionary) can be split
into multiple lines with or without the line continuation character ("\"). I like to include the backslash even when it's
not required because I think it makes the code easier to read, but that's a matter of style.

Third, you never declared the variable myParams, you just assigned a value to it. This is like VBScript without the
option explicit option. Luckily, unlike VBScript, Python will not allow you to reference a variable that has
never been assigned a value; trying to do so will raise an exception.

3.4.1. Referencing Variables

Example 3.18. Referencing an Unbound Variable

>>> x
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
NameError: There is no variable named 'x'
>>> x = 1
>>> x
1

You will thank Python for this one day.

3.4.2. Assigning Multiple Values at Once

One of the cooler programming shortcuts in Python is using sequences to assign multiple values at once.

Example 3.19. Assigning multiple values at once

>>> v = ('a', 'b', 'e')
>>> (x, y, z) = v
>>> x
'a'
>>> y
'b'
>>> z
'e'

v is a tuple of three elements, and (x, y, z) is a tuple of three variables. Assigning one to the other
assigns each of the values of v to each of the variables, in order.

This has all sorts of uses. I often want to assign names to a range of values. In C, you would use enum and manually
list each constant and its associated value, which seems especially tedious when the values are consecutive. In Python,
you can use the built−in range function with multi−variable assignment to quickly assign consecutive values.

Example 3.20. Assigning Consecutive Values

>>> range(7)
[0, 1, 2, 3, 4, 5, 6]
>>> (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY) = range(7)
>>> MONDAY
0
>>> TUESDAY
1
>>> SUNDAY

Dive Into Python 24

6

The built−in range function returns a list of integers. In its simplest form, it takes an upper limit and returns a
zero−based list counting up to but not including the upper limit. (If you like, you can pass other parameters to
specify a base other than 0 and a step other than 1. You can print range.__doc__ for details.)

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are the variables you're
defining. (This example came from the calendar module, a fun little module that prints calendars, like the
UNIX program cal. The calendar module defines integer constants for days of the week.)

Now each variable has its value: MONDAY is 0, TUESDAY is 1, and so forth.
You can also use multi−variable assignment to build functions that return multiple values, simply by returning a tuple
of all the values. The caller can treat it as a tuple, or assign the values to individual variables. Many standard Python
libraries do this, including the os module, which you'll discuss in Chapter 6.

Further Reading on Variables

Python Reference Manual (http://www.python.org/doc/current/ref/) shows examples of when you can skip the
line continuation character (http://www.python.org/doc/current/ref/implicit−joining.html) and when you need
to use it (http://www.python.org/doc/current/ref/explicit−joining.html).

•

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) shows how to use
multi−variable assignment to swap the values of two variables
(http://www.ibiblio.org/obp/thinkCSpy/chap09.htm).

•

3.5. Formatting Strings

Python supports formatting values into strings. Although this can include very complicated expressions, the most
basic usage is to insert values into a string with the %s placeholder.

String formatting in Python uses the same syntax as the sprintf function in C.

Example 3.21. Introducing String Formatting

>>> k = "uid"
>>> v = "sa"
>>> "%s=%s" % (k, v)
'uid=sa'

The whole expression evaluates to a string. The first %s is replaced by the value of k; the second %s is replaced
by the value of v. All other characters in the string (in this case, the equal sign) stay as they are.

Note that (k, v) is a tuple. I told you they were good for something.

You might be thinking that this is a lot of work just to do simple string concatentation, and you would be right, except
that string formatting isn't just concatenation. It's not even just formatting. It's also type coercion.

Example 3.22. String Formatting vs. Concatenating

>>> uid = "sa"
>>> pwd = "secret"
>>> print pwd + " is not a good password for " + uid
secret is not a good password for sa
>>> print "%s is not a good password for %s" % (pwd, uid)

Dive Into Python 25

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/explicit-joining.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap09.htm

secret is not a good password for sa
>>> userCount = 6
>>> print "Users connected: %d" % (userCount,)
Users connected: 6
>>> print "Users connected: " + userCount
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
TypeError: cannot concatenate 'str' and 'int' objects

+ is the string concatenation operator.

In this trivial case, string formatting accomplishes the same result as concatentation.

(userCount,) is a tuple with one element. Yes, the syntax is a little strange, but there's a good reason for
it: it's unambiguously a tuple. In fact, you can always include a comma after the last element when defining a
list, tuple, or dictionary, but the comma is required when defining a tuple with one element. If the comma
weren't required, Python wouldn't know whether (userCount) was a tuple with one element or just the value
of userCount.

String formatting works with integers by specifying %d instead of %s.

Trying to concatenate a string with a non−string raises an exception. Unlike string formatting, string
concatenation works only when everything is already a string.

As with printf in C, string formatting in Python is like a Swiss Army knife. There are options galore, and modifier
strings to specially format many different types of values.

Example 3.23. Formatting Numbers

>>> print "Today's stock price: %f" % 50.4625
50.462500
>>> print "Today's stock price: %.2f" % 50.4625
50.46
>>> print "Change since yesterday: %+.2f" % 1.5
+1.50

The %f string formatting option treats the value as a decimal, and prints it to six decimal places.

The ".2" modifier of the %f option truncates the value to two decimal places.

You can even combine modifiers. Adding the + modifier displays a plus or minus sign before the value. Note
that the ".2" modifier is still in place, and is padding the value to exactly two decimal places.

Further Reading on String Formatting

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the string formatting
format characters (http://www.python.org/doc/current/lib/typesseq−strings.html).

•

Effective AWK Programming (http://www−gnats.gnu.org:8080/cgi−bin/info2www?(gawk)Top) discusses all
the format characters (http://www−gnats.gnu.org:8080/cgi−bin/info2www?(gawk)Control+Letters) and
advanced string formatting techniques like specifying width, precision, and zero−padding
(http://www−gnats.gnu.org:8080/cgi−bin/info2www?(gawk)Format+Modifiers).

•

3.6. Mapping Lists

One of the most powerful features of Python is the list comprehension, which provides a compact way of mapping a
list into another list by applying a function to each of the elements of the list.

Example 3.24. Introducing List Comprehensions

Dive Into Python 26

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-strings.html
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Top
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Control+Letters
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Format+Modifiers

>>> li = [1, 9, 8, 4]
>>> [elem*2 for elem in li]
[2, 18, 16, 8]
>>> li
[1, 9, 8, 4]
>>> li = [elem*2 for elem in li]
>>> li
[2, 18, 16, 8]

To make sense of this, look at it from right to left. li is the list you're mapping. Python loops through li one
element at a time, temporarily assigning the value of each element to the variable elem. Python then applies
the function elem*2 and appends that result to the returned list.

Note that list comprehensions do not change the original list.

It is safe to assign the result of a list comprehension to the variable that you're mapping. Python constructs the
new list in memory, and when the list comprehension is complete, it assigns the result to the variable.

Here are the list comprehensions in the buildConnectionString function that you declared in Chapter 2:

["%s=%s" % (k, v) for k, v in params.items()]

First, notice that you're calling the items function of the params dictionary. This function returns a list of tuples of
all the data in the dictionary.

Example 3.25. The keys, values, and items Functions

>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> params.keys()
['server', 'uid', 'database', 'pwd']
>>> params.values()
['mpilgrim', 'sa', 'master', 'secret']
>>> params.items()
[('server', 'mpilgrim'), ('uid', 'sa'), ('database', 'master'), ('pwd', 'secret')]

The keys method of a dictionary returns a list of all the keys. The list is not in the order in
which the dictionary was defined (remember that elements in a dictionary are unordered),
but it is a list.

The values method returns a list of all the values. The list is in the same order as the list
returned by keys, so params.values()[n] == params[params.keys()[n]]
for all values of n.

The items method returns a list of tuples of the form (key, value). The list contains
all the data in the dictionary.

Now let's see what buildConnectionString does. It takes a list, params.items(), and maps it to a new list
by applying string formatting to each element. The new list will have the same number of elements as
params.items(), but each element in the new list will be a string that contains both a key and its associated value
from the params dictionary.

Example 3.26. List Comprehensions in buildConnectionString, Step by Step

>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> params.items()
[('server', 'mpilgrim'), ('uid', 'sa'), ('database', 'master'), ('pwd', 'secret')]
>>> [k for k, v in params.items()]
['server', 'uid', 'database', 'pwd']
>>> [v for k, v in params.items()]

Dive Into Python 27

['mpilgrim', 'sa', 'master', 'secret']
>>> ["%s=%s" % (k, v) for k, v in params.items()]
['server=mpilgrim', 'uid=sa', 'database=master', 'pwd=secret']

Note that you're using two variables to iterate through the params.items() list. This is another use of
multi−variable assignment. The first element of params.items() is ('server', 'mpilgrim'), so in
the first iteration of the list comprehension, k will get 'server' and v will get 'mpilgrim'. In this case,
you're ignoring the value of v and only including the value of k in the returned list, so this list comprehension
ends up being equivalent to params.keys().

Here you're doing the same thing, but ignoring the value of k, so this list comprehension ends up being
equivalent to params.values().

Combining the previous two examples with some simple string formatting, you get a list of strings that include
both the key and value of each element of the dictionary. This looks suspiciously like the output of the program.
All that remains is to join the elements in this list into a single string.

Further Reading on List Comprehensions

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses another way to map lists using the
built−in map function
(http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000).

•

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to do nested list comprehensions
(http://www.python.org/doc/current/tut/node7.html#SECTION007140000000000000000).

•

3.7. Joining Lists and Splitting Strings

You have a list of key−value pairs in the form key=value, and you want to join them into a single string. To join
any list of strings into a single string, use the join method of a string object.

Here is an example of joining a list from the buildConnectionString function:

 return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

One interesting note before you continue. I keep repeating that functions are objects, strings are objects... everything is
an object. You might have thought I meant that string variables are objects. But no, look closely at this example and
you'll see that the string ";" itself is an object, and you are calling its join method.

The join method joins the elements of the list into a single string, with each element separated by a semi−colon. The
delimiter doesn't need to be a semi−colon; it doesn't even need to be a single character. It can be any string.

join works only on lists of strings; it does not do any type coercion. Joining a list that has one or more non−string
elements will raise an exception.

Example 3.27. Output of odbchelper.py

>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> ["%s=%s" % (k, v) for k, v in params.items()]
['server=mpilgrim', 'uid=sa', 'database=master', 'pwd=secret']
>>> ";".join(["%s=%s" % (k, v) for k, v in params.items()])
'server=mpilgrim;uid=sa;database=master;pwd=secret'

This string is then returned from the odbchelper function and printed by the calling block, which gives you the
output that you marveled at when you started reading this chapter.

Dive Into Python 28

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007140000000000000000

You're probably wondering if there's an analogous method to split a string into a list. And of course there is, and it's
called split.

Example 3.28. Splitting a String

>>> li = ['server=mpilgrim', 'uid=sa', 'database=master', 'pwd=secret']
>>> s = ";".join(li)
>>> s
'server=mpilgrim;uid=sa;database=master;pwd=secret'
>>> s.split(";")
['server=mpilgrim', 'uid=sa', 'database=master', 'pwd=secret']
>>> s.split(";", 1)
['server=mpilgrim', 'uid=sa;database=master;pwd=secret']

split reverses join by splitting a string into a multi−element list. Note that the delimiter (";") is
stripped out completely; it does not appear in any of the elements of the returned list.

split takes an optional second argument, which is the number of times to split. (""Oooooh, optional
arguments..." You'll learn how to do this in your own functions in the next chapter.)

anystring.split(delimiter, 1) is a useful technique when you want to search a string for a substring and
then work with everything before the substring (which ends up in the first element of the returned list) and
everything after it (which ends up in the second element).
Further Reading on String Methods

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) answers common
questions about strings (http://www.faqts.com/knowledge−base/index.phtml/fid/480) and has a lot of example
code using strings (http://www.faqts.com/knowledge−base/index.phtml/fid/539).

•

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the string methods
(http://www.python.org/doc/current/lib/string−methods.html).

•

Python Library Reference (http://www.python.org/doc/current/lib/) documents the string module
(http://www.python.org/doc/current/lib/module−string.html).

•

The Whole Python FAQ (http://www.python.org/doc/FAQ.html) explains why join is a string method
(http://www.python.org/cgi−bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search) instead
of a list method.

•

3.7.1. Historical Note on String Methods

When I first learned Python, I expected join to be a method of a list, which would take the delimiter as an argument.
Many people feel the same way, and there's a story behind the join method. Prior to Python 1.6, strings didn't have
all these useful methods. There was a separate string module that contained all the string functions; each function
took a string as its first argument. The functions were deemed important enough to put onto the strings themselves,
which made sense for functions like lower, upper, and split. But many hard−core Python programmers objected
to the new join method, arguing that it should be a method of the list instead, or that it shouldn't move at all but
simply stay a part of the old string module (which still has a lot of useful stuff in it). I use the new join method
exclusively, but you will see code written either way, and if it really bothers you, you can use the old string.join
function instead.

3.8. Summary

The odbchelper.py program and its output should now make perfect sense.

def buildConnectionString(params):
 """Build a connection string from a dictionary of parameters.

Dive Into Python 29

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/480
http://www.faqts.com/knowledge-base/index.phtml/fid/539
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/string-methods.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-string.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search

 Returns string."""
 return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

if __name__ == "__main__":
 myParams = {"server":"mpilgrim", \
 "database":"master", \
 "uid":"sa", \
 "pwd":"secret" \
 }
 print buildConnectionString(myParams)

Here is the output of odbchelper.py:

server=mpilgrim;uid=sa;database=master;pwd=secret

Before diving into the next chapter, make sure you're comfortable doing all of these things:

Using the Python IDE to test expressions interactively•
Writing Python programs and running them from within your IDE, or from the command line•
Importing modules and calling their functions•
Declaring functions and using doc strings, local variables, and proper indentation•
Defining dictionaries, tuples, and lists•
Accessing attributes and methods of any object, including strings, lists, dictionaries, functions, and modules•
Concatenating values through string formatting•
Mapping lists into other lists using list comprehensions•
Splitting strings into lists and joining lists into strings•

Dive Into Python 30

Chapter 4. The Power Of Introspection
This chapter covers one of Python's strengths: introspection. As you know, everything in Python is an object, and
introspection is code looking at other modules and functions in memory as objects, getting information about them,
and manipulating them. Along the way, you'll define functions with no name, call functions with arguments out of
order, and reference functions whose names you don't even know ahead of time.

4.1. Diving In

Here is a complete, working Python program. You should understand a good deal about it just by looking at it. The
numbered lines illustrate concepts covered in Chapter 2, Your First Python Program. Don't worry if the rest of the
code looks intimidating; you'll learn all about it throughout this chapter.

Example 4.1. apihelper.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

def info(object, spacing=10, collapse=1):
 """Print methods and doc strings.

 Takes module, class, list, dictionary, or string."""
 methodList = [method for method in dir(object) if callable(getattr(object, method))]
 processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)
 print "\n".join(["%s %s" %
 (method.ljust(spacing),
 processFunc(str(getattr(object, method).__doc__)))
 for method in methodList])

if __name__ == "__main__":
 print info.__doc__

This module has one function, info. According to its function declaration, it takes three parameters: object,
spacing, and collapse. The last two are actually optional parameters, as you'll see shortly.

The info function has a multi−line doc string that succinctly describes the function's purpose. Note that
no return value is mentioned; this function will be used solely for its effects, rather than its value.

Code within the function is indented.

The if __name__ trick allows this program do something useful when run by itself, without interfering with
its use as a module for other programs. In this case, the program simply prints out the doc string of the
info function.

if statements use == for comparison, and parentheses are not required.
The info function is designed to be used by you, the programmer, while working in the Python IDE. It takes any
object that has functions or methods (like a module, which has functions, or a list, which has methods) and prints out
the functions and their doc strings.

Example 4.2. Sample Usage of apihelper.py

>>> from apihelper import info
>>> li = []
>>> info(li)
append L.append(object) −− append object to end

Dive Into Python 31

http://diveintopython.org/download/diveintopython-examples-5.4.zip

count L.count(value) −> integer −− return number of occurrences of value
extend L.extend(list) −− extend list by appending list elements
index L.index(value) −> integer −− return index of first occurrence of value
insert L.insert(index, object) −− insert object before index
pop L.pop([index]) −> item −− remove and return item at index (default last)
remove L.remove(value) −− remove first occurrence of value
reverse L.reverse() −− reverse *IN PLACE*
sort L.sort([cmpfunc]) −− sort *IN PLACE*; if given, cmpfunc(x, y) −> −1, 0, 1

By default the output is formatted to be easy to read. Multi−line doc strings are collapsed into a single long line,
but this option can be changed by specifying 0 for thecollapse argument. If the function names are longer than 10
characters, you can specify a larger value for thespacing argument to make the output easier to read.

Example 4.3. Advanced Usage of apihelper.py

>>> import odbchelper
>>> info(odbchelper)
buildConnectionString Build a connection string from a dictionary Returns string.
>>> info(odbchelper, 30)
buildConnectionString Build a connection string from a dictionary Returns string.
>>> info(odbchelper, 30, 0)
buildConnectionString Build a connection string from a dictionary

 Returns string.

4.2. Using Optional and Named Arguments

Python allows function arguments to have default values; if the function is called without the argument, the argument
gets its default value. Futhermore, arguments can be specified in any order by using named arguments. Stored
procedures in SQL Server Transact/SQL can do this, so if you're a SQL Server scripting guru, you can skim this part.

Here is an example of info, a function with two optional arguments:

def info(object, spacing=10, collapse=1):

spacing and collapse are optional, because they have default values defined. object is required, because it has
no default value. If info is called with only one argument, spacing defaults to 10 and collapse defaults to 1. If
info is called with two arguments, collapse still defaults to 1.

Say you want to specify a value for collapse but want to accept the default value for spacing. In most
languages, you would be out of luck, because you would need to call the function with three arguments. But in
Python, arguments can be specified by name, in any order.

Example 4.4. Valid Calls of info

info(odbchelper)
info(odbchelper, 12)
info(odbchelper, collapse=0)
info(spacing=15, object=odbchelper)

With only one argument, spacing gets its default value of 10 and collapse gets its default value of
1.

With two arguments, collapse gets its default value of 1.

Dive Into Python 32

Here you are naming the collapse argument explicitly and specifying its value. spacing still gets its
default value of 10.

Even required arguments (like object, which has no default value) can be named, and named
arguments can appear in any order.

This looks totally whacked until you realize that arguments are simply a dictionary. The "normal" method of calling
functions without argument names is actually just a shorthand where Python matches up the values with the argument
names in the order they're specified in the function declaration. And most of the time, you'll call functions the
"normal" way, but you always have the additional flexibility if you need it.

The only thing you need to do to call a function is specify a value (somehow) for each required argument; the
manner and order in which you do that is up to you.
Further Reading on Optional Arguments

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses exactly when and how default
arguments are evaluated
(http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000), which matters
when the default value is a list or an expression with side effects.

•

4.3. Using type, str, dir, and Other Built−In Functions

Python has a small set of extremely useful built−in functions. All other functions are partitioned off into modules.
This was actually a conscious design decision, to keep the core language from getting bloated like other scripting
languages (cough cough, Visual Basic).

4.3.1. The type Function

The type function returns the datatype of any arbitrary object. The possible types are listed in the types module.
This is useful for helper functions that can handle several types of data.

Example 4.5. Introducing type

>>> type(1)
<type 'int'>
>>> li = []
>>> type(li)
<type 'list'>
>>> import odbchelper
>>> type(odbchelper)
<type 'module'>
>>> import types
>>> type(odbchelper) == types.ModuleType
True

type takes anything −− and I mean anything −− and returns its datatype. Integers, strings, lists,
dictionaries, tuples, functions, classes, modules, even types are acceptable.

type can take a variable and return its datatype.

type also works on modules.

You can use the constants in the types module to compare types of objects. This is what the info
function does, as you'll see shortly.

Dive Into Python 33

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000

4.3.2. The str Function

The str coerces data into a string. Every datatype can be coerced into a string.

Example 4.6. Introducing str

>>> str(1)
'1'
>>> horsemen = ['war', 'pestilence', 'famine']
>>> horsemen
['war', 'pestilence', 'famine']
>>> horsemen.append('Powerbuilder')
>>> str(horsemen)
"['war', 'pestilence', 'famine', 'Powerbuilder']"
>>> str(odbchelper)
"<module 'odbchelper' from 'c:\\docbook\\dip\\py\\odbchelper.py'>"
>>> str(None)
'None'

For simple datatypes like integers, you would expect str to work, because almost every language has a
function to convert an integer to a string.

However, str works on any object of any type. Here it works on a list which you've constructed in bits and
pieces.

str also works on modules. Note that the string representation of the module includes the pathname of the
module on disk, so yours will be different.

A subtle but important behavior of str is that it works on None, the Python null value. It returns the string
'None'. You'll use this to your advantage in the info function, as you'll see shortly.

At the heart of the info function is the powerful dir function. dir returns a list of the attributes and methods of any
object: modules, functions, strings, lists, dictionaries... pretty much anything.

Example 4.7. Introducing dir

>>> li = []
>>> dir(li)
['append', 'count', 'extend', 'index', 'insert',
'pop', 'remove', 'reverse', 'sort']
>>> d = {}
>>> dir(d)
['clear', 'copy', 'get', 'has_key', 'items', 'keys', 'setdefault', 'update', 'values']
>>> import odbchelper
>>> dir(odbchelper)
['__builtins__', '__doc__', '__file__', '__name__', 'buildConnectionString']

li is a list, so dir(li) returns a list of all the methods of a list. Note that the returned list contains the names
of the methods as strings, not the methods themselves.

d is a dictionary, so dir(d) returns a list of the names of dictionary methods. At least one of these, keys,
should look familiar.

This is where it really gets interesting. odbchelper is a module, so dir(odbchelper) returns a list of all
kinds of stuff defined in the module, including built−in attributes, like __name__, __doc__, and whatever
other attributes and methods you define. In this case, odbchelper has only one user−defined method, the
buildConnectionString function described in Chapter 2.

Finally, the callable function takes any object and returns True if the object can be called, or False otherwise.

Dive Into Python 34

Callable objects include functions, class methods, even classes themselves. (More on classes in the next chapter.)

Example 4.8. Introducing callable

>>> import string
>>> string.punctuation
'!"#$%&\'()*+,−./:;<=>?@[\\]^_`{|}~'
>>> string.join
<function join at 00C55A7C>
>>> callable(string.punctuation)
False
>>> callable(string.join)
True
>>> print string.join.__doc__
join(list [,sep]) −> string

 Return a string composed of the words in list, with
 intervening occurrences of sep. The default separator is a
 single space.

 (joinfields and join are synonymous)

The functions in the string module are deprecated (although many people still use the join
function), but the module contains a lot of useful constants like this string.punctuation,
which contains all the standard punctuation characters.

string.join is a function that joins a list of strings.

string.punctuation is not callable; it is a string. (A string does have callable methods, but
the string itself is not callable.)

string.join is callable; it's a function that takes two arguments.

Any callable object may have a doc string. By using the callable function on each of an
object's attributes, you can determine which attributes you care about (methods, functions, classes)
and which you want to ignore (constants and so on) without knowing anything about the object
ahead of time.

4.3.3. Built−In Functions

type, str, dir, and all the rest of Python's built−in functions are grouped into a special module called
__builtin__. (That's two underscores before and after.) If it helps, you can think of Python automatically
executing from __builtin__ import * on startup, which imports all the "built−in" functions into the
namespace so you can use them directly.

The advantage of thinking like this is that you can access all the built−in functions and attributes as a group by getting
information about the __builtin__ module. And guess what, Python has a function called info. Try it yourself
and skim through the list now. We'll dive into some of the more important functions later. (Some of the built−in error
classes, like AttributeError, should already look familiar.)

Example 4.9. Built−in Attributes and Functions

>>> from apihelper import info
>>> import __builtin__
>>> info(__builtin__, 20)
ArithmeticError Base class for arithmetic errors.
AssertionError Assertion failed.
AttributeError Attribute not found.

Dive Into Python 35

EOFError Read beyond end of file.
EnvironmentError Base class for I/O related errors.
Exception Common base class for all exceptions.
FloatingPointError Floating point operation failed.
IOError I/O operation failed.

[...snip...]

Python comes with excellent reference manuals, which you should peruse thoroughly to learn all the modules Python
has to offer. But unlike most languages, where you would find yourself referring back to the manuals or man pages
to remind yourself how to use these modules, Python is largely self−documenting.
Further Reading on Built−In Functions

Python Library Reference (http://www.python.org/doc/current/lib/) documents all the built−in functions
(http://www.python.org/doc/current/lib/built−in−funcs.html) and all the built−in exceptions
(http://www.python.org/doc/current/lib/module−exceptions.html).

•

4.4. Getting Object References With getattr

You already know that Python functions are objects. What you don't know is that you can get a reference to a function
without knowing its name until run−time, by using the getattr function.

Example 4.10. Introducing getattr

>>> li = ["Larry", "Curly"]
>>> li.pop
<built−in method pop of list object at 010DF884>
>>> getattr(li, "pop")
<built−in method pop of list object at 010DF884>
>>> getattr(li, "append")("Moe")
>>> li
["Larry", "Curly", "Moe"]
>>> getattr({}, "clear")
<built−in method clear of dictionary object at 00F113D4>
>>> getattr((), "pop")
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute 'pop'

This gets a reference to the pop method of the list. Note that this is not calling the pop method; that would be
li.pop(). This is the method itself.

This also returns a reference to the pop method, but this time, the method name is specified as a string
argument to the getattr function. getattr is an incredibly useful built−in function that returns any
attribute of any object. In this case, the object is a list, and the attribute is the pop method.

In case it hasn't sunk in just how incredibly useful this is, try this: the return value of getattr is the method,
which you can then call just as if you had said li.append("Moe") directly. But you didn't call the function
directly; you specified the function name as a string instead.

getattr also works on dictionaries.

In theory, getattr would work on tuples, except that tuples have no methods, so getattr will raise an
exception no matter what attribute name you give.

Dive Into Python 36

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/built-in-funcs.html
http://www.python.org/doc/current/lib/module-exceptions.html

4.4.1. getattr with Modules

getattr isn't just for built−in datatypes. It also works on modules.

Example 4.11. The getattr Function in apihelper.py

>>> import odbchelper
>>> odbchelper.buildConnectionString
<function buildConnectionString at 00D18DD4>
>>> getattr(odbchelper, "buildConnectionString")
<function buildConnectionString at 00D18DD4>
>>> object = odbchelper
>>> method = "buildConnectionString"
>>> getattr(object, method)
<function buildConnectionString at 00D18DD4>
>>> type(getattr(object, method))
<type 'function'>
>>> import types
>>> type(getattr(object, method)) == types.FunctionType
True
>>> callable(getattr(object, method))
True

This returns a reference to the buildConnectionString function in the odbchelper module, which
you studied in Chapter 2, Your First Python Program. (The hex address you see is specific to my machine; your
output will be different.)

Using getattr, you can get the same reference to the same function. In general, getattr(object,
"attribute") is equivalent to object.attribute. If object is a module, then attribute can be
anything defined in the module: a function, class, or global variable.

And this is what you actually use in the info function. object is passed into the function as an argument;
method is a string which is the name of a method or function.

In this case, method is the name of a function, which you can prove by getting its type.

Since method is a function, it is callable.

4.4.2. getattr As a Dispatcher

A common usage pattern of getattr is as a dispatcher. For example, if you had a program that could output data in
a variety of different formats, you could define separate functions for each output format and use a single dispatch
function to call the right one.

For example, let's imagine a program that prints site statistics in HTML, XML, and plain text formats. The choice of
output format could be specified on the command line, or stored in a configuration file. A statsout module defines
three functions, output_html, output_xml, and output_text. Then the main program defines a single
output function, like this:

Example 4.12. Creating a Dispatcher with getattr

import statsout

def output(data, format="text"):
 output_function = getattr(statsout, "output_%s" % format)
 return output_function(data)

Dive Into Python 37

The output function takes one required argument, data, and one optional argument, format. If format is
not specified, it defaults to text, and you will end up calling the plain text output function.

You concatenate the format argument with "output_" to produce a function name, and then go get that
function from the statsout module. This allows you to easily extend the program later to support other
output formats, without changing this dispatch function. Just add another function to statsout named, for
instance, output_pdf, and pass "pdf" as the format into the output function.

Now you can simply call the output function in the same way as any other function. The output_function
variable is a reference to the appropriate function from the statsout module.

Did you see the bug in the previous example? This is a very loose coupling of strings and functions, and there is no
error checking. What happens if the user passes in a format that doesn't have a corresponding function defined in
statsout? Well, getattr will return None, which will be assigned to output_function instead of a valid
function, and the next line that attempts to call that function will crash and raise an exception. That's bad.

Luckily, getattr takes an optional third argument, a default value.

Example 4.13. getattr Default Values

import statsout

def output(data, format="text"):
 output_function = getattr(statsout, "output_%s" % format, statsout.output_text)
 return output_function(data)

This function call is guaranteed to work, because you added a third argument to the call to getattr.
The third argument is a default value that is returned if the attribute or method specified by the second
argument wasn't found.

As you can see, getattr is quite powerful. It is the heart of introspection, and you'll see even more powerful
examples of it in later chapters.

4.5. Filtering Lists

As you know, Python has powerful capabilities for mapping lists into other lists, via list comprehensions (Section 3.6,
�Mapping Lists�). This can be combined with a filtering mechanism, where some elements in the list are mapped
while others are skipped entirely.

Here is the list filtering syntax:

[mapping−expression for element in source−list if filter−expression]

This is an extension of the list comprehensions that you know and love. The first two thirds are the same; the last part,
starting with the if, is the filter expression. A filter expression can be any expression that evaluates true or false
(which in Python can be almost anything). Any element for which the filter expression evaluates true will be included
in the mapping. All other elements are ignored, so they are never put through the mapping expression and are not
included in the output list.

Example 4.14. Introducing List Filtering

>>> li = ["a", "mpilgrim", "foo", "b", "c", "b", "d", "d"]
>>> [elem for elem in li if len(elem) > 1]
['mpilgrim', 'foo']
>>> [elem for elem in li if elem != "b"]

Dive Into Python 38

['a', 'mpilgrim', 'foo', 'c', 'd', 'd']
>>> [elem for elem in li if li.count(elem) == 1]
['a', 'mpilgrim', 'foo', 'c']

The mapping expression here is simple (it just returns the value of each element), so concentrate on the filter
expression. As Python loops through the list, it runs each element through the filter expression. If the filter
expression is true, the element is mapped and the result of the mapping expression is included in the returned
list. Here, you are filtering out all the one−character strings, so you're left with a list of all the longer strings.

Here, you are filtering out a specific value, b. Note that this filters all occurrences of b, since each time it
comes up, the filter expression will be false.

count is a list method that returns the number of times a value occurs in a list. You might think that this filter
would eliminate duplicates from a list, returning a list containing only one copy of each value in the original
list. But it doesn't, because values that appear twice in the original list (in this case, b and d) are excluded
completely. There are ways of eliminating duplicates from a list, but filtering is not the solution.

Let's get back to this line from apihelper.py:

 methodList = [method for method in dir(object) if callable(getattr(object, method))]

This looks complicated, and it is complicated, but the basic structure is the same. The whole filter expression returns a
list, which is assigned to the methodList variable. The first half of the expression is the list mapping part. The
mapping expression is an identity expression, which it returns the value of each element. dir(object) returns a list
of object's attributes and methods −− that's the list you're mapping. So the only new part is the filter expression
after the if.

The filter expression looks scary, but it's not. You already know about callable, getattr, and in. As you saw in
the previous section, the expression getattr(object, method) returns a function object if object is a
module and method is the name of a function in that module.

So this expression takes an object (named object). Then it gets a list of the names of the object's attributes,
methods, functions, and a few other things. Then it filters that list to weed out all the stuff that you don't care about.
You do the weeding out by taking the name of each attribute/method/function and getting a reference to the real thing,
via the getattr function. Then you check to see if that object is callable, which will be any methods and functions,
both built−in (like the pop method of a list) and user−defined (like the buildConnectionString function of the
odbchelper module). You don't care about other attributes, like the __name__ attribute that's built in to every
module.

Further Reading on Filtering Lists

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses another way to filter lists using the
built−in filter function
(http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000).

•

4.6. The Peculiar Nature of and and or

In Python, and and or perform boolean logic as you would expect, but they do not return boolean values; instead,
they return one of the actual values they are comparing.

Example 4.15. Introducing and

>>> 'a' and 'b'

Dive Into Python 39

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000

'b'
>>> '' and 'b'
''
>>> 'a' and 'b' and 'c'
'c'

When using and, values are evaluated in a boolean context from left to right. 0, '', [], (), {}, and
None are false in a boolean context; everything else is true. Well, almost everything. By default,
instances of classes are true in a boolean context, but you can define special methods in your class to
make an instance evaluate to false. You'll learn all about classes and special methods in Chapter 5. If all
values are true in a boolean context, and returns the last value. In this case, and evaluates 'a', which is
true, then 'b', which is true, and returns 'b'.

If any value is false in a boolean context, and returns the first false value. In this case, '' is the first
false value.

All values are true, so and returns the last value, 'c'.

Example 4.16. Introducing or

>>> 'a' or 'b'
'a'
>>> '' or 'b'
'b'
>>> '' or [] or {}
{}
>>> def sidefx():
... print "in sidefx()"
... return 1
>>> 'a' or sidefx()
'a'

When using or, values are evaluated in a boolean context from left to right, just like and. If any value is true,
or returns that value immediately. In this case, 'a' is the first true value.

or evaluates '', which is false, then 'b', which is true, and returns 'b'.

If all values are false, or returns the last value. or evaluates '', which is false, then [], which is false, then
{}, which is false, and returns {}.

Note that or evaluates values only until it finds one that is true in a boolean context, and then it ignores the
rest. This distinction is important if some values can have side effects. Here, the function sidefx is never
called, because or evaluates 'a', which is true, and returns 'a' immediately.

If you're a C hacker, you are certainly familiar with the bool ? a : b expression, which evaluates to a ifbool is
true, and b otherwise. Because of the way and and or work in Python, you can accomplish the same thing.

4.6.1. Using the and−or Trick

Example 4.17. Introducing the and−or Trick

>>> a = "first"
>>> b = "second"
>>> 1 and a or b
'first'
>>> 0 and a or b
'second'

Dive Into Python 40

This syntax looks similar to the bool ? a : b expression in C. The entire expression is evaluated
from left to right, so the and is evaluated first. 1 and 'first' evalutes to 'first', then
'first' or 'second' evalutes to 'first'.

0 and 'first' evalutes to False, and then 0 or 'second' evaluates to 'second'.
However, since this Python expression is simply boolean logic, and not a special construct of the language, there is
one extremely important difference between this and−or trick in Python and the bool ? a : b syntax in C. If the
value of a is false, the expression will not work as you would expect it to. (Can you tell I was bitten by this? More
than once?)

Example 4.18. When the and−or Trick Fails

>>> a = ""
>>> b = "second"
>>> 1 and a or b
'second'

Since a is an empty string, which Python considers false in a boolean context, 1 and '' evalutes to '', and
then '' or 'second' evalutes to 'second'. Oops! That's not what you wanted.

The and−or trick, bool and a or b, will not work like the C expression bool ? a : b when a is false in a
boolean context.

The real trick behind the and−or trick, then, is to make sure that the value of a is never false. One common way of
doing this is to turn a into [a] and b into [b], then taking the first element of the returned list, which will be either a
or b.

Example 4.19. Using the and−or Trick Safely

>>> a = ""
>>> b = "second"
>>> (1 and [a] or [b])[0]
''

Since [a] is a non−empty list, it is never false. Even if a is 0 or '' or some other false value, the list [a] is
true because it has one element.

By now, this trick may seem like more trouble than it's worth. You could, after all, accomplish the same thing with an
if statement, so why go through all this fuss? Well, in many cases, you are choosing between two constant values, so
you can use the simpler syntax and not worry, because you know that the a value will always be true. And even if you
need to use the more complicated safe form, there are good reasons to do so. For example, there are some cases in
Python where if statements are not allowed, such as in lambda functions.

Further Reading on the and−or Trick

Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) discusses alternatives to the
and−or trick (http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310).

•

4.7. Using lambda Functions

Python supports an interesting syntax that lets you define one−line mini−functions on the fly. Borrowed from Lisp,
these so−called lambda functions can be used anywhere a function is required.

Dive Into Python 41

http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310

Example 4.20. Introducing lambda Functions

>>> def f(x):
... return x*2
...
>>> f(3)
6
>>> g = lambda x: x*2
>>> g(3)
6
>>> (lambda x: x*2)(3)
6

This is a lambda function that accomplishes the same thing as the normal function above it. Note the
abbreviated syntax here: there are no parentheses around the argument list, and the return keyword is
missing (it is implied, since the entire function can only be one expression). Also, the function has no name, but
it can be called through the variable it is assigned to.

You can use a lambda function without even assigning it to a variable. This may not be the most useful thing
in the world, but it just goes to show that a lambda is just an in−line function.

To generalize, a lambda function is a function that takes any number of arguments (including optional arguments)
and returns the value of a single expression. lambda functions can not contain commands, and they can not contain
more than one expression. Don't try to squeeze too much into a lambda function; if you need something more
complex, define a normal function instead and make it as long as you want.

lambda functions are a matter of style. Using them is never required; anywhere you could use them, you could
define a separate normal function and use that instead. I use them in places where I want to encapsulate specific,
non−reusable code without littering my code with a lot of little one−line functions.

4.7.1. Real−World lambda Functions

Here are the lambda functions in apihelper.py:

 processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)

Notice that this uses the simple form of the and−or trick, which is okay, because a lambda function is always true
in a boolean context. (That doesn't mean that a lambda function can't return a false value. The function is always
true; its return value could be anything.)

Also notice that you're using the split function with no arguments. You've already seen it used with one or two
arguments, but without any arguments it splits on whitespace.

Example 4.21. split With No Arguments

>>> s = "this is\na\ttest"
>>> print s
this is
a test
>>> print s.split()
['this', 'is', 'a', 'test']
>>> print " ".join(s.split())
'this is a test'

Dive Into Python 42

This is a multiline string, defined by escape characters instead of triple quotes. \n is a carriage return, and \t is
a tab character.

split without any arguments splits on whitespace. So three spaces, a carriage return, and a tab character are
all the same.

You can normalize whitespace by splitting a string with split and then rejoining it with join, using a single
space as a delimiter. This is what the info function does to collapse multi−line doc strings into a single
line.

So what is the info function actually doing with these lambda functions, splits, and and−or tricks?

 processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)

processFunc is now a function, but which function it is depends on the value of the collapse variable. If
collapse is true, processFunc(string) will collapse whitespace; otherwise, processFunc(string)
will return its argument unchanged.

To do this in a less robust language, like Visual Basic, you would probably create a function that took a string and a
collapse argument and used an if statement to decide whether to collapse the whitespace or not, then returned the
appropriate value. This would be inefficient, because the function would need to handle every possible case. Every
time you called it, it would need to decide whether to collapse whitespace before it could give you what you wanted.
In Python, you can take that decision logic out of the function and define a lambda function that is custom−tailored
to give you exactly (and only) what you want. This is more efficient, more elegant, and less prone to those nasty
oh−I−thought−those−arguments−were−reversed kinds of errors.

Further Reading on lambda Functions

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) discusses using
lambda to call functions indirectly (http://www.faqts.com/knowledge−base/view.phtml/aid/6081/fid/241).

•

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to access outside variables from
inside a lambda function
(http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000). (PEP 227
(http://python.sourceforge.net/peps/pep−0227.html) explains how this will change in future versions of
Python.)

•

The Whole Python FAQ (http://www.python.org/doc/FAQ.html) has examples of obfuscated one−liners using
lambda
(http://www.python.org/cgi−bin/faqw.py?query=4.15&querytype=simple&casefold=yes&req=search).

•

4.8. Putting It All Together

The last line of code, the only one you haven't deconstructed yet, is the one that does all the work. But by now the
work is easy, because everything you need is already set up just the way you need it. All the dominoes are in place; it's
time to knock them down.

This is the meat of apihelper.py:

 print "\n".join(["%s %s" %
 (method.ljust(spacing),
 processFunc(str(getattr(object, method).__doc__)))
 for method in methodList])

Note that this is one command, split over multiple lines, but it doesn't use the line continuation character (\).
Remember when I said that some expressions can be split into multiple lines without using a backslash? A list

Dive Into Python 43

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/6081/fid/241
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://python.sourceforge.net/peps/pep-0227.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.15&querytype=simple&casefold=yes&req=search

comprehension is one of those expressions, since the entire expression is contained in square brackets.

Now, let's take it from the end and work backwards. The

for method in methodList

shows that this is a list comprehension. As you know, methodList is a list of all the methods you care about in
object. So you're looping through that list with method.

Example 4.22. Getting a doc string Dynamically

>>> import odbchelper
>>> object = odbchelper
>>> method = 'buildConnectionString'
>>> getattr(object, method)
<function buildConnectionString at 010D6D74>
>>> print getattr(object, method).__doc__
Build a connection string from a dictionary of parameters.

 Returns string.

In the info function, object is the object you're getting help on, passed in as an argument.

As you're looping through methodList, method is the name of the current method.

Using the getattr function, you're getting a reference to themethod function in theobject module.

Now, printing the actual doc string of the method is easy.
The next piece of the puzzle is the use of str around the doc string. As you may recall, str is a built−in
function that coerces data into a string. But a doc string is always a string, so why bother with the str function?
The answer is that not every function has a doc string, and if it doesn't, its __doc__ attribute is None.

Example 4.23. Why Use str on a doc string?

>>> >>> def foo(): print 2
>>> >>> foo()
2
>>> >>> foo.__doc__
>>> foo.__doc__ == None
True
>>> str(foo.__doc__)
'None'

You can easily define a function that has no doc string, so its __doc__ attribute is None.
Confusingly, if you evaluate the __doc__ attribute directly, the Python IDE prints nothing at all,
which makes sense if you think about it, but is still unhelpful.

You can verify that the value of the __doc__ attribute is actually None by comparing it directly.

The str function takes the null value and returns a string representation of it, 'None'.

In SQL, you must use IS NULL instead of = NULL to compare a null value. In Python, you can use either ==
None or is None, but is None is faster.
Now that you are guaranteed to have a string, you can pass the string to processFunc, which you have already
defined as a function that either does or doesn't collapse whitespace. Now you see why it was important to use str to
convert a None value into a string representation. processFunc is assuming a string argument and calling its
split method, which would crash if you passed it None because None doesn't have a split method.

Dive Into Python 44

Stepping back even further, you see that you're using string formatting again to concatenate the return value of
processFunc with the return value of method's ljust method. This is a new string method that you haven't seen
before.

Example 4.24. Introducing ljust

>>> s = 'buildConnectionString'
>>> s.ljust(30)
'buildConnectionString '
>>> s.ljust(20)
'buildConnectionString'

ljust pads the string with spaces to the given length. This is what the info function uses to make two
columns of output and line up all the doc strings in the second column.

If the given length is smaller than the length of the string, ljust will simply return the string unchanged. It
never truncates the string.

You're almost finished. Given the padded method name from the ljust method and the (possibly collapsed) doc
string from the call to processFunc, you concatenate the two and get a single string. Since you're mapping
methodList, you end up with a list of strings. Using the join method of the string "\n", you join this list into a
single string, with each element of the list on a separate line, and print the result.

Example 4.25. Printing a List

>>> li = ['a', 'b', 'c']
>>> print "\n".join(li)
a
b
c

This is also a useful debugging trick when you're working with lists. And in Python, you're always
working with lists.

That's the last piece of the puzzle. You should now understand this code.

 print "\n".join(["%s %s" %
 (method.ljust(spacing),
 processFunc(str(getattr(object, method).__doc__)))
 for method in methodList])

4.9. Summary

The apihelper.py program and its output should now make perfect sense.

def info(object, spacing=10, collapse=1):
 """Print methods and doc strings.

 Takes module, class, list, dictionary, or string."""
 methodList = [method for method in dir(object) if callable(getattr(object, method))]
 processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)
 print "\n".join(["%s %s" %
 (method.ljust(spacing),
 processFunc(str(getattr(object, method).__doc__)))
 for method in methodList])

if __name__ == "__main__":

Dive Into Python 45

 print info.__doc__

Here is the output of apihelper.py:

>>> from apihelper import info
>>> li = []
>>> info(li)
append L.append(object) −− append object to end
count L.count(value) −> integer −− return number of occurrences of value
extend L.extend(list) −− extend list by appending list elements
index L.index(value) −> integer −− return index of first occurrence of value
insert L.insert(index, object) −− insert object before index
pop L.pop([index]) −> item −− remove and return item at index (default last)
remove L.remove(value) −− remove first occurrence of value
reverse L.reverse() −− reverse *IN PLACE*
sort L.sort([cmpfunc]) −− sort *IN PLACE*; if given, cmpfunc(x, y) −> −1, 0, 1

Before diving into the next chapter, make sure you're comfortable doing all of these things:

Defining and calling functions with optional and named arguments•
Using str to coerce any arbitrary value into a string representation•
Using getattr to get references to functions and other attributes dynamically•
Extending the list comprehension syntax to do list filtering•
Recognizing the and−or trick and using it safely•
Defining lambda functions•
Assigning functions to variables and calling the function by referencing the variable. I can't emphasize this
enough, because this mode of thought is vital to advancing your understanding of Python. You'll see more
complex applications of this concept throughout this book.

•

Dive Into Python 46

Chapter 5. Objects and Object−Orientation
This chapter, and pretty much every chapter after this, deals with object−oriented Python programming.

5.1. Diving In

Here is a complete, working Python program. Read the doc strings of the module, the classes, and the functions
to get an overview of what this program does and how it works. As usual, don't worry about the stuff you don't
understand; that's what the rest of the chapter is for.

Example 5.1. fileinfo.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

"""Framework for getting filetype−specific metadata.

Instantiate appropriate class with filename. Returned object acts like a
dictionary, with key−value pairs for each piece of metadata.
 import fileinfo
 info = fileinfo.MP3FileInfo("/music/ap/mahadeva.mp3")
 print "\\n".join(["%s=%s" % (k, v) for k, v in info.items()])

Or use listDirectory function to get info on all files in a directory.
 for info in fileinfo.listDirectory("/music/ap/", [".mp3"]):
 ...

Framework can be extended by adding classes for particular file types, e.g.
HTMLFileInfo, MPGFileInfo, DOCFileInfo. Each class is completely responsible for
parsing its files appropriately; see MP3FileInfo for example.
"""
import os
import sys
from UserDict import UserDict

def stripnulls(data):
 "strip whitespace and nulls"
 return data.replace("\00", "").strip()

class FileInfo(UserDict):
 "store file metadata"
 def __init__(self, filename=None):
 UserDict.__init__(self)
 self["name"] = filename

class MP3FileInfo(FileInfo):
 "store ID3v1.0 MP3 tags"
 tagDataMap = {"title" : (3, 33, stripnulls),
 "artist" : (33, 63, stripnulls),
 "album" : (63, 93, stripnulls),
 "year" : (93, 97, stripnulls),
 "comment" : (97, 126, stripnulls),
 "genre" : (127, 128, ord)}

 def __parse(self, filename):
 "parse ID3v1.0 tags from MP3 file"
 self.clear()
 try:

Dive Into Python 47

http://diveintopython.org/download/diveintopython-examples-5.4.zip

 fsock = open(filename, "rb", 0)
 try:
 fsock.seek(−128, 2)
 tagdata = fsock.read(128)
 finally:
 fsock.close()
 if tagdata[:3] == "TAG":
 for tag, (start, end, parseFunc) in self.tagDataMap.items():
 self[tag] = parseFunc(tagdata[start:end])
 except IOError:
 pass

 def __setitem__(self, key, item):
 if key == "name" and item:
 self.__parse(item)
 FileInfo.__setitem__(self, key, item)

def listDirectory(directory, fileExtList):
 "get list of file info objects for files of particular extensions"
 fileList = [os.path.normcase(f)
 for f in os.listdir(directory)]
 fileList = [os.path.join(directory, f)
 for f in fileList
 if os.path.splitext(f)[1] in fileExtList]
 def getFileInfoClass(filename, module=sys.modules[FileInfo.__module__]):
 "get file info class from filename extension"
 subclass = "%sFileInfo" % os.path.splitext(filename)[1].upper()[1:]
 return hasattr(module, subclass) and getattr(module, subclass) or FileInfo
 return [getFileInfoClass(f)(f) for f in fileList]

if __name__ == "__main__":
 for info in listDirectory("/music/_singles/", [".mp3"]):
 print "\n".join(["%s=%s" % (k, v) for k, v in info.items()])
 print

This program's output depends on the files on your hard drive. To get meaningful output, you'll need to change
the directory path to point to a directory of MP3 files on your own machine.

This is the output I got on my machine. Your output will be different, unless, by some startling coincidence, you share
my exact taste in music.

album=
artist=Ghost in the Machine
title=A Time Long Forgotten (Concept
genre=31
name=/music/_singles/a_time_long_forgotten_con.mp3
year=1999
comment=http://mp3.com/ghostmachine

album=Rave Mix
artist=***DJ MARY−JANE***
title=HELLRAISER****Trance from Hell
genre=31
name=/music/_singles/hellraiser.mp3
year=2000
comment=http://mp3.com/DJMARYJANE

album=Rave Mix
artist=***DJ MARY−JANE***
title=KAIRO****THE BEST GOA
genre=31
name=/music/_singles/kairo.mp3
year=2000

Dive Into Python 48

comment=http://mp3.com/DJMARYJANE

album=Journeys
artist=Masters of Balance
title=Long Way Home
genre=31
name=/music/_singles/long_way_home1.mp3
year=2000
comment=http://mp3.com/MastersofBalan

album=
artist=The Cynic Project
title=Sidewinder
genre=18
name=/music/_singles/sidewinder.mp3
year=2000
comment=http://mp3.com/cynicproject

album=Digitosis@128k
artist=VXpanded
title=Spinning
genre=255
name=/music/_singles/spinning.mp3
year=2000
comment=http://mp3.com/artists/95/vxp

5.2. Importing Modules Using from module import

Python has two ways of importing modules. Both are useful, and you should know when to use each. One way,
import module, you've already seen in Section 2.4, �Everything Is an Object�. The other way accomplishes the
same thing, but it has subtle and important differences.

Here is the basic from module import syntax:

from UserDict import UserDict

This is similar to the import module syntax that you know and love, but with an important difference: the
attributes and methods of the imported module types are imported directly into the local namespace, so they are
available directly, without qualification by module name. You can import individual items or use from module
import * to import everything.

from module import * in Python is like use module in Perl; import module in Python is like
require module in Perl.

from module import * in Python is like import module.* in Java; import module in Python is like
import module in Java.

Example 5.2. import module vs. from module import

>>> import types
>>> types.FunctionType
<type 'function'>
>>> FunctionType
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
NameError: There is no variable named 'FunctionType'
>>> from types import FunctionType

Dive Into Python 49

>>> FunctionType
<type 'function'>

The types module contains no methods; it just has attributes for each Python object type. Note that
the attribute, FunctionType, must be qualified by the module name, types.

FunctionType by itself has not been defined in this namespace; it exists only in the context of
types.

This syntax imports the attribute FunctionType from the types module directly into the local
namespace.

Now FunctionType can be accessed directly, without reference to types.
When should you use from module import?

If you will be accessing attributes and methods often and don't want to type the module name over and over,
use from module import.

•

If you want to selectively import some attributes and methods but not others, use from module import.•
If the module contains attributes or functions with the same name as ones in your module, you must use
import module to avoid name conflicts.

•

Other than that, it's just a matter of style, and you will see Python code written both ways.

Use from module import * sparingly, because it makes it difficult to determine where a particular function or
attribute came from, and that makes debugging and refactoring more difficult.
Further Reading on Module Importing Techniques

eff−bot (http://www.effbot.org/guides/) has more to say on import module vs.from module import
(http://www.effbot.org/guides/import−confusion.htm).

•

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses advanced import techniques,
including from module import *
(http://www.python.org/doc/current/tut/node8.html#SECTION008410000000000000000).

•

5.3. Defining Classes

Python is fully object−oriented: you can define your own classes, inherit from your own or built−in classes, and
instantiate the classes you've defined.

Defining a class in Python is simple. As with functions, there is no separate interface definition. Just define the class
and start coding. A Python class starts with the reserved word class, followed by the class name. Technically, that's
all that's required, since a class doesn't need to inherit from any other class.

Example 5.3. The Simplest Python Class

class Loaf:
 pass

The name of this class is Loaf, and it doesn't inherit from any other class. Class names are usually capitalized,
EachWordLikeThis, but this is only a convention, not a requirement.

This class doesn't define any methods or attributes, but syntactically, there needs to be something in the
definition, so you use pass. This is a Python reserved word that just means "move along, nothing to see here".
It's a statement that does nothing, and it's a good placeholder when you're stubbing out functions or classes.

Dive Into Python 50

http://www.effbot.org/guides/
http://www.effbot.org/guides/import-confusion.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node8.html#SECTION008410000000000000000

You probably guessed this, but everything in a class is indented, just like the code within a function, if
statement, for loop, and so forth. The first thing not indented is not in the class.

The pass statement in Python is like an empty set of braces ({}) in Java or C.
Of course, realistically, most classes will be inherited from other classes, and they will define their own class methods
and attributes. But as you've just seen, there is nothing that a class absolutely must have, other than a name. In
particular, C++ programmers may find it odd that Python classes don't have explicit constructors and destructors.
Python classes do have something similar to a constructor: the __init__ method.

Example 5.4. Defining the FileInfo Class

from UserDict import UserDict

class FileInfo(UserDict):

In Python, the ancestor of a class is simply listed in parentheses immediately after the class name. So the
FileInfo class is inherited from the UserDict class (which was imported from the UserDict
module). UserDict is a class that acts like a dictionary, allowing you to essentially subclass the
dictionary datatype and add your own behavior. (There are similar classes UserList and
UserString which allow you to subclass lists and strings.) There is a bit of black magic behind this,
which you will demystify later in this chapter when you explore the UserDict class in more depth.

In Python, the ancestor of a class is simply listed in parentheses immediately after the class name. There is no special
keyword like extends in Java.
Python supports multiple inheritance. In the parentheses following the class name, you can list as many ancestor
classes as you like, separated by commas.

5.3.1. Initializing and Coding Classes

This example shows the initialization of the FileInfo class using the __init__ method.

Example 5.5. Initializing the FileInfo Class

class FileInfo(UserDict):
 "store file metadata"
 def __init__(self, filename=None):

Classes can (and should) have doc strings too, just like modules and functions.

__init__ is called immediately after an instance of the class is created. It would be tempting but
incorrect to call this the constructor of the class. It's tempting, because it looks like a constructor (by
convention, __init__ is the first method defined for the class), acts like one (it's the first piece of
code executed in a newly created instance of the class), and even sounds like one ("init" certainly
suggests a constructor−ish nature). Incorrect, because the object has already been constructed by the
time __init__ is called, and you already have a valid reference to the new instance of the class. But
__init__ is the closest thing you're going to get to a constructor in Python, and it fills much the same
role.

The first argument of every class method, including __init__, is always a reference to the current
instance of the class. By convention, this argument is always named self. In the __init__ method,
self refers to the newly created object; in other class methods, it refers to the instance whose method
was called. Although you need to specify self explicitly when defining the method, you do not
specify it when calling the method; Python will add it for you automatically.

Dive Into Python 51

__init__ methods can take any number of arguments, and just like functions, the arguments can be
defined with default values, making them optional to the caller. In this case, filename has a default
value of None, which is the Python null value.

By convention, the first argument of any Python class method (the reference to the current instance) is called self.
This argument fills the role of the reserved word this in C++ or Java, but self is not a reserved word in Python,
merely a naming convention. Nonetheless, please don't call it anything but self; this is a very strong convention.

Example 5.6. Coding the FileInfo Class

class FileInfo(UserDict):
 "store file metadata"
 def __init__(self, filename=None):
 UserDict.__init__(self)
 self["name"] = filename

Some pseudo−object−oriented languages like Powerbuilder have a concept of "extending" constructors and
other events, where the ancestor's method is called automatically before the descendant's method is executed.
Python does not do this; you must always explicitly call the appropriate method in the ancestor class.

I told you that this class acts like a dictionary, and here is the first sign of it. You're assigning the argument
filename as the value of this object's name key.

Note that the __init__ method never returns a value.

5.3.2. Knowing When to Use self and __init__

When defining your class methods, you must explicitly list self as the first argument for each method, including
__init__. When you call a method of an ancestor class from within your class, you must include the self
argument. But when you call your class method from outside, you do not specify anything for the self argument;
you skip it entirely, and Python automatically adds the instance reference for you. I am aware that this is confusing at
first; it's not really inconsistent, but it may appear inconsistent because it relies on a distinction (between bound and
unbound methods) that you don't know about yet.

Whew. I realize that's a lot to absorb, but you'll get the hang of it. All Python classes work the same way, so once you
learn one, you've learned them all. If you forget everything else, remember this one thing, because I promise it will
trip you up:

__init__ methods are optional, but when you define one, you must remember to explicitly call the ancestor's
__init__ method (if it defines one). This is more generally true: whenever a descendant wants to extend the
behavior of the ancestor, the descendant method must explicitly call the ancestor method at the proper time, with the
proper arguments.
Further Reading on Python Classes

Learning to Program (http://www.freenetpages.co.uk/hp/alan.gauld/) has a gentler introduction to classes
(http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm).

•

How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) shows how to use classes to
model compound datatypes (http://www.ibiblio.org/obp/thinkCSpy/chap12.htm).

•

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) has an in−depth look at classes, namespaces,
and inheritance (http://www.python.org/doc/current/tut/node11.html).

•

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) answers common
questions about classes (http://www.faqts.com/knowledge−base/index.phtml/fid/242).

•

Dive Into Python 52

http://www.freenetpages.co.uk/hp/alan.gauld/
http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap12.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/242

5.4. Instantiating Classes

Instantiating classes in Python is straightforward. To instantiate a class, simply call the class as if it were a function,
passing the arguments that the __init__ method defines. The return value will be the newly created object.

Example 5.7. Creating a FileInfo Instance

>>> import fileinfo
>>> f = fileinfo.FileInfo("/music/_singles/kairo.mp3")
>>> f.__class__
<class fileinfo.FileInfo at 010EC204>
>>> f.__doc__
'store file metadata'
>>> f
{'name': '/music/_singles/kairo.mp3'}

You are creating an instance of the FileInfo class (defined in the fileinfo module) and assigning the
newly created instance to the variable f. You are passing one parameter, /music/_singles/kairo.mp3,
which will end up as the filename argument in FileInfo's __init__ method.

Every class instance has a built−in attribute, __class__, which is the object's class. (Note that the
representation of this includes the physical address of the instance on my machine; your representation will be
different.) Java programmers may be familiar with the Class class, which contains methods like getName
and getSuperclass to get metadata information about an object. In Python, this kind of metadata is
available directly on the object itself through attributes like __class__, __name__, and __bases__.

You can access the instance's doc string just as with a function or a module. All instances of a class share
the same doc string.

Remember when the __init__ method assigned its filename argument to self["name"]? Well, here's
the result. The arguments you pass when you create the class instance get sent right along to the __init__
method (along with the object reference, self, which Python adds for free).

In Python, simply call a class as if it were a function to create a new instance of the class. There is no explicit new
operator like C++ or Java.

5.4.1. Garbage Collection

If creating new instances is easy, destroying them is even easier. In general, there is no need to explicitly free
instances, because they are freed automatically when the variables assigned to them go out of scope. Memory leaks
are rare in Python.

Example 5.8. Trying to Implement a Memory Leak

>>> def leakmem():
... f = fileinfo.FileInfo('/music/_singles/kairo.mp3')
...
>>> for i in range(100):
... leakmem()

Every time the leakmem function is called, you are creating an instance of FileInfo and assigning it
to the variable f, which is a local variable within the function. Then the function ends without ever
freeing f, so you would expect a memory leak, but you would be wrong. When the function ends, the
local variable f goes out of scope. At this point, there are no longer any references to the newly created
instance of FileInfo (since you never assigned it to anything other than f), so Python destroys the

Dive Into Python 53

instance for us.

No matter how many times you call the leakmem function, it will never leak memory, because every
time, Python will destroy the newly created FileInfo class before returning from leakmem.

The technical term for this form of garbage collection is "reference counting". Python keeps a list of references to
every instance created. In the above example, there was only one reference to the FileInfo instance: the local
variable f. When the function ends, the variable f goes out of scope, so the reference count drops to 0, and Python
destroys the instance automatically.

In previous versions of Python, there were situations where reference counting failed, and Python couldn't clean up
after you. If you created two instances that referenced each other (for instance, a doubly−linked list, where each node
has a pointer to the previous and next node in the list), neither instance would ever be destroyed automatically because
Python (correctly) believed that there is always a reference to each instance. Python 2.0 has an additional form of
garbage collection called "mark−and−sweep" which is smart enough to notice this virtual gridlock and clean up
circular references correctly.

As a former philosophy major, it disturbs me to think that things disappear when no one is looking at them, but that's
exactly what happens in Python. In general, you can simply forget about memory management and let Python clean
up after you.

Further Reading on Garbage Collection

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes built−in attributes like
__class__ (http://www.python.org/doc/current/lib/specialattrs.html).

•

Python Library Reference (http://www.python.org/doc/current/lib/) documents the gc module
(http://www.python.org/doc/current/lib/module−gc.html), which gives you low−level control over Python's
garbage collection.

•

5.5. Exploring UserDict: A Wrapper Class

As you've seen, FileInfo is a class that acts like a dictionary. To explore this further, let's look at the UserDict
class in the UserDict module, which is the ancestor of the FileInfo class. This is nothing special; the class is
written in Python and stored in a .py file, just like any other Python code. In particular, it's stored in the lib
directory in your Python installation.

In the ActivePython IDE on Windows, you can quickly open any module in your library path by selecting
File−>Locate... (Ctrl−L).

Example 5.9. Defining the UserDict Class

class UserDict:
 def __init__(self, dict=None):
 self.data = {}
 if dict is not None: self.update(dict)

Note that UserDict is a base class, not inherited from any other class.

This is the __init__ method that you overrode in the FileInfo class. Note that the argument list in
this ancestor class is different than the descendant. That's okay; each subclass can have its own set of
arguments, as long as it calls the ancestor with the correct arguments. Here the ancestor class has a way
to define initial values (by passing a dictionary in the dict argument) which the FileInfo does not
use.

Dive Into Python 54

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/specialattrs.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-gc.html

Python supports data attributes (called "instance variables" in Java and Powerbuilder, and "member
variables" in C++). Data attributes are pieces of data held by a specific instance of a class. In this case,
each instance of UserDict will have a data attribute data. To reference this attribute from code
outside the class, you qualify it with the instance name, instance.data, in the same way that you
qualify a function with its module name. To reference a data attribute from within the class, you use
self as the qualifier. By convention, all data attributes are initialized to reasonable values in the
__init__ method. However, this is not required, since data attributes, like local variables, spring into
existence when they are first assigned a value.

The update method is a dictionary duplicator: it copies all the keys and values from one dictionary to
another. This does not clear the target dictionary first; if the target dictionary already has some keys, the
ones from the source dictionary will be overwritten, but others will be left untouched. Think of update
as a merge function, not a copy function.

This is a syntax you may not have seen before (I haven't used it in the examples in this book). It's an if
statement, but instead of having an indented block starting on the next line, there is just a single
statement on the same line, after the colon. This is perfectly legal syntax, which is just a shortcut you
can use when you have only one statement in a block. (It's like specifying a single statement without
braces in C++.) You can use this syntax, or you can have indented code on subsequent lines, but you
can't do both for the same block.

Java and Powerbuilder support function overloading by argument list, i.e. one class can have multiple methods with
the same name but a different number of arguments, or arguments of different types. Other languages (most notably
PL/SQL) even support function overloading by argument name; i.e. one class can have multiple methods with the
same name and the same number of arguments of the same type but different argument names. Python supports
neither of these; it has no form of function overloading whatsoever. Methods are defined solely by their name, and
there can be only one method per class with a given name. So if a descendant class has an __init__ method, it
always overrides the ancestor __init__ method, even if the descendant defines it with a different argument list.
And the same rule applies to any other method.

Guido, the original author of Python, explains method overriding this way: "Derived classes may override methods
of their base classes. Because methods have no special privileges when calling other methods of the same object, a
method of a base class that calls another method defined in the same base class, may in fact end up calling a method
of a derived class that overrides it. (For C++ programmers: all methods in Python are effectively virtual.)" If that
doesn't make sense to you (it confuses the hell out of me), feel free to ignore it. I just thought I'd pass it along.

Always assign an initial value to all of an instance's data attributes in the __init__ method. It will save you hours
of debugging later, tracking down AttributeError exceptions because you're referencing uninitialized (and
therefore non−existent) attributes.

Example 5.10. UserDict Normal Methods

 def clear(self): self.data.clear()
 def copy(self):
 if self.__class__ is UserDict:
 return UserDict(self.data)
 import copy
 return copy.copy(self)
 def keys(self): return self.data.keys()
 def items(self): return self.data.items()
 def values(self): return self.data.values()

clear is a normal class method; it is publicly available to be called by anyone at any time. Notice that clear,
like all class methods, has self as its first argument. (Remember that you don't include self when you call
the method; it's something that Python adds for you.) Also note the basic technique of this wrapper class: store
a real dictionary (data) as a data attribute, define all the methods that a real dictionary has, and have each
class method redirect to the corresponding method on the real dictionary. (In case you'd forgotten, a dictionary's

Dive Into Python 55

clear method deletes all of its keys and their associated values.)

The copy method of a real dictionary returns a new dictionary that is an exact duplicate of the original (all the
same key−value pairs). But UserDict can't simply redirect to self.data.copy, because that method
returns a real dictionary, and what you want is to return a new instance that is the same class as self.

You use the __class__ attribute to see if self is a UserDict; if so, you're golden, because you know how
to copy a UserDict: just create a new UserDict and give it the real dictionary that you've squirreled away
in self.data. Then you immediately return the new UserDict you don't even get to the import copy
on the next line.

If self.__class__ is not UserDict, then self must be some subclass of UserDict (like maybe
FileInfo), in which case life gets trickier. UserDict doesn't know how to make an exact copy of one of its
descendants; there could, for instance, be other data attributes defined in the subclass, so you would need to
iterate through them and make sure to copy all of them. Luckily, Python comes with a module to do exactly
this, and it's called copy. I won't go into the details here (though it's a wicked cool module, if you're ever
inclined to dive into it on your own). Suffice it to say that copy can copy arbitrary Python objects, and that's
how you're using it here.

The rest of the methods are straightforward, redirecting the calls to the built−in methods on self.data.

In versions of Python prior to 2.2, you could not directly subclass built−in datatypes like strings, lists, and
dictionaries. To compensate for this, Python comes with wrapper classes that mimic the behavior of these built−in
datatypes: UserString, UserList, and UserDict. Using a combination of normal and special methods, the
UserDict class does an excellent imitation of a dictionary. In Python 2.2 and later, you can inherit classes directly
from built−in datatypes like dict. An example of this is given in the examples that come with this book, in
fileinfo_fromdict.py.
In Python, you can inherit directly from the dict built−in datatype, as shown in this example. There are three
differences here compared to the UserDict version.

Example 5.11. Inheriting Directly from Built−In Datatype dict

class FileInfo(dict):
 "store file metadata"
 def __init__(self, filename=None):
 self["name"] = filename

The first difference is that you don't need to import the UserDict module, since dict is a built−in datatype
and is always available. The second is that you are inheriting from dict directly, instead of from
UserDict.UserDict.

The third difference is subtle but important. Because of the way UserDict works internally, it requires you to
manually call its __init__ method to properly initialize its internal data structures. dict does not work like
this; it is not a wrapper, and it requires no explicit initialization.

Further Reading on UserDict

Python Library Reference (http://www.python.org/doc/current/lib/) documents the UserDict module
(http://www.python.org/doc/current/lib/module−UserDict.html) and the copy module
(http://www.python.org/doc/current/lib/module−copy.html).

•

5.6. Special Class Methods

In addition to normal class methods, there are a number of special methods that Python classes can define. Instead of
being called directly by your code (like normal methods), special methods are called for you by Python in particular
circumstances or when specific syntax is used.

Dive Into Python 56

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-UserDict.html
http://www.python.org/doc/current/lib/module-copy.html

As you saw in the previous section, normal methods go a long way towards wrapping a dictionary in a class. But
normal methods alone are not enough, because there are a lot of things you can do with dictionaries besides call
methods on them. For starters, you can get and set items with a syntax that doesn't include explicitly invoking
methods. This is where special class methods come in: they provide a way to map non−method−calling syntax into
method calls.

5.6.1. Getting and Setting Items

Example 5.12. The __getitem__ Special Method

 def __getitem__(self, key): return self.data[key]

>>> f = fileinfo.FileInfo("/music/_singles/kairo.mp3")
>>> f
{'name':'/music/_singles/kairo.mp3'}
>>> f.__getitem__("name")
'/music/_singles/kairo.mp3'
>>> f["name"]
'/music/_singles/kairo.mp3'

The __getitem__ special method looks simple enough. Like the normal methods clear, keys, and
values, it just redirects to the dictionary to return its value. But how does it get called? Well, you can call
__getitem__ directly, but in practice you wouldn't actually do that; I'm just doing it here to show you how it
works. The right way to use __getitem__ is to get Python to call it for you.

This looks just like the syntax you would use to get a dictionary value, and in fact it returns the value you
would expect. But here's the missing link: under the covers, Python has converted this syntax to the method call
f.__getitem__("name"). That's why __getitem__ is a special class method; not only can you call it
yourself, you can get Python to call it for you by using the right syntax.

Of course, Python has a __setitem__ special method to go along with __getitem__, as shown in the next
example.

Example 5.13. The __setitem__ Special Method

 def __setitem__(self, key, item): self.data[key] = item

>>> f
{'name':'/music/_singles/kairo.mp3'}
>>> f.__setitem__("genre", 31)
>>> f
{'name':'/music/_singles/kairo.mp3', 'genre':31}
>>> f["genre"] = 32
>>> f
{'name':'/music/_singles/kairo.mp3', 'genre':32}

Like the __getitem__ method, __setitem__ simply redirects to the real dictionary
self.data to do its work. And like __getitem__, you wouldn't ordinarily call it directly
like this; Python calls __setitem__ for you when you use the right syntax.

This looks like regular dictionary syntax, except of course that f is really a class that's trying
very hard to masquerade as a dictionary, and __setitem__ is an essential part of that
masquerade. This line of code actually calls f.__setitem__("genre", 32) under the
covers.

Dive Into Python 57

__setitem__ is a special class method because it gets called for you, but it's still a class method. Just as easily as
the __setitem__ method was defined in UserDict, you can redefine it in the descendant class to override the
ancestor method. This allows you to define classes that act like dictionaries in some ways but define their own
behavior above and beyond the built−in dictionary.

This concept is the basis of the entire framework you're studying in this chapter. Each file type can have a handler
class that knows how to get metadata from a particular type of file. Once some attributes (like the file's name and
location) are known, the handler class knows how to derive other attributes automatically. This is done by overriding
the __setitem__ method, checking for particular keys, and adding additional processing when they are found.

For example, MP3FileInfo is a descendant of FileInfo. When an MP3FileInfo's name is set, it doesn't just
set the name key (like the ancestor FileInfo does); it also looks in the file itself for MP3 tags and populates a
whole set of keys. The next example shows how this works.

Example 5.14. Overriding __setitem__ in MP3FileInfo

 def __setitem__(self, key, item):
 if key == "name" and item:
 self.__parse(item)
 FileInfo.__setitem__(self, key, item)

Notice that this __setitem__ method is defined exactly the same way as the ancestor method. This is
important, since Python will be calling the method for you, and it expects it to be defined with a certain number
of arguments. (Technically speaking, the names of the arguments don't matter; only the number of arguments is
important.)

Here's the crux of the entire MP3FileInfo class: if you're assigning a value to the name key, you want to do
something extra.

The extra processing you do for names is encapsulated in the __parse method. This is another class method
defined in MP3FileInfo, and when you call it, you qualify it with self. Just calling __parse would look
for a normal function defined outside the class, which is not what you want. Calling self.__parse will look
for a class method defined within the class. This isn't anything new; you reference data attributes the same way.

After doing this extra processing, you want to call the ancestor method. Remember that this is never done for
you in Python; you must do it manually. Note that you're calling the immediate ancestor, FileInfo, even
though it doesn't have a __setitem__ method. That's okay, because Python will walk up the ancestor tree
until it finds a class with the method you're calling, so this line of code will eventually find and call the
__setitem__ defined in UserDict.

When accessing data attributes within a class, you need to qualify the attribute name: self.attribute. When
calling other methods within a class, you need to qualify the method name: self.method.

Example 5.15. Setting an MP3FileInfo's name

>>> import fileinfo
>>> mp3file = fileinfo.MP3FileInfo()
>>> mp3file
{'name':None}
>>> mp3file["name"] = "/music/_singles/kairo.mp3"
>>> mp3file
{'album': 'Rave Mix', 'artist': '***DJ MARY−JANE***', 'genre': 31,
'title': 'KAIRO****THE BEST GOA', 'name': '/music/_singles/kairo.mp3',
'year': '2000', 'comment': 'http://mp3.com/DJMARYJANE'}
>>> mp3file["name"] = "/music/_singles/sidewinder.mp3"
>>> mp3file
{'album': '', 'artist': 'The Cynic Project', 'genre': 18, 'title': 'Sidewinder',

Dive Into Python 58

'name': '/music/_singles/sidewinder.mp3', 'year': '2000',
'comment': 'http://mp3.com/cynicproject'}

First, you create an instance of MP3FileInfo, without passing it a filename. (You can get away with
this because the filename argument of the __init__ method is optional.) Since MP3FileInfo
has no __init__ method of its own, Python walks up the ancestor tree and finds the __init__
method of FileInfo. This __init__ method manually calls the __init__ method of
UserDict and then sets the name key to filename, which is None, since you didn't pass a
filename. Thus, mp3file initially looks like a dictionary with one key, name, whose value is None.

Now the real fun begins. Setting the name key of mp3file triggers the __setitem__ method on
MP3FileInfo (not UserDict), which notices that you're setting the name key with a real value
and calls self.__parse. Although you haven't traced through the __parse method yet, you can
see from the output that it sets several other keys: album, artist, genre, title, year, and
comment.

Modifying the name key will go through the same process again: Python calls __setitem__, which
calls self.__parse, which sets all the other keys.

5.7. Advanced Special Class Methods

Python has more special methods than just __getitem__ and __setitem__. Some of them let you emulate
functionality that you may not even know about.

This example shows some of the other special methods in UserDict.

Example 5.16. More Special Methods in UserDict

 def __repr__(self): return repr(self.data)
 def __cmp__(self, dict):
 if isinstance(dict, UserDict):
 return cmp(self.data, dict.data)
 else:
 return cmp(self.data, dict)
 def __len__(self): return len(self.data)
 def __delitem__(self, key): del self.data[key]

__repr__ is a special method that is called when you call repr(instance). The repr function
is a built−in function that returns a string representation of an object. It works on any object, not just
class instances. You're already intimately familiar with repr and you don't even know it. In the
interactive window, when you type just a variable name and press the ENTER key, Python uses repr
to display the variable's value. Go create a dictionary d with some data and then print repr(d) to
see for yourself.

__cmp__ is called when you compare class instances. In general, you can compare any two Python
objects, not just class instances, by using ==. There are rules that define when built−in datatypes are
considered equal; for instance, dictionaries are equal when they have all the same keys and values, and
strings are equal when they are the same length and contain the same sequence of characters. For class
instances, you can define the __cmp__ method and code the comparison logic yourself, and then you
can use == to compare instances of your class and Python will call your __cmp__ special method for
you.

__len__ is called when you call len(instance). The len function is a built−in function that
returns the length of an object. It works on any object that could reasonably be thought of as having a
length. The len of a string is its number of characters; the len of a dictionary is its number of keys;
the len of a list or tuple is its number of elements. For class instances, define the __len__ method

Dive Into Python 59

and code the length calculation yourself, and then call len(instance) and Python will call your
__len__ special method for you.

__delitem__ is called when you call del instance[key], which you may remember as the
way to delete individual items from a dictionary. When you use del on a class instance, Python calls
the __delitem__ special method for you.

In Java, you determine whether two string variables reference the same physical memory location by using str1
== str2. This is called object identity, and it is written in Python as str1 is str2. To compare string values in
Java, you would use str1.equals(str2); in Python, you would use str1 == str2. Java programmers who
have been taught to believe that the world is a better place because == in Java compares by identity instead of by
value may have a difficult time adjusting to Python's lack of such "gotchas".
At this point, you may be thinking, "All this work just to do something in a class that I can do with a built−in
datatype." And it's true that life would be easier (and the entire UserDict class would be unnecessary) if you could
inherit from built−in datatypes like a dictionary. But even if you could, special methods would still be useful, because
they can be used in any class, not just wrapper classes like UserDict.

Special methods mean that any class can store key/value pairs like a dictionary, just by defining the __setitem__
method. Any class can act like a sequence, just by defining the __getitem__ method. Any class that defines the
__cmp__ method can be compared with ==. And if your class represents something that has a length, don't define a
GetLength method; define the __len__ method and use len(instance).

While other object−oriented languages only let you define the physical model of an object ("this object has a
GetLength method"), Python's special class methods like __len__ allow you to define the logical model of an
object ("this object has a length").
Python has a lot of other special methods. There's a whole set of them that let classes act like numbers, allowing you
to add, subtract, and do other arithmetic operations on class instances. (The canonical example of this is a class that
represents complex numbers, numbers with both real and imaginary components.) The __call__ method lets a class
act like a function, allowing you to call a class instance directly. And there are other special methods that allow
classes to have read−only and write−only data attributes; you'll talk more about those in later chapters.

Further Reading on Special Class Methods

Python Reference Manual (http://www.python.org/doc/current/ref/) documents all the special class methods
(http://www.python.org/doc/current/ref/specialnames.html).

•

5.8. Introducing Class Attributes

You already know about data attributes, which are variables owned by a specific instance of a class. Python also
supports class attributes, which are variables owned by the class itself.

Example 5.17. Introducing Class Attributes

class MP3FileInfo(FileInfo):
 "store ID3v1.0 MP3 tags"
 tagDataMap = {"title" : (3, 33, stripnulls),
 "artist" : (33, 63, stripnulls),
 "album" : (63, 93, stripnulls),
 "year" : (93, 97, stripnulls),
 "comment" : (97, 126, stripnulls),
 "genre" : (127, 128, ord)}

Dive Into Python 60

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/specialnames.html

>>> import fileinfo
>>> fileinfo.MP3FileInfo
<class fileinfo.MP3FileInfo at 01257FDC>
>>> fileinfo.MP3FileInfo.tagDataMap
{'title': (3, 33, <function stripnulls at 0260C8D4>),
'genre': (127, 128, <built−in function ord>),
'artist': (33, 63, <function stripnulls at 0260C8D4>),
'year': (93, 97, <function stripnulls at 0260C8D4>),
'comment': (97, 126, <function stripnulls at 0260C8D4>),
'album': (63, 93, <function stripnulls at 0260C8D4>)}
>>> m = fileinfo.MP3FileInfo()
>>> m.tagDataMap
{'title': (3, 33, <function stripnulls at 0260C8D4>),
'genre': (127, 128, <built−in function ord>),
'artist': (33, 63, <function stripnulls at 0260C8D4>),
'year': (93, 97, <function stripnulls at 0260C8D4>),
'comment': (97, 126, <function stripnulls at 0260C8D4>),
'album': (63, 93, <function stripnulls at 0260C8D4>)}

MP3FileInfo is the class itself, not any particular instance of the class.

tagDataMap is a class attribute: literally, an attribute of the class. It is available before creating any
instances of the class.

Class attributes are available both through direct reference to the class and through any instance of the
class.

In Java, both static variables (called class attributes in Python) and instance variables (called data attributes in
Python) are defined immediately after the class definition (one with the static keyword, one without). In Python,
only class attributes can be defined here; data attributes are defined in the __init__ method.
Class attributes can be used as class−level constants (which is how you use them in MP3FileInfo), but they are not
really constants. You can also change them.

There are no constants in Python. Everything can be changed if you try hard enough. This fits with one of the core
principles of Python: bad behavior should be discouraged but not banned. If you really want to change the value of
None, you can do it, but don't come running to me when your code is impossible to debug.

Example 5.18. Modifying Class Attributes

>>> class counter:
... count = 0
... def __init__(self):
... self.__class__.count += 1
...
>>> counter
<class __main__.counter at 010EAECC>
>>> counter.count
0
>>> c = counter()
>>> c.count
1
>>> counter.count
1
>>> d = counter()
>>> d.count
2
>>> c.count
2
>>> counter.count

Dive Into Python 61

2

count is a class attribute of the counter class.

__class__ is a built−in attribute of every class instance (of every class). It is a reference to the class that
self is an instance of (in this case, the counter class).

Because count is a class attribute, it is available through direct reference to the class, before you have created
any instances of the class.

Creating an instance of the class calls the __init__ method, which increments the class attribute count by
1. This affects the class itself, not just the newly created instance.

Creating a second instance will increment the class attribute count again. Notice how the class attribute is
shared by the class and all instances of the class.

5.9. Private Functions

Like most languages, Python has the concept of private elements:

Private functions, which can't be called from outside their module•
Private class methods, which can't be called from outside their class•
Private attributes, which can't be accessed from outside their class.•

Unlike in most languages, whether a Python function, method, or attribute is private or public is determined entirely
by its name.

If the name of a Python function, class method, or attribute starts with (but doesn't end with) two underscores, it's
private; everything else is public. Python has no concept of protected class methods (accessible only in their own class
and descendant classes). Class methods are either private (accessible only in their own class) or public (accessible
from anywhere).

In MP3FileInfo, there are two methods: __parse and __setitem__. As you have already discussed,
__setitem__ is a special method; normally, you would call it indirectly by using the dictionary syntax on a class
instance, but it is public, and you could call it directly (even from outside the fileinfo module) if you had a really
good reason. However, __parse is private, because it has two underscores at the beginning of its name.

In Python, all special methods (like __setitem__) and built−in attributes (like __doc__) follow a standard
naming convention: they both start with and end with two underscores. Don't name your own methods and attributes
this way, because it will only confuse you (and others) later.

Example 5.19. Trying to Call a Private Method

>>> import fileinfo
>>> m = fileinfo.MP3FileInfo()
>>> m.__parse("/music/_singles/kairo.mp3")
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
AttributeError: 'MP3FileInfo' instance has no attribute '__parse'

If you try to call a private method, Python will raise a slightly misleading exception, saying that the method
does not exist. Of course it does exist, but it's private, so it's not accessible outside the class.Strictly speaking,
private methods are accessible outside their class, just not easily accessible. Nothing in Python is truly private;
internally, the names of private methods and attributes are mangled and unmangled on the fly to make them
seem inaccessible by their given names. You can access the __parse method of the MP3FileInfo class by

Dive Into Python 62

the name _MP3FileInfo__parse. Acknowledge that this is interesting, but promise to never, ever do it in
real code. Private methods are private for a reason, but like many other things in Python, their privateness is
ultimately a matter of convention, not force.

Further Reading on Private Functions

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses the inner workings of private
variables (http://www.python.org/doc/current/tut/node11.html#SECTION0011600000000000000000).

•

5.10. Summary

That's it for the hard−core object trickery. You'll see a real−world application of special class methods in Chapter 12,
which uses getattr to create a proxy to a remote web service.

The next chapter will continue using this code sample to explore other Python concepts, such as exceptions, file
objects, and for loops.

Before diving into the next chapter, make sure you're comfortable doing all of these things:

Importing modules using either import module or from module import•
Defining and instantiating classes•
Defining __init__ methods and other special class methods, and understanding when they are called•
Subclassing UserDict to define classes that act like dictionaries•
Defining data attributes and class attributes, and understanding the differences between them•
Defining private attributes and methods•

Dive Into Python 63

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html#SECTION0011600000000000000000

Chapter 6. Exceptions and File Handling
In this chapter, you will dive into exceptions, file objects, for loops, and the os and sys modules. If you've used
exceptions in another programming language, you can skim the first section to get a sense of Python's syntax. Be sure
to tune in again for file handling.

6.1. Handling Exceptions

Like many other programming languages, Python has exception handling via try...except blocks.

Python uses try...except to handle exceptions and raise to generate them. Java and C++ use try...catch
to handle exceptions, and throw to generate them.
Exceptions are everywhere in Python. Virtually every module in the standard Python library uses them, and Python
itself will raise them in a lot of different circumstances. You've already seen them repeatedly throughout this book.

Accessing a non−existent dictionary key will raise a KeyError exception.•
Searching a list for a non−existent value will raise a ValueError exception.•
Calling a non−existent method will raise an AttributeError exception.•
Referencing a non−existent variable will raise a NameError exception.•
Mixing datatypes without coercion will raise a TypeError exception.•

In each of these cases, you were simply playing around in the Python IDE: an error occurred, the exception was
printed (depending on your IDE, perhaps in an intentionally jarring shade of red), and that was that. This is called an
unhandled exception. When the exception was raised, there was no code to explicitly notice it and deal with it, so it
bubbled its way back to the default behavior built in to Python, which is to spit out some debugging information and
give up. In the IDE, that's no big deal, but if that happened while your actual Python program was running, the entire
program would come to a screeching halt.

An exception doesn't need result in a complete program crash, though. Exceptions, when raised, can be handled.
Sometimes an exception is really because you have a bug in your code (like accessing a variable that doesn't exist),
but many times, an exception is something you can anticipate. If you're opening a file, it might not exist. If you're
connecting to a database, it might be unavailable, or you might not have the correct security credentials to access it. If
you know a line of code may raise an exception, you should handle the exception using a try...except block.

Example 6.1. Opening a Non−Existent File

>>> fsock = open("/notthere", "r")
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
IOError: [Errno 2] No such file or directory: '/notthere'
>>> try:
... fsock = open("/notthere")
... except IOError:
... print "The file does not exist, exiting gracefully"
... print "This line will always print"
The file does not exist, exiting gracefully
This line will always print

Using the built−in open function, you can try to open a file for reading (more on open in the next section).
But the file doesn't exist, so this raises the IOError exception. Since you haven't provided any explicit check

Dive Into Python 64

for an IOError exception, Python just prints out some debugging information about what happened and then
gives up.

You're trying to open the same non−existent file, but this time you're doing it within a try...except block.

When the open method raises an IOError exception, you're ready for it. The except IOError: line
catches the exception and executes your own block of code, which in this case just prints a more pleasant error
message.

Once an exception has been handled, processing continues normally on the first line after the try...except
block. Note that this line will always print, whether or not an exception occurs. If you really did have a file
called notthere in your root directory, the call to open would succeed, the except clause would be
ignored, and this line would still be executed.

Exceptions may seem unfriendly (after all, if you don't catch the exception, your entire program will crash), but
consider the alternative. Would you rather get back an unusable file object to a non−existent file? You'd need to check
its validity somehow anyway, and if you forgot, somewhere down the line, your program would give you strange
errors somewhere down the line that you would need to trace back to the source. I'm sure you've experienced this, and
you know it's not fun. With exceptions, errors occur immediately, and you can handle them in a standard way at the
source of the problem.

6.1.1. Using Exceptions For Other Purposes

There are a lot of other uses for exceptions besides handling actual error conditions. A common use in the standard
Python library is to try to import a module, and then check whether it worked. Importing a module that does not exist
will raise an ImportError exception. You can use this to define multiple levels of functionality based on which
modules are available at run−time, or to support multiple platforms (where platform−specific code is separated into
different modules).

You can also define your own exceptions by creating a class that inherits from the built−in Exception class, and
then raise your exceptions with the raise command. See the further reading section if you're interested in doing this.

The next example demonstrates how to use an exception to support platform−specific functionality. This code comes
from the getpass module, a wrapper module for getting a password from the user. Getting a password is
accomplished differently on UNIX, Windows, and Mac OS platforms, but this code encapsulates all of those
differences.

Example 6.2. Supporting Platform−Specific Functionality

 # Bind the name getpass to the appropriate function
 try:
 import termios, TERMIOS
 except ImportError:
 try:
 import msvcrt
 except ImportError:
 try:
 from EasyDialogs import AskPassword
 except ImportError:
 getpass = default_getpass
 else:
 getpass = AskPassword
 else:
 getpass = win_getpass
 else:
 getpass = unix_getpass

Dive Into Python 65

termios is a UNIX−specific module that provides low−level control over the input terminal. If this module is
not available (because it's not on your system, or your system doesn't support it), the import fails and Python
raises an ImportError, which you catch.

OK, you didn't have termios, so let's try msvcrt, which is a Windows−specific module that provides an
API to many useful functions in the Microsoft Visual C++ runtime services. If this import fails, Python will
raise an ImportError, which you catch.

If the first two didn't work, you try to import a function from EasyDialogs, which is a Mac OS−specific
module that provides functions to pop up dialog boxes of various types. Once again, if this import fails, Python
will raise an ImportError, which you catch.

None of these platform−specific modules is available (which is possible, since Python has been ported to a lot
of different platforms), so you need to fall back on a default password input function (which is defined
elsewhere in the getpass module). Notice what you're doing here: assigning the function
default_getpass to the variable getpass. If you read the official getpass documentation, it tells you
that the getpass module defines a getpass function. It does this by binding getpass to the correct
function for your platform. Then when you call the getpass function, you're really calling a
platform−specific function that this code has set up for you. You don't need to know or care which platform
your code is running on −− just call getpass, and it will always do the right thing.

A try...except block can have an else clause, like an if statement. If no exception is raised during the
try block, the else clause is executed afterwards. In this case, that means that the from EasyDialogs
import AskPassword import worked, so you should bind getpass to the AskPassword function.
Each of the other try...except blocks has similar else clauses to bind getpass to the appropriate
function when you find an import that works.

Further Reading on Exception Handling

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses defining and raising your own
exceptions, and handling multiple exceptions at once
(http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000).

•

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the built−in exceptions
(http://www.python.org/doc/current/lib/module−exceptions.html).

•

Python Library Reference (http://www.python.org/doc/current/lib/) documents the getpass
(http://www.python.org/doc/current/lib/module−getpass.html) module.

•

Python Library Reference (http://www.python.org/doc/current/lib/) documents the traceback module
(http://www.python.org/doc/current/lib/module−traceback.html), which provides low−level access to
exception attributes after an exception is raised.

•

Python Reference Manual (http://www.python.org/doc/current/ref/) discusses the inner workings of the
try...except block (http://www.python.org/doc/current/ref/try.html).

•

6.2. Working with File Objects

Python has a built−in function, open, for opening a file on disk. open returns a file object, which has methods and
attributes for getting information about and manipulating the opened file.

Example 6.3. Opening a File

>>> f = open("/music/_singles/kairo.mp3", "rb")
>>> f
<open file '/music/_singles/kairo.mp3', mode 'rb' at 010E3988>
>>> f.mode
'rb'
>>> f.name
'/music/_singles/kairo.mp3'

Dive Into Python 66

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-getpass.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-traceback.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/try.html

The open method can take up to three parameters: a filename, a mode, and a buffering parameter. Only the
first one, the filename, is required; the other two are optional. If not specified, the file is opened for reading in
text mode. Here you are opening the file for reading in binary mode. (print open.__doc__ displays a
great explanation of all the possible modes.)

The open function returns an object (by now, this should not surprise you). A file object has several useful
attributes.

The mode attribute of a file object tells you in which mode the file was opened.

The name attribute of a file object tells you the name of the file that the file object has open.

6.2.1. Reading Files

After you open a file, the first thing you'll want to do is read from it, as shown in the next example.

Example 6.4. Reading a File

>>> f
<open file '/music/_singles/kairo.mp3', mode 'rb' at 010E3988>
>>> f.tell()
0
>>> f.seek(−128, 2)
>>> f.tell()
7542909
>>> tagData = f.read(128)
>>> tagData
'TAGKAIRO****THE BEST GOA ***DJ MARY−JANE***
Rave Mix 2000http://mp3.com/DJMARYJANE \037'
>>> f.tell()
7543037

A file object maintains state about the file it has open. The tell method of a file object tells you your
current position in the open file. Since you haven't done anything with this file yet, the current position is
0, which is the beginning of the file.

The seek method of a file object moves to another position in the open file. The second parameter
specifies what the first one means; 0 means move to an absolute position (counting from the start of the
file), 1 means move to a relative position (counting from the current position), and 2 means move to a
position relative to the end of the file. Since the MP3 tags you're looking for are stored at the end of the
file, you use 2 and tell the file object to move to a position 128 bytes from the end of the file.

The tell method confirms that the current file position has moved.

The read method reads a specified number of bytes from the open file and returns a string with the data
that was read. The optional parameter specifies the maximum number of bytes to read. If no parameter is
specified, read will read until the end of the file. (You could have simply said read() here, since you
know exactly where you are in the file and you are, in fact, reading the last 128 bytes.) The read data is
assigned to the tagData variable, and the current position is updated based on how many bytes were
read.

The tell method confirms that the current position has moved. If you do the math, you'll see that after
reading 128 bytes, the position has been incremented by 128.

6.2.2. Closing Files

Open files consume system resources, and depending on the file mode, other programs may not be able to access
them. It's important to close files as soon as you're finished with them.

Dive Into Python 67

Example 6.5. Closing a File

>>> f
<open file '/music/_singles/kairo.mp3', mode 'rb' at 010E3988>
>>> f.closed
False
>>> f.close()
>>> f
<closed file '/music/_singles/kairo.mp3', mode 'rb' at 010E3988>
>>> f.closed
True
>>> f.seek(0)
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
ValueError: I/O operation on closed file
>>> f.tell()
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
ValueError: I/O operation on closed file
>>> f.read()
Traceback (innermost last):
 File "<interactive input>", line 1, in ?
ValueError: I/O operation on closed file
>>> f.close()

The closed attribute of a file object indicates whether the object has a file open or not. In this case, the file is
still open (closed is False).

To close a file, call the close method of the file object. This frees the lock (if any) that you were holding on
the file, flushes buffered writes (if any) that the system hadn't gotten around to actually writing yet, and releases
the system resources.

The closed attribute confirms that the file is closed.

Just because a file is closed doesn't mean that the file object ceases to exist. The variable f will continue to
exist until it goes out of scope or gets manually deleted. However, none of the methods that manipulate an open
file will work once the file has been closed; they all raise an exception.

Calling close on a file object whose file is already closed does not raise an exception; it fails silently.

6.2.3. Handling I/O Errors

Now you've seen enough to understand the file handling code in the fileinfo.py sample code from teh previous
chapter. This example shows how to safely open and read from a file and gracefully handle errors.

Example 6.6. File Objects in MP3FileInfo

 try:
 fsock = open(filename, "rb", 0)
 try:
 fsock.seek(−128, 2)
 tagdata = fsock.read(128)
 finally:
 fsock.close()
 .
 .
 .
 except IOError:
 pass

Dive Into Python 68

Because opening and reading files is risky and may raise an exception, all of this code is wrapped in a
try...except block. (Hey, isn't standardized indentation great? This is where you start to appreciate it.)

The open function may raise an IOError. (Maybe the file doesn't exist.)

The seek method may raise an IOError. (Maybe the file is smaller than 128 bytes.)

The read method may raise an IOError. (Maybe the disk has a bad sector, or it's on a network drive and the
network just went down.)

This is new: a try...finally block. Once the file has been opened successfully by the open function, you
want to make absolutely sure that you close it, even if an exception is raised by the seek or read methods.
That's what a try...finally block is for: code in the finally block will always be executed, even if
something in the try block raises an exception. Think of it as code that gets executed on the way out,
regardless of what happened before.

At last, you handle your IOError exception. This could be the IOError exception raised by the call to
open, seek, or read. Here, you really don't care, because all you're going to do is ignore it silently and
continue. (Remember, pass is a Python statement that does nothing.) That's perfectly legal; "handling" an
exception can mean explicitly doing nothing. It still counts as handled, and processing will continue normally
on the next line of code after the try...except block.

6.2.4. Writing to Files

As you would expect, you can also write to files in much the same way that you read from them. There are two basic
file modes:

"Append" mode will add data to the end of the file.•
"write" mode will overwrite the file.•

Either mode will create the file automatically if it doesn't already exist, so there's never a need for any sort of fiddly "if
the log file doesn't exist yet, create a new empty file just so you can open it for the first time" logic. Just open it and
start writing.

Example 6.7. Writing to Files

>>> logfile = open('test.log', 'w')
>>> logfile.write('test succeeded')
>>> logfile.close()
>>> print file('test.log').read()
test succeeded
>>> logfile = open('test.log', 'a')
>>> logfile.write('line 2')
>>> logfile.close()
>>> print file('test.log').read()
test succeededline 2

You start boldly by creating either the new file test.log or overwrites the existing file, and opening
the file for writing. (The second parameter "w" means open the file for writing.) Yes, that's all as
dangerous as it sounds. I hope you didn't care about the previous contents of that file, because it's gone
now.

You can add data to the newly opened file with the write method of the file object returned by open.

file is a synonym for open. This one−liner opens the file, reads its contents, and prints them.

You happen to know that test.log exists (since you just finished writing to it), so you can open it and
append to it. (The "a" parameter means open the file for appending.) Actually you could do this even if
the file didn't exist, because opening the file for appending will create the file if necessary. But appending

Dive Into Python 69

will never harm the existing contents of the file.

As you can see, both the original line you wrote and the second line you appended are now in
test.log. Also note that carriage returns are not included. Since you didn't write them explicitly to the
file either time, the file doesn't include them. You can write a carriage return with the "\n" character.
Since you didn't do this, everything you wrote to the file ended up smooshed together on the same line.

Further Reading on File Handling

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses reading and writing files,
including how to read a file one line at a time into a list
(http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000).

•

eff−bot (http://www.effbot.org/guides/) discusses efficiency and performance of various ways of reading a file
(http://www.effbot.org/guides/readline−performance.htm).

•

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) answers common
questions about files (http://www.faqts.com/knowledge−base/index.phtml/fid/552).

•

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the file object methods
(http://www.python.org/doc/current/lib/bltin−file−objects.html).

•

6.3. Iterating with for Loops

Like most other languages, Python has for loops. The only reason you haven't seen them until now is that Python is
good at so many other things that you don't need them as often.

Most other languages don't have a powerful list datatype like Python, so you end up doing a lot of manual work,
specifying a start, end, and step to define a range of integers or characters or other iteratable entities. But in Python, a
for loop simply iterates over a list, the same way list comprehensions work.

Example 6.8. Introducing the for Loop

>>> li = ['a', 'b', 'e']
>>> for s in li:
... print s
a
b
e
>>> print "\n".join(li)
a
b
e

The syntax for a for loop is similar to list comprehensions. li is a list, and s will take the value of
each element in turn, starting from the first element.

Like an if statement or any other indented block, a for loop can have any number of lines of code in
it.

This is the reason you haven't seen the for loop yet: you haven't needed it yet. It's amazing how often
you use for loops in other languages when all you really want is a join or a list comprehension.

Doing a "normal" (by Visual Basic standards) counter for loop is also simple.

Example 6.9. Simple Counters

>>> for i in range(5):
... print i

Dive Into Python 70

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.effbot.org/guides/
http://www.effbot.org/guides/readline-performance.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/552
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/bltin-file-objects.html

0
1
2
3
4
>>> li = ['a', 'b', 'c', 'd', 'e']
>>> for i in range(len(li)):
... print li[i]
a
b
c
d
e

As you saw in Example 3.20, �Assigning Consecutive Values�, range produces a list of integers, which you
then loop through. I know it looks a bit odd, but it is occasionally (and I stress occasionally) useful to have a
counter loop.

Don't ever do this. This is Visual Basic−style thinking. Break out of it. Just iterate through the list, as shown in
the previous example.

for loops are not just for simple counters. They can iterate through all kinds of things. Here is an example of using a
for loop to iterate through a dictionary.

Example 6.10. Iterating Through a Dictionary

>>> import os
>>> for k, v in os.environ.items():
... print "%s=%s" % (k, v)
USERPROFILE=C:\Documents and Settings\mpilgrim
OS=Windows_NT
COMPUTERNAME=MPILGRIM
USERNAME=mpilgrim

[...snip...]
>>> print "\n".join(["%s=%s" % (k, v)
... for k, v in os.environ.items()])
USERPROFILE=C:\Documents and Settings\mpilgrim
OS=Windows_NT
COMPUTERNAME=MPILGRIM
USERNAME=mpilgrim

[...snip...]

os.environ is a dictionary of the environment variables defined on your system. In Windows, these are your
user and system variables accessible from MS−DOS. In UNIX, they are the variables exported in your shell's
startup scripts. In Mac OS, there is no concept of environment variables, so this dictionary is empty.

os.environ.items() returns a list of tuples: [(key1, value1), (key2, value2), ...]. The
for loop iterates through this list. The first round, it assigns key1 to k and value1 to v, so k =
USERPROFILE and v = C:\Documents and Settings\mpilgrim. In the second round, k gets the
second key, OS, and v gets the corresponding value, Windows_NT.

With multi−variable assignment and list comprehensions, you can replace the entire for loop with a single
statement. Whether you actually do this in real code is a matter of personal coding style. I like it because it
makes it clear that what I'm doing is mapping a dictionary into a list, then joining the list into a single string.
Other programmers prefer to write this out as a for loop. The output is the same in either case, although this
version is slightly faster, because there is only one print statement instead of many.

Now we can look at the for loop in MP3FileInfo, from the sample fileinfo.py program introduced in

Dive Into Python 71

Chapter 5.

Example 6.11. for Loop in MP3FileInfo

 tagDataMap = {"title" : (3, 33, stripnulls),
 "artist" : (33, 63, stripnulls),
 "album" : (63, 93, stripnulls),
 "year" : (93, 97, stripnulls),
 "comment" : (97, 126, stripnulls),
 "genre" : (127, 128, ord)}
 .
 .
 .
 if tagdata[:3] == "TAG":
 for tag, (start, end, parseFunc) in self.tagDataMap.items():
 self[tag] = parseFunc(tagdata[start:end])

tagDataMap is a class attribute that defines the tags you're looking for in an MP3 file. Tags are stored in
fixed−length fields. Once you read the last 128 bytes of the file, bytes 3 through 32 of those are always the song
title, 33 through 62 are always the artist name, 63 through 92 are the album name, and so forth. Note that
tagDataMap is a dictionary of tuples, and each tuple contains two integers and a function reference.

This looks complicated, but it's not. The structure of the for variables matches the structure of the elements of
the list returned by items. Remember that items returns a list of tuples of the form (key, value). The
first element of that list is ("title", (3, 33, <function stripnulls>)), so the first time around
the loop, tag gets "title", start gets 3, end gets 33, and parseFunc gets the function stripnulls.

Now that you've extracted all the parameters for a single MP3 tag, saving the tag data is easy. You slice
tagdata from start to end to get the actual data for this tag, call parseFunc to post−process the data,
and assign this as the value for the key tag in the pseudo−dictionary self. After iterating through all the
elements in tagDataMap, self has the values for all the tags, and you know what that looks like.

6.4. Using sys.modules

Modules, like everything else in Python, are objects. Once imported, you can always get a reference to a module
through the global dictionary sys.modules.

Example 6.12. Introducing sys.modules

>>> import sys
>>> print '\n'.join(sys.modules.keys())
win32api
os.path
os
exceptions
__main__
ntpath
nt
sys
__builtin__
site
signal
UserDict
stat

The sys module contains system−level information, such as the version of Python you're

Dive Into Python 72

running (sys.version or sys.version_info), and system−level options such as the
maximum allowed recursion depth (sys.getrecursionlimit() and
sys.setrecursionlimit()).

sys.modules is a dictionary containing all the modules that have ever been imported since
Python was started; the key is the module name, the value is the module object. Note that this is
more than just the modules your program has imported. Python preloads some modules on
startup, and if you're using a Python IDE, sys.modules contains all the modules imported by
all the programs you've run within the IDE.

This example demonstrates how to use sys.modules.

Example 6.13. Using sys.modules

>>> import fileinfo
>>> print '\n'.join(sys.modules.keys())
win32api
os.path
os
fileinfo
exceptions
__main__
ntpath
nt
sys
__builtin__
site
signal
UserDict
stat
>>> fileinfo
<module 'fileinfo' from 'fileinfo.pyc'>
>>> sys.modules["fileinfo"]
<module 'fileinfo' from 'fileinfo.pyc'>

As new modules are imported, they are added to sys.modules. This explains why importing the
same module twice is very fast: Python has already loaded and cached the module in
sys.modules, so importing the second time is simply a dictionary lookup.

Given the name (as a string) of any previously−imported module, you can get a reference to the
module itself through the sys.modules dictionary.

The next example shows how to use the __module__ class attribute with the sys.modules dictionary to get a
reference to the module in which a class is defined.

Example 6.14. The __module__ Class Attribute

>>> from fileinfo import MP3FileInfo
>>> MP3FileInfo.__module__
'fileinfo'
>>> sys.modules[MP3FileInfo.__module__]
<module 'fileinfo' from 'fileinfo.pyc'>

Every Python class has a built−in class attribute __module__, which is the name of the module in which the
class is defined.

Combining this with the sys.modules dictionary, you can get a reference to the module in which a class is
defined.

Dive Into Python 73

Now you're ready to see how sys.modules is used in fileinfo.py, the sample program introduced in Chapter
5. This example shows that portion of the code.

Example 6.15. sys.modules in fileinfo.py

 def getFileInfoClass(filename, module=sys.modules[FileInfo.__module__]):
 "get file info class from filename extension"
 subclass = "%sFileInfo" % os.path.splitext(filename)[1].upper()[1:]
 return hasattr(module, subclass) and getattr(module, subclass) or FileInfo

This is a function with two arguments; filename is required, but module is optional and defaults to
the module that contains the FileInfo class. This looks inefficient, because you might expect Python
to evaluate the sys.modules expression every time the function is called. In fact, Python evaluates
default expressions only once, the first time the module is imported. As you'll see later, you never call
this function with a module argument, so module serves as a function−level constant.

You'll plow through this line later, after you dive into the os module. For now, take it on faith that
subclass ends up as the name of a class, like MP3FileInfo.

You already know about getattr, which gets a reference to an object by name. hasattr is a
complementary function that checks whether an object has a particular attribute; in this case, whether a
module has a particular class (although it works for any object and any attribute, just like getattr).
In English, this line of code says, "If this module has the class named by subclass then return it,
otherwise return the base class FileInfo."

Further Reading on Modules

Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses exactly when and how default
arguments are evaluated
(http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000).

•

Python Library Reference (http://www.python.org/doc/current/lib/) documents the sys
(http://www.python.org/doc/current/lib/module−sys.html) module.

•

6.5. Working with Directories

The os.path module has several functions for manipulating files and directories. Here, we're looking at handling
pathnames and listing the contents of a directory.

Example 6.16. Constructing Pathnames

>>> import os
>>> os.path.join("c:\\music\\ap\\", "mahadeva.mp3")
'c:\\music\\ap\\mahadeva.mp3'
>>> os.path.join("c:\\music\\ap", "mahadeva.mp3")
'c:\\music\\ap\\mahadeva.mp3'
>>> os.path.expanduser("~")
'c:\\Documents and Settings\\mpilgrim\\My Documents'
>>> os.path.join(os.path.expanduser("~"), "Python")
'c:\\Documents and Settings\\mpilgrim\\My Documents\\Python'

os.path is a reference to a module −− which module depends on your platform. Just as getpass
encapsulates differences between platforms by setting getpass to a platform−specific function, os
encapsulates differences between platforms by setting path to a platform−specific module.

Dive Into Python 74

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-sys.html

The join function of os.path constructs a pathname out of one or more partial pathnames. In this case, it
simply concatenates strings. (Note that dealing with pathnames on Windows is annoying because the backslash
character must be escaped.)

In this slightly less trivial case, join will add an extra backslash to the pathname before joining it to the
filename. I was overjoyed when I discovered this, since addSlashIfNecessary is one of the stupid little
functions I always need to write when building up my toolbox in a new language. Do not write this stupid little
function in Python; smart people have already taken care of it for you.

expanduser will expand a pathname that uses ~ to represent the current user's home directory. This works on
any platform where users have a home directory, like Windows, UNIX, and Mac OS X; it has no effect on Mac
OS.

Combining these techniques, you can easily construct pathnames for directories and files under the user's home
directory.

Example 6.17. Splitting Pathnames

>>> os.path.split("c:\\music\\ap\\mahadeva.mp3")
('c:\\music\\ap', 'mahadeva.mp3')
>>> (filepath, filename) = os.path.split("c:\\music\\ap\\mahadeva.mp3")
>>> filepath
'c:\\music\\ap'
>>> filename
'mahadeva.mp3'
>>> (shortname, extension) = os.path.splitext(filename)
>>> shortname
'mahadeva'
>>> extension
'.mp3'

The split function splits a full pathname and returns a tuple containing the path and filename. Remember
when I said you could use multi−variable assignment to return multiple values from a function? Well, split
is such a function.

You assign the return value of the split function into a tuple of two variables. Each variable receives the
value of the corresponding element of the returned tuple.

The first variable, filepath, receives the value of the first element of the tuple returned from split, the file
path.

The second variable, filename, receives the value of the second element of the tuple returned from split,
the filename.

os.path also contains a function splitext, which splits a filename and returns a tuple containing the
filename and the file extension. You use the same technique to assign each of them to separate variables.

Example 6.18. Listing Directories

>>> os.listdir("c:\\music_singles\\")
['a_time_long_forgotten_con.mp3', 'hellraiser.mp3',
'kairo.mp3', 'long_way_home1.mp3', 'sidewinder.mp3',
'spinning.mp3']
>>> dirname = "c:\\"
>>> os.listdir(dirname)
['AUTOEXEC.BAT', 'boot.ini', 'CONFIG.SYS', 'cygwin',
'docbook', 'Documents and Settings', 'Incoming', 'Inetpub', 'IO.SYS',
'MSDOS.SYS', 'Music', 'NTDETECT.COM', 'ntldr', 'pagefile.sys',
'Program Files', 'Python20', 'RECYCLER',
'System Volume Information', 'TEMP', 'WINNT']
>>> [f for f in os.listdir(dirname)
... if os.path.isfile(os.path.join(dirname, f))]

Dive Into Python 75

['AUTOEXEC.BAT', 'boot.ini', 'CONFIG.SYS', 'IO.SYS', 'MSDOS.SYS',
'NTDETECT.COM', 'ntldr', 'pagefile.sys']
>>> [f for f in os.listdir(dirname)
... if os.path.isdir(os.path.join(dirname, f))]
['cygwin', 'docbook', 'Documents and Settings', 'Incoming',
'Inetpub', 'Music', 'Program Files', 'Python20', 'RECYCLER',
'System Volume Information', 'TEMP', 'WINNT']

The listdir function takes a pathname and returns a list of the contents of the directory.

listdir returns both files and folders, with no indication of which is which.

You can use list filtering and the isfile function of the os.path module to separate the files from
the folders. isfile takes a pathname and returns 1 if the path represents a file, and 0 otherwise. Here
you're using os.path.join to ensure a full pathname, but isfile also works with a partial path,
relative to the current working directory. You can use os.getcwd() to get the current working
directory.

os.path also has a isdir function which returns 1 if the path represents a directory, and 0
otherwise. You can use this to get a list of the subdirectories within a directory.

Example 6.19. Listing Directories in fileinfo.py

def listDirectory(directory, fileExtList):
 "get list of file info objects for files of particular extensions"
 fileList = [os.path.normcase(f)
 for f in os.listdir(directory)]
 fileList = [os.path.join(directory, f)
 for f in fileList
 if os.path.splitext(f)[1] in fileExtList]

os.listdir(directory) returns a list of all the files and folders in directory.

Iterating through the list with f, you use os.path.normcase(f) to normalize the case
according to operating system defaults. normcase is a useful little function that compensates
for case−insensitive operating systems that think that mahadeva.mp3 and mahadeva.MP3
are the same file. For instance, on Windows and Mac OS, normcase will convert the entire
filename to lowercase; on UNIX−compatible systems, it will return the filename unchanged.

Iterating through the normalized list with f again, you use os.path.splitext(f) to split
each filename into name and extension.

For each file, you see if the extension is in the list of file extensions you care about
(fileExtList, which was passed to the listDirectory function).

For each file you care about, you use os.path.join(directory, f) to construct the
full pathname of the file, and return a list of the full pathnames.

Whenever possible, you should use the functions in os and os.path for file, directory, and path manipulations.
These modules are wrappers for platform−specific modules, so functions like os.path.split work on UNIX,
Windows, Mac OS, and any other platform supported by Python.
There is one other way to get the contents of a directory. It's very powerful, and it uses the sort of wildcards that you
may already be familiar with from working on the command line.

Example 6.20. Listing Directories with glob

>>> os.listdir("c:\\music_singles\\")
['a_time_long_forgotten_con.mp3', 'hellraiser.mp3',
'kairo.mp3', 'long_way_home1.mp3', 'sidewinder.mp3',
'spinning.mp3']

Dive Into Python 76

>>> import glob
>>> glob.glob('c:\\music_singles*.mp3')
['c:\\music_singles\\a_time_long_forgotten_con.mp3',
'c:\\music_singles\\hellraiser.mp3',
'c:\\music_singles\\kairo.mp3',
'c:\\music_singles\\long_way_home1.mp3',
'c:\\music_singles\\sidewinder.mp3',
'c:\\music_singles\\spinning.mp3']
>>> glob.glob('c:\\music_singles\\s*.mp3')
['c:\\music_singles\\sidewinder.mp3',
'c:\\music_singles\\spinning.mp3']
>>> glob.glob('c:\\music**.mp3')

As you saw earlier, os.listdir simply takes a directory path and lists all files and directories in that
directory.

The glob module, on the other hand, takes a wildcard and returns the full path of all files and
directories matching the wildcard. Here the wildcard is a directory path plus "*.mp3", which will match
all .mp3 files. Note that each element of the returned list already includes the full path of the file.

If you want to find all the files in a specific directory that start with "s" and end with ".mp3", you can
do that too.

Now consider this scenario: you have a music directory, with several subdirectories within it, with
.mp3 files within each subdirectory. You can get a list of all of those with a single call to glob, by
using two wildcards at once. One wildcard is the "*.mp3" (to match .mp3 files), and one wildcard is
within the directory path itself, to match any subdirectory within c:\music. That's a crazy amount of
power packed into one deceptively simple−looking function!

Further Reading on the os Module

Python Knowledge Base (http://www.faqts.com/knowledge−base/index.phtml/fid/199/) answers questions
about the os module (http://www.faqts.com/knowledge−base/index.phtml/fid/240).

•

Python Library Reference (http://www.python.org/doc/current/lib/) documents the os
(http://www.python.org/doc/current/lib/module−os.html) module and the os.path
(http://www.python.org/doc/current/lib/module−os.path.html) module.

•

6.6. Putting It All Together

Once again, all the dominoes are in place. You've seen how each line of code works. Now let's step back and see how
it all fits together.

Example 6.21. listDirectory

def listDirectory(directory, fileExtList):
 "get list of file info objects for files of particular extensions"
 fileList = [os.path.normcase(f)
 for f in os.listdir(directory)]
 fileList = [os.path.join(directory, f)
 for f in fileList
 if os.path.splitext(f)[1] in fileExtList]
 def getFileInfoClass(filename, module=sys.modules[FileInfo.__module__]):
 "get file info class from filename extension"
 subclass = "%sFileInfo" % os.path.splitext(filename)[1].upper()[1:]
 return hasattr(module, subclass) and getattr(module, subclass) or FileInfo
 return [getFileInfoClass(f)(f) for f in fileList]

Dive Into Python 77

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/240
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-os.html
http://www.python.org/doc/current/lib/module-os.path.html

listDirectory is the main attraction of this entire module. It takes a directory (like
c:\music_singles\ in my case) and a list of interesting file extensions (like ['.mp3']), and it returns
a list of class instances that act like dictionaries that contain metadata about each interesting file in that
directory. And it does it in just a few straightforward lines of code.

As you saw in the previous section, this line of code gets a list of the full pathnames of all the files in
directory that have an interesting file extension (as specified by fileExtList).

Old−school Pascal programmers may be familiar with them, but most people give me a blank stare when I tell
them that Python supports nested functions −− literally, a function within a function. The nested function
getFileInfoClass can be called only from the function in which it is defined, listDirectory. As
with any other function, you don't need an interface declaration or anything fancy; just define the function and
code it.

Now that you've seen the os module, this line should make more sense. It gets the extension of the file
(os.path.splitext(filename)[1]), forces it to uppercase (.upper()), slices off the dot ([1:]),
and constructs a class name out of it with string formatting. So c:\music\ap\mahadeva.mp3 becomes
.mp3 becomes .MP3 becomes MP3 becomes MP3FileInfo.

Having constructed the name of the handler class that would handle this file, you check to see if that handler
class actually exists in this module. If it does, you return the class, otherwise you return the base class
FileInfo. This is a very important point: this function returns a class. Not an instance of a class, but the
class itself.

For each file in the "interesting files" list (fileList), you call getFileInfoClass with the filename (f).
Calling getFileInfoClass(f) returns a class; you don't know exactly which class, but you don't care.
You then create an instance of this class (whatever it is) and pass the filename (f again), to the __init__
method. As you saw earlier in this chapter, the __init__ method of FileInfo sets self["name"],
which triggers __setitem__, which is overridden in the descendant (MP3FileInfo) to parse the file
appropriately to pull out the file's metadata. You do all that for each interesting file and return a list of the
resulting instances.

Note that listDirectory is completely generic. It doesn't know ahead of time which types of files it will be
getting, or which classes are defined that could potentially handle those files. It inspects the directory for the files to
process, and then introspects its own module to see what special handler classes (like MP3FileInfo) are defined.
You can extend this program to handle other types of files simply by defining an appropriately−named class:
HTMLFileInfo for HTML files, DOCFileInfo for Word .doc files, and so forth. listDirectory will
handle them all, without modification, by handing off the real work to the appropriate classes and collating the results.

6.7. Summary

The fileinfo.py program introduced in Chapter 5 should now make perfect sense.

"""Framework for getting filetype−specific metadata.

Instantiate appropriate class with filename. Returned object acts like a
dictionary, with key−value pairs for each piece of metadata.
 import fileinfo
 info = fileinfo.MP3FileInfo("/music/ap/mahadeva.mp3")
 print "\\n".join(["%s=%s" % (k, v) for k, v in info.items()])

Or use listDirectory function to get info on all files in a directory.
 for info in fileinfo.listDirectory("/music/ap/", [".mp3"]):
 ...

Framework can be extended by adding classes for particular file types, e.g.
HTMLFileInfo, MPGFileInfo, DOCFileInfo. Each class is completely responsible for
parsing its files appropriately; see MP3FileInfo for example.
"""
import os

Dive Into Python 78

import sys
from UserDict import UserDict

def stripnulls(data):
 "strip whitespace and nulls"
 return data.replace("\00", "").strip()

class FileInfo(UserDict):
 "store file metadata"
 def __init__(self, filename=None):
 UserDict.__init__(self)
 self["name"] = filename

class MP3FileInfo(FileInfo):
 "store ID3v1.0 MP3 tags"
 tagDataMap = {"title" : (3, 33, stripnulls),
 "artist" : (33, 63, stripnulls),
 "album" : (63, 93, stripnulls),
 "year" : (93, 97, stripnulls),
 "comment" : (97, 126, stripnulls),
 "genre" : (127, 128, ord)}

 def __parse(self, filename):
 "parse ID3v1.0 tags from MP3 file"
 self.clear()
 try:
 fsock = open(filename, "rb", 0)
 try:
 fsock.seek(−128, 2)
 tagdata = fsock.read(128)
 finally:
 fsock.close()
 if tagdata[:3] == "TAG":
 for tag, (start, end, parseFunc) in self.tagDataMap.items():
 self[tag] = parseFunc(tagdata[start:end])
 except IOError:
 pass

 def __setitem__(self, key, item):
 if key == "name" and item:
 self.__parse(item)
 FileInfo.__setitem__(self, key, item)

def listDirectory(directory, fileExtList):
 "get list of file info objects for files of particular extensions"
 fileList = [os.path.normcase(f)
 for f in os.listdir(directory)]
 fileList = [os.path.join(directory, f)
 for f in fileList
 if os.path.splitext(f)[1] in fileExtList]
 def getFileInfoClass(filename, module=sys.modules[FileInfo.__module__]):
 "get file info class from filename extension"
 subclass = "%sFileInfo" % os.path.splitext(filename)[1].upper()[1:]
 return hasattr(module, subclass) and getattr(module, subclass) or FileInfo
 return [getFileInfoClass(f)(f) for f in fileList]

if __name__ == "__main__":
 for info in listDirectory("/music/_singles/", [".mp3"]):
 print "\n".join(["%s=%s" % (k, v) for k, v in info.items()])
 print

Before diving into the next chapter, make sure you're comfortable doing the following things:

Dive Into Python 79

Catching exceptions with try...except•
Protecting external resources with try...finally•
Reading from files•
Assigning multiple values at once in a for loop•
Using the os module for all your cross−platform file manipulation needs•
Dynamically instantiating classes of unknown type by treating classes as objects and passing them around•

Dive Into Python 80

Chapter 7. Regular Expressions
Regular expressions are a powerful and standardized way of searching, replacing, and parsing text with complex
patterns of characters. If you've used regular expressions in other languages (like Perl), the syntax will be very
familiar, and you get by just reading the summary of the re module
(http://www.python.org/doc/current/lib/module−re.html) to get an overview of the available functions and their
arguments.

7.1. Diving In

Strings have methods for searching (index, find, and count), replacing (replace), and parsing (split), but
they are limited to the simplest of cases. The search methods look for a single, hard−coded substring, and they are
always case−sensitive. To do case−insensitive searches of a string s, you must call s.lower() or s.upper() and
make sure your search strings are the appropriate case to match. The replace and split methods have the same
limitations.

If what you're trying to do can be accomplished with string functions, you should use them. They're fast and simple
and easy to read, and there's a lot to be said for fast, simple, readable code. But if you find yourself using a lot of
different string functions with if statements to handle special cases, or if you're combining them with split and
join and list comprehensions in weird unreadable ways, you may need to move up to regular expressions.

Although the regular expression syntax is tight and unlike normal code, the result can end up being more readable
than a hand−rolled solution that uses a long chain of string functions. There are even ways of embedding comments
within regular expressions to make them practically self−documenting.

7.2. Case Study: Street Addresses

This series of examples was inspired by a real−life problem I had in my day job several years ago, when I needed to
scrub and standardize street addresses exported from a legacy system before importing them into a newer system.
(See, I don't just make this stuff up; it's actually useful.) This example shows how I approached the problem.

Example 7.1. Matching at the End of a String

>>> s = '100 NORTH MAIN ROAD'
>>> s.replace('ROAD', 'RD.')
'100 NORTH MAIN RD.'
>>> s = '100 NORTH BROAD ROAD'
>>> s.replace('ROAD', 'RD.')
'100 NORTH BRD. RD.'
>>> s[:−4] + s[−4:].replace('ROAD', 'RD.')
'100 NORTH BROAD RD.'
>>> import re
>>> re.sub('ROAD$', 'RD.', s)
'100 NORTH BROAD RD.'

My goal is to standardize a street address so that 'ROAD' is always abbreviated as 'RD.'. At first glance, I
thought this was simple enough that I could just use the string method replace. After all, all the data was
already uppercase, so case mismatches would not be a problem. And the search string, 'ROAD', was a
constant. And in this deceptively simple example, s.replace does indeed work.

Life, unfortunately, is full of counterexamples, and I quickly discovered this one. The problem here is that
'ROAD' appears twice in the address, once as part of the street name 'BROAD' and once as its own word. The

Dive Into Python 81

http://www.python.org/doc/current/lib/module-re.html

replace method sees these two occurrences and blindly replaces both of them; meanwhile, I see my
addresses getting destroyed.

To solve the problem of addresses with more than one 'ROAD' substring, you could resort to something like
this: only search and replace 'ROAD' in the last four characters of the address (s[−4:]), and leave the string
alone (s[:−4]). But you can see that this is already getting unwieldy. For example, the pattern is dependent
on the length of the string you're replacing (if you were replacing 'STREET' with 'ST.', you would need to
use s[:−6] and s[−6:].replace(...)). Would you like to come back in six months and debug this? I
know I wouldn't.

It's time to move up to regular expressions. In Python, all functionality related to regular expressions is
contained in the re module.

Take a look at the first parameter: 'ROAD$'. This is a simple regular expression that matches 'ROAD' only
when it occurs at the end of a string. The $ means "end of the string". (There is a corresponding character, the
caret ^, which means "beginning of the string".)

Using the re.sub function, you search the string s for the regular expression 'ROAD$' and replace it with
'RD.'. This matches the ROAD at the end of the string s, but does not match the ROAD that's part of the word
BROAD, because that's in the middle of s.

Continuing with my story of scrubbing addresses, I soon discovered that the previous example, matching 'ROAD' at
the end of the address, was not good enough, because not all addresses included a street designation at all; some just
ended with the street name. Most of the time, I got away with it, but if the street name was 'BROAD', then the regular
expression would match 'ROAD' at the end of the string as part of the word 'BROAD', which is not what I wanted.

Example 7.2. Matching Whole Words

>>> s = '100 BROAD'
>>> re.sub('ROAD$', 'RD.', s)
'100 BRD.'
>>> re.sub('\\bROAD$', 'RD.', s)
'100 BROAD'
>>> re.sub(r'\bROAD$', 'RD.', s)
'100 BROAD'
>>> s = '100 BROAD ROAD APT. 3'
>>> re.sub(r'\bROAD$', 'RD.', s)
'100 BROAD ROAD APT. 3'
>>> re.sub(r'\bROAD\b', 'RD.', s)
'100 BROAD RD. APT 3'

What I really wanted was to match 'ROAD' when it was at the end of the string and it was its own
whole word, not a part of some larger word. To express this in a regular expression, you use \b, which
means "a word boundary must occur right here". In Python, this is complicated by the fact that the '\'
character in a string must itself be escaped. This is sometimes referred to as the backslash plague, and it
is one reason why regular expressions are easier in Perl than in Python. On the down side, Perl mixes
regular expressions with other syntax, so if you have a bug, it may be hard to tell whether it's a bug in
syntax or a bug in your regular expression.

To work around the backslash plague, you can use what is called a raw string, by prefixing the string
with the letter r. This tells Python that nothing in this string should be escaped; '\t' is a tab character,
but r'\t' is really the backslash character \ followed by the letter t. I recommend always using raw
strings when dealing with regular expressions; otherwise, things get too confusing too quickly (and
regular expressions get confusing quickly enough all by themselves).

sigh Unfortunately, I soon found more cases that contradicted my logic. In this case, the street
address contained the word 'ROAD' as a whole word by itself, but it wasn't at the end, because the
address had an apartment number after the street designation. Because 'ROAD' isn't at the very end of

Dive Into Python 82

the string, it doesn't match, so the entire call to re.sub ends up replacing nothing at all, and you get
the original string back, which is not what you want.

To solve this problem, I removed the $ character and added another \b. Now the regular expression
reads "match 'ROAD' when it's a whole word by itself anywhere in the string," whether at the end, the
beginning, or somewhere in the middle.

7.3. Case Study: Roman Numerals

You've most likely seen Roman numerals, even if you didn't recognize them. You may have seen them in copyrights
of old movies and television shows ("Copyright MCMXLVI" instead of "Copyright 1946"), or on the dedication walls
of libraries or universities ("established MDCCCLXXXVIII" instead of "established 1888"). You may also have seen
them in outlines and bibliographical references. It's a system of representing numbers that really does date back to the
ancient Roman empire (hence the name).

In Roman numerals, there are seven characters that are repeated and combined in various ways to represent numbers.

I = 1•
V = 5•
X = 10•
L = 50•
C = 100•
D = 500•
M = 1000•

The following are some general rules for constructing Roman numerals:

Characters are additive. I is 1, II is 2, and III is 3. VI is 6 (literally, "5 and 1"), VII is 7, and VIII is 8.•
The tens characters (I, X, C, and M) can be repeated up to three times. At 4, you need to subtract from the next
highest fives character. You can't represent 4 as IIII; instead, it is represented as IV ("1 less than 5"). The
number 40 is written as XL (10 less than 50), 41 as XLI, 42 as XLII, 43 as XLIII, and then 44 as XLIV
(10 less than 50, then 1 less than 5).

•

Similarly, at 9, you need to subtract from the next highest tens character: 8 is VIII, but 9 is IX (1 less than
10), not VIIII (since the I character can not be repeated four times). The number 90 is XC, 900 is CM.

•

The fives characters can not be repeated. The number 10 is always represented as X, never as VV. The number
100 is always C, never LL.

•

Roman numerals are always written highest to lowest, and read left to right, so the order the of characters
matters very much. DC is 600; CD is a completely different number (400, 100 less than 500). CI is 101;
IC is not even a valid Roman numeral (because you can't subtract 1 directly from 100; you would need to
write it as XCIX, for 10 less than 100, then 1 less than 10).

•

7.3.1. Checking for Thousands

What would it take to validate that an arbitrary string is a valid Roman numeral? Let's take it one digit at a time. Since
Roman numerals are always written highest to lowest, let's start with the highest: the thousands place. For numbers
1000 and higher, the thousands are represented by a series of M characters.

Example 7.3. Checking for Thousands

>>> import re
>>> pattern = '^M?M?M?$'
>>> re.search(pattern, 'M')
<SRE_Match object at 0106FB58>

Dive Into Python 83

>>> re.search(pattern, 'MM')
<SRE_Match object at 0106C290>
>>> re.search(pattern, 'MMM')
<SRE_Match object at 0106AA38>
>>> re.search(pattern, 'MMMM')
>>> re.search(pattern, '')
<SRE_Match object at 0106F4A8>

This pattern has three parts:

^ to match what follows only at the beginning of the string. If this were not specified, the pattern
would match no matter where the M characters were, which is not what you want. You want to
make sure that the M characters, if they're there, are at the beginning of the string.

•

M? to optionally match a single M character. Since this is repeated three times, you're matching
anywhere from zero to three M characters in a row.

•

$ to match what precedes only at the end of the string. When combined with the ^ character at
the beginning, this means that the pattern must match the entire string, with no other characters
before or after the M characters.

•

The essence of the re module is the search function, that takes a regular expression (pattern) and a
string ('M') to try to match against the regular expression. If a match is found, search returns an
object which has various methods to describe the match; if no match is found, search returns None,
the Python null value. All you care about at the moment is whether the pattern matches, which you can
tell by just looking at the return value of search. 'M' matches this regular expression, because the first
optional M matches and the second and third optional M characters are ignored.

'MM' matches because the first and second optional M characters match and the third M is ignored.

'MMM' matches because all three M characters match.

'MMMM' does not match. All three M characters match, but then the regular expression insists on the
string ending (because of the $ character), and the string doesn't end yet (because of the fourth M). So
search returns None.

Interestingly, an empty string also matches this regular expression, since all the M characters are optional.

7.3.2. Checking for Hundreds

The hundreds place is more difficult than the thousands, because there are several mutually exclusive ways it could be
expressed, depending on its value.

100 = C•
200 = CC•
300 = CCC•
400 = CD•
500 = D•
600 = DC•
700 = DCC•
800 = DCCC•
900 = CM•

So there are four possible patterns:

CM•
CD•
Zero to three C characters (zero if the hundreds place is 0)•
D, followed by zero to three C characters•

Dive Into Python 84

The last two patterns can be combined:

an optional D, followed by zero to three C characters•

This example shows how to validate the hundreds place of a Roman numeral.

Example 7.4. Checking for Hundreds

>>> import re
>>> pattern = '^M?M?M?(CM|CD|D?C?C?C?)$'
>>> re.search(pattern, 'MCM')
<SRE_Match object at 01070390>
>>> re.search(pattern, 'MD')
<SRE_Match object at 01073A50>
>>> re.search(pattern, 'MMMCCC')
<SRE_Match object at 010748A8>
>>> re.search(pattern, 'MCMC')
>>> re.search(pattern, '')
<SRE_Match object at 01071D98>

This pattern starts out the same as the previous one, checking for the beginning of the string (^), then the
thousands place (M?M?M?). Then it has the new part, in parentheses, which defines a set of three mutually
exclusive patterns, separated by vertical bars: CM, CD, and D?C?C?C? (which is an optional D followed by zero
to three optional C characters). The regular expression parser checks for each of these patterns in order (from
left to right), takes the first one that matches, and ignores the rest.

'MCM' matches because the first M matches, the second and third M characters are ignored, and the CM matches
(so the CD and D?C?C?C? patterns are never even considered). MCM is the Roman numeral representation of
1900.

'MD' matches because the first M matches, the second and third M characters are ignored, and the D?C?C?C?
pattern matches D (each of the three C characters are optional and are ignored). MD is the Roman numeral
representation of 1500.

'MMMCCC' matches because all three M characters match, and the D?C?C?C? pattern matches CCC (the D is
optional and is ignored). MMMCCC is the Roman numeral representation of 3300.

'MCMC' does not match. The first M matches, the second and third M characters are ignored, and the CM
matches, but then the $ does not match because you're not at the end of the string yet (you still have an
unmatched C character). The C does not match as part of the D?C?C?C? pattern, because the mutually
exclusive CM pattern has already matched.

Interestingly, an empty string still matches this pattern, because all the M characters are optional and ignored,
and the empty string matches the D?C?C?C? pattern where all the characters are optional and ignored.

Whew! See how quickly regular expressions can get nasty? And you've only covered the thousands and hundreds
places of Roman numerals. But if you followed all that, the tens and ones places are easy, because they're exactly the
same pattern. But let's look at another way to express the pattern.

7.4. Using the {n,m} Syntax

In the previous section, you were dealing with a pattern where the same character could be repeated up to three times.
There is another way to express this in regular expressions, which some people find more readable. First look at the
method we already used in the previous example.

Example 7.5. The Old Way: Every Character Optional

Dive Into Python 85

>>> import re
>>> pattern = '^M?M?M?$'
>>> re.search(pattern, 'M')
<_sre.SRE_Match object at 0x008EE090>
>>> pattern = '^M?M?M?$'
>>> re.search(pattern, 'MM')
<_sre.SRE_Match object at 0x008EEB48>
>>> pattern = '^M?M?M?$'
>>> re.search(pattern, 'MMM')
<_sre.SRE_Match object at 0x008EE090>
>>> re.search(pattern, 'MMMM')
>>>

This matches the start of the string, and then the first optional M, but not the second and third M (but that's okay
because they're optional), and then the end of the string.

This matches the start of the string, and then the first and second optional M, but not the third M (but that's okay
because it's optional), and then the end of the string.

This matches the start of the string, and then all three optional M, and then the end of the string.

This matches the start of the string, and then all three optional M, but then does not match the the end of the
string (because there is still one unmatched M), so the pattern does not match and returns None.

Example 7.6. The New Way: From n o m

>>> pattern = '^M{0,3}$'
>>> re.search(pattern, 'M')
<_sre.SRE_Match object at 0x008EEB48>
>>> re.search(pattern, 'MM')
<_sre.SRE_Match object at 0x008EE090>
>>> re.search(pattern, 'MMM')
<_sre.SRE_Match object at 0x008EEDA8>
>>> re.search(pattern, 'MMMM')
>>>

This pattern says: "Match the start of the string, then anywhere from zero to three M characters, then the end of
the string." The 0 and 3 can be any numbers; if you want to match at least one but no more than three M
characters, you could say M{1,3}.

This matches the start of the string, then one M out of a possible three, then the end of the string.

This matches the start of the string, then two M out of a possible three, then the end of the string.

This matches the start of the string, then three M out of a possible three, then the end of the string.

This matches the start of the string, then three M out of a possible three, but then does not match the end of the
string. The regular expression allows for up to only three M characters before the end of the string, but you have
four, so the pattern does not match and returns None.

There is no way to programmatically determine that two regular expressions are equivalent. The best you can do is
write a lot of test cases to make sure they behave the same way on all relevant inputs. You'll talk more about writing
test cases later in this book.

7.4.1. Checking for Tens and Ones

Now let's expand the Roman numeral regular expression to cover the tens and ones place. This example shows the
check for tens.

Example 7.7. Checking for Tens

Dive Into Python 86

>>> pattern = '^M?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)$'
>>> re.search(pattern, 'MCMXL')
<_sre.SRE_Match object at 0x008EEB48>
>>> re.search(pattern, 'MCML')
<_sre.SRE_Match object at 0x008EEB48>
>>> re.search(pattern, 'MCMLX')
<_sre.SRE_Match object at 0x008EEB48>
>>> re.search(pattern, 'MCMLXXX')
<_sre.SRE_Match object at 0x008EEB48>
>>> re.search(pattern, 'MCMLXXXX')
>>>

This matches the start of the string, then the first optional M, then CM, then XL, then the end of the string.
Remember, the (A|B|C) syntax means "match exactly one of A, B, or C". You match XL, so you ignore the
XC and L?X?X?X? choices, and then move on to the end of the string. MCML is the Roman numeral
representation of 1940.

This matches the start of the string, then the first optional M, then CM, then L?X?X?X?. Of the L?X?X?X?, it
matches the L and skips all three optional X characters. Then you move to the end of the string. MCML is the
Roman numeral representation of 1950.

This matches the start of the string, then the first optional M, then CM, then the optional L and the first optional
X, skips the second and third optional X, then the end of the string. MCMLX is the Roman numeral representation
of 1960.

This matches the start of the string, then the first optional M, then CM, then the optional L and all three optional
X characters, then the end of the string. MCMLXXX is the Roman numeral representation of 1980.

This matches the start of the string, then the first optional M, then CM, then the optional L and all three optional
X characters, then fails to match the end of the string because there is still one more X unaccounted for. So the
entire pattern fails to match, and returns None. MCMLXXXX is not a valid Roman numeral.

The expression for the ones place follows the same pattern. I'll spare you the details and show you the end result.

>>> pattern = '^M?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)(IX|IV|V?I?I?I?)$'

So what does that look like using this alternate {n,m} syntax? This example shows the new syntax.

Example 7.8. Validating Roman Numerals with {n,m}

>>> pattern = '^M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$'
>>> re.search(pattern, 'MDLV')
<_sre.SRE_Match object at 0x008EEB48>
>>> re.search(pattern, 'MMDCLXVI')
<_sre.SRE_Match object at 0x008EEB48>
>>> re.search(pattern, 'MMMMDCCCLXXXVIII')
<_sre.SRE_Match object at 0x008EEB48>
>>> re.search(pattern, 'I')
<_sre.SRE_Match object at 0x008EEB48>

This matches the start of the string, then one of a possible four M characters, then D?C{0,3}. Of that, it
matches the optional D and zero of three possible C characters. Moving on, it matches L?X{0,3} by matching
the optional L and zero of three possible X characters. Then it matches V?I{0,3} by matching the optional V
and zero of three possible I characters, and finally the end of the string. MDLV is the Roman numeral
representation of 1555.

This matches the start of the string, then two of a possible four M characters, then the D?C{0,3} with a D and
one of three possible C characters; then L?X{0,3} with an L and one of three possible X characters; then
V?I{0,3} with a V and one of three possible I characters; then the end of the string. MMDCLXVI is the

Dive Into Python 87

Roman numeral representation of 2666.

This matches the start of the string, then four out of four M characters, then D?C{0,3} with a D and three out
of three C characters; then L?X{0,3} with an L and three out of three X characters; then V?I{0,3} with a V
and three out of three I characters; then the end of the string. MMMMDCCCLXXXVIII is the Roman numeral
representation of 3888, and it's the longest Roman numeral you can write without extended syntax.

Watch closely. (I feel like a magician. "Watch closely, kids, I'm going to pull a rabbit out of my hat.") This
matches the start of the string, then zero out of four M, then matches D?C{0,3} by skipping the optional D and
matching zero out of three C, then matches L?X{0,3} by skipping the optional L and matching zero out of
three X, then matches V?I{0,3} by skipping the optional V and matching one out of three I. Then the end of
the string. Whoa.

If you followed all that and understood it on the first try, you're doing better than I did. Now imagine trying to
understand someone else's regular expressions, in the middle of a critical function of a large program. Or even
imagine coming back to your own regular expressions a few months later. I've done it, and it's not a pretty sight.

In the next section you'll explore an alternate syntax that can help keep your expressions maintainable.

7.5. Verbose Regular Expressions

So far you've just been dealing with what I'll call "compact" regular expressions. As you've seen, they are difficult to
read, and even if you figure out what one does, that's no guarantee that you'll be able to understand it six months later.
What you really need is inline documentation.

Python allows you to do this with something called verbose regular expressions. A verbose regular expression is
different from a compact regular expression in two ways:

Whitespace is ignored. Spaces, tabs, and carriage returns are not matched as spaces, tabs, and carriage returns.
They're not matched at all. (If you want to match a space in a verbose regular expression, you'll need to escape
it by putting a backslash in front of it.)

•

Comments are ignored. A comment in a verbose regular expression is just like a comment in Python code: it
starts with a # character and goes until the end of the line. In this case it's a comment within a multi−line
string instead of within your source code, but it works the same way.

•

This will be more clear with an example. Let's revisit the compact regular expression you've been working with, and
make it a verbose regular expression. This example shows how.

Example 7.9. Regular Expressions with Inline Comments

>>> pattern = """
 ^ # beginning of string
 M{0,4} # thousands − 0 to 4 M's
 (CM|CD|D?C{0,3}) # hundreds − 900 (CM), 400 (CD), 0−300 (0 to 3 C's),
 # or 500−800 (D, followed by 0 to 3 C's)
 (XC|XL|L?X{0,3}) # tens − 90 (XC), 40 (XL), 0−30 (0 to 3 X's),
 # or 50−80 (L, followed by 0 to 3 X's)
 (IX|IV|V?I{0,3}) # ones − 9 (IX), 4 (IV), 0−3 (0 to 3 I's),
 # or 5−8 (V, followed by 0 to 3 I's)
 $ # end of string
 """
>>> re.search(pattern, 'M', re.VERBOSE)
<_sre.SRE_Match object at 0x008EEB48>
>>> re.search(pattern, 'MCMLXXXIX', re.VERBOSE)
<_sre.SRE_Match object at 0x008EEB48>
>>> re.search(pattern, 'MMMMDCCCLXXXVIII', re.VERBOSE)

Dive Into Python 88

<_sre.SRE_Match object at 0x008EEB48>
>>> re.search(pattern, 'M')

The most important thing to remember when using verbose regular expressions is that you need to pass
an extra argument when working with them: re.VERBOSE is a constant defined in the re module that
signals that the pattern should be treated as a verbose regular expression. As you can see, this pattern
has quite a bit of whitespace (all of which is ignored), and several comments (all of which are ignored).
Once you ignore the whitespace and the comments, this is exactly the same regular expression as you
saw in the previous section, but it's a lot more readable.

This matches the start of the string, then one of a possible four M, then CM, then L and three of a possible
three X, then IX, then the end of the string.

This matches the start of the string, then four of a possible four M, then D and three of a possible three C,
then L and three of a possible three X, then V and three of a possible three I, then the end of the string.

This does not match. Why? Because it doesn't have the re.VERBOSE flag, so the re.search
function is treating the pattern as a compact regular expression, with significant whitespace and literal
hash marks. Python can't auto−detect whether a regular expression is verbose or not. Python assumes
every regular expression is compact unless you explicitly state that it is verbose.

7.6. Case study: Parsing Phone Numbers

So far you've concentrated on matching whole patterns. Either the pattern matches, or it doesn't. But regular
expressions are much more powerful than that. When a regular expression does match, you can pick out specific
pieces of it. You can find out what matched where.

This example came from another real−world problem I encountered, again from a previous day job. The problem:
parsing an American phone number. The client wanted to be able to enter the number free−form (in a single field), but
then wanted to store the area code, trunk, number, and optionally an extension separately in the company's database. I
scoured the Web and found many examples of regular expressions that purported to do this, but none of them were
permissive enough.

Here are the phone numbers I needed to be able to accept:

800−555−1212•
800 555 1212•
800.555.1212•
(800) 555−1212•
1−800−555−1212•
800−555−1212−1234•
800−555−1212x1234•
800−555−1212 ext. 1234•
work 1−(800) 555.1212 #1234•

Quite a variety! In each of these cases, I need to know that the area code was 800, the trunk was 555, and the rest of
the phone number was 1212. For those with an extension, I need to know that the extension was 1234.

Let's work through developing a solution for phone number parsing. This example shows the first step.

Example 7.10. Finding Numbers

>>> phonePattern = re.compile(r'^(\d{3})−(\d{3})−(\d{4})$')
>>> phonePattern.search('800−555−1212').groups()
('800', '555', '1212')

Dive Into Python 89

>>> phonePattern.search('800−555−1212−1234')
>>>

Always read regular expressions from left to right. This one matches the beginning of the string, and then
(\d{3}). What's \d{3}? Well, the {3} means "match exactly three numeric digits"; it's a variation on
the {n,m} syntax you saw earlier. \d means "any numeric digit" (0 through 9). Putting it in
parentheses means "match exactly three numeric digits, and then remember them as a group that I can
ask for later". Then match a literal hyphen. Then match another group of exactly three digits. Then
another literal hyphen. Then another group of exactly four digits. Then match the end of the string.

To get access to the groups that the regular expression parser remembered along the way, use the
groups() method on the object that the search function returns. It will return a tuple of however
many groups were defined in the regular expression. In this case, you defined three groups, one with
three digits, one with three digits, and one with four digits.

This regular expression is not the final answer, because it doesn't handle a phone number with an
extension on the end. For that, you'll need to expand the regular expression.

Example 7.11. Finding the Extension

>>> phonePattern = re.compile(r'^(\d{3})−(\d{3})−(\d{4})−(\d+)$')
>>> phonePattern.search('800−555−1212−1234').groups()
('800', '555', '1212', '1234')
>>> phonePattern.search('800 555 1212 1234')
>>>
>>> phonePattern.search('800−555−1212')
>>>

This regular expression is almost identical to the previous one. Just as before, you match the beginning
of the string, then a remembered group of three digits, then a hyphen, then a remembered group of three
digits, then a hyphen, then a remembered group of four digits. What's new is that you then match
another hyphen, and a remembered group of one or more digits, then the end of the string.

The groups() method now returns a tuple of four elements, since the regular expression now defines
four groups to remember.

Unfortunately, this regular expression is not the final answer either, because it assumes that the different
parts of the phone number are separated by hyphens. What if they're separated by spaces, or commas, or
dots? You need a more general solution to match several different types of separators.

Oops! Not only does this regular expression not do everything you want, it's actually a step backwards,
because now you can't parse phone numbers without an extension. That's not what you wanted at all; if
the extension is there, you want to know what it is, but if it's not there, you still want to know what the
different parts of the main number are.

The next example shows the regular expression to handle separators between the different parts of the phone number.

Example 7.12. Handling Different Separators

>>> phonePattern = re.compile(r'^(\d{3})\D+(\d{3})\D+(\d{4})\D+(\d+)$')
>>> phonePattern.search('800 555 1212 1234').groups()
('800', '555', '1212', '1234')
>>> phonePattern.search('800−555−1212−1234').groups()
('800', '555', '1212', '1234')
>>> phonePattern.search('80055512121234')
>>>
>>> phonePattern.search('800−555−1212')
>>>

Dive Into Python 90

Hang on to your hat. You're matching the beginning of the string, then a group of three digits, then \D+.
What the heck is that? Well, \D matches any character except a numeric digit, and + means "1 or more".
So \D+ matches one or more characters that are not digits. This is what you're using instead of a literal
hyphen, to try to match different separators.

Using \D+ instead of − means you can now match phone numbers where the parts are separated by
spaces instead of hyphens.

Of course, phone numbers separated by hyphens still work too.

Unfortunately, this is still not the final answer, because it assumes that there is a separator at all. What if
the phone number is entered without any spaces or hyphens at all?

Oops! This still hasn't fixed the problem of requiring extensions. Now you have two problems, but you
can solve both of them with the same technique.

The next example shows the regular expression for handling phone numbers without separators.

Example 7.13. Handling Numbers Without Separators

>>> phonePattern = re.compile(r'^(\d{3})\D*(\d{3})\D*(\d{4})\D*(\d*)$')
>>> phonePattern.search('80055512121234').groups()
('800', '555', '1212', '1234')
>>> phonePattern.search('800.555.1212 x1234').groups()
('800', '555', '1212', '1234')
>>> phonePattern.search('800−555−1212').groups()
('800', '555', '1212', '')
>>> phonePattern.search('(800)5551212 x1234')
>>>

The only change you've made since that last step is changing all the + to *. Instead of \D+ between the parts of
the phone number, you now match on \D*. Remember that + means "1 or more"? Well, * means "zero or
more". So now you should be able to parse phone numbers even when there is no separator character at all.

Lo and behold, it actually works. Why? You matched the beginning of the string, then a remembered group of
three digits (800), then zero non−numeric characters, then a remembered group of three digits (555), then zero
non−numeric characters, then a remembered group of four digits (1212), then zero non−numeric characters,
then a remembered group of an arbitrary number of digits (1234), then the end of the string.

Other variations work now too: dots instead of hyphens, and both a space and an x before the extension.

Finally, you've solved the other long−standing problem: extensions are optional again. If no extension is found,
the groups() method still returns a tuple of four elements, but the fourth element is just an empty string.

I hate to be the bearer of bad news, but you're not finished yet. What's the problem here? There's an extra
character before the area code, but the regular expression assumes that the area code is the first thing at the
beginning of the string. No problem, you can use the same technique of "zero or more non−numeric characters"
to skip over the leading characters before the area code.

The next example shows how to handle leading characters in phone numbers.

Example 7.14. Handling Leading Characters

>>> phonePattern = re.compile(r'^\D*(\d{3})\D*(\d{3})\D*(\d{4})\D*(\d*)$')
>>> phonePattern.search('(800)5551212 ext. 1234').groups()
('800', '555', '1212', '1234')
>>> phonePattern.search('800−555−1212').groups()
('800', '555', '1212', '')
>>> phonePattern.search('work 1−(800) 555.1212 #1234')
>>>

Dive Into Python 91

This is the same as in the previous example, except now you're matching \D*, zero or more non−numeric
characters, before the first remembered group (the area code). Notice that you're not remembering these
non−numeric characters (they're not in parentheses). If you find them, you'll just skip over them and then start
remembering the area code whenever you get to it.

You can successfully parse the phone number, even with the leading left parenthesis before the area code. (The
right parenthesis after the area code is already handled; it's treated as a non−numeric separator and matched by
the \D* after the first remembered group.)

Just a sanity check to make sure you haven't broken anything that used to work. Since the leading characters are
entirely optional, this matches the beginning of the string, then zero non−numeric characters, then a
remembered group of three digits (800), then one non−numeric character (the hyphen), then a remembered
group of three digits (555), then one non−numeric character (the hyphen), then a remembered group of four
digits (1212), then zero non−numeric characters, then a remembered group of zero digits, then the end of the
string.

This is where regular expressions make me want to gouge my eyes out with a blunt object. Why doesn't this
phone number match? Because there's a 1 before the area code, but you assumed that all the leading characters
before the area code were non−numeric characters (\D*). Aargh.

Let's back up for a second. So far the regular expressions have all matched from the beginning of the string. But now
you see that there may be an indeterminate amount of stuff at the beginning of the string that you want to ignore.
Rather than trying to match it all just so you can skip over it, let's take a different approach: don't explicitly match the
beginning of the string at all. This approach is shown in the next example.

Example 7.15. Phone Number, Wherever I May Find Ye

>>> phonePattern = re.compile(r'(\d{3})\D*(\d{3})\D*(\d{4})\D*(\d*)$')
>>> phonePattern.search('work 1−(800) 555.1212 #1234').groups()
('800', '555', '1212', '1234')
>>> phonePattern.search('800−555−1212')
('800', '555', '1212', '')
>>> phonePattern.search('80055512121234')
('800', '555', '1212', '1234')

Note the lack of ^ in this regular expression. You are not matching the beginning of the string anymore. There's
nothing that says you need to match the entire input with your regular expression. The regular expression
engine will do the hard work of figuring out where the input string starts to match, and go from there.

Now you can successfully parse a phone number that includes leading characters and a leading digit, plus any
number of any kind of separators around each part of the phone number.

Sanity check. this still works.

That still works too.
See how quickly a regular expression can get out of control? Take a quick glance at any of the previous iterations. Can
you tell the difference between one and the next?

While you still understand the final answer (and it is the final answer; if you've discovered a case it doesn't handle, I
don't want to know about it), let's write it out as a verbose regular expression, before you forget why you made the
choices you made.

Example 7.16. Parsing Phone Numbers (Final Version)

>>> phonePattern = re.compile(r'''
 # don't match beginning of string, number can start anywhere
 (\d{3}) # area code is 3 digits (e.g. '800')

Dive Into Python 92

 \D* # optional separator is any number of non−digits
 (\d{3}) # trunk is 3 digits (e.g. '555')
 \D* # optional separator
 (\d{4}) # rest of number is 4 digits (e.g. '1212')
 \D* # optional separator
 (\d*) # extension is optional and can be any number of digits
 $ # end of string
 ''', re.VERBOSE)
>>> phonePattern.search('work 1−(800) 555.1212 #1234').groups()
('800', '555', '1212', '1234')
>>> phonePattern.search('800−555−1212')
('800', '555', '1212', '')

Other than being spread out over multiple lines, this is exactly the same regular expression as the last step, so
it's no surprise that it parses the same inputs.

Final sanity check. Yes, this still works. You're done.
Further Reading on Regular Expressions

Regular Expression HOWTO (http://py−howto.sourceforge.net/regex/regex.html) teaches about regular
expressions and how to use them in Python.

•

Python Library Reference (http://www.python.org/doc/current/lib/) summarizes the re module
(http://www.python.org/doc/current/lib/module−re.html).

•

7.7. Summary

This is just the tiniest tip of the iceberg of what regular expressions can do. In other words, even though you're
completely overwhelmed by them now, believe me, you ain't seen nothing yet.

You should now be familiar with the following techniques:

^ matches the beginning of a string.•
$ matches the end of a string.•
\b matches a word boundary.•
\d matches any numeric digit.•
\D matches any non−numeric character.•
x? matches an optional x character (in other words, it matches an x zero or one times).•
x* matches x zero or more times.•
x+ matches x one or more times.•
x{n,m} matches an x character at least n times, but not more than m times.•
(a|b|c) matches either a or b or c.•
(x) in general is a remembered group. You can get the value of what matched by using the groups()
method of the object returned by re.search.

•

Regular expressions are extremely powerful, but they are not the correct solution for every problem. You should learn
enough about them to know when they are appropriate, when they will solve your problems, and when they will cause
more problems than they solve.

Some people, when confronted with a problem, think "I know, I'll use regular expressions."
Now they have two problems.

−−Jamie Zawinski, in comp.emacs.xemacs
(http://groups.google.com/groups?selm=33F0C496.370D7C45%40netscape.com)

Dive Into Python 93

http://py-howto.sourceforge.net/regex/regex.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-re.html
http://groups.google.com/groups?selm=33F0C496.370D7C45%40netscape.com

Chapter 8. HTML Processing

8.1. Diving in

I often see questions on comp.lang.python (http://groups.google.com/groups?group=comp.lang.python) like "How can
I list all the [headers|images|links] in my HTML document?" "How do I parse/translate/munge the text of my HTML
document but leave the tags alone?" "How can I add/remove/quote attributes of all my HTML tags at once?" This
chapter will answer all of these questions.

Here is a complete, working Python program in two parts. The first part, BaseHTMLProcessor.py, is a generic
tool to help you process HTML files by walking through the tags and text blocks. The second part, dialect.py, is
an example of how to use BaseHTMLProcessor.py to translate the text of an HTML document but leave the tags
alone. Read the doc strings and comments to get an overview of what's going on. Most of it will seem like black
magic, because it's not obvious how any of these class methods ever get called. Don't worry, all will be revealed in
due time.

Example 8.1. BaseHTMLProcessor.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

from sgmllib import SGMLParser
import htmlentitydefs

class BaseHTMLProcessor(SGMLParser):
 def reset(self):
 # extend (called by SGMLParser.__init__)
 self.pieces = []
 SGMLParser.reset(self)

 def unknown_starttag(self, tag, attrs):
 # called for each start tag
 # attrs is a list of (attr, value) tuples
 # e.g. for <pre class="screen">, tag="pre", attrs=[("class", "screen")]
 # Ideally we would like to reconstruct original tag and attributes, but
 # we may end up quoting attribute values that weren't quoted in the source
 # document, or we may change the type of quotes around the attribute value
 # (single to double quotes).
 # Note that improperly embedded non−HTML code (like client−side Javascript)
 # may be parsed incorrectly by the ancestor, causing runtime script errors.
 # All non−HTML code must be enclosed in HTML comment tags (<!−− code −−>)
 # to ensure that it will pass through this parser unaltered (in handle_comment).
 strattrs = "".join([' %s="%s"' % (key, value) for key, value in attrs])
 self.pieces.append("<%(tag)s%(strattrs)s>" % locals())

 def unknown_endtag(self, tag):
 # called for each end tag, e.g. for </pre>, tag will be "pre"
 # Reconstruct the original end tag.
 self.pieces.append("</%(tag)s>" % locals())

 def handle_charref(self, ref):
 # called for each character reference, e.g. for " ", ref will be "160"
 # Reconstruct the original character reference.
 self.pieces.append("&#%(ref)s;" % locals())

 def handle_entityref(self, ref):

Dive Into Python 94

http://groups.google.com/groups?group=comp.lang.python
http://diveintopython.org/download/diveintopython-examples-5.4.zip

 # called for each entity reference, e.g. for "©", ref will be "copy"
 # Reconstruct the original entity reference.
 self.pieces.append("&%(ref)s" % locals())
 # standard HTML entities are closed with a semicolon; other entities are not
 if htmlentitydefs.entitydefs.has_key(ref):
 self.pieces.append(";")

 def handle_data(self, text):
 # called for each block of plain text, i.e. outside of any tag and
 # not containing any character or entity references
 # Store the original text verbatim.
 self.pieces.append(text)

 def handle_comment(self, text):
 # called for each HTML comment, e.g. <!−− insert Javascript code here −−>
 # Reconstruct the original comment.
 # It is especially important that the source document enclose client−side
 # code (like Javascript) within comments so it can pass through this
 # processor undisturbed; see comments in unknown_starttag for details.
 self.pieces.append("<!−−%(text)s−−>" % locals())

 def handle_pi(self, text):
 # called for each processing instruction, e.g. <?instruction>
 # Reconstruct original processing instruction.
 self.pieces.append("<?%(text)s>" % locals())

 def handle_decl(self, text):
 # called for the DOCTYPE, if present, e.g.
 # <!DOCTYPE html PUBLIC "−//W3C//DTD HTML 4.01 Transitional//EN"
 # "http://www.w3.org/TR/html4/loose.dtd">
 # Reconstruct original DOCTYPE
 self.pieces.append("<!%(text)s>" % locals())

 def output(self):
 """Return processed HTML as a single string"""
 return "".join(self.pieces)

Example 8.2. dialect.py

import re
from BaseHTMLProcessor import BaseHTMLProcessor

class Dialectizer(BaseHTMLProcessor):
 subs = ()

 def reset(self):
 # extend (called from __init__ in ancestor)
 # Reset all data attributes
 self.verbatim = 0
 BaseHTMLProcessor.reset(self)

 def start_pre(self, attrs):
 # called for every <pre> tag in HTML source
 # Increment verbatim mode count, then handle tag like normal
 self.verbatim += 1
 self.unknown_starttag("pre", attrs)

 def end_pre(self):
 # called for every </pre> tag in HTML source
 # Decrement verbatim mode count
 self.unknown_endtag("pre")

Dive Into Python 95

 self.verbatim −= 1

 def handle_data(self, text):
 # override
 # called for every block of text in HTML source
 # If in verbatim mode, save text unaltered;
 # otherwise process the text with a series of substitutions
 self.pieces.append(self.verbatim and text or self.process(text))

 def process(self, text):
 # called from handle_data
 # Process text block by performing series of regular expression
 # substitutions (actual substitions are defined in descendant)
 for fromPattern, toPattern in self.subs:
 text = re.sub(fromPattern, toPattern, text)
 return text

class ChefDialectizer(Dialectizer):
 """convert HTML to Swedish Chef−speak

 based on the classic chef.x, copyright (c) 1992, 1993 John Hagerman
 """
 subs = ((r'a([nu])', r'u\1'),
 (r'A([nu])', r'U\1'),
 (r'a\B', r'e'),
 (r'A\B', r'E'),
 (r'en\b', r'ee'),
 (r'\Bew', r'oo'),
 (r'\Be\b', r'e−a'),
 (r'\be', r'i'),
 (r'\bE', r'I'),
 (r'\Bf', r'ff'),
 (r'\Bir', r'ur'),
 (r'(\w*?)i(\w*?)$', r'\1ee\2'),
 (r'\bow', r'oo'),
 (r'\bo', r'oo'),
 (r'\bO', r'Oo'),
 (r'the', r'zee'),
 (r'The', r'Zee'),
 (r'th\b', r't'),
 (r'\Btion', r'shun'),
 (r'\Bu', r'oo'),
 (r'\BU', r'Oo'),
 (r'v', r'f'),
 (r'V', r'F'),
 (r'w', r'w'),
 (r'W', r'W'),
 (r'([a−z])[.]', r'\1. Bork Bork Bork!'))

class FuddDialectizer(Dialectizer):
 """convert HTML to Elmer Fudd−speak"""
 subs = ((r'[rl]', r'w'),
 (r'qu', r'qw'),
 (r'th\b', r'f'),
 (r'th', r'd'),
 (r'n[.]', r'n, uh−hah−hah−hah.'))

class OldeDialectizer(Dialectizer):
 """convert HTML to mock Middle English"""
 subs = ((r'i([bcdfghjklmnpqrstvwxyz])e\b', r'y\1'),
 (r'i([bcdfghjklmnpqrstvwxyz])e', r'y\1\1e'),
 (r'ick\b', r'yk'),
 (r'ia([bcdfghjklmnpqrstvwxyz])', r'e\1e'),

Dive Into Python 96

 (r'e[ea]([bcdfghjklmnpqrstvwxyz])', r'e\1e'),
 (r'([bcdfghjklmnpqrstvwxyz])y', r'\1ee'),
 (r'([bcdfghjklmnpqrstvwxyz])er', r'\1re'),
 (r'([aeiou])re\b', r'\1r'),
 (r'ia([bcdfghjklmnpqrstvwxyz])', r'i\1e'),
 (r'tion\b', r'cioun'),
 (r'ion\b', r'ioun'),
 (r'aid', r'ayde'),
 (r'ai', r'ey'),
 (r'ay\b', r'y'),
 (r'ay', r'ey'),
 (r'ant', r'aunt'),
 (r'ea', r'ee'),
 (r'oa', r'oo'),
 (r'ue', r'e'),
 (r'oe', r'o'),
 (r'ou', r'ow'),
 (r'ow', r'ou'),
 (r'\bhe', r'hi'),
 (r've\b', r'veth'),
 (r'se\b', r'e'),
 (r"'s\b", r'es'),
 (r'ic\b', r'ick'),
 (r'ics\b', r'icc'),
 (r'ical\b', r'ick'),
 (r'tle\b', r'til'),
 (r'll\b', r'l'),
 (r'ould\b', r'olde'),
 (r'own\b', r'oune'),
 (r'un\b', r'onne'),
 (r'rry\b', r'rye'),
 (r'est\b', r'este'),
 (r'pt\b', r'pte'),
 (r'th\b', r'the'),
 (r'ch\b', r'che'),
 (r'ss\b', r'sse'),
 (r'([wybdp])\b', r'\1e'),
 (r'([rnt])\b', r'\1\1e'),
 (r'from', r'fro'),
 (r'when', r'whan'))

def translate(url, dialectName="chef"):
 """fetch URL and translate using dialect

 dialect in ("chef", "fudd", "olde")"""
 import urllib
 sock = urllib.urlopen(url)
 htmlSource = sock.read()
 sock.close()
 parserName = "%sDialectizer" % dialectName.capitalize()
 parserClass = globals()[parserName]
 parser = parserClass()
 parser.feed(htmlSource)
 parser.close()
 return parser.output()

def test(url):
 """test all dialects against URL"""
 for dialect in ("chef", "fudd", "olde"):
 outfile = "%s.html" % dialect
 fsock = open(outfile, "wb")
 fsock.write(translate(url, dialect))
 fsock.close()

Dive Into Python 97

 import webbrowser
 webbrowser.open_new(outfile)

if __name__ == "__main__":
 test("http://diveintopython.org/odbchelper_list.html")

Example 8.3. Output of dialect.py

Running this script will translate Section 3.2, �Introducing Lists� into mock Swedish Chef−speak
(../native_data_types/chef.html) (from The Muppets), mock Elmer Fudd−speak (../native_data_types/fudd.html) (from
Bugs Bunny cartoons), and mock Middle English (../native_data_types/olde.html) (loosely based on Chaucer's The
Canterbury Tales). If you look at the HTML source of the output pages, you'll see that all the HTML tags and
attributes are untouched, but the text between the tags has been "translated" into the mock language. If you look
closer, you'll see that, in fact, only the titles and paragraphs were translated; the code listings and screen examples
were left untouched.

<div class="abstract">
<p>Lists awe Pydon's wowkhowse datatype.
If youw onwy expewience wif wists is awways in
Visuaw Basic ow (God fowbid) de datastowe
in Powewbuiwdew, bwace youwsewf fow
Pydon wists.</p>
</div>

8.2. Introducing sgmllib.py

HTML processing is broken into three steps: breaking down the HTML into its constituent pieces, fiddling with the
pieces, and reconstructing the pieces into HTML again. The first step is done by sgmllib.py, a part of the standard
Python library.

The key to understanding this chapter is to realize that HTML is not just text, it is structured text. The structure is
derived from the more−or−less−hierarchical sequence of start tags and end tags. Usually you don't work with HTML
this way; you work with it textually in a text editor, or visually in a web browser or web authoring tool. sgmllib.py
presents HTML structurally.

sgmllib.py contains one important class: SGMLParser. SGMLParser parses HTML into useful pieces, like
start tags and end tags. As soon as it succeeds in breaking down some data into a useful piece, it calls a method on
itself based on what it found. In order to use the parser, you subclass the SGMLParser class and override these
methods. This is what I meant when I said that it presents HTML structurally: the structure of the HTML determines
the sequence of method calls and the arguments passed to each method.

SGMLParser parses HTML into 8 kinds of data, and calls a separate method for each of them:

Start tag
An HTML tag that starts a block, like <html>, <head>, <body>, or <pre>, or a standalone tag like

or . When it finds a start tagtagname, SGMLParser will look for a method called
start_tagname or do_tagname. For instance, when it finds a <pre> tag, it will look for a
start_pre or do_pre method. If found, SGMLParser calls this method with a list of the tag's attributes;
otherwise, it calls unknown_starttag with the tag name and list of attributes.

End tag
An HTML tag that ends a block, like </html>, </head>, </body>, or </pre>. When it finds an end
tag, SGMLParser will look for a method called end_tagname. If found, SGMLParser calls this method,
otherwise it calls unknown_endtag with the tag name.

Dive Into Python 98

Character reference
An escaped character referenced by its decimal or hexadecimal equivalent, like . When found,
SGMLParser calls handle_charref with the text of the decimal or hexadecimal character equivalent.

Entity reference
An HTML entity, like ©. When found, SGMLParser calls handle_entityref with the name of
the HTML entity.

Comment
An HTML comment, enclosed in <!−− ... −−>. When found, SGMLParser calls handle_comment
with the body of the comment.

Processing instruction
An HTML processing instruction, enclosed in <? ... >. When found, SGMLParser calls handle_pi
with the body of the processing instruction.

Declaration
An HTML declaration, such as a DOCTYPE, enclosed in <! ... >. When found, SGMLParser calls
handle_decl with the body of the declaration.

Text data
A block of text. Anything that doesn't fit into the other 7 categories. When found, SGMLParser calls
handle_data with the text.

Python 2.0 had a bug where SGMLParser would not recognize declarations at all (handle_decl would never be
called), which meant that DOCTYPEs were silently ignored. This is fixed in Python 2.1.
sgmllib.py comes with a test suite to illustrate this. You can run sgmllib.py, passing the name of an HTML
file on the command line, and it will print out the tags and other elements as it parses them. It does this by subclassing
the SGMLParser class and defining unknown_starttag, unknown_endtag, handle_data and other
methods which simply print their arguments.

In the ActivePython IDE on Windows, you can specify command line arguments in the "Run script" dialog. Separate
multiple arguments with spaces.

Example 8.4. Sample test of sgmllib.py

Here is a snippet from the table of contents of the HTML version of this book. Of course your paths may vary. (If you
haven't downloaded the HTML version of the book, you can do so at http://diveintopython.org/.

c:\python23\lib> type "c:\downloads\diveintopython\html\toc\index.html"
<!DOCTYPE html

 PUBLIC "−//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
 <head>
 <meta http−equiv="Content−Type" content="text/html; charset=ISO−8859−1">

 <title>Dive Into Python</title>
 <link rel="stylesheet" href="diveintopython.css" type="text/css">

... rest of file omitted for brevity ...

Running this through the test suite of sgmllib.py yields this output:

c:\python23\lib> python sgmllib.py "c:\downloads\diveintopython\html\toc\index.html"
data: '\n\n'
start tag: <html lang="en" >
data: '\n '

Dive Into Python 99

http://diveintopython.org/

start tag: <head>
data: '\n '
start tag: <meta http−equiv="Content−Type" content="text/html; charset=ISO−8859−1" >
data: '\n \n '
start tag: <title>
data: 'Dive Into Python'
end tag: </title>
data: '\n '
start tag: <link rel="stylesheet" href="diveintopython.css" type="text/css" >
data: '\n '

... rest of output omitted for brevity ...

Here's the roadmap for the rest of the chapter:

Subclass SGMLParser to create classes that extract interesting data out of HTML documents.•
Subclass SGMLParser to create BaseHTMLProcessor, which overrides all 8 handler methods and uses
them to reconstruct the original HTML from the pieces.

•

Subclass BaseHTMLProcessor to create Dialectizer, which adds some methods to process specific
HTML tags specially, and overrides the handle_data method to provide a framework for processing the
text blocks between the HTML tags.

•

Subclass Dialectizer to create classes that define text processing rules used by
Dialectizer.handle_data.

•

Write a test suite that grabs a real web page from http://diveintopython.org/ and processes it.•

Along the way, you'll also learn about locals, globals, and dictionary−based string formatting.

8.3. Extracting data from HTML documents

To extract data from HTML documents, subclass the SGMLParser class and define methods for each tag or entity
you want to capture.

The first step to extracting data from an HTML document is getting some HTML. If you have some HTML lying
around on your hard drive, you can use file functions to read it, but the real fun begins when you get HTML from live
web pages.

Example 8.5. Introducing urllib

>>> import urllib
>>> sock = urllib.urlopen("http://diveintopython.org/")
>>> htmlSource = sock.read()
>>> sock.close()
>>> print htmlSource
<!DOCTYPE html PUBLIC "−//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><html><head>
 <meta http−equiv='Content−Type' content='text/html; charset=ISO−8859−1'>
 <title>Dive Into Python</title>
<link rel='stylesheet' href='diveintopython.css' type='text/css'>
<link rev='made' href='mailto:mark@diveintopython.org'>
<meta name='keywords' content='Python, Dive Into Python, tutorial, object−oriented, programming, documentation, book, free'>
<meta name='description' content='a free Python tutorial for experienced programmers'>
</head>
<body bgcolor='white' text='black' link='#0000FF' vlink='#840084' alink='#0000FF'>
<table cellpadding='0' cellspacing='0' border='0' width='100%'>
<tr><td class='header' width='1%' valign='top'>diveintopython.org</td>
<td width='99%' align='right'><hr size='1' noshade></td></tr>
<tr><td class='tagline' colspan='2'>Python for experienced programmers</td></tr>

Dive Into Python 100

[...snip...]

The urllib module is part of the standard Python library. It contains functions for getting information about
and actually retrieving data from Internet−based URLs (mainly web pages).

The simplest use of urllib is to retrieve the entire text of a web page using the urlopen function. Opening
a URL is similar to opening a file. The return value of urlopen is a file−like object, which has some of the
same methods as a file object.

The simplest thing to do with the file−like object returned by urlopen is read, which reads the entire HTML
of the web page into a single string. The object also supports readlines, which reads the text line by line
into a list.

When you're done with the object, make sure to close it, just like a normal file object.

You now have the complete HTML of the home page of http://diveintopython.org/ in a string, and
you're ready to parse it.

Example 8.6. Introducing urllister.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython−examples−5.4.zip) used in this book.

from sgmllib import SGMLParser

class URLLister(SGMLParser):
 def reset(self):
 SGMLParser.reset(self)
 self.urls = []

 def start_a(self, attrs):
 href = [v for k, v in attrs if k=='href']
 if href:
 self.urls.extend(href)

reset is called by the __init__ method of SGMLParser, and it can also be called manually once an
instance of the parser has been created. So if you need to do any initialization, do it in reset, not in
__init__, so that it will be re−initialized properly when someone re−uses a parser instance.

start_a is called by SGMLParser whenever it finds an <a> tag. The tag may contain an href attribute,
and/or other attributes, like name or title. The attrs parameter is a list of tuples, [(attribute,
value), (attribute, value), ...]. Or it may be just an <a>, a valid (if useless) HTML tag, in
which case attrs would be an empty list.

You can find out whether this <a> tag has an href attribute with a simple multi−variable list comprehension.

String comparisons like k=='href' are always case−sensitive, but that's safe in this case, because
SGMLParser converts attribute names to lowercase while building attrs.

Example 8.7. Using urllister.py

>>> import urllib, urllister
>>> usock = urllib.urlopen("http://diveintopython.org/")
>>> parser = urllister.URLLister()
>>> parser.feed(usock.read())
>>> usock.close()
>>> parser.close()
>>> for url in parser.urls: print url
toc/index.html
#download

Dive Into Python 101

http://diveintopython.org/download/diveintopython-examples-5.4.zip

#languages
toc/index.html
appendix/history.html
download/diveintopython−html−5.0.zip
download/diveintopython−pdf−5.0.zip
download/diveintopython−word−5.0.zip
download/diveintopython−text−5.0.zip
download/diveintopython−html−flat−5.0.zip
download/diveintopython−xml−5.0.zip
download/diveintopython−common−5.0.zip

... rest of output omitted for brevity ...

Call the feed method, defined in SGMLParser, to get HTML into the parser.
[1]

 It takes a string, which is
what usock.read() returns.

Like files, you should close your URL objects as soon as you're done with them.

You should close your parser object, too, but for a different reason. You've read all the data and fed it to the
parser, but the feed method isn't guaranteed to have actually processed all the HTML you give it; it may
buffer it, waiting for more. Be sure to call close to flush the buffer and force everything to be fully parsed.

Once the parser is closed, the parsing is complete, and parser.urls contains a list of all the linked URLs
in the HTML document. (Your output may look different, if the download links have been updated by the time
you read this.)

8.4. Introducing BaseHTMLProcessor.py

SGMLParser doesn't produce anything by itself. It parses and parses and parses, and it calls a method for each
interesting thing it finds, but the methods don't do anything. SGMLParser is an HTML consumer: it takes HTML
and breaks it down into small, structured pieces. As you saw in the previous section, you can subclass SGMLParser
to define classes that catch specific tags and produce useful things, like a list of all the links on a web page. Now you'll
take this one step further by defining a class that catches everything SGMLParser throws at it and reconstructs the
complete HTML document. In technical terms, this class will be an HTML producer.

BaseHTMLProcessor subclasses SGMLParser and provides all 8 essential handler methods:
unknown_starttag, unknown_endtag, handle_charref, handle_entityref, handle_comment,
handle_pi, handle_decl, and handle_data.

Example 8.8. Introducing BaseHTMLProcessor

class BaseHTMLProcessor(SGMLParser):
 def reset(self):
 self.pieces = []
 SGMLParser.reset(self)

 def unknown_starttag(self, tag, attrs):
 strattrs = "".join([' %s="%s"' % (key, value) for key, value in attrs])
 self.pieces.append("<%(tag)s%(strattrs)s>" % locals())

 def unknown_endtag(self, tag):
 self.pieces.append("</%(tag)s>" % locals())

 def handle_charref(self, ref):
 self.pieces.append("&#%(ref)s;" % locals())

 def handle_entityref(self, ref):
 self.pieces.append("&%(ref)s" % locals())

Dive Into Python 102

 if htmlentitydefs.entitydefs.has_key(ref):
 self.pieces.append(";")

 def handle_data(self, text):
 self.pieces.append(text)

 def handle_comment(self, text):
 self.pieces.append("<!−−%(text)s−−>" % locals())

 def handle_pi(self, text):
 self.pieces.append("<?%(text)s>" % locals())

 def handle_decl(self, text):
 self.pieces.append("<!%(text)s>" % locals())

reset, called by SGMLParser.__init__, initializes self.pieces as an empty list before calling the
ancestor method. self.pieces is a data attribute which will hold the pieces of the HTML document you're
constructing. Each handler method will reconstruct the HTML that SGMLParser parsed, and each method
will append that string to self.pieces. Note that self.pieces is a list. You might be tempted to define
it as a string and just keep appending each piece to it. That would work, but Python is much more efficient at
dealing with lists.

[2]

Since BaseHTMLProcessor does not define any methods for specific tags (like the start_a method in
URLLister), SGMLParser will call unknown_starttag for every start tag. This method takes the tag
(tag) and the list of attribute name/value pairs (attrs), reconstructs the original HTML, and appends it to
self.pieces. The string formatting here is a little strange; you'll untangle that (and also the odd−looking
locals function) later in this chapter.

Reconstructing end tags is much simpler; just take the tag name and wrap it in the </...> brackets.

When SGMLParser finds a character reference, it calls handle_charref with the bare reference. If the
HTML document contains the reference , ref will be 160. Reconstructing the original complete
character reference just involves wrapping ref in &#...; characters.

Entity references are similar to character references, but without the hash mark. Reconstructing the original
entity reference requires wrapping ref in &...; characters. (Actually, as an erudite reader pointed out to me,
it's slightly more complicated than this. Only certain standard HTML entites end in a semicolon; other
similar−looking entities do not. Luckily for us, the set of standard HTML entities is defined in a dictionary in a
Python module called htmlentitydefs. Hence the extra if statement.)

Blocks of text are simply appended to self.pieces unaltered.

HTML comments are wrapped in <!−−...−−> characters.

Processing instructions are wrapped in <?...> characters.

The HTML specification requires that all non−HTML (like client−side JavaScript) must be enclosed in HTML
comments, but not all web pages do this properly (and all modern web browsers are forgiving if they don't).
BaseHTMLProcessor is not forgiving; if script is improperly embedded, it will be parsed as if it were HTML. For
instance, if the script contains less−than and equals signs, SGMLParser may incorrectly think that it has found tags
and attributes. SGMLParser always converts tags and attribute names to lowercase, which may break the script,
and BaseHTMLProcessor always encloses attribute values in double quotes (even if the original HTML
document used single quotes or no quotes), which will certainly break the script. Always protect your client−side
script within HTML comments.

Example 8.9. BaseHTMLProcessor output

 def output(self):
 """Return processed HTML as a single string"""
 return "".join(self.pieces)

Dive Into Python 103

This is the one method in BaseHTMLProcessor that is never called by the ancestor
SGMLParser. Since the other handler methods store their reconstructed HTML in
self.pieces, this function is needed to join all those pieces into one string. As noted
before, Python is great at lists and mediocre at strings, so you only create the complete string
when somebody explicitly asks for it.

If you prefer, you could use the join method of the string module instead:
string.join(self.pieces, "")

Further reading

W3C (http://www.w3.org/) discusses character and entity references
(http://www.w3.org/TR/REC−html40/charset.html#entities).

•

Python Library Reference (http://www.python.org/doc/current/lib/) confirms your suspicions that the
htmlentitydefs module (http://www.python.org/doc/current/lib/module−htmlentitydefs.html) is exactly
what it sounds like.

•

8.5. locals and globals

Let's digress from HTML processing for a minute and talk about how Python handles variables. Python has two
built−in functions, locals and globals, which provide dictionary−based access to local and global variables.

Remember locals? You first saw it here:

 def unknown_starttag(self, tag, attrs):
 strattrs = "".join([' %s="%s"' % (key, value) for key, value in attrs])
 self.pieces.append("<%(tag)s%(strattrs)s>" % locals())

No, wait, you can't learn about locals yet. First, you need to learn about namespaces. This is dry stuff, but it's
important, so pay attention.

Python uses what are called namespaces to keep track of variables. A namespace is just like a dictionary where the
keys are names of variables and the dictionary values are the values of those variables. In fact, you can access a
namespace as a Python dictionary, as you'll see in a minute.

At any particular point in a Python program, there are several namespaces available. Each function has its own
namespace, called the local namespace, which keeps track of the function's variables, including function arguments
and locally defined variables. Each module has its own namespace, called the global namespace, which keeps track of
the module's variables, including functions, classes, any other imported modules, and module−level variables and
constants. And there is the built−in namespace, accessible from any module, which holds built−in functions and
exceptions.

When a line of code asks for the value of a variable x, Python will search for that variable in all the available
namespaces, in order:

local namespace − specific to the current function or class method. If the function defines a local variable x,
or has an argument x, Python will use this and stop searching.

1.

global namespace − specific to the current module. If the module has defined a variable, function, or class
called x, Python will use that and stop searching.

2.

built−in namespace − global to all modules. As a last resort, Python will assume that x is the name of built−in
function or variable.

3.

If Python doesn't find x in any of these namespaces, it gives up and raises a NameError with the message There
is no variable named 'x', which you saw back in Example 3.18, �Referencing an Unbound Variable�, but

Dive Into Python 104

http://www.w3.org/
http://www.w3.org/TR/REC-html40/charset.html#entities
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-htmlentitydefs.html

you didn't appreciate how much work Python was doing before giving you that error.

Python 2.2 introduced a subtle but important change that affects the namespace search order: nested scopes. In
versions of Python prior to 2.2, when you reference a variable within a nested function or lambda function, Python
will search for that variable in the current (nested or lambda) function's namespace, then in the module's
namespace. Python 2.2 will search for the variable in the current (nested or lambda) function's namespace, then in
the parent function's namespace, then in the module's namespace. Python 2.1 can work either way; by default, it
works like Python 2.0, but you can add the following line of code at the top of your module to make your module
work like Python 2.2:

from __future__ import nested_scopes

Are you confused yet? Don't despair! This is really cool, I promise. Like many things in Python, namespaces are
directly accessible at run−time. How? Well, the local namespace is accessible via the built−in locals function, and
the global (module level) namespace is accessible via the built−in globals function.

Example 8.10. Introducing locals

>>> def foo(arg):
... x = 1
... print locals()
...
>>> foo(7)
{'arg': 7, 'x': 1}
>>> foo('bar')
{'arg': 'bar', 'x': 1}

The function foo has two variables in its local namespace: arg, whose value is passed in to the
function, and x, which is defined within the function.

locals returns a dictionary of name/value pairs. The keys of this dictionary are the names of the
variables as strings; the values of the dictionary are the actual values of the variables. So calling foo
with 7 prints the dictionary containing the function's two local variables: arg (7) and x (1).

Remember, Python has dynamic typing, so you could just as easily pass a string in for arg; the function
(and the call to locals) would still work just as well. locals works with all variables of all datatypes.

What locals does for the local (function) namespace, globals does for the global (module) namespace.
globals is more exciting, though, because a module's namespace is more exciting.[3] Not only does the module's
namespace include module−level variables and constants, it includes all the functions and classes defined in the
module. Plus, it includes anything that was imported into the module.

Remember the difference between from module import and import module? With import module, the
module itself is imported, but it retains its own namespace, which is why you need to use the module name to access
any of its functions or attributes: module.function. But with from module import, you're actually
importing specific functions and attributes from another module into your own namespace, which is why you access
them directly without referencing the original module they came from. With the globals function, you can actually
see this happen.

Example 8.11. Introducing globals

Look at the following block of code at the bottom of BaseHTMLProcessor.py:

if __name__ == "__main__":

Dive Into Python 105

 for k, v in globals().items():
 print k, "=", v

Just so you don't get intimidated, remember that you've seen all this before. The globals function returns a
dictionary, and you're iterating through the dictionary using the items method and multi−variable assignment.
The only thing new here is the globals function.

Now running the script from the command line gives this output (note that your output may be slightly different,
depending on your platform and where you installed Python):

c:\docbook\dip\py> python BaseHTMLProcessor.py

SGMLParser = sgmllib.SGMLParser
htmlentitydefs = <module 'htmlentitydefs' from 'C:\Python23\lib\htmlentitydefs.py'>
BaseHTMLProcessor = __main__.BaseHTMLProcessor
__name__ = __main__
... rest of output omitted for brevity...

SGMLParser was imported from sgmllib, using from module import. That means that it was
imported directly into the module's namespace, and here it is.

Contrast this with htmlentitydefs, which was imported using import. That means that the
htmlentitydefs module itself is in the namespace, but the entitydefs variable defined within
htmlentitydefs is not.

This module only defines one class, BaseHTMLProcessor, and here it is. Note that the value here is the
class itself, not a specific instance of the class.

Remember the if __name__ trick? When running a module (as opposed to importing it from another
module), the built−in __name__ attribute is a special value, __main__. Since you ran this module as a script
from the command line, __name__ is __main__, which is why the little test code to print the globals got
executed.

Using the locals and globals functions, you can get the value of arbitrary variables dynamically, providing the
variable name as a string. This mirrors the functionality of the getattr function, which allows you to access
arbitrary functions dynamically by providing the function name as a string.
There is one other important difference between the locals and globals functions, which you should learn now
before it bites you. It will bite you anyway, but at least then you'll remember learning it.

Example 8.12. locals is read−only, globals is not

def foo(arg):
 x = 1
 print locals()
 locals()["x"] = 2
 print "x=",x

z = 7
print "z=",z
foo(3)
globals()["z"] = 8
print "z=",z

Since foo is called with 3, this will print {'arg': 3, 'x': 1}. This should not be a surprise.

locals is a function that returns a dictionary, and here you are setting a value in that dictionary. You
might think that this would change the value of the local variable x to 2, but it doesn't. locals does not
actually return the local namespace, it returns a copy. So changing it does nothing to the value of the

Dive Into Python 106

variables in the local namespace.

This prints x= 1, not x= 2.

After being burned by locals, you might think that this wouldn't change the value of z, but it does.
Due to internal differences in how Python is implemented (which I'd rather not go into, since I don't fully
understand them myself), globals returns the actual global namespace, not a copy: the exact opposite
behavior of locals. So any changes to the dictionary returned by globals directly affect your global
variables.

This prints z= 8, not z= 7.

8.6. Dictionary−based string formatting

Why did you learn about locals and globals? So you can learn about dictionary−based string formatting. As you
recall, regular string formatting provides an easy way to insert values into strings. Values are listed in a tuple and
inserted in order into the string in place of each formatting marker. While this is efficient, it is not always the easiest
code to read, especially when multiple values are being inserted. You can't simply scan through the string in one pass
and understand what the result will be; you're constantly switching between reading the string and reading the tuple of
values.

There is an alternative form of string formatting that uses dictionaries instead of tuples of values.

Example 8.13. Introducing dictionary−based string formatting

>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> "%(pwd)s" % params
'secret'
>>> "%(pwd)s is not a good password for %(uid)s" % params
'secret is not a good password for sa'
>>> "%(database)s of mind, %(database)s of body" % params
'master of mind, master of body'

Instead of a tuple of explicit values, this form of string formatting uses a dictionary, params. And
instead of a simple %s marker in the string, the marker contains a name in parentheses. This name is
used as a key in the params dictionary and subsitutes the corresponding value, secret, in place of
the %(pwd)s marker.

Dictionary−based string formatting works with any number of named keys. Each key must exist in the
given dictionary, or the formatting will fail with a KeyError.

You can even specify the same key twice; each occurrence will be replaced with the same value.
So why would you use dictionary−based string formatting? Well, it does seem like overkill to set up a dictionary of
keys and values simply to do string formatting in the next line; it's really most useful when you happen to have a
dictionary of meaningful keys and values already. Like locals.

Example 8.14. Dictionary−based string formatting in BaseHTMLProcessor.py

 def handle_comment(self, text):
 self.pieces.append("<!−−%(text)s−−>" % locals())

Using the built−in locals function is the most common use of dictionary−based string formatting. It means
that you can use the names of local variables within your string (in this case, text, which was passed to the
class method as an argument) and each named variable will be replaced by its value. If text is 'Begin
page footer', the string formatting "<!−−%(text)s−−>" % locals() will resolve to the string
'<!−−Begin page footer−−>'.

Dive Into Python 107

Example 8.15. More dictionary−based string formatting

 def unknown_starttag(self, tag, attrs):
 strattrs = "".join([' %s="%s"' % (key, value) for key, value in attrs])
 self.pieces.append("<%(tag)s%(strattrs)s>" % locals())

When this method is called, attrs is a list of key/value tuples, just like the items of a dictionary, which
means you can use multi−variable assignment to iterate through it. This should be a familiar pattern by now,
but there's a lot going on here, so let's break it down:

Suppose attrs is [('href', 'index.html'), ('title', 'Go to home page')].a.
In the first round of the list comprehension, key will get 'href', and value will get
'index.html'.

b.

The string formatting ' %s="%s"' % (key, value) will resolve to
' href="index.html"'. This string becomes the first element of the list comprehension's return
value.

c.

In the second round, key will get 'title', and value will get 'Go to home page'.d.
The string formatting will resolve to ' title="Go to home page"'.e.
The list comprehension returns a list of these two resolved strings, and strattrs will join both
elements of this list together to form ' href="index.html" title="Go to home page"'.

f.

Now, using dictionary−based string formatting, you insert the value of tag and strattrs into a string. So if
tag is 'a', the final result would be '',
and that is what gets appended to self.pieces.

Using dictionary−based string formatting with locals is a convenient way of making complex string formatting
expressions more readable, but it comes with a price. There is a slight performance hit in making the call to locals,
since locals builds a copy of the local namespace.

8.7. Quoting attribute values

A common question on comp.lang.python (http://groups.google.com/groups?group=comp.lang.python) is "I have a
bunch of HTML documents with unquoted attribute values, and I want to properly quote them all. How can I do
this?"[4] (This is generally precipitated by a project manager who has found the HTML−is−a−standard religion joining
a large project and proclaiming that all pages must validate against an HTML validator. Unquoted attribute values are
a common violation of the HTML standard.) Whatever the reason, unquoted attribute values are easy to fix by feeding
HTML through BaseHTMLProcessor.

BaseHTMLProcessor consumes HTML (since it's descended from SGMLParser) and produces equivalent
HTML, but the HTML output is not identical to the input. Tags and attribute names will end up in lowercase, even if
they started in uppercase or mixed case, and attribute values will be enclosed in double quotes, even if they started in
single quotes or with no quotes at all. It is this last side effect that you can take advantage of.

Example 8.16. Quoting attribute values

>>> htmlSource = """
... <html>
... <head>
... <title>Test page</title>
... </head>
... <body>
...
... Home
... Table of contents
... Revision history

Dive Into Python 108

http://groups.google.com/groups?group=comp.lang.python

... </body>

... </html>

... """
>>> from BaseHTMLProcessor import BaseHTMLProcessor
>>> parser = BaseHTMLProcessor()
>>> parser.feed(htmlSource)
>>> print parser.output()
<html>
<head>
<title>Test page</title>
</head>
<body>

Home
Table of contents
Revision history
</body>
</html>

Note that the attribute values of the href attributes in the <a> tags are not properly quoted. (Also note that
you're using triple quotes for something other than a doc string. And directly in the IDE, no less. They're
very useful.)

Feed the parser.

Using the output function defined in BaseHTMLProcessor, you get the output as a single string, complete
with quoted attribute values. While this may seem anti−climactic, think about how much has actually happened
here: SGMLParser parsed the entire HTML document, breaking it down into tags, refs, data, and so forth;
BaseHTMLProcessor used those elements to reconstruct pieces of HTML (which are still stored in
parser.pieces, if you want to see them); finally, you called parser.output, which joined all the
pieces of HTML into one string.

8.8. Introducing dialect.py

Dialectizer is a simple (and silly) descendant of BaseHTMLProcessor. It runs blocks of text through a series
of substitutions, but it makes sure that anything within a <pre>...</pre> block passes through unaltered.

To handle the <pre> blocks, you define two methods in Dialectizer: start_pre and end_pre.

Example 8.17. Handling specific tags

 def start_pre(self, attrs):
 self.verbatim += 1
 self.unknown_starttag("pre", attrs)

 def end_pre(self):
 self.unknown_endtag("pre")
 self.verbatim −= 1

start_pre is called every time SGMLParser finds a <pre> tag in the HTML source. (In a minute, you'll
see exactly how this happens.) The method takes a single parameter, attrs, which contains the attributes of
the tag (if any). attrs is a list of key/value tuples, just like unknown_starttag takes.

In the reset method, you initialize a data attribute that serves as a counter for <pre> tags. Every time you hit
a <pre> tag, you increment the counter; every time you hit a </pre> tag, you'll decrement the counter. (You
could just use this as a flag and set it to 1 and reset it to 0, but it's just as easy to do it this way, and this handles
the odd (but possible) case of nested <pre> tags.) In a minute, you'll see how this counter is put to good use.

Dive Into Python 109

That's it, that's the only special processing you do for <pre> tags. Now you pass the list of attributes along to
unknown_starttag so it can do the default processing.

end_pre is called every time SGMLParser finds a </pre> tag. Since end tags can not contain attributes,
the method takes no parameters.

First, you want to do the default processing, just like any other end tag.

Second, you decrement your counter to signal that this <pre> block has been closed.
At this point, it's worth digging a little further into SGMLParser. I've claimed repeatedly (and you've taken it on
faith so far) that SGMLParser looks for and calls specific methods for each tag, if they exist. For instance, you just
saw the definition of start_pre and end_pre to handle <pre> and </pre>. But how does this happen? Well,
it's not magic, it's just good Python coding.

Example 8.18. SGMLParser

 def finish_starttag(self, tag, attrs):
 try:
 method = getattr(self, 'start_' + tag)
 except AttributeError:
 try:
 method = getattr(self, 'do_' + tag)
 except AttributeError:
 self.unknown_starttag(tag, attrs)
 return −1
 else:
 self.handle_starttag(tag, method, attrs)
 return 0
 else:
 self.stack.append(tag)
 self.handle_starttag(tag, method, attrs)
 return 1

 def handle_starttag(self, tag, method, attrs):
 method(attrs)

At this point, SGMLParser has already found a start tag and parsed the attribute list. The only
thing left to do is figure out whether there is a specific handler method for this tag, or whether
you should fall back on the default method (unknown_starttag).

The "magic" of SGMLParser is nothing more than your old friend, getattr. What you may
not have realized before is that getattr will find methods defined in descendants of an
object as well as the object itself. Here the object is self, the current instance. So if tag is
'pre', this call to getattr will look for a start_pre method on the current instance,
which is an instance of the Dialectizer class.

getattr raises an AttributeError if the method it's looking for doesn't exist in the
object (or any of its descendants), but that's okay, because you wrapped the call to getattr
inside a try...except block and explicitly caught the AttributeError.

Since you didn't find a start_xxx method, you'll also look for a do_xxx method before
giving up. This alternate naming scheme is generally used for standalone tags, like
,
which have no corresponding end tag. But you can use either naming scheme; as you can see,
SGMLParser tries both for every tag. (You shouldn't define both a start_xxx and
do_xxx handler method for the same tag, though; only the start_xxx method will get
called.)

Another AttributeError, which means that the call to getattr failed with do_xxx.
Since you found neither a start_xxx nor a do_xxx method for this tag, you catch the

Dive Into Python 110

exception and fall back on the default method, unknown_starttag.

Remember, try...except blocks can have an else clause, which is called if no exception
is raised during the try...except block. Logically, that means that you did find a do_xxx
method for this tag, so you're going to call it.

By the way, don't worry about these different return values; in theory they mean something, but
they're never actually used. Don't worry about the self.stack.append(tag) either;
SGMLParser keeps track internally of whether your start tags are balanced by appropriate
end tags, but it doesn't do anything with this information either. In theory, you could use this
module to validate that your tags were fully balanced, but it's probably not worth it, and it's
beyond the scope of this chapter. You have better things to worry about right now.

start_xxx and do_xxx methods are not called directly; the tag, method, and attributes are
passed to this function, handle_starttag, so that descendants can override it and change
the way all start tags are dispatched. You don't need that level of control, so you just let this
method do its thing, which is to call the method (start_xxx or do_xxx) with the list of
attributes. Remember, method is a function, returned from getattr, and functions are
objects. (I know you're getting tired of hearing it, and I promise I'll stop saying it as soon as I
run out of ways to use it to my advantage.) Here, the function object is passed into this dispatch
method as an argument, and this method turns around and calls the function. At this point, you
don't need to know what the function is, what it's named, or where it's defined; the only thing
you need to know about the function is that it is called with one argument, attrs.

Now back to our regularly scheduled program: Dialectizer. When you left, you were in the process of defining
specific handler methods for <pre> and </pre> tags. There's only one thing left to do, and that is to process text
blocks with the pre−defined substitutions. For that, you need to override the handle_data method.

Example 8.19. Overriding the handle_data method

 def handle_data(self, text):
 self.pieces.append(self.verbatim and text or self.process(text))

handle_data is called with only one argument, the text to process.

In the ancestor BaseHTMLProcessor, the handle_data method simply appended the text to the output
buffer, self.pieces. Here the logic is only slightly more complicated. If you're in the middle of a
<pre>...</pre> block, self.verbatim will be some value greater than 0, and you want to put the text
in the output buffer unaltered. Otherwise, you will call a separate method to process the substitutions, then put
the result of that into the output buffer. In Python, this is a one−liner, using the and−or trick.

You're close to completely understanding Dialectizer. The only missing link is the nature of the text substitutions
themselves. If you know any Perl, you know that when complex text substitutions are required, the only real solution
is regular expressions. The classes later in dialect.py define a series of regular expressions that operate on the text
between the HTML tags. But you just had a whole chapter on regular expressions. You don't really want to slog
through regular expressions again, do you? God knows I don't. I think you've learned enough for one chapter.

8.9. Putting it all together

It's time to put everything you've learned so far to good use. I hope you were paying attention.

Example 8.20. The translate function, part 1

def translate(url, dialectName="chef"):
 import urllib

Dive Into Python 111

 sock = urllib.urlopen(url)
 htmlSource = sock.read()
 sock.close()

The translate function has an optional argument dialectName, which is a string that specifies
the dialect you'll be using. You'll see how this is used in a minute.

Hey, wait a minute, there's an import statement in this function! That's perfectly legal in Python.
You're used to seeing import statements at the top of a program, which means that the imported
module is available anywhere in the program. But you can also import modules within a function,
which means that the imported module is only available within the function. If you have a module that
is only ever used in one function, this is an easy way to make your code more modular. (When you find
that your weekend hack has turned into an 800−line work of art and decide to split it up into a dozen
reusable modules, you'll appreciate this.)

Now you get the source of the given URL.

Example 8.21. The translate function, part 2: curiouser and curiouser

 parserName = "%sDialectizer" % dialectName.capitalize()
 parserClass = globals()[parserName]
 parser = parserClass()

capitalize is a string method you haven't seen before; it simply capitalizes the first letter of a string and
forces everything else to lowercase. Combined with some string formatting, you've taken the name of a dialect
and transformed it into the name of the corresponding Dialectizer class. If dialectName is the string
'chef', parserName will be the string 'ChefDialectizer'.

You have the name of a class as a string (parserName), and you have the global namespace as a dictionary
(globals()). Combined, you can get a reference to the class which the string names. (Remember, classes are
objects, and they can be assigned to variables just like any other object.) If parserName is the string
'ChefDialectizer', parserClass will be the class ChefDialectizer.

Finally, you have a class object (parserClass), and you want an instance of the class. Well, you already
know how to do that: call the class like a function. The fact that the class is being stored in a local variable
makes absolutely no difference; you just call the local variable like a function, and out pops an instance of the
class. If parserClass is the class ChefDialectizer, parser will be an instance of the class
ChefDialectizer.

Why bother? After all, there are only 3 Dialectizer classes; why not just use a case statement? (Well, there's no
case statement in Python, but why not just use a series of if statements?) One reason: extensibility. The
translate function has absolutely no idea how many Dialectizer classes you've defined. Imagine if you defined a
new FooDialectizer tomorrow; translate would work by passing 'foo' as the dialectName.

Even better, imagine putting FooDialectizer in a separate module, and importing it with from module
import. You've already seen that this includes it in globals(), so translate would still work without
modification, even though FooDialectizer was in a separate file.

Now imagine that the name of the dialect is coming from somewhere outside the program, maybe from a database or
from a user−inputted value on a form. You can use any number of server−side Python scripting architectures to
dynamically generate web pages; this function could take a URL and a dialect name (both strings) in the query string
of a web page request, and output the "translated" web page.

Finally, imagine a Dialectizer framework with a plug−in architecture. You could put each Dialectizer class
in a separate file, leaving only the translate function in dialect.py. Assuming a consistent naming scheme,
the translate function could dynamic import the appropiate class from the appropriate file, given nothing but the
dialect name. (You haven't seen dynamic importing yet, but I promise to cover it in a later chapter.) To add a new

Dive Into Python 112

dialect, you would simply add an appropriately−named file in the plug−ins directory (like foodialect.py which
contains the FooDialectizer class). Calling the translate function with the dialect name 'foo' would find
the module foodialect.py, import the class FooDialectizer, and away you go.

Example 8.22. The translate function, part 3

 parser.feed(htmlSource)
 parser.close()
 return parser.output()

After all that imagining, this is going to seem pretty boring, but the feed function is what does the entire
transformation. You had the entire HTML source in a single string, so you only had to call feed once.
However, you can call feed as often as you want, and the parser will just keep parsing. So if you were worried
about memory usage (or you knew you were going to be dealing with very large HTML pages), you could set
this up in a loop, where you read a few bytes of HTML and fed it to the parser. The result would be the same.

Because feed maintains an internal buffer, you should always call the parser's close method when you're
done (even if you fed it all at once, like you did). Otherwise you may find that your output is missing the last
few bytes.

Remember, output is the function you defined on BaseHTMLProcessor that joins all the pieces of output
you've buffered and returns them in a single string.

And just like that, you've "translated" a web page, given nothing but a URL and the name of a dialect.

Further reading

You thought I was kidding about the server−side scripting idea. So did I, until I found this web−based
dialectizer (http://rinkworks.com/dialect/). Unfortunately, source code does not appear to be available.

•

8.10. Summary

Python provides you with a powerful tool, sgmllib.py, to manipulate HTML by turning its structure into an object
model. You can use this tool in many different ways.

parsing the HTML looking for something specific•
aggregating the results, like the URL lister•
altering the structure along the way, like the attribute quoter•
transforming the HTML into something else by manipulating the text while leaving the tags alone, like the
Dialectizer

•

Along with these examples, you should be comfortable doing all of the following things:

Using locals() and globals() to access namespaces•
Formatting strings using dictionary−based substitutions•

[1] The technical term for a parser like SGMLParser is a consumer: it consumes HTML and breaks it down.
Presumably, the name feed was chosen to fit into the whole "consumer" motif. Personally, it makes me think of an
exhibit in the zoo where there's just a dark cage with no trees or plants or evidence of life of any kind, but if you stand
perfectly still and look really closely you can make out two beady eyes staring back at you from the far left corner, but
you convince yourself that that's just your mind playing tricks on you, and the only way you can tell that the whole
thing isn't just an empty cage is a small innocuous sign on the railing that reads, "Do not feed the parser." But maybe

Dive Into Python 113

http://rinkworks.com/dialect/

that's just me. In any event, it's an interesting mental image.

[2] The reason Python is better at lists than strings is that lists are mutable but strings are immutable. This means that
appending to a list just adds the element and updates the index. Since strings can not be changed after they are created,
code like s = s + newpiece will create an entirely new string out of the concatenation of the original and the
new piece, then throw away the original string. This involves a lot of expensive memory management, and the amount
of effort involved increases as the string gets longer, so doing s = s + newpiece in a loop is deadly. In technical
terms, appending n items to a list is O(n), while appending n items to a string is O(n2).

[3] I don't get out much.

[4] All right, it's not that common a question. It's not up there with "What editor should I use to write Python code?"
(answer: Emacs) or "Is Python better or worse than Perl?" (answer: "Perl is worse than Python because people wanted
it worse." −Larry Wall, 10/14/1998) But questions about HTML processing pop up in one form or another about once
a month, and among those questions, this is a popular one.

Dive Into Python 114

