Chapter 9. XML Processing

9.1. Diving in

These next two chapters are about XML processing in Python. It would be helpful if you already knew what an XML
document looks like, that it's made up of structured tags to form a hierarchy of elements, and so on. If this doesn't
make sense to you, there are many XML tutorials
(http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Resources/FAQs,_Help,_and.
that can explain the basics.

If you're not particularly interested in XML, you should still read these chapters, which cover important topics like
Python packages, Unicode, command line arguments, and how to use getattr for method dispatching.

Being a philosophy major is not required, although if you have ever had the misfortune of being subjected to the
writings of Immanuel Kant, you will appreciate the example program a lot more than if you majored in something
useful, like computer science.

There are two basic ways to work with XML. One is called SAX ("Simple API for XML"), and it works by reading

the XML a little bit at a time and calling a method for each element it finds. (If you read Chapter 8, HTML
Processing, this should sound familiar, because that's how the sgmllib module works.) The other is called DOM
("Document Object Model"), and it works by reading in the entire XML document at once and creating an internal
representation of it using native Python classes linked in a tree structure. Python has standard modules for both kin
of parsing, but this chapter will only deal with using the DOM.

The following is a complete Python program which generates pseudo—-random output based on a context—free
grammar defined in an XML format. Don't worry yet if you don't understand what that means; you'll examine both th
program's input and its output in more depth throughout these next two chapters.

Example 9.1. kgp.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

"""Kant Generator for Python
Generates mock philosophy based on a context-free grammar

Usage: python kgp.py [options] [source]

Options:
-g ..., ——grammar=... use specified grammar file or URL
-h, ——help show this help
—-d show debugging information while parsing
Examples:
kgp.py generates several paragraphs of Kantian philosophy

kgp.py —g husserl.xml generates several paragraphs of Husserl
kpg.py "<xref id="paragraph'/>" generates a paragraph of Kant
kgp.py template.xml reads from template.xml to decide what to generate

from xml.dom import minidom
import random

import toolbox

import sys

Dive Into Python 115

http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Resources/FAQs,_Help,_and_Tutorials/
http://diveintopython.org/download/diveintopython-examples-5.4.zip

import getopt
_debug=0
class NoSourceError(Exception): pass

class KantGenerator:
""generates mock philosophy based on a context-free grammar™"

def __init__(self, grammar, source=None):
self.loadGrammar(grammar)
self.loadSource(source and source or self.getDefaultSource())
self.refresh()

def _load(self, source):
""load XML input source, return parsed XML document

—a URL of a remote XML file ("http://diveintopython.org/kant.xml")

- a filename of a local XML file ("~/diveintopython/common/py/kant.xml")
- standard input ("-"

- the actual XML document, as a string

sock = toolbox.openAnything(source)

xmldoc = minidom.parse(sock).documentElement

sock.close()

return xmldoc

def loadGrammar(self, grammar):
""load context-free grammar™"
self.grammar = self._load(grammar)
self.refs = {}
for ref in self.grammar.getElementsByTagName("ref"):
self.refs[ref.attributes["id"].value] = ref

def loadSource(self, source):
""load source
self.source = self._load(source)

def getDefaultSource(self):
"""guess default source of the current grammar

The default source will be one of the <ref>s that is not
cross—referenced. This sounds complicated but it's not.
Example: The default source for kant.xml is
"<xref id='section'/>", because 'section’ is the one <ref>
that is not <xref>'d anywhere in the grammar.
In most grammars, the default source will produce the
longest (and most interesting) output.
xrefs = {}
for xref in self.grammar.getElementsByTagName("xref"):
xrefs[xref.attributes["id"].value] = 1
xrefs = xrefs.keys()
standaloneXrefs = [e for e in self.refs.keys() if e not in xrefs]
if not standaloneXrefs:
raise NoSourceError, "can't guess source, and no source specified"
return '<xref id="%s"/>" % random.choice(standaloneXrefs)

def reset(self):
"""reset parser
self.pieces =[]
self.capitalizeNextWord = 0

Dive Into Python 116

def refresh(self):
""reset output buffer, re—parse entire source file, and return output

Since parsing involves a good deal of randomness, this is an

easy way to get new output without having to reload a grammar file
each time.

self.reset()

self.parse(self.source)

return self.output()

def output(self):

return ".join(self.pieces)

def randomChildElement(self, node):
"""choose a random child element of a hode

This is a utility method used by do_xref and do_choice.

choices = [e for e in node.childNodes
if e.nodeType == e. ELEMENT_NODE]

chosen = random.choice(choices)
if _debug:

sys.stderr.write('%s available choices: %s\n' % \

(len(choices), [e.toxml() for e in choices]))

sys.stderr.write('Chosen: %s\n' % chosen.toxml())

return chosen

def parse(self, node):
""" parse a single XML node

A parsed XML document (from minidom.parse) is a tree of nodes

of various types. Each node is represented by an instance of the
corresponding Python class (Element for a tag, Text for

text data, Document for the top—level document). The following
statement constructs the name of a class method based on the type
of node we're parsing ("parse_Element" for an Element node,
"parse_Text" for a Text node, etc.) and then calls the method.
parseMethod = getattr(self, "parse_%s" % node.__class_ .. _name_)
parseMethod(node)

def parse_Document(self, node):
""parse the document node

The document node by itself isn't interesting (to us), but
its only child, node.documentElement, is: it's the root node
of the grammar.

self.parse(node.documentElement)

def parse_Text(self, node):
""" parse a text node

The text of a text node is usually added to the output buffer
verbatim. The one exception is that <p class='sentence'> sets
a flag to capitalize the first letter of the next word. If
that flag is set, we capitalize the text and reset the flag.
text = node.data
if self.capitalizeNextWord:

self.pieces.append(text[0].upper())

Dive Into Python 117

self.pieces.append(text[1:])

self.capitalizeNextWord = 0
else:

self.pieces.append(text)

def parse_Element(self, node):
""" parse an element

An XML element corresponds to an actual tag in the source:
<xref id="...">, <p chance="...">, <choice>, etc.

Each element type is handled in its own method. Like we did in
parse(), we construct a method name based on the name of the
element ("do_xref" for an <xref> tag, etc.) and

call the method.

handlerMethod = getattr(self, "do_%s" % node.tagName)
handlerMethod(node)

def parse_Comment(self, node):
"""parse a comment

The grammar can contain XML comments, but we ignore them

pass

def do_xref(self, node):
""handle <xref id="..."> tag

An <xref id="..."> tag is a cross—reference to a <ref id="...">

tag. <xref id='sentence'/> evaluates to a randomly chosen child of

<ref id="sentence'>.

id = node.attributes["id"].value
self.parse(self.randomChildElement(self.refs[id]))

def do_p(self, node):
""" handle <p> tag

The <p> tag is the core of the grammar. It can contain almost
anything: freeform text, <choice> tags, <xref> tags, even other
<p>tags. If a "class='sentence™ attribute is found, a flag
is set and the next word will be capitalized. If a "chance="X"
attribute is found, there is an X% chance that the tag will be
evaluated (and therefore a (100-X)% chance that it will be
completely ignored)
keys = node.attributes.keys()
if "class” in keys:

if node.attributes["class"].value == "sentence":

self.capitalizeNextWord = 1

if "chance" in keys:

chance = int(node.attributes["chance"].value)

doit = (chance > random.randrange(100))
else:

doit=1
if doit:

for child in node.childNodes: self.parse(child)

def do_choice(self, node):
""" handle <choice> tag

A <choice> tag contains one or more <p> tags. One <p> tag
is chosen at random and evaluated; the rest are ignored.

Dive Into Python

118

self.parse(self.randomChildElement(node))

def usage():
print__doc___

def main(argv):
grammar = "kant.xml"
try:
opts, args = getopt.getopt(argv, "hg:d", [*help”, "grammar="])
except getopt.GetoptError:
usage()
sys.exit(2)
for opt, arg in opts:
if opt in ("—h", "——help"):

usage()
sys.exit()
elif opt == '-d"
global _debug
_debug=1
elif optin ("-g", "-—grammar"):

grammar = arg
source = "".join(args)

k = KantGenerator(grammar, source)
print k.output()

if _name__ =="_ main__"
main(sys.argv[1:])

Example 9.2. toolbox.py

""Miscellaneous utility functions

def openAnything(source):
"""URI, filename, or string ——> stream

This function lets you define parsers that take any input source
(URL, pathname to local or network file, or actual data as a string)
and deal with it in a uniform manner. Returned object is guaranteed
to have all the basic stdio read methods (read, readline, readlines).
Just .close() the object when you're done with it.

Examples:
>>> from xml.dom import minidom
>>> sock = openAnything("http://localhost/kant.xml")
>>> doc = minidom.parse(sock)
>>> sock.close()
>>> sock = openAnything("c:\\inetpub\\wwwroot\\kant.xml")
>>> doc = minidom.parse(sock)
>>> sock.close()
>>> sock = openAnything("<ref id='conjunction'><text>and</text><text>or</text></ref>")
>>> doc = minidom.parse(sock)
>>> sock.close()
if hasattr(source, "read"):
return source

if source =="'-"
import sys

Dive Into Python 119

return sys.stdin

try to open with urllib (if source is http, ftp, or file URL)

import urllib

try:

return urllib.urlopen(source)

except (IOError, OSError):
pass

try to open with native open function (if source is pathname)
try:

return open(source)
except (IOError, OSError):

pass

treat source as string
import StringlO
return StringlO.StringlO(str(source))

Run the program kgp.py by itself, and it will parse the default XML-based grammar, in kant.xml, and print

several paragraphs worth of philosophy in the style of Immanuel Kant.

Example 9.3. Sample output of kgp.py

[you@Ilocalhost kgp]$ python kgp.py

As is shown in the writings of Hume, our a priori concepts, in
reference to ends, abstract from all content of knowledge; in the study
of space, the discipline of human reason, in accordance with the
principles of philosophy, is the clue to the discovery of the
Transcendental Deduction. The transcendental aesthetic, in all
theoretical sciences, occupies part of the sphere of human reason
concerning the existence of our ideas in general; still, the
never—ending regress in the series of empirical conditions constitutes
the whole content for the transcendental unity of apperception. What
we have alone been able to show is that, even as this relates to the
architectonic of human reason, the Ideal may not contradict itself, but
it is still possible that it may be in contradictions with the
employment of the pure employment of our hypothetical judgements, but
natural causes (and | assert that this is the case) prove the validity
of the discipline of pure reason. As we have already seen, time (and
it is obvious that this is true) proves the validity of time, and the
architectonic of human reason, in the full sense of these terms,
abstracts from all content of knowledge. | assert, in the case of the
discipline of practical reason, that the Antinomies are just as
necessary as natural causes, since knowledge of the phenomena is a
posteriori.

The discipline of human reason, as | have elsewhere shown, is by
its very nature contradictory, but our ideas exclude the possibility of
the Antinomies. We can deduce that, on the contrary, the pure
employment of philosophy, on the contrary, is by its very nature
contradictory, but our sense perceptions are a representation of, in
the case of space, metaphysics. The thing in itself is a
representation of philosophy. Applied logic is the clue to the
discovery of natural causes. However, what we have alone been able to
show is that our ideas, in other words, should only be used as a canon
for the Ideal, because of our necessary ignorance of the conditions.

[...snip...]

Dive Into Python

120

This is, of course, complete gibberish. Well, not complete gibberish. It is syntactically and grammatically correct
(although very verbose —— Kant wasn't what you would call a get—-to—the—point kind of guy). Some of it may actually
be true (or at least the sort of thing that Kant would have agreed with), some of it is blatantly false, and most of it is
simply incoherent. But all of it is in the style of Immanuel Kant.

Let me repeat that this is much, much funnier if you are now or have ever been a philosophy major.

The interesting thing about this program is that there is nothing Kant—specific about it. All the content in the previou
example was derived from the grammar file, kant.xml. If you tell the program to use a different grammar file
(which you can specify on the command line), the output will be completely different.

Example 9.4. Simpler output from kgp.py

[you@localhost kgp]$ python kgp.py —g binary.xml
00101001
[you@Ilocalhost kgp]$ python kgp.py —g binary.xml
10110100

You will take a closer look at the structure of the grammar file later in this chapter. For now, all you need to know is
that the grammar file defines the structure of the output, and the kgp.py program reads through the grammar and
makes random decisions about which words to plug in where.

9.2. Packages

Actually parsing an XML document is very simple: one line of code. However, before you get to that line of code, yo
need to take a short detour to talk about packages.

Example 9.5. Loading an XML document (a sneak peek)

>>> from xml.dom import minidom (1]
>>> xmldoc = minidom.parse('~/diveintopython/common/py/kgp/binary.xml’)

Q@ Thisisa syntax you haven't seen before. It looks almost like the from module import you know and

love, but the "." gives it away as something above and beyond a simple import. In fact, xml is what is

known as a package, dom is a nested package within xml, and minidom is a module within xml.dom.
That sounds complicated, but it's really not. Looking at the actual implementation may help. Packages are little mor
than directories of modules; nested packages are subdirectories. The modules within a package (or a nested packe
are still just .py files, like always, except that they're in a subdirectory instead of the main lib/ directory of your

Python installation.

Example 9.6. File layout of a package

Python21/ root Python installation (home of the executable)
|
+——lib/ library directory (home of the standard library modules)
|
+—=xml/ xml package (really just a directory with other stuff in it)

+——sax/ xml.sax package (again, just a directory)

+-—dom/ xml.dom package (contains minidom.py)

I
Dive Into Python 121

+——parsers/ xml.parsers package (used internally)

So when you say from xml.dom import minidom, Python figures out that that means "look in the xml

directory for a dom directory, and look in that for the minidom module, and import it as minidom". But Python is
even smarter than that; not only can you import entire modules contained within a package, you can selectively imp
specific classes or functions from a module contained within a package. You can also import the package itself as ¢
module. The syntax is all the same; Python figures out what you mean based on the file layout of the package, and
automatically does the right thing.

Example 9.7. Packages are modules, too

>>> from xml.dom import minidom (1]

>>> minidom

<module 'xml.dom.minidom' from 'C:\Python21\lib\xmI\dom\minidom.pyc'>
>>> minidom.Element

<class xml.dom.minidom.Element at 01095744>

>>> from xml.dom.minidom import Element

>>> Element

<class xml.dom.minidom.Element at 01095744>

>>> minidom.Element

<class xml.dom.minidom.Element at 01095744>

>>> from xml import dom

>>> dom

<module 'xml.dom' from 'C:\Python21\lib\xmN\dom__init__.pyc'>
>>> import xml

>>> xml

<module 'xml' from 'C:\Python21\lib\xmI__init__.pyc'>

Q Here you're importing a module (minidom) from a nested package (xml.dom). The result is that
minidom is imported into your namespace, and in order to reference classes within the minidom
module (like Element), you need to preface them with the module name.

O Here you are importing a class (Element) from a module (minidom) from a nested package
(xml.dom). The result is that Element is imported directly into your namespace. Note that this does
not interfere with the previous import; the Element class can now be referenced in two ways (but it's all
still the same class).

® Here you are importing the dom package (a nested package of xml) as a module in and of itself. Any

level of a package can be treated as a module, as you'll see in a moment. It can even have its own

attributes and methods, just the modules you've seen before.
Q@ Here you are importing the root level xml package as a module.
So how can a package (which is just a directory on disk) be imported and treated as a module (which is always a fil
on disk)? The answer is the magical __init__.py file. You see, packages are not simply directories; they are
directories with a specific file, __init__.py, inside. This file defines the attributes and methods of the package.
For instance, xml.dom contains a Node class, which is defined in xml/dom/__init__.py. When you import a
package as a module (like dom from xml), you're really importing its __init__.py file.

A package is a directory with'the special __init__.py file init. The __init__.py file defines the attributes

and methods of the package. It doesn't need to define anything; it can just be an empty file, but it has to exist. But i
__init__.py doesn't exist, the directory is just a directory, not a package, and it can't be imported or contain
modules or nested packages.

So why bother with packages? Well, they provide a way to logically group related modules. Instead of having an xir
package with sax and dom packages inside, the authors could have chosen to put all the sax functionality in
xmisax.py and all the dom functionality in xmldom.py, or even put all of it in a single module. But that would

Dive Into Python 122

have been unwieldy (as of this writing, the XML package has over 3000 lines of code) and difficult to manage
(separate source files mean multiple people can work on different areas simultaneously).

If you ever find yourself writing a large subsystem in Python (or, more likely, when you realize that your small
subsystem has grown into a large one), invest some time designing a good package architecture. It's one of the ma
things Python is good at, so take advantage of it.

9.3. Parsing XML

As | was saying, actually parsing an XML document is very simple: one line of code. Where you go from there is up
to you.

Example 9.8. Loading an XML document (for real this time)

>>> from xml.dom import minidom
>>> xmldoc = minidom.parse('~/diveintopython/common/py/kgp/binary.xml’)
>>> xmldoc
<xml.dom.minidom.Document instance at 010BE87C>
>>> print xmldoc.toxml()
<?xml version="1.0" ?>
<grammar>
<ref id="bit">
<p>0</p>
<p>1</p>
<[ref>
<ref id="byte">
<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
<[ref>
</grammar>

o o0

9 As you saw in the previous section, this imports the minidom module from the xml.dom package.

® Here is the one line of code that does all the work: minidom.parse takes one argument and returns a parsed
representation of the XML document. The argument can be many things; in this case, it's simply a filename of
an XML document on my local disk. (To follow along, you'll need to change the path to point to your
downloaded examples directory.) But you can also pass a file object, or even a file-like object. You'll take
advantage of this flexibility later in this chapter.

® The object returned from minidom.parse is a Document object, a descendant of the Node class. This
Document object is the root level of a complex tree-like structure of interlocking Python objects that
completely represent the XML document you passed to minidom.parse.

@ toxmlis a method of the Node class (and is therefore available on the Document object you got from
minidom.parse). toxml prints out the XML that this Node represents. For the Document node, this
prints out the entire XML document.

Now that you have an XML document in memory, you can start traversing through it.

Example 9.9. Getting child nodes

>>> xmldoc.childNodes (1]
[<DOM Element: grammar at 17538908>]
>>> xmldoc.childNodes[0]

<DOM Element: grammar at 17538908>
>>> xmldoc.firstChild

<DOM Element: grammar at 17538908>

Dive Into Python 123

® Every Node has a childNodes attribute, which is a list of the Node objects. A Document always has only
one child node, the root element of the XML document (in this case, the grammar element).

® 1o get the first (and in this case, the only) child node, just use regular list syntax. Remember, there is nothing
special going on here; this is just a regular Python list of regular Python objects.

® Since getting the first child node of a node is a useful and common activity, the Node class has a
firstChild attribute, which is synonymous with childNodes[0]. (There is also a lastChild
attribute, which is synonymous with childNodes[-1].)

Example 9.10. toxml works on any node

>>> grammarNode = xmldoc.firstChild
>>> print grammarNode.toxml()
<grammar>
<ref id="bit">
<p>0</p>
<p>1</p>
<[ref>
<ref id="byte">
<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
<[ref>
</grammar>

@ Since the toxml method is defined in the Node class, it is available on any XML node, not just the
Document element.

Example 9.11. Child nodes can be text

>>> grammarNode.childNodes 1]

[<DOM Text node "\n">, <DOM Element: ref at 17533332>, \

<DOM Text node "\n">, <DOM Element: ref at 17549660>, <DOM Text node "\n">]
>>> print grammarNode.firstChild.toxml() (2]

>>> print grammarNode.childNodes[1].toxml() (3]
<ref id="bit">

<p>0</p>

<p>1</p>
<[ref>
>>> print grammarNode.childNodes[3].toxml() (4
<ref id="byte">

<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
<[ref>
>>> print grammarNode.lastChild.toxml() (5]

1 Looking at the XML in binary.xml, you might think that the grammar has only two child nodes, the two
ref elements. But you're missing something: the carriage returns! After the '<grammar>' and before the
first '<ref>' is a carriage return, and this text counts as a child node of the grammar element. Similarly,
there is a carriage return after each '</ref>'; these also count as child nodes. So grammar.childNodes
is actually a list of 5 objects: 3 Text objects and 2 Element objects.

® The first child is a Text object representing the carriage return after the '<grammar>' tag and before the
first '<ref>' tag.

Dive Into Python 124

The second child is an Element object representing the first ref element.
The fourth child is an Element object representing the second ref element.

The last child is a Text object representing the carriage return after the '</ref>' end tag and before the
'</grammar>' end tag.

@00

Example 9.12. Drilling down all the way to text

>>> grammarNode

<DOM Element: grammar at 19167148>

>>> refNode = grammarNode.childNodes[1] (1]
>>> refNode

<DOM Element: ref at 17987740>

>>> refNode.childNodes (2]
[<DOM Text node "\n">, <DOM Text node " ">, <DOM Element: p at 19315844>, \
<DOM Text node "\n">, <DOM Text node " ">, \

<DOM Element: p at 19462036>, <DOM Text node "\n">]
>>> pNode = refNode.childNodes|[2]

>>> pNode

<DOM Element: p at 19315844>

>>> print pNode.toxml() (3]
<p>0</p>

>>> pNode.firstChild (4
<DOM Text node "0">

>>> pNode.firstChild.data (5
u'o’

9 As you saw in the previous example, the first ref element is
grammarNode.childNodes[1], since childNodes[0] is a Text node for the carriage
return.

® The ref element has its own set of child nodes, one for the carriage return, a separate one
for the spaces, one for the p element, and so forth.

You can even use the toxml method here, deeply nested within the document.

The p element has only one child node (you can't tell that from this example, but look at

pNode.childNodes if you don't believe me), and it is a Text node for the single
character '0'.

© The .data attribute of a Text node gives you the actual string that the text node
represents. But what is that 'u' in front of the string? The answer to that deserves its own
section.

9.4. Unicode

(-]

Unicode is a system to represent characters from all the world's different languages. When Python parses an XML
document, all data is stored in memory as unicode.

You'll get to all that in a minute, but first, some background.

Historical note. Before unicode, there were separate character encoding systems for each language, each using the
same numbers (0-255) to represent that language's characters. Some languages (like Russian) have multiple
conflicting standards about how to represent the same characters; other languages (like Japanese) have so many
characters that they require multiple-byte character sets. Exchanging documents between systems was difficult
because there was no way for a computer to tell for certain which character encoding scheme the document author
used; the computer only saw numbers, and the numbers could mean different things. Then think about trying to sto
these documents in the same place (like in the same database table); you would need to store the character encod
alongside each piece of text, and make sure to pass it around whenever you passed the text around. Then think ab

Dive Into Python 125

multilingual documents, with characters from multiple languages in the same document. (They typically used escap
codes to switch modes; poof, you're in Russian koi8-r mode, so character 241 means this; poof, now you're in Mac
Greek mode, so character 241 means something else. And so on.) These are the problems which unicode was des
to solve.

To solve these problems, unicode represents each character as a 2-byte number, from ({F{(Eﬁﬁﬁs&byte

number represents a unique character used in at least one of the world's languages. (Characters that are used in
multiple languages have the same numeric code.) There is exactly 1 number per character, and exactly 1 charactel
number. Unicode data is never ambiguous.

Of course, there is still the matter of all these legacy encoding systems. 7-bit ASCII, for instance, which stores
English characters as numbers ranging from 0 to 127. (65 is capital "A", 97 is lowercase "a", and so forth.) English
has a very simple alphabet, so it can be completely expressed in 7-bit ASCIIl. Western European languages like
French, Spanish, and German all use an encoding system called ISO-8859-1 (also called "latin—1"), which uses th
7-bit ASCII characters for the numbers 0 through 127, but then extends into the 128-255 range for characters like
n-with—a-tilde—over-it (241), and u-with—two—dots—over-it (252). And unicode uses the same characters as 7-bit
ASCII for 0 through 127, and the same characters as ISO-8859-1 for 128 through 255, and then extends from ther
into characters for other languages with the remaining numbers, 256 through 65535.

When dealing with unicode data, you may at some point need to convert the data back into one of these other lega
encoding systems. For instance, to integrate with some other computer system which expects its data in a specific
1-byte encoding scheme, or to print it to a non—unicode—aware terminal or printer. Or to store it in an XML docume
which explicitly specifies the encoding scheme.

And on that note, let's get back to Python.

Python has had unicode support throughout the language since version 2.0. The XML package uses unicode to sto

all parsed XML data, but you can use unicode anywhere.

Example 9.13. Introducing unicode

>>>s = u'Dive in' (1]
>>> 5

u'Dive in'

>>> print s (2]
Dive in

©® 7o create a unicode string instead of a regular ASCII string, add the letter "u" before the string. Note that this
particular string doesn't have any non—ASCII characters. That's fine; unicode is a superset of ASCII (a very
large superset at that), so any regular ASCII string can also be stored as unicode.

® \When printing a string, Python will attempt to convert it to your default encoding, which is usually ASCII.
(More on this in a minute.) Since this unicode string is made up of characters that are also ASCII characters,
printing it has the same result as printing a normal ASCII string; the conversion is seamless, and if you didn't
know that s was a unicode string, you'd never notice the difference.

Example 9.14. Storing non—ASCII characters

>>> s = u'La Pe\xfla' (1]
>>> print s (2]
Traceback (innermost last):
File "<interactive input>", line 1, in ?
UnicodeError: ASCII encoding error: ordinal not in range(128)
>>> print s.encode('latin-1")

Dive Into Python 126

La Pefa

Q® Thereal advantage of unicode, of course, is its ability to store non—ASCII characters, like the Spanish "fi" (n
with a tilde over it). The unicode character code for the tilde—n is Oxfl in hexadecimal (241 in decimal), which
you can type like this: \xf1.

® Remember I said that the print function attempts to convert a unicode string to ASCII so it can print it? Well,
that's not going to work here, because your unicode string contains non—ASCII characters, so Python raises ¢
UnicodeError error.

® Here's where the conversion—from-unicode-to—other-encoding—schemes comes in. s is a unicode string, bu
print can only print a regular string. To solve this problem, you call the encode method, available on every
unicode string, to convert the unicode string to a regular string in the given encoding scheme, which you pass
a parameter. In this case, you're using latin—1 (also known as iso—8859-1), which includes the tilde-n
(whereas the default ASCII encoding scheme did not, since it only includes characters numbered 0 through
127).

Remember | said Python usually converted unicode to ASCII whenever it needed to make a regular string out of a

unicode string? Well, this default encoding scheme is an option which you can customize.

Example 9.15. sitecustomize.py

sitecustomize.py 1]
this file can be anywhere in your Python path,

but it usually goes in ${pythondir}/lib/site—packages/
import sys

sys.setdefaultencoding('iso—8859-1") (2]

o sitecustomize.py is a special script; Python will try to import it on startup, so any code in it
will be run automatically. As the comment mentions, it can go anywhere (as long as import can
find it), but it usually goes in the site—packages directory within your Python lib directory.

(2 setdefaultencoding function sets, well, the default encoding. This is the encoding scheme
that Python will try to use whenever it needs to auto—coerce a unicode string into a regular string.

Example 9.16. Effects of setting the default encoding

>>> import sys

>>> sys.getdefaultencoding() (1]
'iso—8859-1"

>>> s = u'La Pe\xfla'

>>> print s (2]
La Pefia

Q@ This example assumes that you have made the changes listed in the previous example to your
sitecustomize.py file, and restarted Python. If your default encoding still says 'ascii’, you didn't set
up your sitecustomize.py properly, or you didn't restart Python. The default encoding can only be
changed during Python startup; you can't change it later. (Due to some wacky programming tricks that | won't
get into right now, you can't even call sys.setdefaultencoding after Python has started up. Dig into
site.py and search for "setdefaultencoding” to find out how.)

® Now that the default encoding scheme includes all the characters you use in your string, Python has no probls
auto—coercing the string and printing it.

Example 9.17. Specifying encoding in .py files

Dive Into Python 127

If you are going to be storing non—ASCII strings within your Python code, you'll need to specify the encoding of eac
individual .py file by putting an encoding declaration at the top of each file. This declaration defines the .py file to
be UTF-8:

#!/usr/bin/env python
—*— coding: UTF-8 —*-

Now, what about XML? Well, every XML document is in a specific encoding. Again, ISO-8859-1 is a popular

encoding for data in Western European languages. KOI8-R is popular for Russian texts. The encoding, if specified.
in the header of the XML document.

Example 9.18. russiansample.xml

<?xml version="1.0" encoding="koi8-r"?> (1]
<preface>
<title> @548A;>285</title> (2]
</preface>

Q@ Thisisa sample extract from a real Russian XML document; it's part of a Russian translation of this
very book. Note the encoding, koi8-r, specified in the header.

® These are Cyrillic characters which, as far as | know, spell the Russian word for "Preface". If you open
this file in a regular text editor, the characters will most likely like gibberish, because they're encoded
using the koi8-r encoding scheme, but they're being displayed in iso—8859-1.

Example 9.19. Parsing russiansample.xml

>>> from xml.dom import minidom

>>> xmldoc = minidom.parse(‘russiansample.xml’) (1]
>>> title = xmldoc.getElementsByTagName('title")[0].firstChild.data
>>> title (2]

u'\u041A\u0440\u0435\u0434\u0438\u0441\u043b\u043e\u0432\u0438\u0435'
>>> print title (3]
Traceback (innermost last):

File "<interactive input>", line 1, in ?
UnicodeError: ASCII encoding error: ordinal not in range(128)
>>> convertedtitle = title.encode('koi8-r')
>>> convertedtitle
"\xfO\xd2\xc5\xc4\xc9\xd3\xcc\xcfixd 7\xc9\xc5'
>>> print convertedtitle (5]
@548A;>285

9 'm assuming here that you saved the previous example as russiansample.xml in the current
directory. | am also, for the sake of completeness, assuming that you've changed your default
encoding back to 'ascii' by removing your sitecustomize.py file, or at least
commenting out the setdefaultencoding line.

@ Note that the text data of the title tag (now in the title variable, thanks to that long
concatenation of Python functions which | hastily skipped over and, annoyingly, won't explain
until the next section) —— the text data inside the XML document's title element is stored in
unicode.

© Printing the title is not possible, because this unicode string contains non—ASCII characters, so
Python can't convert it to ASCII because that doesn't make sense.

® You can, however, explicitly convert it to koi8-r, in which case you get a (regular, not unicode)
string of single—byte characters (f0, d2, c5, and so forth) that are the koi8-r—encoded versions

Dive Into Python 128

of the characters in the original unicode string.

(5 Printing the koi8-r—encoded string will probably show gibberish on your screen, because your

Python IDE is interpreting those characters as iso—8859-1, not koi8-r. But at least they do

print. (And, if you look carefully, it's the same gibberish that you saw when you opened the

original XML document in a non—-unicode—aware text editor. Python converted it from koi8-r

into unicode when it parsed the XML document, and you've just converted it back.)
To sum up, unicode itself is a bit intimidating if you've never seen it before, but unicode data is really very easy to
handle in Python. If your XML documents are all 7—-bit ASCII (like the examples in this chapter), you will literally
never think about unicode. Python will convert the ASCII data in the XML documents into unicode while parsing, an
auto—coerce it back to ASCIl whenever necessary, and you'll never even notice. But if you need to deal with that in
other languages, Python is ready.

Further reading

 Unicode.org (http://www.unicode.org/) is the home page of the unicode standard, including a brief technical
introduction (http://www.unicode.org/standard/principles.html).

 Unicode Tutorial (http://www.reportlab.com/il8n/python_unicode_tutorial.html) has some more examples of
how to use Python's unicode functions, including how to force Python to coerce unicode into ASCII even
when it doesn't really want to.

* PEP 263 (http://www.python.org/peps/pep—0263.html) goes into more detail about how and when to define :
character encoding in your .py files.

9.5. Searching for elements

Traversing XML documents by stepping through each node can be tedious. If you're looking for something in
particular, buried deep within your XML document, there is a shortcut you can use to find it quickly:
getElementsByTagName.

For this section, you'll be using the binary.xml grammar file, which looks like this:

Example 9.20. binary.xml

<?xml version="1.0"?>
<IDOCTYPE grammar PUBLIC "-//diveintopython.org//DTD Kant Generator Pro v1.0//EN" "kgp.dtd">
<grammar>
<ref id="bit">

<p>0</p>

<p>1</p>
<[ref>
<ref id="byte">

<p><xref id="hit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
<[ref>
</grammar>

It has two refs, 'bit' and 'byte'. A bit is either a '0' or '1', and a byte is 8 bits.

Example 9.21. Introducing getElementsByTagName

>>> from xml.dom import minidom
>>> xmldoc = minidom.parse('binary.xml’)
>>> reflist = xmldoc.getElementsByTagName('ref') (1]

Dive Into Python 129

http://www.unicode.org/
http://www.unicode.org/standard/principles.html
http://www.reportlab.com/i18n/python_unicode_tutorial.html
http://www.python.org/peps/pep-0263.html

>>> reflist
[<DOM Element: ref at 136138108>, <DOM Element: ref at 136144292>]
>>> print reflist[0].toxml()
<ref id="bit">

<p>0</p>

<p>1</p>
<[ref>
>>> print reflist[1].toxml()
<ref id="byte">

<p><xref id="hit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
<[ref>

o getElementsByTagName takes one argument, the name of the element you wish to find. It
returns a list of Element objects, corresponding to the XML elements that have that name. In
this case, you find two ref elements.

Example 9.22. Every element is searchable

>>> firstref = reflist[0] 0
>>> print firstref.toxml()
<ref id="bit">

<p>0</p>

<p>1</p>
<[ref>
>>> plist = firstref.getElementsByTagName("p") (2]
>>> plist
[<DOM Element: p at 136140116>, <DOM Element: p at 136142172>]
>>> print plist[0].toxml() (3]
<p>0</p>
>>> print plist[1].toxml()
<p>1</p>

o Continuing from the previous example, the first object in your reflist is the 'bit' ref element.

® You can use the same getElementsByTagName method on this Element to find all the <p> elements
within the 'bit" ref element.

® Just as before, the getElementsByTagName method returns a list of all the elements it found. In this case,
you have two, one for each bit.

Example 9.23. Searching is actually recursive

>>> plist = xmldoc.getElementsByTagName("p") (1]

>>> plist

[<DOM Element: p at 136140116>, <DOM Element: p at 136142172>, <DOM Element: p at 136146124>]
>>> plist[0].toxml() (2]

'<p>0</p>'

>>> plist[1].toxml()

'<p>1</p>'

>>> plist[2].toxml() (3]

‘<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\

<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>'

@ Note carefully the difference between this and the previous example. Previously, you were searching for p
elements within firstref, but here you are searching for p elements within xmldoc, the root-level object
that represents the entire XML document. This does find the p elements nested within the ref elements within
the root grammar element.

® The first two p elements are within the first ref (the 'bit" ref).

Dive Into Python 130

(3]

9.6.

XML elements can have one or more attributes, and it is incredibly simple to access them once you have parsed ar

The last p element is the one within the second ref (the 'byte'ref).

Accessing element attributes

XML document.

For this section, you'll be using the binary.xml grammar file that you saw in the previous section.

This section may be a littlee€onfusing, because of some overlapping terminology. Elements in an XML document
have attributes, and Python objects also have attributes. When you parse an XML document, you get a bunch of
Python objects that represent all the pieces of the XML document, and some of these Python objects represent
attributes of the XML elements. But the (Python) objects that represent the (XML) attributes also have (Python)
attributes, which are used to access various parts of the (XML) attribute that the object represents. | told you it was

confusing. | am open to suggestions on how to distinguish these more clearly.

Example 9.24. Accessing element attributes

>>> xmldoc = minidom.parse('binary.xml’)
>>> reflist = xmldoc.getElementsByTagName('ref')
>>> hitref = reflist[0]
>>> print bitref.toxml()
<ref id="bit">
<p>0</p>
<p>1</p>

<[ref>

>>> bitref.attributes 1]
<xml.dom.minidom.NamedNodeMap instance at 0x81e0c9c>
>>> bitref.attributes.keys()

[uid]

>>> bitref.attributes.values() (4]
[<xml.dom.minidom.Attr instance at 0x81d5044>]
>>> bitref.attributes["id"]

<xml.dom.minidom.Attr instance at 0x81d5044>

L~)

Each Element object has an attribute called attributes, which is a NamedNodeMap
object. This sounds scary, but it's not, because a NamedNodeMap is an object that acts like a
dictionary, so you already know how to use it.

Treating the NamedNodeMap as a dictionary, you can get a list of the names of the attributes of
this element by using attributes.keys(). This element has only one attribute, 'id'.

Attribute names, like all other text in an XML document, are stored in unicode.

Again treating the NamedNodeMap as a dictionary, you can get a list of the values of the
attributes by using attributes.values(). The values are themselves objects, of type
Attr. You'll see how to get useful information out of this object in the next example.

Still treating the NamedNodeMap as a dictionary, you can access an individual attribute by
name, using normal dictionary syntax. (Readers who have been paying extra—close attention will
already know how the NamedNodeMap class accomplishes this neat trick: by defining a
__getitem___ special method. Other readers can take comfort in the fact that they don't need to
understand how it works in order to use it effectively.)

Example 9.25. Accessing individual attributes

Dive Into Python

>>> g
<xml.dom.minidom.Attr instance at 0x81d5044>
>>> a.name

u'id'

>>>avalue @

u'bit'

Q TheAtr object completely represents a single XML attribute of a single XML element. The
name of the attribute (the same name as you used to find this object in the
bitref.attributes NamedNodeMap pseudo—dictionary) is stored in a.name.

® The actual text value of this XML attribute is stored in a.value.

Like a dictionary, attributeszof an XML element have no ordering. Attributes may happen to be listed in a certain
order in the original XML document, and the Attr objects may happen to be listed in a certain order when the XML
document is parsed into Python objects, but these orders are arbitrary and should carry no special meaning. You
should always access individual attributes by name, like the keys of a dictionary.

9.7. Seque

OK, that's it for the hard—core XML stuff. The next chapter will continue to use these same example programs, but
focus on other aspects that make the program more flexible: using streams for input processing, using getattr for
method dispatching, and using command-line flags to allow users to reconfigure the program without changing the
code.

Before moving on to the next chapter, you should be comfortable doing all of these things:

« Parsing XML documents using minidom, searching through the parsed document, and accessing arbitrary
element attributes and element children

« Organizing complex libraries into packages

« Converting unicode strings to different character encodings

B! This, sadly, is still an oversimplification. Unicode now has been extended to handle ancient Chinese, Korean, ant
Japanese texts, which had so many different characters that the 2—byte unicode system could not represent them &
But Python doesn't currently support that out of the box, and | don't know if there is a project afoot to add it. You've
reached the limits of my expertise, sorry.

Dive Into Python 132

Chapter 10. Scripts and Streams

10.1. Abstracting input sources

One of Python's greatest strengths is its dynamic binding, and one powerful use of dynamic binding is the file-like
object.

Many functions which require an input source could simply take a filename, go open the file for reading, read it, and
close it when they're done. But they don't. Instead, they take a file—like object.

In the simplest case, a file—like object is any object with a read method with an optional size parameter, which
returns a string. When called with no size parameter, it reads everything there is to read from the input source and
returns all the data as a single string. When called with a size parameter, it reads that much from the input source
and returns that much data; when called again, it picks up where it left off and returns the next chunk of data.

This is how reading from real files works; the difference is that you're not limiting yourself to real files. The input
source could be anything: a file on disk, a web page, even a hard—coded string. As long as you pass a file—like obje
to the function, and the function simply calls the object's read method, the function can handle any kind of input
source without specific code to handle each kind.

In case you were wondering how this relates to XML processing, minidom.parse is one such function which can
take a file—like object.

Example 10.1. Parsing XML from a file

>>> from xml.dom import minidom
>>> fsock = open('binary.xml’)
>>> xmldoc = minidom.parse(fsock)
>>> fsock.close()
>>> print xmldoc.toxml()
<?xml version="1.0" ?>
<grammar>
<ref id="bit">

<p>0</p>

<p>1</p>
<[ref>
<ref id="byte">

<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
<[ref>
</grammar>

co0e

Q9 Fist, you open the file on disk. This gives you a file object.

® vyou pass the file object to minidom.parse, which calls the read method of fsock and reads the XML
document from the file on disk.

® Be sure to call the close method of the file object after you're done with it. minidom.parse will not do
this for you.

4 Calling the toxml() method on the returned XML document prints out the entire thing.

Well, that all seems like a colossal waste of time. After all, you've already seen that minidom.parse can simply

take the filename and do all the opening and closing nonsense automatically. And it's true that if you know you're ju
going to be parsing a local file, you can pass the filename and minidom.parse is smart enough to Do The Right
Thing(tm). But notice how similar —— and easy —— it is to parse an XML document straight from the Internet.

Dive Into Python 133

Example 10.2. Parsing XML from a URL

>>> import urllib

>>> usock = urllib.urlopen(‘http://slashdot.org/slashdot.rdf')
>>> xmldoc = minidom.parse(usock)

>>> usock.close()

>>> print xmldoc.toxml()

<?xml version="1.0" ?>

<rdf:RDF xmlIns="http://my.netscape.com/rdf/simple/0.9/"
xmlins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—ns#">

oo0e

<channel>

<title>Slashdot</title>

<link>http://slashdot.org/</link>

<description>News for nerds, stuff that matters</description>
</channel>



<item>

<title>To HDTV or Not to HDTV?</title>
<link>http://slashdot.org/article.pl?sid=01/12/28/0421241</link>
</item>

[...snip...]

9 As you saw in a previous chapter, urlopen takes a web page URL and returns a file—like object. Most
importantly, this object has a read method which returns the HTML source of the web page.

@ Now you pass the file—like object to minidom.parse, which obediently calls the read method of the object
and parses the XML data that the read method returns. The fact that this XML data is now coming straight
from a web page is completely irrelevant. minidom.parse doesn't know about web pages, and it doesn't care
about web pages; it just knows about file-like objects.

As soon as you're done with it, be sure to close the file-like object that urlopen gives you.

(3]
o By the way, this URL is real, and it really is XML. It's an XML representation of the current headlines on
Slashdot (http://slashdot.org/), a technical news and gossip site.

Example 10.3. Parsing XML from a string (the easy but inflexible way)

>>> contents = "<grammar><ref id='bit'’><p>0</p><p>1</p></ref></grammar>"
>>> xmldoc = minidom.parseString(contents)

>>> print xmldoc.toxml()

<?xml version="1.0" ?>

<grammar><ref id="bit"><p>0</p><p>1</p></ref></grammar>

©® minidom has a method, parseString, which takes an entire XML document as a string and parses it. You

can use this instead of minidom.parse if you know you already have your entire XML document in a string.
OK, so you can use the minidom.parse function for parsing both local files and remote URLSs, but for parsing
strings, you use... a different function. That means that if you want to be able to take input from a file, a URL, or a
string, you'll need special logic to check whether it's a string, and call the parseString function instead. How
unsatisfying.

If there were a way to turn a string into a file—like object, then you could simply pass this object to
minidom.parse. And in fact, there is a module specifically designed for doing just that: StringlO.

Dive Into Python 134

http://slashdot.org/

Example 10.4. Introducing StringlO

>>> contents = "<grammar><ref id="bit'><p>0</p><p>1</p></ref></grammar>"
>>> import StringlO

>>> ssock = StringlO.StringlO(contents) 1]

>>> ssock.read() (2]

"<grammar><ref id="bit'><p>0</p><p>1</p></ref></grammar>"

>>> ssock.read()

>>> ssock.seek(0) 4]
>>> ssock.read(15) (5]
‘<grammar><ref i'

>>> ssock.read(15)

"d="bit"><p>0</p"

>>> ssock.read()

"><p>1</p></ref></grammar>'

>>> ssock.close() (6]

Q@ The StringlO module contains a single class, also called StringlO, which allows you to turn a string
into a file—like object. The StringlO class takes the string as a parameter when creating an instance.

@ Now you have a file-like object, and you can do all sorts of file-like things with it. Like read, which
returns the original string.

© Calling read again returns an empty string. This is how real file objects work too; once you read the
entire file, you can't read any more without explicitly seeking to the beginning of the file. The
StringlO object works the same way.

® Youcan explicitly seek to the beginning of the string, just like seeking through a file, by using the seek
method of the StringlO object.

You can also read the string in chunks, by passing a size parameter to the read method.

At any time, read will return the rest of the string that you haven't read yet. All of this is exactly how
file objects work; hence the term file-like object.

@0

Example 10.5. Parsing XML from a string (the file—like object way)

>>> contents = "<grammar><ref id="bit'><p>0</p><p>1</p></ref></grammar>"
>>> ssock = StringlO.StringlO(contents)

>>> xmldoc = minidom.parse(ssock)

>>> ssock.close()

>>> print xmldoc.toxml()

<?xml version="1.0" ?>

<grammar><ref id="bit"><p>0</p><p>1</p></ref></grammar>

® Now you can pass the file-like object (really a StringlO) to minidom.parse, which will call the object's

read method and happily parse away, never knowing that its input came from a hard—coded string.
So now you know how to use a single function, minidom.parse, to parse an XML document stored on a web page,
in a local file, or in a hard—coded string. For a web page, you use urlopen to get a file-like object; for a local file,
you use open; and for a string, you use StringlO. Now let's take it one step further and generalize these differences
as well.

Example 10.6. openAnything

def openAnything(source): (1]
try to open with urllib (if source is http, ftp, or file URL)
import urllib

try:

Dive Into Python 135

return urllib.urlopen(source) (2]
except (IOError, OSError):
pass

try to open with native open function (if source is pathname)
try:

return open(source) (3]
except (IOError, OSError):

pass

treat source as string
import StringlO
return StringlO.StringlO(str(source)) (4]

Q The openAnything function takes a single parameter, source, and returns a file-like object. source is a
string of some sort; it can either be a URL (like 'http://slashdot.org/slashdot.rdf"), a full or
partial pathname to a local file (like 'binary.xml’), or a string that contains actual XML data to be parsed.

O st you see if source is a URL. You do this through brute force: you try to open it as a URL and silently
ignore errors caused by trying to open something which is not a URL. This is actually elegant in the sense tha
if urllib ever supports new types of URLSs in the future, you will also support them without recoding. If
urllib is able to open source, then the return kicks you out of the function immediately and the
following try statements never execute.

® On the other hand, if urllib yelled at you and told you that source wasn't a valid URL, you assume it's a
path to a file on disk and try to open it. Again, you don't do anything fancy to check whether source is a valid
filename or not (the rules for valid filenames vary wildly between different platforms anyway, so you'd
probably get them wrong anyway). Instead, you just blindly open the file, and silently trap any errors.

@ By this point, you need to assume that source is a string that has hard—coded data in it (since nothing else
worked), so you use StringlO to create a file-like object out of it and return that. (In fact, since you're using
the str function, source doesn't even need to be a string; it could be any object, and you'll use its string
representation, as defined by its __str___ special method.)

Now you can use this openAnything function in conjunction with minidom.parse to make a function that takes

a source that refers to an XML document somehow (either as a URL, or a local filename, or a hard—coded XML

document in a string) and parses it.

Example 10.7. Using openAnything in kgp.py

class KantGenerator:
def _load(self, source):
sock = toolbox.openAnything(source)
xmldoc = minidom.parse(sock).documentElement
sock.close()
return xmldoc

10.2. Standard input, output, and error

UNIX users are already familiar with the concept of standard input, standard output, and standard error. This sectio
for the rest of you.

Standard output and standard error (commonly abbreviated stdout and stderr) are pipes that are built into every
UNIX system. When you print something, it goes to the stdout pipe; when your program crashes and prints out
debugging information (like a traceback in Python), it goes to the stderr pipe. Both of these pipes are ordinarily just
connected to the terminal window where you are working, so when a program prints, you see the output, and when
program crashes, you see the debugging information. (If you're working on a system with a window—-based Python

Dive Into Python 136

IDE, stdout and stderr default to your "Interactive Window".)

Example 10.8. Introducing stdout and stderr

>>> for i in range(3):

print 'Dive in' (1]
Dive in
Dive in
Dive in
>>> import sys
>>> for i in range(3):

sys.stdout.write('Dive in') (2]
Dive inDive inDive in
>>> for i in range(3):

sys.stderr.write('Dive in’) (3]
Dive inDive inDive in

9 As you saw in Example 6.9, Simple Counters , you can use Python's built—in range function to build simple
counter loops that repeat something a set number of times.

® stdout is a file—like object; calling its write function will print out whatever string you give it. In fact, this
is what the print function really does; it adds a carriage return to the end of the string you're printing, and
calls sys.stdout.write.

® Inthe simplest case, stdout and stderr send their output to the same place: the Python IDE (if you're in
one), or the terminal (if you're running Python from the command line). Like stdout, stderr does not add
carriage returns for you; if you want them, add them yourself.

stdout and stderr are both file—like objects, like the ones you discussed in Section 10.1, Abstracting input
sources , but they are both write—only. They have no read method, only write. Still, they are file-like objects, and
you can assign any other file— or file-like object to them to redirect their output.

Example 10.9. Redirecting output

[you@localhost kgp]$ python stdout.py

Dive in

[you@localhost kgp]$ cat out.log

This message will be logged instead of displayed

(On Windows, you can use type instead of cat to display the contents of a file.)

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—-examples—5.4.zip) used in this book.

#stdout.py
import sys

print 'Dive in’

saveout = sys.stdout

fsock = open(‘out.log’, 'w')

sys.stdout = fsock

print "This message will be logged instead of displayed'
sys.stdout = saveout

fsock.close()

QRO0O0e

Q This will print to the IDE "Interactive Window" (or the terminal, if running the script from the command line).

Dive Into Python 137

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Always save stdout before redirecting it, so you can set it back to normal later.

Open a file for writing. If the file doesn't exist, it will be created. If the file does exist, it will be overwritten.
Redirect all further output to the new file you just opened.

This will be "printed" to the log file only; it will not be visible in the IDE window or on the screen.

Set stdout back to the way it was before you mucked with it.

Close the log file.
Redirecting stderr works exactly the same way, using sys.stderr instead of sys.stdout.

Q000

Example 10.10. Redirecting error information

[you@localhost kgp]$ python stderr.py
[you@Ilocalhost kgp]$ cat error.log
Traceback (most recent line last):
File "stderr.py", line 5, in ?
raise Exception, 'this error will be logged'
Exception: this error will be logged

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

#stderr.py

import sys

fsock = open(‘error.log', 'w'") (1]
sys.stderr = fsock (2]
raise Exception, 'this error will be logged' o0

o Open the log file where you want to store debugging information.
Redirect standard error by assigning the file object of the newly—opened log file to stderr.

(2]

® Raise an exception. Note from the screen output that this does not print anything on screen. All the normal
traceback information has been written to error.log.

4]

Also note that you're not explicitly closing your log file, nor are you setting stderr back to its original value.
This is fine, since once the program crashes (because of the exception), Python will clean up and close the fil
for us, and it doesn't make any difference that stderr is never restored, since, as | mentioned, the program
crashes and Python ends. Restoring the original is more important for stdout, if you expect to go do other
stuff within the same script afterwards.
Since it is so common to write error messages to standard error, there is a shorthand syntax that can be used inste
going through the hassle of redirecting it outright.

Example 10.11. Printing to stderr

>>> print 'entering function’

entering function

>>> import sys

>>> print >> sys.stderr, 'entering function’ 1]
entering function

@ This shorthand syntax of the print statement can be used to write to any open file, or file—like object. In

this case, you can redirect a single print statement to stderr without affecting subsequent print
statements.

Dive Into Python 138

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Standard input, on the other hand, is a read-only file object, and it represents the data flowing into the program fror
some previous program. This will likely not make much sense to classic Mac OS users, or even Windows users unl
you were ever fluent on the MS-DOS command line. The way it works is that you can construct a chain of comman
in a single line, so that one program's output becomes the input for the next program in the chain. The first program
simply outputs to standard output (without doing any special redirecting itself, just doing normal print statements or
whatever), and the next program reads from standard input, and the operating system takes care of connecting one
program's output to the next program's input.

Example 10.12. Chaining commands

[you@localhost kgp]$ python kgp.py —g binary.xml (1]
01100111
[you@localhost kgp]$ cat binary.xml (2]

<?xml version="1.0"?>
<IDOCTYPE grammar PUBLIC "-//diveintopython.org//DTD Kant Generator Pro v1.0//EN" "kgp.dtd">
<grammar>
<ref id="bit">
<p>0</p>
<p>1</p>
<[ref>
<ref id="byte">
<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
<[ref>
</grammar>
[you@localhost kgp]$ cat binary.xml | python kgp.py —g — ®©0
10110001

9 As you saw in Section 9.1, Diving in, this will print a string of eight random bits, O or 1.
® This simply prints out the entire contents of binary.xml. (Windows users should use type instead of cat.)

® This prints the contents of binary.xml, but the "|" character, called the "pipe" character, means that the
contents will not be printed to the screen. Instead, they will become the standard input of the next command,
which in this case calls your Python script.

@ Instead of specifying a module (like binary.xml), you specify "-", which causes your script to load the
grammar from standard input instead of from a specific file on disk. (More on how this happens in the next
example.) So the effect is the same as the first syntax, where you specified the grammar filename directly, bu
think of the expansion possibilities here. Instead of simply doing cat binary.xml, you could run a script
that dynamically generates the grammar, then you can pipe it into your script. It could come from anywhere: a
database, or some grammar—generating meta—script, or whatever. The point is that you don't need to change
your kgp.py script at all to incorporate any of this functionality. All you need to do is be able to take grammar
files from standard input, and you can separate all the other logic into another program.

So how does the script "know" to read from standard input when the grammar file is "-"? It's not magic; it's just codt

Example 10.13. Reading from standard input in kgp.py

def openAnything(source):
if source =="-" (1]
import sys
return sys.stdin

try to open with urllib (if source is http, ftp, or file URL)

import urllib
try:

Dive Into Python 139

[... snip ...]

Q@ Thisisthe openAnything function from toolbox.py, which you previously examined in
Section 10.1, Abstracting input sources . All you've done is add three lines of code at the beginning
of the function to check if the source is "-"; if so, you return sys.stdin. Really, that's it!
Remember, stdin is a file—like object with a read method, so the rest of the code (in kgp.py,
where you call openAnything) doesn't change a bit.

10.3. Caching node lookups

kgp.py employs several tricks which may or may not be useful to you in your XML processing. The first one takes
advantage of the consistent structure of the input documents to build a cache of nodes.

A grammar file defines a series of ref elements. Each ref contains one or more p elements, which can contain a lot
of different things, including xrefs. Whenever you encounter an xref, you look for a corresponding ref element

with the same id attribute, and choose one of the ref element's children and parse it. (You'll see how this random
choice is made in the next section.)

This is how you build up the grammar: define ref elements for the smallest pieces, then define ref elements which
"include" the first ref elements by using xref, and so forth. Then you parse the "largest" reference and follow each
xref, and eventually output real text. The text you output depends on the (random) decisions you make each time
you fill in an xref, so the output is different each time.

This is all very flexible, but there is one downside: performance. When you find an xref and need to find the
corresponding ref element, you have a problem. The xref has an id attribute, and you want to find the ref

element that has that same id attribute, but there is no easy way to do that. The slow way to do it would be to get th
entire list of ref elements each time, then manually loop through and look at each id attribute. The fast way is to do
that once and build a cache, in the form of a dictionary.

Example 10.14. loadGrammar

def loadGrammar(self, grammar):
self.grammar = self._load(grammar)
self.refs = {}
for ref in self.grammar.getElementsByTagName("ref"):
self.refs[ref.attributes["id"].value] = ref

ol

(4]

Start by creating an empty dictionary, self.refs.

As you saw in Section 9.5, Searching for elements , getElementsByTagName returns a list of all the
elements of a particular name. You easily can get a list of all the ref elements, then simply loop through that
list.

® As you saw in Section 9.6, Accessing element attributes , you can access individual attributes of an element
by name, using standard dictionary syntax. So the keys of the self.refs dictionary will be the values of the
id attribute of each ref element.

@ The values of the self.refs dictionary will be the ref elements themselves. As you saw in Section 9.3,
Parsing XML , each element, each node, each comment, each piece of text in a parsed XML document is an
object.
Once you build this cache, whenever you come across an xref and need to find the ref element with the same id
attribute, you can simply look it up in self.refs.

®e

Example 10.15. Using the ref element cache

Dive Into Python 140

def do_xref(self, node):
id = node.attributes["id"].value
self.parse(self.randomChildElement(self.refs[id]))

You'll explore the randomChildElement function in the next section.

10.4. Finding direct children of a node

Another useful techique when parsing XML documents is finding all the direct child elements of a particular element
For instance, in the grammar files, a ref element can have several p elements, each of which can contain many
things, including other p elements. You want to find just the p elements that are children of the ref, not p elements
that are children of other p elements.

You might think you could simply use getElementsByTagName for this, but you can't.

getElementsByTagName searches recursively and returns a single list for all the elements it finds. Since p
elements can contain other p elements, you can't use getElementsByTagName, because it would return nested p
elements that you don't want. To find only direct child elements, you'll need to do it yourself.

Example 10.16. Finding direct child elements

def randomChildElement(self, node):
choices = [e for e in node.childNodes
if e.nodeType == e.ELEMENT_NODE] 006
chosen = random.choice(choices) (4]
return chosen

9 As you saw in Example 9.9, Getting child nodes , the childNodes attribute returns a list of all
the child nodes of an element.

® However, as you saw in Example 9.11, Child nodes can be text, the list returned by childNodes
contains all different types of nodes, including text nodes. That's not what you're looking for here.
You only want the children that are elements.

® Eachnodehasa nodeType attribute, which can be ELEMENT_NODE, TEXT_NODE,
COMMENT_NODE, or any number of other values. The complete list of possible values is in the
__init__.py file in the xml.dom package. (See Section 9.2, Packages for more on packages.)
But you're just interested in nodes that are elements, so you can filter the list to only include those
nodes whose nodeType is ELEMENT_NODE.

@ oOnce you have a list of actual elements, choosing a random one is easy. Python comes with a module
called random which includes several useful functions. The random.choice function takes a list
of any number of items and returns a random item. For example, if the ref elements contains several
p elements, then choices would be a list of p elements, and chosen would end up being assigned
exactly one of them, selected at random.

10.5. Creating separate handlers by node type

The third useful XML processing tip involves separating your code into logical functions, based on node types and
element names. Parsed XML documents are made up of various types of nodes, each represented by a Python obj
The root level of the document itself is represented by a Document object. The Document then contains one or
more Element objects (for actual XML tags), each of which may contain other Element objects, Text objects (for
bits of text), or Comment objects (for embedded comments). Python makes it easy to write a dispatcher to separate
the logic for each node type.

Dive Into Python 141

Example 10.17. Class names of parsed XML objects

>>> from xml.dom import minidom

>>> xmldoc = minidom.parse(‘kant.xml’) (1]
>>> xmldoc

<xml.dom.minidom.Document instance at 0Ox01359DE8>
>>> xmldoc.__class__

<class xml.dom.minidom.Document at 0x01105D40>
>>> xmldoc.__class__._ _name__

‘Document’

@ Assume for a moment that kant.xml is in the current directory.

@ As you saw in Section 9.2, Packages , the object returned by parsing an XML document is a
Document object, as defined in the minidom.py in the xml.dom package. As you saw in
Section 5.4, Instantiating Classes, __ class__is built-in attribute of every Python object.

® Furthermore, __nhame___is a built=in attribute of every Python class, and it is a string. This string is

not mysterious; it's the same as the class name you type when you define a class yourself. (See

Section 5.3, Defining Classes .)
Fine, so now you can get the class name of any particular XML node (since each XML node is represented as a
Python object). How can you use this to your advantage to separate the logic of parsing each node type? The answ
getattr, which you first saw in Section 4.4, Getting Object References With getattr .

Example 10.18. parse, a generic XML node dispatcher

def parse(self, node):
parseMethod = getattr(self, "parse_%s" % node.__class__._ _name__) (1 2
parseMethod(node)

Q First off, notice that you're constructing a larger string based on the class name of the node you were passed
the node argument). So if you're passed a Document node, you're constructing the string
'‘parse_Document’, and so forth.

@ Now you can treat that string as a function name, and get a reference to the function itself using getattr
(3]

Finally, you can call that function and pass the node itself as an argument. The next example shows the
definitions of each of these functions.

Example 10.19. Functions called by the parse dispatcher

def parse_Document(self, node): (1]
self.parse(node.documentElement)

def parse_Text(self, node): (2]

text = node.data

if self.capitalizeNextWord:
self.pieces.append(text[0].upper())
self.pieces.append(text[1:])
self.capitalizeNextWord = 0

else:
self.pieces.append(text)

def parse_Comment(self, node): (3]
pass

def parse_Element(self, node): (4]
handlerMethod = getattr(self, "do_%s" % node.tagName)
handlerMethod(node)

Dive Into Python 142

o parse_Document is only ever called once, since there is only one Document node in an XML document,
and only one Document object in the parsed XML representation. It simply turns around and parses the root
element of the grammar file.

(2 parse_Text is called on nodes that represent bits of text. The function itself does some special processing to
handle automatic capitalization of the first word of a sentence, but otherwise simply appends the represented
text to a list.

© parse_Comment is just a pass, since you don't care about embedded comments in the grammar files. Note,
however, that you still need to define the function and explicitly make it do nothing. If the function did not
exist, the generic parse function would fail as soon as it stumbled on a comment, because it would try to find
the non-existent parse_Comment function. Defining a separate function for every node type, even ones you
don't use, allows the generic parse function to stay simple and dumb.

Q@ The parse_Element method is actually itself a dispatcher, based on the name of the element's tag. The basic
idea is the same: take what distinguishes elements from each other (their tag names) and dispatch to a separ
function for each of them. You construct a string like 'do_xref' (for an <xref> tag), find a function of that
name, and call it. And so forth for each of the other tag names that might be found in the course of parsing a
grammar file (<p> tags, <choice> tags).

In this example, the dispatch functions parse and parse_Element simply find other methods in the same class. If

your processing is very complex (or you have many different tag names), you could break up your code into separa

modules, and use dynamic importing to import each module and call whatever functions you needed. Dynamic
importing will be discussed in Chapter 16, Functional Programming.

10.6. Handling command-line arguments

Python fully supports creating programs that can be run on the command line, complete with command-line
arguments and either short— or long-style flags to specify various options. None of this is XML-specific, but this
script makes good use of command-line processing, so it seemed like a good time to mention it.

It's difficult to talk about command-line processing without understanding how command-line arguments are
exposed to your Python program, so let's write a simple program to see them.

Example 10.20. Introducing sys.argv

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

#argecho.py
import sys

for arg in sys.argv: (1]
print arg

©® Each command-line argument passed to the program will be in sys.argv, which is just a list. Here
you are printing each argument on a separate line.

Example 10.21. The contents of sys.argv

[you@localhost py]$ python argecho.py
argecho.py

[you@localhost py]$ python argecho.py abc def
argecho.py

abc

def

®

Dive Into Python 143

http://diveintopython.org/download/diveintopython-examples-5.4.zip

[you@localhost py]$ python argecho.py ——help (3]
argecho.py

——help

[you@localhost py]$ python argecho.py —m kant.xml (4]
argecho.py

-m

kant.xml

Q The first thing to know about sys.argv is that it contains the name of the script you're calling. You
will actually use this knowledge to your advantage later, in Chapter 16, Functional Programming. Don't
worry about it for now.

® Ccommand-line arguments are separated by spaces, and each shows up as a separate element in the
sys.argv list.

Command-line flags, like ——help, also show up as their own element in the sys.argv list.

To make things even more interesting, some command-line flags themselves take arguments. For

instance, here you have a flag (—-m) which takes an argument (kant.xml). Both the flag itself and the

flag's argument are simply sequential elements in the sys.argyv list. No attempt is made to associate

one with the other; all you get is a list.

S0 as you can see, you certainly have all the information passed on the command line, but then again, it doesn't loc
like it's going to be all that easy to actually use it. For simple programs that only take a single argument and have n
flags, you can simply use sys.argv[1] to access the argument. There's no shame in this; | do it all the time. For
more complex programs, you need the getopt module.

oo

Example 10.22. Introducing getopt

def main(argv):

grammar = "kant.xml" (1]
try:
opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="]) (2]
except getopt.GetoptError: (3]
usage() (4
sys.exit(2)
if _name__=="_main__":

main(sys.argv[1:])

Q First off, look at the bottom of the example and notice that you're calling the main function with
sys.argv[1l:]. Remember, sys.argv[0] is the name of the script that you're running; you don't care
about that for command-line processing, so you chop it off and pass the rest of the list.

® This is where all the interesting processing happens. The getopt function of the getopt module takes three
parameters: the argument list (which you got from sys.argv[1:]), a string containing all the possible
single—character command-line flags that this program accepts, and a list of longer command-line flags that
are equivalent to the single—character versions. This is quite confusing at first glance, and is explained in mor
detail below.

® anything goes wrong trying to parse these command-line flags, getopt will raise an exception, which you
catch. You told getopt all the flags you understand, so this probably means that the end user passed some
command-line flag that you don't understand.

® Asis standard practice in the UNIX world, when the script is passed flags it doesn't understand, you print out
summary of proper usage and exit gracefully. Note that | haven't shown the usage function here. You would
still need to code that somewhere and have it print out the appropriate summary; it's not automatic.

Dive Into Python 144

So what are all those parameters you pass to the getopt function? Well, the first one is simply the raw list of
command-line flags and arguments (not including the first element, the script name, which you already chopped off
before calling the main function). The second is the list of short command-line flags that the script accepts.

"hg:d"
-h
print usage summary
-g...
use specified grammar file or URL
-d

show debugging information while parsing

The first and third flags are simply standalone flags; you specify them or you don't, and they do things (print help) o
change state (turn on debugging). However, the second flag (—g) must be followed by an argument, which is the na
of the grammar file to read from. In fact it can be a filename or a web address, and you don't know which yet (you'll
figure it out later), but you know it has to be something. So you tell getopt this by putting a colon after the g in that
second parameter to the getopt function.

To further complicate things, the script accepts either short flags (like —h) or long flags (like ——help), and you want
them to do the same thing. This is what the third parameter to getopt is for, to specify a list of the long flags that
correspond to the short flags you specified in the second parameter.

[*help”, "grammar="]

——help
print usage summary
——grammar ...
use specified grammar file or URL

Three things of note here:

1. All long flags are preceded by two dashes on the command line, but you don't include those dashes when
calling getopt. They are understood.

2. The ——grammar flag must always be followed by an additional argument, just like the —g flag. This is
notated by an equals sign, "grammar=".

3. The list of long flags is shorter than the list of short flags, because the —d flag does not have a correspondin
long version. This is fine; only —d will turn on debugging. But the order of short and long flags needs to be
the same, so you'll need to specify all the short flags that do have corresponding long flags first, then all the
rest of the short flags.

Confused yet? Let's look at the actual code and see if it makes sense in context.

Example 10.23. Handling command-line arguments in kgp.py

def main(argv): (1]
grammar = "kant.xml"
try:
opts, args = getopt.getopt(argv, "hg:d", [*help”, "grammar="])
except getopt.GetoptError:
usage()
sys.exit(2)
for opt, arg in opts: (2]

Dive Into Python 145

if opt in ("=h", "==help"): (3]
usage()
sys.exit()

elif opt == '~d": (4
global _debug
_debug=1

elif optin ("-g", "-—grammar"): (5]
grammar = arg

source = "".join(args) (6

k = KantGenerator(grammar, source)
print k.output()

Q@ The grammar variable will keep track of the grammar file you're using. You initialize it here in case it's not
specified on the command line (using either the —g or the ——grammar flag).

@ The opts variable that you get back from getopt contains a list of tuples: flag and argument. If the flag
doesn't take an argument, then arg will simply be None. This makes it easier to loop through the flags.

© getopt validates that the command-line flags are acceptable, but it doesn't do any sort of conversion between
short and long flags. If you specify the —h flag, opt will contain "-h"; if you specify the ——help flag, opt
will contain "-—help". So you need to check for both.

© Remember, the —d flag didn't have a corresponding long flag, so you only need to check for the short form. If
you find it, you set a global variable that you'll refer to later to print out debugging information. (I used this
during the development of the script. What, you thought all these examples worked on the first try?)

® f you find a grammar file, either with a —g flag or a ——grammar flag, you save the argument that followed it
(stored in arg) into the grammar variable, overwriting the default that you initialized at the top of the main
function.

® That'sit. You've looped through and dealt with all the command-line flags. That means that anything left mus
be command-line arguments. These come back from the getopt function in the args variable. In this case,
you're treating them as source material for the parser. If there are no command-line arguments specified, arg
will be an empty list, and source will end up as the empty string.

10.7. Putting it all together

You've covered a lot of ground. Let's step back and see how all the pieces fit together.

To start with, this is a script that takes its arguments on the command line, using the getopt module.
def main(argv):
try:
opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="])
except getopt.GetoptError:

for opt, arg in opts:
You create a new instance of the KantGenerator class, and pass it the grammar file and source that may or may
not have been specified on the command line.

k = KantGenerator(grammar, source)
The KantGenerator instance automatically loads the grammar, which is an XML file. You use your custom

openAnything function to open the file (which could be stored in a local file or a remote web server), then use the
built—-in minidom parsing functions to parse the XML into a tree of Python objects.

Dive Into Python 146

def _load(self, source):
sock = toolbox.openAnything(source)
xmldoc = minidom.parse(sock).documentElement
sock.close()

Oh, and along the way, you take advantage of your knowledge of the structure of the XML document to set up a littl
cache of references, which are just elements in the XML document.

def loadGrammar(self, grammar):
for ref in self.grammar.getElementsByTagName("ref"):
self.refs[ref.attributes["id"].value] = ref

If you specified some source material on the command line, you use that; otherwise you rip through the grammar
looking for the "top—level" reference (that isn't referenced by anything else) and use that as a starting point.

def getDefaultSource(self):
xrefs = {}
for xref in self.grammar.getElementsByTagName("xref"):
xrefs[xref.attributes["id"].value] = 1
xrefs = xrefs.keys()
standaloneXrefs = [e for e in self.refs.keys() if e not in xrefs]
return '<xref id="%s"/>" % random.choice(standaloneXrefs)

Now you rip through the source material. The source material is also XML, and you parse it one node at a time. To
keep the code separated and more maintainable, you use separate handlers for each node type.

def parse_Element(self, node):
handlerMethod = getattr(self, "do_%s" % node.tagName)
handlerMethod(node)

You bounce through the grammar, parsing all the children of each p element,

def do_p(self, node):

if doit:
for child in node.childNodes: self.parse(child)

replacing choice elements with a random child,

def do_choice(self, node):
self.parse(self.randomChildElement(node))

and replacing xref elements with a random child of the corresponding ref element, which you previously cached.

def do_xref(self, node):
id = node.attributes["id"].value
self.parse(self.randomChildElement(self.refs[id]))

Eventually, you parse your way down to plain text,

def parse_Text(self, node):
text = node.data

self.pieces.append(text)
which you print out.
def main(argv):

Dive Into Python 147

k = KantGenerator(grammar, source)
print k.output()

10.8. Summary

Python comes with powerful libraries for parsing and manipulating XML documents. The minidom takes an XML
file and parses it into Python objects, providing for random access to arbitrary elements. Furthermore, this chapter
shows how Python can be used to create a "real" standalone command-line script, complete with command-line
flags, command-line arguments, error handling, even the ability to take input from the piped result of a previous
program.

Before moving on to the next chapter, you should be comfortable doing all of these things:
 Chaining programs with standard input and output

« Defining dynamic dispatchers with getattr.
» Using command-line flags and validating them with getopt

Dive Into Python 148

Chapter 11. HTTP Web Services

11.1. Diving in

You've learned about HTML processing and XML processing, and along the way you saw how to download a web
page and how to parse XML from a URL, but let's dive into the more general topic of HTTP web services.

Simply stated, HTTP web services are programmatic ways of sending and receiving data from remote servers using
the operations of HTTP directly. If you want to get data from the server, use a straight HTTP GET; if you want to
send new data to the server, use HTTP POST. (Some more advanced HTTP web service APIs also define ways of
modifying existing data and deleting data, using HTTP PUT and HTTP DELETE.) In other words, the "verbs" built
into the HTTP protocol (GET, POST, PUT, and DELETE) map directly to application—level operations for receiving,
sending, modifying, and deleting data.

The main advantage of this approach is simplicity, and its simplicity has proven popular with a lot of different sites.
Data —— usually XML data —— can be built and stored statically, or generated dynamically by a server—side script, at
all major languages include an HTTP library for downloading it. Debugging is also easier, because you can load up
the web service in any web browser and see the raw data. Modern browsers will even nicely format and pretty—prin
XML data for you, to allow you to quickly navigate through it.

Examples of pure XML-over-HTTP web services:

* Amazon API (http://www.amazon.com/webservices) allows you to retrieve product information from the
Amazon.com online store.

 National Weather Service (http://www.nws.noaa.gov/alerts/) (United States) and Hong Kong Observatory
(http://demo.xml.weather.gov.hk/) (Hong Kong) offer weather alerts as a web service.

» Atom API (http://atomenabled.org/) for managing web-based content.

» Syndicated feeds (http://syndic8.com/) from weblogs and news sites bring you up—to—the—minute news fromn
a variety of sites.

In later chapters, you'll explore APIs which use HTTP as a transport for sending and receiving data, but don't map
application semantics to the underlying HTTP semantics. (They tunnel everything over HTTP POST.) But this chapt
will concentrate on using HTTP GET to get data from a remote server, and you'll explore several HTTP features yol
can use to get the maximum benefit out of pure HTTP web services.

Here is a more advanced version of the openanything module that you saw in the previous chapter:

Example 11.1. openanything.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

import urllib2, urlparse, gzip
from StringlO import StringlO

USER_AGENT = 'OpenAnything/1.0 +http://diveintopython.org/http_web_services/'

class SmartRedirectHandler(urllib2.HTTPRedirectHandler):
def http_error_301(self, req, fp, code, msg, headers):
result = urllib2. HTTPRedirectHandler.http_error_301(
self, req, fp, code, msg, headers)
result.status = code

Dive Into Python 149

http://www.amazon.com/webservices
http://www.nws.noaa.gov/alerts/
http://demo.xml.weather.gov.hk/
http://atomenabled.org/
http://syndic8.com/
http://diveintopython.org/download/diveintopython-examples-5.4.zip

return result

def http_error_302(self, req, fp, code, msg, headers):
result = urllib2. HTTPRedirectHandler.http_error_302(
self, req, fp, code, msg, headers)
result.status = code
return result

class DefaultErrorHandler(urllib2. HTTPDefaultErrorHandler):
def http_error_default(self, req, fp, code, msg, headers):
result = urllib2. HTTPError(
req.get_full_url(), code, msg, headers, fp)
result.status = code
return result

def openAnything(source, etag=None, lastmodified=None, agent=USER_AGENT):
"URL, filename, or string ——> stream

This function lets you define parsers that take any input source
(URL, pathname to local or network file, or actual data as a string)
and deal with it in a uniform manner. Returned object is guaranteed
to have all the basic stdio read methods (read, readline, readlines).
Just .close() the object when you're done with it.

If the etag argument is supplied, it will be used as the value of an
If-None—Match request header.

If the lastmodified argument is supplied, it must be a formatted
date/time string in GMT (as returned in the Last—Modified header of
a previous request). The formatted date/time will be used

as the value of an If-Modified-Since request header.

If the agent argument is supplied, it will be used as the value of a
User—Agent request header.

if hasattr(source, 'read’):
return source

if source =="'-"
return sys.stdin

if urlparse.urlparse(source)[0] == 'http":
open URL with urllib2
request = urllib2.Request(source)
request.add_header('User-Agent’, agent)
if etag:
request.add_header('If-None—-Match', etag)
if lastmodified:
request.add_header('If-Modified—Since', lastmodified)
request.add_header('Accept-encoding', 'gzip')
opener = urllib2.build_opener(SmartRedirectHandler(), DefaultErrorHandler())
return opener.open(request)

try to open with native open function (if source is a filename)
try:

return open(source)
except (IOError, OSError):

pass

treat source as string
return StringlO(str(source))

Dive Into Python 150

def fetch(source, etag=None, last_modified=None, agent=USER_AGENT):
"'Fetch data and metadata from a URL, file, stream, or string"
result = {}
f = openAnything(source, etag, last_modified, agent)
result['data’] = f.read()
if hasattr(f, 'headers’):
save ETag, if the server sent one
result['etag'] = f.headers.get('ETag'")
save Last—Modified header, if the server sent one
result['lastmodified’] = f.headers.get('Last—Modified")
if f.headers.get(‘content-encoding’, ") == 'gzip"
data came back gzip—compressed, decompress it
result['data’] = gzip.GzipFile(fileobj=StringlO(result['data’]])).read()
if hasattr(f, 'url’):
result['url] = f.url
result['status’] = 200
if hasattr(f, 'status'):
result['status'] = f.status
f.close()
return result

Further reading

» Paul Prescod believes that pure HTTP web services are the future of the Internet
(http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html).

11.2. How not to fetch data over HTTP

Let's say you want to download a resource over HTTP, such as a syndicated Atom feed. But you don't just want to
download it once; you want to download it over and over again, every hour, to get the latest news from the site that'
offering the news feed. Let's do it the quick—and-dirty way first, and then see how you can do better.

Example 11.2. Downloading a feed the quick—and-dirty way

>>> import urllib
>>> data = urllib.urlopen(’http://diveintomark.org/xml/atom.xml’).read() (1]
>>> print data
<?xml version="1.0" encoding="iso—-8859-1"?>
<feed version="0.3"
xmins="http://purl.org/atom/ns#"
xmins:dc="http://purl.org/dc/elements/1.1/"
xml:lang="en">
<title mode="escaped">dive into mark</title>
<link rel="alternate" type="text/html" href="http://diveintomark.org/"/>
<—-rest of feed omitted for brevity ——>

o Downloading anything over HTTP is incredibly easy in Python; in fact, it's a one-liner. The urllib module
has a handy urlopen function that takes the address of the page you want, and returns a file-like object that
you can just read() from to get the full contents of the page. It just can't get much easier.
So what's wrong with this? Well, for a quick one—off during testing or development, there's nothing wrong with it. |
do it all the time. | wanted the contents of the feed, and | got the contents of the feed. The same technique works fo
any web page. But once you start thinking in terms of a web service that you want to access on a regular basis ——
remember, you said you were planning on retrieving this syndicated feed once an hour —— then you're being
inefficient, and you're being rude.

Let's talk about some of the basic features of HTTP.

Dive Into Python 151

http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html

11.3. Features of HTTP

There are five important features of HTTP which you should support.

11.3.1. User-Agent

The User—Agent is simply a way for a client to tell a server who it is when it requests a web page, a syndicated
feed, or any sort of web service over HTTP. When the client requests a resource, it should always announce who it
as specifically as possible. This allows the server—side administrator to get in touch with the client-side developer i
anything is going fantastically wrong.

By default, Python sends a generic User—Agent: Python-urllib/1.15. In the next section, you'll see how to
change this to something more specific.

11.3.2. Redirects

Sometimes resources move around. Web sites get reorganized, pages move to new addresses. Even web services
reorganize. A syndicated feed at http://example.com/index.xml might be moved to
http://example.com/xml/atom.xml. Or an entire domain might move, as an organization expands and

reorganizes; for instance, http://www.example.com/index.xml might be redirected to
http://server—farm—-1.example.com/index.xml.

Every time you request any kind of resource from an HTTP server, the server includes a status code in its response
Status code 200 means "everything's normal, here's the page you asked for". Status code 404 means "page not
found". (You've probably seen 404 errors while browsing the web.)

HTTP has two different ways of signifying that a resource has moved. Status code 302 is a temporary redirect; it
means "oops, that got moved over here temporarily” (and then gives the temporary address in a Location: header).
Status code 301 is a permanent redirect; it means "oops, that got moved permanently” (and then gives the new
address in a Location: header). If you get a 302 status code and a new address, the HTTP specification says you
should use the new address to get what you asked for, but the next time you want to access the same resource, yo
should retry the old address. But if you get a 301 status code and a new address, you're supposed to use the new
address from then on.

urllib.urlopen will automatically "follow" redirects when it receives the appropriate status code from the HTTP
server, but unfortunately, it doesn't tell you when it does so. You'll end up getting data you asked for, but you'll neve
know that the underlying library "helpfully” followed a redirect for you. So you'll continue pounding away at the old
address, and each time you'll get redirected to the new address. That's two round trips instead of one: not very
efficient! Later in this chapter, you'll see how to work around this so you can deal with permanent redirects properly
and efficiently.

11.3.3. Last—Modified/If-Modified—Since

Some data changes all the time. The home page of CNN.com is constantly updating every few minutes. On the oth
hand, the home page of Google.com only changes once every few weeks (when they put up a special holiday logo,
advertise a new service). Web services are no different; usually the server knows when the data you requested last
changed, and HTTP provides a way for the server to include this last-modified date along with the data you reques

If you ask for the same data a second time (or third, or fourth), you can tell the server the last-modified date that yo

got last time: you send an If-Modified—Since header with your request, with the date you got back from the
server last time. If the data hasn't changed since then, the server sends back a special HTTP status code 304, whic

Dive Into Python 152

means "this data hasn't changed since the last time you asked for it". Why is this an improvement? Because when 1
server sends a 304, it doesn't re—send the data. All you get is the status code. So you don't need to download the
same data over and over again if it hasn't changed; the server assumes you have the data cached locally.

All modern web browsers support last—-modified date checking. If you've ever visited a page, re-visited the same pe
a day later and found that it hadn't changed, and wondered why it loaded so quickly the second time —- this could k
why. Your web browser cached the contents of the page locally the first time, and when you visited the second time
your browser automatically sent the last—-modified date it got from the server the first time. The server simply says
304: Not Modified, so your browser knows to load the page from its cache. Web services can be this smart too.

Python's URL library has no built-in support for last—-modified date checking, but since you can add arbitrary heade
to each request and read arbitrary headers in each response, you can add support for it yourself.

11.3.4. ETag/If-None—Match

ETags are an alternate way to accomplish the same thing as the last—-modified date checking: don't re-download d:
that hasn't changed. The way it works is, the server sends some sort of hash of the data (in an ETag header) along
with the data you requested. Exactly how this hash is determined is entirely up to the server. The second time you
request the same data, you include the ETag hash in an If-None—Match: header, and if the data hasn't changed,
the server will send you back a 304 status code. As with the last-modified date checking, the server just sends the
304; it doesn't send you the same data a second time. By including the ETag hash in your second request, you're
telling the server that there's no need to re—send the same data if it still matches this hash, since you still have the (
from the last time.

Python's URL library has no built-in support for ETags, but you'll see how to add it later in this chapter.
11.3.5. Compression

The last important HTTP feature is gzip compression. When you talk about HTTP web services, you're almost alwa
talking about moving XML back and forth over the wire. XML is text, and quite verbose text at that, and text
generally compresses well. When you request a resource over HTTP, you can ask the server that, if it has any new
data to send you, to please send it in compressed format. You include the Accept—encoding: gzip header in

your request, and if the server supports compression, it will send you back gzip—compressed data and mark it with |
Content—-encoding: gzip header.

Python's URL library has no built—in support for gzip compression per se, but you can add arbitrary headers to the
request. And Python comes with a separate gzip module, which has functions you can use to decompress the data
yourself.

Note that our little one-line script to download a syndicated feed did not support any of these HTTP features. Let's
how you can improve it.

11.4. Debugging HTTP web services

First, let's turn on the debugging features of Python's HTTP library and see what's being sent over the wire. This wil
be useful throughout the chapter, as you add more and more features.

Example 11.3. Debugging HTTP

>>> import httplib
>>> httplib. HTTPConnection.debuglevel = 1 1]

Dive Into Python 153

>>> import urllib
>>> feeddata = urllib.urlopen(’http://diveintomark.org/xml/atom.xml").read(
connect: (diveintomark.org, 80)

send: '

GET /xml/atom.xml HTTP/1.0
Host: diveintomark.org
User—agent: Python-urllib/1.15

reply: '

@ 000

HTTP/1.1 200 OK\r\n'

header: Date: Wed, 14 Apr 2004 22:27:30 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Content-Type: application/atom+xml

header: Last-Modified: Wed, 14 Apr 2004 22:14:38 GMT
header: ETag: "e8284-68e0-4de30f80"

@9

header: Accept—-Ranges: bytes
header: Content-Length: 26848
header: Connection: close

urllib relies on another standard Python library, httplib. Normally you don't need to

import httplib directly (urllib does that automatically), but you will here so you can

set the debugging flag on the HTTPConnection class that urllib uses internally to connect

to the HTTP server. This is an incredibly useful technique. Some other Python libraries have
similar debug flags, but there's no particular standard for naming them or turning them on; you
need to read the documentation of each library to see if such a feature is available.

Now that the debugging flag is set, information on the the HTTP request and response is printed
out in real time. The first thing it tells you is that you're connecting to the server
diveintomark.org on port 80, which is the standard port for HTTP.

When you request the Atom feed, urllib sends three lines to the server. The first line

specifies the HTTP verb you're using, and the path of the resource (minus the domain name).
All the requests in this chapter will use GET, but in the next chapter on SOAP, you'll see that it
uses POST for everything. The basic syntax is the same, regardless of the verb.

The second line is the Host header, which specifies the domain name of the service you're
accessing. This is important, because a single HTTP server can host multiple separate domains.
My server currently hosts 12 domains; other servers can host hundreds or even thousands.

The third line is the User—Agent header. What you see here is the generic User—Agent that
the urllib library adds by default. In the next section, you'll see how to customize this to be
more specific.

The server replies with a status code and a bunch of headers (and possibly some data, which got
stored in the feeddata variable). The status code here is 200, meaning "everything's normal,
here's the data you requested". The server also tells you the date it responded to your request,
some information about the server itself, and the content type of the data it's giving you.
Depending on your application, this might be useful, or not. It's certainly reassuring that you
thought you were asking for an Atom feed, and lo and behold, you're getting an Atom feed
(application/atom+xml, which is the registered content type for Atom feeds).

The server tells you when this Atom feed was last modified (in this case, about 13 minutes ago).
You can send this date back to the server the next time you request the same feed, and the
server can do last-modified checking.

The server also tells you that this Atom feed has an ETag hash of

"e8284-68e0-4de30f80". The hash doesn't mean anything by itself; there's nothing you

can do with it, except send it back to the server the next time you request this same feed. Then
the server can use it to tell you if the data has changed or not.

Dive Into Python 154

11.5. Setting the User—Agent

The first step to improving your HTTP web services client is to identify yourself properly with a User—Agent. To
do that, you need to move beyond the basic urllib and dive into urllib2.

Example 11.4. Introducing urllib2

>>> import httplib

>>> httplib. HTTPConnection.debuglevel = 1
>>> import urllib2

>>> request = urllib2.Request(‘http://diveintomark.org/xml/atom.xml")
>>> opener = urllib2.build_opener()

>>> feeddata = opener.open(request).read()
connect: (diveintomark.org, 80)

send: "’

GET /xml/atom.xml HTTP/1.0

Host: diveintomark.org

User—-agent: Python-urllib/2.1

oo® ©

reply: 'HTTP/1.1 200 OK\n\n'

header: Date: Wed, 14 Apr 2004 23:23:12 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Content-Type: application/atom+xml

header: Last-Modified: Wed, 14 Apr 2004 22:14:38 GMT
header: ETag: "e8284-68e0-4de30f80"

header: Accept—-Ranges: bytes

header: Content-Length: 26848

header: Connection: close

O you still have your Python IDE open from the previous section's example, you can skip this, but this turns or

HTTP debugging so you can see what you're actually sending over the wire, and what gets sent back.
2] Fetching an HTTP resource with urllib2 is a three—step process, for good reasons that will become clear

shortly. The first step is to create a Request object, which takes the URL of the resource you'll eventually get

around to retrieving. Note that this step doesn't actually retrieve anything yet.

® The second step is to build a URL opener. This can take any number of handlers, which control how response
are handled. But you can also build an opener without any custom handlers, which is what you're doing here.

You'll see how to define and use custom handlers later in this chapter when you explore redirects.

@ Thefinal step is to tell the opener to open the URL, using the Request object you created. As you can see
from all the debugging information that gets printed, this step actually retrieves the resource and stores the
returned data in feeddata.

Example 11.5. Adding headers with the Request

>>> request (1]

<urllib2.Request instance at 0Ox00250AA8>

>>> request.get_full_url()

http://diveintomark.org/xml/atom.xml

>>> request.add_header('User—-Agent’,
'‘OpenAnything/1.0 +http://diveintopython.org/")

>>> feeddata = opener.open(request).read()

connect: (diveintomark.org, 80)

send: '

GET /xml/atom.xm|l HTTP/1.0

Host: diveintomark.org

User—agent: OpenAnything/1.0 +http://diveintopython.org/ (4]

o0

Dive Into Python 155

reply: 'HTTP/1.1 200 OK\r\n'

header: Date: Wed, 14 Apr 2004 23:45:17 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Content-Type: application/atom+xmi

header: Last-Modified: Wed, 14 Apr 2004 22:14:38 GMT
header: ETag: "e8284-68e0-4de30f80"

header: Accept—-Ranges: bytes

header: Content-Length: 26848

header: Connection: close

Q voure continuing from the previous example; you've already created a Request object with the URL
you want to access.

124 Using the add_header method on the Request object, you can add arbitrary HTTP headers to the
request. The first argument is the header, the second is the value you're providing for that header.
Convention dictates that a User—Agent should be in this specific format: an application name,
followed by a slash, followed by a version number. The rest is free—form, and you'll see a lot of
variations in the wild, but somewhere it should include a URL of your application. The User-Agent
is usually logged by the server along with other details of your request, and including a URL of your
application allows server administrators looking through their access logs to contact you if something
is wrong.

® The opener object you created before can be reused too, and it will retrieve the same feed again, but
with your custom User—Agent header.

® And here's you sending your custom User—Agent, in place of the generic one that Python sends by
default. If you look closely, you'll notice that you defined a User—-Agent header, but you actually
sent a User—agent header. See the difference? urllib2 changed the case so that only the first
letter was capitalized. It doesn't really matter; HTTP specifies that header field names are completely
case-insensitive.

11.6. Handling Last—Modified and ETag

Now that you know how to add custom HTTP headers to your web service requests, let's look at adding support for
Last—-Modified and ETag headers.

These examples show the output with debugging turned off. If you still have it turned on from the previous section,
you can turn it off by setting httplib.HTTPConnection.debuglevel = 0. Or you can just leave debugging
on, if that helps you.

Example 11.6. Testing Last—Modified

>>> import urllib2

>>> request = urllib2.Request(’http://diveintomark.org/xml/atom.xml’)

>>> opener = urllib2.build_opener()

>>> firstdatastream = opener.open(request)

>>> firstdatastream.headers.dict (1]

{'date": 'Thu, 15 Apr 2004 20:42:41 GMT,

'server": 'Apache/2.0.49 (Debian GNU/Linux)',

‘content-type": ‘application/atom+xml’,

'last-modified: 'Thu, 15 Apr 2004 19:45:21 GMT",

‘etag": "'e842a-3e53-55d97640",

‘content-length': '15955',

'accept-ranges": 'bytes’,

‘connection’: ‘close'}

>>> request.add_header('If-Modified-Since’,
firstdatastream.headers.get('Last—Modified"))

>>> seconddatastream = opener.open(request)

o0

Dive Into Python 156

Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\lib\urllib2.py", line 326, in open
' open', req)
File "c:\python23\lib\urllib2.py", line 306, in _call_chain
result = func(*args)
File "c:\python23\lib\urllib2.py", line 901, in http_open
return self.do_open(httplib.HTTP, req)
File "c:\python23\lib\urllib2.py", line 895, in do_open
return self.parent.error(‘http’, req, fp, code, msg, hdrs)
File "c:\python23\lib\urllib2.py", line 352, in error
return self._call_chain(*args)
File "c:\python23\lib\urllib2.py", line 306, in _call_chain
result = func(*args)
File "c:\python23\lib\urllib2.py", line 412, in http_error_default
raise HTTPError(req.get_full_url(), code, msg, hdrs, fp)
urllib2.HTTPError: HTTP Error 304: Not Modified

@ Remember all those HTTP headers you saw printed out when you turned on debugging? This is how you can
get access to them programmatically: firstdatastream.headers is an object that acts like a dictionary
and allows you to get any of the individual headers returned from the HTTP server.

® On the second request, you add the If-Modified-Since header with the last-modified date from the first
request. If the data hasn't changed, the server should return a 304 status code.

® sure enough, the data hasn't changed. You can see from the traceback that urllib2 throws a special
exception, HTTPError, in response to the 304 status code. This is a little unusual, and not entirely helpful.
After all, it's not an error; you specifically asked the server not to send you any data if it hadn't changed, and t
data didn't change, so the server told you it wasn't sending you any data. That's not an error; that's exactly wt
you were hoping for.

urllib2 also raises an HTTPError exception for conditions that you would think of as errors, such as 404 (page

not found). In fact, it will raise HTTPError for any status code other than 200 (OK), 301 (permanent redirect), or

302 (temporary redirect). It would be more helpful for your purposes to capture the status code and simply return it,

without throwing an exception. To do that, you'll need to define a custom URL handler.

Example 11.7. Defining URL handlers

This custom URL handler is part of openanything.py.

class DefaultErrorHandler(urllib2. HTTPDefaultErrorHandler):
def http_error_default(self, req, fp, code, msg, headers):
result = urllib2. HTTPError(
reqg.get_full_url(), code, msg, headers, fp)
result.status = code (3]
return result

©oe

Q urlib2is designed around URL handlers. Each handler is just a class that can define any number of
methods. When something happens —— like an HTTP error, or even a 304 code — urllib2 introspects into
the list of defined handlers for a method that can handle it. You used a similar introspection in Chapter 9, XML
Processing to define handlers for different node types, but urllib2 is more flexible, and introspects over as
many handlers as are defined for the current request.

® urlib2 searches through the defined handlers and calls the http_error_default method when it
encounters a 304 status code from the server. By defining a custom error handler, you can prevent urllib2
from raising an exception. Instead, you create the HTTPError object, but return it instead of raising it.

® Thisis the key part: before returning, you save the status code returned by the HTTP server. This will allow yc
easy access to it from the calling program.

Dive Into Python 157

Example 11.8. Using custom URL handlers

>>> request.headers (1]
{'If-modified—since": 'Thu, 15 Apr 2004 19:45:21 GMT'}

>>> jmport openanything

>>> opener = urllib2.build_opener(

openanything.DefaultErrorHandler()) (2]

>>> seconddatastream = opener.open(request)

>>> seconddatastream.status (3]

304

>>> seconddatastream.read() (4

Q voure continuing the previous example, so the Request object is already set up, and you've already added th
If-Modified—Since header.

® Thisis the key: now that you've defined your custom URL handler, you need to tell urllib2 to use it.
Remember how | said that urllib2 broke up the process of accessing an HTTP resource into three steps, and
for good reason? This is why building the URL opener is its own step, because you can build it with your own
custom URL handlers that override urllib2's default behavior.

® Now you can quietly open the resource, and what you get back is an object that, along with the usual headers
(use seconddatastream.headers.dict to acess them), also contains the HTTP status code. In this
case, as you expected, the status is 304, meaning this data hasn't changed since the last time you asked for i

(4

Note that when the server sends back a 304 status code, it doesn't re-send the data. That's the whole point: 1
save bandwidth by not re-downloading data that hasn't changed. So if you actually want that data, you'll neec
to cache it locally the first time you get it.

Handling ETag works much the same way, but instead of checking for Last—-Modified and sending
If-Modified-Since, you check for ETag and send If-None—Match. Let's start with a fresh IDE session.

Example 11.9. Supporting ETag/If-None—Match

>>> import urllib2, openanything
>>> request = urllib2.Request(’http://diveintomark.org/xml/atom.xml’)
>>> opener = urllib2.build_opener(

openanything.DefaultErrorHandler())

>>> firstdatastream = opener.open(request)
>>> firstdatastream.headers.get('ETag’) (1]
"'e842a-3e53-55d97640™
>>> firstdata = firstdatastream.read()
>>> print firstdata (2]
<?xml version="1.0" encoding="iso—-8859-1"?>
<feed version="0.3"
xmlins="http://purl.org/atom/ns#"
xmins:dc="http://purl.org/dc/elements/1.1/"
xml:lang="en">
<title mode="escaped">dive into mark</title>
<link rel="alternate" type="text/html" href="http://diveintomark.org/"/>
<—-rest of feed omitted for brevity ——>
>>> request.add_header('lf-None—Match’,

firstdatastream.headers.get('ETag")) (3]
>>> seconddatastream = opener.open(request)
>>> seconddatastream.status (4
304
>>> seconddatastream.read() (5]
1

Dive Into Python 158

Using the firstdatastream.headers pseudo-dictionary, you can get the ETag
returned from the server. (What happens if the server didn't send back an ETag? Then this line
would return None.)

OK, you got the data.

Now set up the second call by setting the If-None—Match header to the ETag you got from
the first call.

@ The second call succeeds quietly (without throwing an exception), and once again you see that
the server has sent back a 304 status code. Based on the ETag you sent the second time, it
knows that the data hasn't changed.

15/ Regardless of whether the 304 is triggered by Last—Modified date checking or ETag
hash matching, you'll never get the data along with the 304. That's the whole point.

@0

In these examples, the HTJ?P‘ server has supported both Last-Modified and ETag headers, but not all servers do.
As a web services client, you should be prepared to support both, but you must code defensively in case a server c
supports one or the other, or neither.

11.7. Handling redirects
You can support permanent and temporary redirects using a different kind of custom URL handler.

First, let's see why a redirect handler is necessary in the first place.

Example 11.10. Accessing web services without a redirect handler

>>> import urllib2, httplib

>>> httplib.HTTPConnection.debuglevel = 1 (1]
>>> request = urllib2.Request(
‘http://diveintomark.org/redir/example301.xml") (2]

>>> opener = urllib2.build_opener()
>>> f = opener.open(request)
connect: (diveintomark.org, 80)

send: '

GET /redir/example301.xml HTTP/1.0
Host: diveintomark.org

User—agent: Python-urllib/2.1

reply: 'HTTP/1.1 301 Moved Permanently\r\n' (3]
header: Date: Thu, 15 Apr 2004 22:06:25 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)

header: Location: http://diveintomark.org/xml/atom.xml (4]
header: Content-Length: 338

header: Connection: close

header: Content-Type: text/html; charset=iso—8859-1

connect: (diveintomark.org, 80)

send: '

GET /xml/atom.xml HTTP/1.0 (5]
Host: diveintomark.org

User—agent: Python-urllib/2.1

reply: '"HTTP/1.1 200 OK\r\n'

header: Date: Thu, 15 Apr 2004 22:06:25 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Last-Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a-3e53-55d97640"

header: Accept-Ranges: bytes

header: Content-Length: 15955

header: Connection: close

Dive Into Python 159

header: Content-Type: application/atom+xml
>>> f.url (6]
‘http://diveintomark.org/xml/atom.xml’
>>> f.headers.dict
{'content-length'": '15955',
‘accept-ranges": 'bytes’,
'server': '‘Apache/2.0.49 (Debian GNU/Linux)',
'last-modified": 'Thu, 15 Apr 2004 19:45:21 GMT',
‘connection': ‘close’,
‘etag": "'e842a-3e53-55d97640",
‘date”: 'Thu, 15 Apr 2004 22:06:25 GMT',
‘content-type": 'application/atom+xml'}
>>> f.status
Traceback (most recent call last):
File "<stdin>", line 1, in ?
AttributeError: addinfourl instance has no attribute 'status’

@ 00 o oe

You'll be better able to see what's happening if you turn on debugging.

This is a URL which | have set up to permanently redirect to my Atom feed at
http://diveintomark.org/xml/atom.xml.

Sure enough, when you try to download the data at that address, the server sends back a 301 status code, te
you that the resource has moved permanently.

The server also sends back a Location: header that gives the new address of this data.

urllib2 notices the redirect status code and automatically tries to retrieve the data at the new location
specified in the Location: header.

The object you get back from the opener contains the new permanent address and all the headers returned
from the second request (retrieved from the new permanent address). But the status code is missing, so you
have no way of knowing programmatically whether this redirect was temporary or permanent. And that matter
very much: if it was a temporary redirect, then you should continue to ask for the data at the old location. But |

it was a permanent redirect (as this was), you should ask for the data at the new location from now on.

This is suboptimal, but easy to fix. urllib2 doesn't behave exactly as you want it to when it encounters a 301 or
302, so let's override its behavior. How? With a custom URL handler, just like you did to handle 304 codes.

Example 11.11. Defining the redirect handler

This class is defined in openanything.py.

class SmartRedirectHandler(urllib2.HTTPRedirectHandler): (1]
def http_error_301(self, req, fp, code, msg, headers):
result = urllib2. HTTPRedirectHandler.http_error_301((2]

self, req, fp, code, msg, headers)
result.status = code (3]
return result

def http_error_302(self, req, fp, code, msg, headers): (4
result = urllib2. HTTPRedirectHandler.http_error_302(
self, req, fp, code, msg, headers)
result.status = code
return result

® Redirect behavior is defined in urllib2 in a class called HTTPRedirectHandler. You
don't want to completely override the behavior, you just want to extend it a little, so you'll
subclass HTTPRedirectHandler so you can call the ancestor class to do all the hard work.
(2]

Dive Into Python 160

When it encounters a 301 status code from the server, urllib2 will search through its handlers
and call the http_error_301 method. The first thing ours does is just call the

http_error_301 method in the ancestor, which handles the grunt work of looking for the
Location: header and following the redirect to the new address.

® Here'sthe key: before you return, you store the status code (301), so that the calling program can
access it later.

o Temporary redirects (status code 302) work the same way: override the http_error_302
method, call the ancestor, and save the status code before returning.

So what has this bought us? You can now build a URL opener with the custom redirect handler, and it will still
automatically follow redirects, but now it will also expose the redirect status code.

Example 11.12. Using the redirect handler to detect permanent redirects

>>> request = urllib2.Request('http://diveintomark.org/redir/example301.xml")
>>> import openanything, httplib
>>> httplib.HTTPConnection.debuglevel = 1
>>> opener = urllib2.build_opener(
openanything.SmartRedirectHandler()) 1]
>>> f = opener.open(request)
connect: (diveintomark.org, 80)
send: 'GET /redir/lexample301.xml HTTP/1.0
Host: diveintomark.org
User—agent: Python-urllib/2.1

reply: 'HTTP/1.1 301 Moved Permanently\r\n' (2]
header: Date: Thu, 15 Apr 2004 22:13:21 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Location: http://diveintomark.org/xml/atom.xml
header: Content-Length: 338

header: Connection: close

header: Content-Type: text/html; charset=iso—8859-1
connect: (diveintomark.org, 80)

send: '

GET /xml/atom.xml HTTP/1.0

Host: diveintomark.org

User—agent: Python-urllib/2.1

reply: 'HTTP/1.1 200 OK\r\n'

header: Date: Thu, 15 Apr 2004 22:13:21 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Last-Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a-3e53-55d97640"

header: Accept-Ranges: bytes

header: Content-Length: 15955

header: Connection: close

header: Content-Type: application/atom+xml

>>> f.status (3]
301
>>> f.url

‘http://diveintomark.org/xml/atom.xml’

Q First, build a URL opener with the redirect handler you just defined.

® vYousentoffa request, and you got a 301 status code in response. At this point, the http_error_301
method gets called. You call the ancestor method, which follows the redirect and sends a request at the new
location (http://diveintomark.org/xml/atom.xml).

Dive Into Python 161

® This is the payoff: now, not only do you have access to the new URL, but you have access to the redirect stat
code, so you can tell that this was a permanent redirect. The next time you request this data, you should requ
it from the new location (http://diveintomark.org/xml/atom.xml, as specified in f.url). If you
had stored the location in a configuration file or a database, you need to update that so you don't keep poundi
the server with requests at the old address. It's time to update your address book.

The same redirect handler can also tell you that you shouldn't update your address book.

Example 11.13. Using the redirect handler to detect temporary redirects

>>> request = urllib2.Request(
‘http://diveintomark.org/redir/example302.xml")

>>> f = opener.open(request)

connect: (diveintomark.org, 80)

send: '

GET /redir/example302.xml HTTP/1.0

Host: diveintomark.org

User—agent: Python-urllib/2.1

reply: 'HTTP/1.1 302 Found\r\n'

header: Date: Thu, 15 Apr 2004 22:18:21 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Location: http://diveintomark.org/xml/atom.xml
header: Content-Length: 314

header: Connection: close

header: Content-Type: text/html; charset=iso—-8859-1
connect: (diveintomark.org, 80)

send: '

GET /xml/atom.xml HTTP/1.0

Host: diveintomark.org

User—agent: Python-urllib/2.1

reply: 'HTTP/1.1 200 OK\r\n'

header: Date: Thu, 15 Apr 2004 22:18:21 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Last-Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a-3e53-55d97640"

header: Accept-Ranges: bytes

header: Content-Length: 15955

header: Connection: close

header: Content-Type: application/atom+xml

>>> f.status

302

>>> f.url

http://diveintomark.org/xml/atom.xml

Q@ Thisisa sample URL I've set up that is configured to tell clients to temporarily redirect to

http://diveintomark.org/xml/atom.xml.

® The server sends back a 302 status code, indicating a temporary redirect. The temporary new location of the

data is given in the Location: header.

® urlib2 calls your http_error_302 method, which calls the ancestor method of the same name in
urllib2. HTTPRedirectHandler, which follows the redirect to the new location. Then your
http_error_302 method stores the status code (302) so the calling application can get it later.

® And here you are, having successfully followed the redirect to
http://diveintomark.org/xml/atom.xml. f.status tells you that this was a temporary redirect,
which means that you should continue to request data from the original address
(http://diveintomark.org/redir/fexample302.xml). Maybe it will redirect next time too, but

Dive Into Python

162

maybe not. Maybe it will redirect to a different address. It's not for you to say. The server said this redirect wa:
only temporary, so you should respect that. And now you're exposing enough information that the calling
application can respect that.

11.8. Handling compressed data

The last important HTTP feature you want to support is compression. Many web services have the ability to send di
compressed, which can cut down the amount of data sent over the wire by 60% or more. This is especially true of
XML web services, since XML data compresses very well.

Servers won't give you compressed data unless you tell them you can handle it.

Example 11.14. Telling the server you would like compressed data

>>> import urllib2, httplib

>>> httplib. HTTPConnection.debuglevel = 1

>>> request = urllib2.Request('http://diveintomark.org/xml/atom.xml’)

>>> request.add_header('Accept-encoding’, 'gzip") 1]
>>> opener = urllib2.build_opener()

>>> f = opener.open(request)

connect: (diveintomark.org, 80)

send: "’

GET /xml/atom.xml HTTP/1.0

Host: diveintomark.org

User—agent: Python-urllib/2.1

Accept-encoding: gzip (2]

reply: 'HTTP/1.1 200 OK\n\n'

header: Date: Thu, 15 Apr 2004 22:24:39 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Last-Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a-3e53-55d97640"

header: Accept—Ranges: bytes

header: Vary: Accept—-Encoding

header: Content-Encoding: gzip

header: Content-Length: 6289

header: Connection: close

header: Content-Type: application/atom+xml

oo

Q Thisis the key: once you've created your Request object, add an Accept—-encoding header to tell the
server you can accept gzip—encoded data. gzip is the name of the compression algorithm you're using. In
theory there could be other compression algorithms, but gzip is the compression algorithm used by 99% of
web servers.

There's your header going across the wire.

And here's what the server sends back: the Content—Encoding: gzip header means that the data you're
about to receive has been gzip—compressed.

Q@ The Content-Length header is the length of the compressed data, not the uncompressed data. As you'll see
in a minute, the actual length of the uncompressed data was 15955, so gzip compression cut your bandwidth
over 60%!

@0

Example 11.15. Decompressing the data

>>> compresseddata = f.read() (1]
>>> |len(compresseddata)

6289

>>> import StringlO

Dive Into Python 163

>>> compressedstream = StringlO.StringlO(compresseddata)
>>> import gzip

>>> gzipper = gzip.GzipFile(fileobj=compressedstream)

>>> data = gzipper.read()

>>> print data

e0® ©

<?xml version="1.0" encoding="iso—8859-1"?>

<feed version="0.3"
xmins="http://purl.org/atom/ns#"
xmins:dc="http://purl.org/dc/elements/1.1/"
xml:lang="en">
<title mode="escaped">dive into mark</title>
<link rel="alternate" type="text/html" href="http://diveintomark.org/"/>
<—-rest of feed omitted for brevity ——>

>>> |en(data)

15955

5]

Continuing from the previous example, f is the file-like object returned from the URL opener.
Using its read() method would ordinarily get you the uncompressed data, but since this data
has been gzip—compressed, this is just the first step towards getting the data you really want.

OK, this step is a little bit of messy workaround. Python has a gzip module, which reads (and
actually writes) gzip—compressed files on disk. But you don't have a file on disk, you have a
gzip—compressed buffer in memory, and you don't want to write out a temporary file just so you
can uncompress it. So what you're going to do is create a file—like object out of the in—-memory
data (compresseddata), using the StringlO module. You first saw the StringlO

module in the previous chapter, but now you've found another use for it.

Now you can create an instance of GzipFile, and tell it that its "file" is the file—like object
compressedstream.

This is the line that does all the actual work: "reading" from GzipFile will decompress the

data. Strange? Yes, but it makes sense in a twisted kind of way. gzipper is a file-like object
which represents a gzip—compressed file. That “file" is not a real file on disk, though; gzipper
is really just "reading"” from the file—like object you created with StringlO to wrap the
compressed data, which is only in memory in the variable compresseddata. And where did
that compressed data come from? You originally downloaded it from a remote HTTP server by
"reading"” from the file—like object you built with urllib2.build_opener. And amazingly,

this all just works. Every step in the chain has no idea that the previous step is faking it.

Look ma, real data. (15955 bytes of it, in fact.)

"But wait!" | hear you cry. "This could be even easier!" | know what you're thinking. You're thinking that
opener.open returns a file-like object, so why not cut out the StringlO middleman and just pass f directly to
GzipFile? OK, maybe you weren't thinking that, but don't worry about it, because it doesn't work.

Example 11.16. Decompressing the data directly from the server

>>> f = opener.open(request) (1]
>>> f.headers.get('Content-Encoding’) (2]
ngIpl

>>> data = gzip.GzipFile(fileobj=f).read() (3]

Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\lib\gzip.py", line 217, in read
self._read(readsize)
File "c:\python23\lib\gzip.py", line 252, in _read
pos = self.fileobj.tell() # Save current position
AttributeError: addinfourl instance has no attribute 'tell’

Dive Into Python

164

Continuing from the previous example, you already have a Request object set up with an
Accept—encoding: gzip header.

Simply opening the request will get you the headers (though not download any data yet). As you can see from
the returned Content—Encoding header, this data has been sent gzip—compressed.

Since opener.open returns a file—like object, and you know from the headers that when you read it, you're
going to get gzip—compressed data, why not simply pass that file-like object directly to GzipFile? As you
"read" from the GzipFile instance, it will "read" compressed data from the remote HTTP server and
decompress it on the fly. It's a good idea, but unfortunately it doesn't work. Because of the way gzip
compression works, GzipFile needs to save its position and move forwards and backwards through the
compressed file. This doesn't work when the "file" is a stream of bytes coming from a remote server; all you
can do with it is retrieve bytes one at a time, not move back and forth through the data stream. So the inelega
hack of using StringlO is the best solution: download the compressed data, create a file—like object out of it
with StringlO, and then decompress the data from that.

11.9. Putting it all together

You've seen all the pieces for building an intelligent HTTP web services client. Now let's see how they all fit togethe

Example 11.17. The openanything function

This function is defined in openanything.py.

def openAnything(source, etag=None, lastmodified=None, agent=USER_AGENT):
non—-HTTP code omitted for brevity

if urlparse.urlparse(source)[0] == 'http":
open URL with urllib2
request = urllib2.Request(source)
request.add_header('User-Agent’, agent)
if etag:

®

@000

7]

if lastmodified:

request.add_header('Accept—encoding’, 'gzip')
opener = urllib2.build_opener(SmartRedirectHandler(), DefaultErrorHandler())
return opener.open(request)

request.add_header('lf-None—-Match', etag)

request.add_header('If-Modified—Since', lastmodified)

Q00 @ ©

urlparse is a handy utility module for, you guessed it, parsing URLSs. It's primary function, also called

urlparse, takes a URL and splits it into a tuple of (scheme, domain, path, params, query string parameters,
and fragment identifier). Of these, the only thing you care about is the scheme, to make sure that you're dealil
with an HTTP URL (which urllib2 can handle).

You identify yourself to the HTTP server with the User—Agent passed in by the calling function. If no
User—Agent was specified, you use a default one defined earlier in the openanything.py module. You
never use the default one defined by urllib2.

If an ETag hash was given, send it in the If-None—Match header.
If a last—-modified date was given, send it in the If-Modified—Since header.
Tell the server you would like compressed data if possible.

Build a URL opener that uses both of the custom URL handlers: SmartRedirectHandler for handling
301 and 302 redirects, and DefaultErrorHandler for handling 304, 404, and other error conditions
gracefully.

That's it! Open the URL and return a file—like object to the caller.

Example 11.18. The fetch function

Dive Into Python 165

This function is defined in openanything.py.

def fetch(source, etag=None, last_modified=None, agent=USER_AGENT):
"'Fetch data and metadata from a URL, file, stream, or string"
result = {}

f = openAnything(source, etag, last_modified, agent) (1]
result['data’] = f.read() (2]
if hasattr(f, 'headers'):
save ETag, if the server sent one
result['etag'] = f.headers.get('ETag'") (3]
save Last—Modified header, if the server sent one
result['lastmodified’] = f.headers.get('Last—Modified") (4
if f.headers.get(‘content-encoding’, ") == 'gzip" (5]

data came back gzip—compressed, decompress it
result['data’] = gzip.GzipFile(fileobj=StringlO(result['data’]])).read()
if hasattr(f, 'url’): (6
result['url] = f.url
result['status’] = 200

if hasattr(f, 'status’): 7]
result['status’] = f.status
f.close()

return result

Q9 Fist, you call the openAnything function with a URL, ETag hash, Last-Modified date, and
User—Agent.

Read the actual data returned from the server. This may be compressed; if so, you'll decompress it later.

Save the ETag hash returned from the server, so the calling application can pass it back to you next time, anc
you can pass it on to openAnything, which can stick it in the If-None—Match header and send it to the
remote server.

Save the Last-Modified date too.
If the server says that it sent compressed data, decompress it.

If you got a URL back from the server, save it, and assume that the status code is 200 until you find out
otherwise.

®@0Q

@00

If one of the custom URL handlers captured a status code, then save that too.

Example 11.19. Using openanything.py

>>> import openanything
>>> useragent = 'MyHTTPWebServicesApp/1.0'
>>> url = 'http://diveintopython.org/redir/example301.xml'
>>> params = openanything.fetch(url, agent=useragent)
>>> params
{'url": "http://diveintomark.org/xml/atom.xml’,
'lastmodified": 'Thu, 15 Apr 2004 19:45:21 GMT,
‘etag": "'e842a-3e53-55d97640",
'status': 301,
'data’: '<?xml version="1.0" encoding="iso—8859-1"?>
<feed version="0.3"
<—-rest of data omitted for brevity ——>"}
>>> if params|['status'] == 301: (3]
url = paramsJ['url']
>>> newparams = openanything.fetch(
url, params['etag'], params['lastmodified'], useragent) 4]
>>> newparams
{'url": "http://diveintomark.org/xml/atom.xml’,
'lastmodified": None,
‘etag": ""'e842a-3e53-55d97640™,
'status’: 304,

ol

Dive Into Python 166

‘data’: "} (5]

(2]

(5]

The very first time you fetch a resource, you don't have an ETag hash or Last—-Modified date, so you'll
leave those out. (They're optional parameters.)

What you get back is a dictionary of several useful headers, the HTTP status code, and the actual data return
from the server. openanything handles the gzip compression internally; you don't care about that at this
level.

If you ever get a 301 status code, that's a permanent redirect, and you need to update your URL to the new
address.

The second time you fetch the same resource, you have all sorts of information to pass back: a (possibly
updated) URL, the ETag from the last time, the Last—Modified date from the last time, and of course your
User—Agent.

What you get back is again a dictionary, but the data hasn't changed, so all you got was a 304 status code an
no data.

11.10. Summary

The openanything.py and its functions should now make perfect sense.

There are 5 important features of HTTP web services that every client should support:

« Identifying your application by setting a proper User—Agent.

» Handling permanent redirects properly.

» Supporting Last—-Modified date checking to avoid re—downloading data that hasn't changed.
» Supporting ETag hashes to avoid re-downloading data that hasn't changed.

 Supporting gzip compression to reduce bandwidth even when data has changed.

Dive Into Python 167

Chapter 12. SOAP Web Services

Chapter 11 focused on document-oriented web services over HTTP. The "input parameter" was the URL, and the
"return value" was an actual XML document which it was your responsibility to parse.

This chapter will focus on SOAP web services, which take a more structured approach. Rather than dealing with
HTTP requests and XML documents directly, SOAP allows you to simulate calling functions that return native data
types. As you will see, the illusion is almost perfect; you can "call" a function through a SOAP library, with the
standard Python calling syntax, and the function appears to return Python objects and values. But under the covers
SOAP library has actually performed a complex transaction involving multiple XML documents and a remote server

SOAP is a complex specification, and it is somewhat misleading to say that SOAP is all about calling remote
functions. Some people would pipe up to add that SOAP allows for one—-way asynchronous message passing, and
document-oriented web services. And those people would be correct; SOAP can be used that way, and in many
different ways. But this chapter will focus on so—called "RPC-style” SOAP —- calling a remote function and getting
results back.

12.1. Diving In

You use Google, right? It's a popular search engine. Have you ever wished you could programmatically access Go
search results? Now you can. Here is a program to search Google from Python.

Example 12.1. search.py

from SOAPpy import WSDL

you'll need to configure these two values;

see http://www.google.com/apis/

WSDLFILE = '/path/to/copy/of/GoogleSearch.wsdl'
APIKEY ="YOUR_GOOGLE_API_KEY'

_server = WSDL.Proxy(WSDLFILE)
def search(q):
""" Search Google and return list of {title, link, description}""
results = _server.doGoogleSearch(
APIKEY, q, 0, 10, False, ", False, "™, "utf-8", "utf-8")
return [{"title": r.title.encode("utf-8"),
"link": r.URL.encode("utf-8"),
"description": r.snippet.encode("utf-8")}
for r in results.resultElements]

if _name__ =='_ main__"
import sys
for r in search(sys.argv[1])[:5]:
print r['title]
print r['link’]
print r['description’]
print

You can import this as a module and use it from a larger program, or you can run the script from the command line.
On the command line, you give the search query as a command-line argument, and it prints out the URL, title, and
description of the top five Google search results.

Here is the sample output for a search for the word "python".

Dive Into Python 168

Example 12.2. Sample Usage of search.py

C:\diveintopython\common\py> python search.py "python”
Python Programming Language

http://www.python.org/

Home page for Python, an interpreted, interactive, object-oriented,
extensible
 programming language. ... Python

is OSI Certified Open Source: OSI Certified.

Python Documentation Index

http://www.python.org/doc/

... New-style classes (aka descrintro). Regular expressions. Database
API. Email Us.
 docs@python.org. (c) 2004. Python
Software Foundation. Python Documentation. ...

Download Python Software

http://www.python.org/download/

Download Standard Python Software. Python 2.3.3 is the
current production
 version of Python. ...
Python is OSI Certified Open Source:

Pythonline
http://www.pythonline.com/

Dive Into Python

http://diveintopython.org/

Dive Into Python. Python from novice to pro. Find:
... It is also available in multiple
 languages. Read

Dive Into Python. This book is still being written. ...

Further Reading on SOAP

* http://lwww.xmethods.net/ is a repository of public access SOAP web services.

» The SOAP specification (http://www.w3.0rg/TR/soap/) is surprisingly readable, if you like that sort of thing.

12.2. Installing the SOAP Libraries

Unlike the other code in this book, this chapter relies on libraries that do not come pre—installed with Python.

Before you can dive into SOAP web services, you'll need to install three libraries: PyXML, fpconst, and SOAPpy.

12.2.1. Installing PyXML

The first library you need is PyXML, an advanced set of XML libraries that provide more functionality than the

built=in XML libraries we studied in Chapter 9.
Procedure 12.1.

Here is the procedure for installing PyXML:

1. Go to http://pyxml.sourceforge.net/, click Downloads, and download the latest version for your operating

system.

2.If you are using Windows, there are several choices. Make sure to download the version of PyXML that

matches the version of Python you are using.

3. Double—click the installer. If you download PyXML 0.8.3 for Windows and Python 2.3, the installer program

Dive Into Python

169

http://www.xmethods.net/
http://www.w3.org/TR/soap/
http://pyxml.sourceforge.net/

will be PyXML-0.8.3.win32-py2.3.exe.

4. Step through the installer program.

5. After the installation is complete, close the installer. There will not be any visible indication of success (no
programs installed on the Start Menu or shortcuts installed on the desktop). PyXML is simply a collection of
XML libraries used by other programs.

To verify that you installed PyXML correctly, run your Python IDE and check the version of the XML libraries you
have installed, as shown here.

Example 12.3. Verifying PyXML Installation

>>> import xml
>>> xml.__version__
'0.8.3'

This version number should match the version number of the PyXML installer program you downloaded and ran.
12.2.2. Installing fpconst

The second library you need is fpconst, a set of constants and functions for working with IEEE754 double—precisior
special values. This provides support for the special values Not—-a—Number (NaN), Positive Infinity (Inf), and
Negative Infinity (=Inf), which are part of the SOAP datatype specification.

Procedure 12.2.
Here is the procedure for installing fpconst:

1. Download the latest version of fpconst from
http://lwww.analytics.washington.edu/statcomp/projects/rzope/fpconst/.

2. There are two downloads available, one in .tar.gz format, the other in .zip format. If you are using
Windows, download the .zip file; otherwise, download the .tar.gz file.

3. Decompress the downloaded file. On Windows XP, you can right—click on the file and choose Extract All; on
earlier versions of Windows, you will need a third—party program such as WinZip. On Mac OS X, you can
double—click the compressed file to decompress it with Stuffit Expander.

4. 0Open a command prompt and navigate to the directory where you decompressed the fpconst files.

5. Typepython setup.py install to run the installation program.

To verify that you installed fpconst correctly, run your Python IDE and check the version number.

Example 12.4. Verifying fpconst Installation

>>> import fpconst
>>> fpconst.__version__
'0.6.0'

This version number should match the version number of the fpconst archive you downloaded and installed.

12.2.3. Installing SOAPpy

The third and final requirement is the SOAP library itself: SOAPpy.

Dive Into Python 170

http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/

Procedure 12.3.
Here is the procedure for installing SOAPpy:
1. Go to http://pywebsvcs.sourceforge.net/ and select Latest Official Release under the SOAPpy section.
2. There are two downloads available. If you are using Windows, download the .zip file; otherwise, download
the .tar.gz file.
3. Decompress the downloaded file, just as you did with fpconst.
4. 0Open a command prompt and navigate to the directory where you decompressed the SOAPpy files.
5. Typepython setup.py install to run the installation program.

To verify that you installed SOAPpy correctly, run your Python IDE and check the version number.

Example 12.5. Verifying SOAPpy Installation

>>> import SOAPpy
>>> SOAPpy.__version__
'0.11.4

This version number should match the version number of the SOAPpy archive you downloaded and installed.

12.3. First Steps with SOAP

The heart of SOAP is the ability to call remote functions. There are a number of public access SOAP servers that
provide simple functions for demonstration purposes.

The most popular public access SOAP server is http://www.xmethods.net/. This example uses a demonstration
function that takes a United States zip code and returns the current temperature in that region.

Example 12.6. Getting the Current Temperature

>>> from SOAPpy import SOAPProxy 1]
>>> url = 'http://services.xmethods.net:80/soap/servlet/rpcrouter'
>>> namespace = 'urn:xmethods—-Temperature'

>>> server = SOAPProxy(url, namespace) (3]
>>> server.getTemp('27502") (4]
80.0

® vYou access the remote SOAP server through a proxy class, SOAPProxy. The proxy handles all the internals «
SOAP for you, including creating the XML request document out of the function name and argument list,
sending the request over HTTP to the remote SOAP server, parsing the XML response document, and creatir
native Python values to return. You'll see what these XML documents look like in the next section.

2] Every SOAP service has a URL which handles all the requests. The same URL is used for all function calls.
This particular service only has a single function, but later in this chapter you'll see examples of the Google
API, which has several functions. The service URL is shared by all functions.Each SOAP service also has a
namespace, which is defined by the server and is completely arbitrary. It's simply part of the configuration
required to call SOAP methods. It allows the server to share a single service URL and route requests betweel
several unrelated services. It's like dividing Python modules into packages.

® voure creating the SOAPProxy with the service URL and the service namespace. This doesn't make any
connection to the SOAP server; it simply creates a local Python object.

Dive Into Python 171

http://pywebsvcs.sourceforge.net/
http://www.xmethods.net/

@ Now with everything configured properly, you can actually call remote SOAP methods as if they were local
functions. You pass arguments just like a normal function, and you get a return value just like a normal
function. But under the covers, there's a heck of a lot going on.

Let's peek under those covers.

12.4. Debugging SOAP Web Services

The SOAP libraries provide an easy way to see what's going on behind the scenes.

Turning on debugging is a simple matter of setting two flags in the SOAPProxy's configuration.

Example 12.7. Debugging SOAP Web Services

>>> from SOAPpy import SOAPProxy
>>> url = 'http://services.xmethods.net:80/soap/servlet/rpcrouter'
>>> n = 'urn:xmethods-Temperature'

>>> server = SOAPProxy(url, namespace=n) 1]
>>> server.config.dumpSOAPOuUt = 1 (2]
>>> server.config.dumpSOAPIn = 1

>>> temperature = server.getTemp('27502") (3]

*** Qutgoing SOAP

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmins:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmins:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsd="http://www.w3.0rg/1999/XMLSchema">

<SOAP-ENV:Body>

<nsl:getTemp xmlIns:ns1="urn:xmethods—-Temperature" SOAP-ENC:root="1">

<v1 xsi:type="xsd:string">27502</v1>

</nsl:getTemp>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

*** Incoming SOAP

<?xml version="1.0" encoding="UTF-8'?>

<SOAP-ENV:Envelope xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema">

<SOAP-ENV:Body>

<nsl:getTempResponse xmins:ns1="urn:xmethods—-Temperature"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:float">80.0</return>

</nsl:getTempResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

>>> temperature
80.0

(1] First, create the SOAPProxy like normal, with the service URL and the namespace.

® Ssecond, turn on debugging by setting server.config.dumpSOAPIn and
server.config.dumpSOAPOuLt.

® Third, call the remote SOAP method as usual. The SOAP library will print out both the outgoing XML request

Dive Into Python 172

document, and the incoming XML response document. This is all the hard work that SOAPProxy is doing for
you. Intimidating, isn't it? Let's break it down.
Most of the XML request document that gets sent to the server is just boilerplate. Ignore all the namespace
declarations; they're going to be the same (or similar) for all SOAP calls. The heart of the "function call" is this
fragment within the <Body> element:

<nsl:getTemp
xmins:ns1="urn:xmethods—Temperature"
SOAP-ENC:root="1">

<v1 xsi:type="xsd:string">27502</v1> ©

</nsl:getTemp>

oe

@ The element name is the function name, getTemp. SOAPProxy uses getattr as a dispatcher. Instead of
calling separate local methods based on the method name, it actually uses the method name to construct the
XML request document.

® The function's XML element is contained in a specific namespace, which is the namespace you specified whe
you created the SOAPProxy object. Don't worry about the SOAP-ENC:root; that's boilerplate too.

® The arguments of the function also got translated into XML. SOAPProxy introspects each argument to
determine its datatype (in this case it's a string). The argument datatype goes into the xsi:type attribute,
followed by the actual string value.

The XML return document is equally easy to understand, once you know what to ignore. Focus on this fragment

within the <Body>:

<nsl:getTempResponse (1]
xmins:ns1="urn:xmethods—-Temperature" (2]
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:float">80.0</return> (3]

</nsl:getTempResponse>

Q@ The server wraps the function return value within a <getTempResponse> element. By convention, this
wrapper element is the name of the function, plus Response. But it could really be almost anything; the
important thing that SOAPProxy notices is not the element name, but the namespace.

® The server returns the response in the same namespace we used in the request, the same namespace we
specified when we first create the SOAPProxy. Later in this chapter we'll see what happens if you forget to
specify the namespace when creating the SOAPProxy.

® The return value is specified, along with its datatype (it's a float). SOAPProxy uses this explicit datatype to
create a Python object of the correct native datatype and return it.

12.5. Introducing WSDL

The SOAPProxy class proxies local method calls and transparently turns then into invocations of remote SOAP
methods. As you've seen, this is a lot of work, and SOAPProxy does it quickly and transparently. What it doesn't do
is provide any means of method introspection.

Consider this: the previous two sections showed an example of calling a simple remote SOAP method with one
argument and one return value, both of simple data types. This required knowing, and keeping track of, the service
URL, the service hamespace, the function name, the number of arguments, and the datatype of each argument. If ¢
of these is missing or wrong, the whole thing falls apart.

That shouldn't come as a big surprise. If | wanted to call a local function, | would need to know what package or
module it was in (the equivalent of service URL and namespace). | would need to know the correct function name a
the correct number of arguments. Python deftly handles datatyping without explicit types, but | would still need to
know how many argument to pass, and how many return values to expect.

Dive Into Python 173

The big difference is introspection. As you saw in Chapter 4, Python excels at letting you discover things about
modules and functions at runtime. You can list the available functions within a module, and with a little work, drill
down to individual function declarations and arguments.

WSDL lets you do that with SOAP web services. WSDL stands for "Web Services Description Language". Although
designed to be flexible enough to describe many types of web services, it is most often used to describe SOAP wel
services.

A WSDL file is just that: a file. More specifically, it's an XML file. It usually lives on the same server you use to
access the SOAP web services it describes, although there's nothing special about it. Later in this chapter, we'll
download the WSDL file for the Google API and use it locally. That doesn't mean we're calling Google locally; the
WSDL file still describes the remote functions sitting on Google's server.

A WSDL file contains a description of everything involved in calling a SOAP web service:

* The service URL and namespace

» The type of web service (probably function calls using SOAP, although as | mentioned, WSDL is flexible
enough to describe a wide variety of web services)

* The list of available functions

« The arguments for each function

* The datatype of each argument

* The return values of each function, and the datatype of each return value

In other words, a WSDL file tells you everything you need to know to be able to call a SOAP web service.

12.6. Introspecting SOAP Web Services with WSDL

Like many things in the web services arena, WSDL has a long and checkered history, full of political strife and
intrigue. | will skip over this history entirely, since it bores me to tears. There were other standards that tried to do
similar things, but WSDL won, so let's learn how to use it.

The most fundamental thing that WSDL allows you to do is discover the available methods offered by a SOAP serv

Example 12.8. Discovering The Available Methods

>>> from SOAPpy import WSDL (1]

>>> wsdlFile = 'http://www.xmethods.net/sd/2001/TemperatureService.wsdl’)
>>> server = WSDL.Proxy(wsdlIFile)

>>> server.methods.keys() (3]

[u'getTemp']

o SOAPpy includes a WSDL parser. At the time of this writing, it was labeled as being in the early stages of
development, but | had no problem parsing any of the WSDL files | tried.

® 1o use a WSDL file, you again use a proxy class, WSDL.Proxy, which takes a single argument: the WSDL
file. Note that in this case you are passing in the URL of a WSDL file stored on the remote server, but the pro:
class works just as well with a local copy of the WSDL file. The act of creating the WSDL proxy will download
the WSDL file and parse it, so it there are any errors in the WSDL file (or it can't be fetched due to networking
problems), you'll know about it immediately.

® ThewsDL proxy class exposes the available functions as a Python dictionary, server.methods. So getting
the list of available methods is as simple as calling the dictionary method keys().

Dive Into Python 174

Okay, so you know that this SOAP server offers a single method: getTemp. But how do you call it? The WSDL
proxy object can tell you that too.

Example 12.9. Discovering A Method's Arguments

>>> callinfo = server.methods['getTemp'] (1]

>>> callinfo.inparams (2]
[<SOAPpy.wstools.WSDLTools.Parameterinfo instance at 0OXOOCF3ADO0>]
>>> calllnfo.inparams[0].name (3]

u'zipcode'

>>> calllnfo.inparams[0].type 4]

(u'http://mvww.w3.0rg/2001/XMLSchema’, u'string’)

©® The server.methods dictionary is filled with a SOAPpy-specific structure called Callinfo. A
Callinfo object contains information about one specific function, including the function arguments.

® The function arguments are stored in callinfo.inparams, which is a Python list of Parameterinfo
objects that hold information about each parameter.

® Each Parameterinfo object contains a name attribute, which is the argument name. You are not required to
know the argument name to call the function through SOAP, but SOAP does support calling functions with
named arguments (just like Python), and WSDL.Proxy will correctly handle mapping named arguments to the
remote function if you choose to use them.

@ Each parameter is also explicitly typed, using datatypes defined in XML Schema. You saw this in the wire trac
in the previous section; the XML Schema namespace was part of the "boilerplate” | told you to ignore. For our
purposes here, you may continue to ignore it. The zipcode parameter is a string, and if you pass in a Python
string to the WSDL.Proxy object, it will map it correctly and send it to the server.

WSDL also lets you introspect into a function's return values.

Example 12.10. Discovering A Method's Return Values

>>> calllnfo.outparams (1]
[<SOAPpy.wstools.WSDLTools.Parameterinfo instance at OXOOCF3AF8>]
>>> calllnfo.outparams[0].name (2]

u'return’

>>> callinfo.outparams[0].type

(u'http://www.w3.0rg/2001/XMLSchema’, u'float')

Q The adjunct to callinfo.inparams for function arguments is callinfo.outparams for return value.
It is also a list, because functions called through SOAP can return multiple values, just like Python functions.

® Each Parameterinfo object contains name and type. This function returns a single value, named
return, which is a float.
Let's put it all together, and call a SOAP web service through a WSDL proxy.

Example 12.11. Calling A Web Service Through A WSDL Proxy

>>> from SOAPpy import WSDL
>>> wsdlFile = 'http://www.xmethods.net/sd/2001/TemperatureService.wsdl')
>>> server = WSDL.Proxy(wsdlIFile)

>>> server.getTemp('90210') (2]
66.0
>>> server.soapproxy.config.dumpSOAPOut = 1 (3]

>>> server.soapproxy.config.dumpSOAPIn = 1
>>> temperature = server.getTemp('90210')

Dive Into Python 175

*** Qutgoing SOAP

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmins:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmins:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmins:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsd="http://www.w3.0rg/1999/XMLSchema">

<SOAP-ENV:Body>

<nsl:getTemp xmlIns:ns1="urn:xmethods-Temperature" SOAP-ENC:root="1">

<vl xsi:type="xsd:string">90210</v1>

</nsl:getTemp>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

*** Incoming SOAP

<?xml version='1.0" encoding='"UTF-8'?>

<SOAP-ENV:Envelope xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<SOAP-ENV:Body>

<nsl:getTempResponse xmins:ns1="urn:xmethods—-Temperature"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:float">66.0</return>

</nsl:getTempResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

>>> temperature
66.0

Q@ The configuration is simpler than calling the SOAP service directly, since the WSDL file contains the both
service URL and namespace you need to call the service. Creating the WSDL.Proxy object downloads the
WSDL file, parses it, and configures a SOAPProxy object that it uses to call the actual SOAP web service.

® Once the WSDL.Proxy object is created, you can call a function as easily as you did with the SOAPProxy
object. This is not surprising; the WSDL.Proxy is just a wrapper around the SOAPProxy with some
introspection methods added, so the syntax for calling functions is the same.

® You can access the WSDL.Proxy's SOAPProxy with server.soapproxy. This is useful to turning on
debugging, so that when you can call functions through the WSDL proxy, its SOAPProxy will dump the
outgoing and incoming XML documents that are going over the wire.

12.7. Searching Google

Let's finally turn to the sample code that you saw that the beginning of this chapter, which does something more ust
and exciting than get the current temperature.

Google provides a SOAP API for programmatically accessing Google search results. To use it, you will need to sigr
up for Google Web Services.

Procedure 12.4. Signing Up for Google Web Services

1. Go to http://www.google.com/apis/ and create a Google account. This requires only an email address. After
you sign up you will receive your Google API license key by email. You will need this key to pass as a
parameter whenever you call Google's search functions.

2. Also on http://www.google.com/apis/, download the Google Web APIs developer kit. This includes some
sample code in several programming languages (but not Python), and more importantly, it includes the WSI

Dive Into Python 176

http://www.google.com/apis/
http://www.google.com/apis/

file.
3. Decompress the developer kit file and find GoogleSearch.wsdl. Copy this file to some permanent
location on your local drive. You will need it later in this chapter.

Once you have your developer key and your Google WSDL file in a known place, you can start poking around with
Google Web Services.

Example 12.12. Introspecting Google Web Services

>>> from SOAPpy import WSDL

>>> server = WSDL.Proxy('/path/to/your/GoogleSearch.wsdl')

>>> server.methods.keys()

[u'doGoogleSearch’, u'doGetCachedPage’, u'doSpellingSuggestion’]

>>> calllnfo = server.methods['doGoogleSearch']

>>> for arg in calllnfo.inparams: (3]
print arg.name.ljust(15), arg.type

key (u'http://www.w3.0rg/2001/XMLSchema’, u'string’)

q (u'http://wvww.w3.0rg/2001/XMLSchema’, u'string')

start (u'http://www.w3.0rg/2001/XMLSchema’, u'int’)

maxResults (u'http://www.w3.0rg/2001/XMLSchema’, u'int’)

filter (u'http://www.w3.0rg/2001/XMLSchema’, u'’boolean’)

restrict (u'http://www.w3.0rg/2001/XMLSchema’, u'string’)

safeSearch (u'http://www.w3.0rg/2001/XMLSchema’, u'boolean’)

®oe

Ir (u'http://www.w3.0rg/2001/XMLSchema’, u'string’)
ie (u'http://mvww.w3.0rg/2001/XMLSchema’, u'string’)
oe (u'http://www.w3.0rg/2001/XMLSchema’, u'string’)

o Getting started with Google web services is easy: just create a WSDL.Proxy object and point it
at your local copy of Google's WSDL file.

(2 According to the WSDL file, Google offers three functions: doGoogleSearch,
doGetCachedPage, and doSpellingSuggestion. These do exactly what they sound
like: perform a Google search and return the results programmatically, get access to the cached
version of a page from the last time Google saw it, and offer spelling suggestions for commonly
misspelled search words.

® The doGoogleSearch function takes a number of parameters of various types. Note that
while the WSDL file can tell you what the arguments are called and what datatype they are, it
can't tell you what they mean or how to use them. It could theoretically tell you the acceptable
range of values for each parameter, if only specific values were allowed, but Google's WSDL
file is not that detailed. WSDL.Proxy can't work magic; it can only give you the information
provided in the WSDL file.

Here is a brief synopsis of all the parameters to the doGoogleSearch function:

» key — Your Google API key, which you received when you signed up for Google web services.

* g — The search word or phrase you're looking for. The syntax is exactly the same as Google's web form, so
you know any advanced search syntax or tricks, they all work here as well.

* start — The index of the result to start on. Like the interactive web version of Google, this function returns
10 results at a time. If you wanted to get the second "page" of results, you would set start to 10.

» maxResults — The number of results to return. Currently capped at 10, although you can specify fewer if
you are only interested in a few results and want to save a little bandwidth.

« filter — If True, Google will filter out duplicate pages from the results.

« restrict — Set this to country plus a country code to get results only from a particular country.
Example: countryUK to search pages in the United Kingdom. You can also specify linux, mac, or bsd to
search a Google-defined set of technical sites, or unclesam to search sites about the United States

Dive Into Python 177

government.
» safeSearch - If True, Google will filter out porn sites.
« Ir ("language restrict") — Set this to a language code to get results only in a particular language.
« ie and oe ("input encoding" and "output encoding") — Deprecated, both must be utf-8.

Example 12.13. Searching Google

>>> from SOAPpy import WSDL

>>> server = WSDL.Proxy('/path/to/your/GoogleSearch.wsdl')
>>> key = 'YOUR_GOOGLE_API_KEY'

>>> results = server.doGoogleSearch(key, 'mark’, 0, 10, False, ",

False, ", "utf-8", "utf-8") (1]
>>> len(results.resultElements) (2]
10
>>> results.resultElements[0].URL (3]

'http://diveintomark.org/'
>>> results.resultElements[0].title
‘dive into mark'

QO After setting up the WSDL.Proxy object, you can call server.doGoogleSearch with all ten parameters.
Remember to use your own Google API key that you received when you signed up for Google web services.

® There's a lot of information returned, but let's look at the actual search results first. They're stored in
results.resultElements, and you can access them just like a normal Python list.

® Each element in the resultElements is an object that has a URL, title, snippet, and other useful
attributes. At this point you can use normal Python introspection techniques like
dir(results.resultElements[0]) to see the available attributes. Or you can introspect through the
WSDL proxy object and look through the function's outparams. Each technique will give you the same
information.
The results object contains more than the actual search results. It also contains information about the search itself,
such as how long it took and how many results were found (even though only 10 were returned). The Google web
interface shows this information, and you can access it programmatically too.

Example 12.14. Accessing Secondary Information From Google

>>> results.searchTime (1]
0.224919
>>> results.estimatedTotalResultsCount (2]
29800000
>>> results.directoryCategories (3]

[<SOAPpy.Types.structType item at 14367400>:

{'fullViewableName":
"Top/Arts/Literature/World_Literature/American/19th_Century/Twain,_Mark’,
'specialEncoding’: "}]

>>> results.directoryCategories[0].fullViewableName

"Top/Arts/Literature/World_Literature/American/19th_Century/Twain, _Mark'

@ This search took 0.224919 seconds. That does not include the time spent sending and receiving
the actual SOAP XML documents. It's just the time that Google spent processing your request
once it received it.

® |n total, there were approximately 30 million results. You can access them 10 at a time by
changing the start parameter and calling server.doGoogleSearch again.

® Forsome queries, Google also returns a list of related categories in the Google Directory
(http://directory.google.com/). You can append these URLSs to http://directory.google.com/ to

Dive Into Python 178

http://directory.google.com/
http://directory.google.com/

construct the link to the directory category page.

12.8. Troubleshooting SOAP Web Services

Of course, the world of SOAP web services is not all happiness and light. Sometimes things go wrong.

As you've seen throughout this chapter, SOAP involves several layers. There's the HTTP layer, since SOAP is sen(
XML documents to, and receiving XML documents from, an HTTP server. So all the debugging techniques you
learned in Chapter 11, HTTP Web Services come into play here. Youopmanhttplib and then set
httplib.HTTPConnection.debuglevel = 1 to see the underlying HTTP traffic.

Beyond the underlying HTTP layer, there are a number of things that can go wrong. SOAPpy does an admirable jol
hiding the SOAP syntax from you, but that also means it can be difficult to determine where the problem is when
things don't work.

Here are a few examples of common mistakes that I've made in using SOAP web services, and the errors they
generated.

Example 12.15. Calling a Method With an Incorrectly Configured Proxy

>>> from SOAPpy import SOAPProxy
>>> url = 'http://services.xmethods.net:80/soap/servlet/rpcrouter'
>>> server = SOAPProxy(url)
>>> server.getTemp('27502")
<Fault SOAP-ENV:Server.BadTargetObjectURI:
Unable to determine object id from call: is the method element namespaced?>
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 453, in __call__
return self.__r_call(*args, **kw)
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 475, in __r_call
self.__hd, self.__ma)
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 389, in __call
raise p
SOAPpy.Types.faultType: <Fault SOAP-ENV:Server.BadTargetObjectURI:
Unable to determine object id from call: is the method element nhamespaced?>

®oe

Q9 Did you spot the mistake? You're creating a SOAPProxy manually, and you've correctly

specified the service URL, but you haven't specified the namespace. Since multiple services

may be routed through the same service URL, the namespace is essential to determine which

service you're trying to talk to, and therefore which method you're really calling.
® The server responds by sending a SOAP Fault, which SOAPpy turns into a Python exception of

type SOAPpy.Types.faultType. All errors returned from any SOAP server will always

be SOAP Faults, so you can easily catch this exception. In this case, the human-readable part

of the SOAP Fault gives a clue to the problem: the method element is not namespaced, because

the original SOAPProxy object was not configured with a service namespace.
Misconfiguring the basic elements of the SOAP service is one of the problems that WSDL aims to solve. The WSDI
file contains the service URL and namespace, so you can't get it wrong. Of course, there are still other things you ¢
get wrong.

Example 12.16. Calling a Method With the Wrong Arguments

>>> wsdlFile = 'http://www.xmethods.net/sd/2001/TemperatureService.wsdl'

Dive Into Python 179

>>> server = WSDL.Proxy(wsdlFile)
>>> temperature = server.getTemp(27502)
<Fault SOAP-ENV:Server: Exception while handling service request:
services.temperature.TempService.getTemp(int) —— no signature match> (2]
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 453, in __call
return self.__r_call(*args, **kw)
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 475, in __r_call
self.__hd, self.__ma)
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 389, in __call
raise p
SOAPpy.Types.faultType: <Fault SOAP-ENV:Server: Exception while handling service request:
services.temperature. TempService.getTemp(int) —— no signature match>

Q Dpid you spot the mistake? It's a subtle one: you're calling server.getTemp with an integer instead of a
string. As you saw from introspecting the WSDL file, the getTemp() SOAP function takes a single
argument, zipcode, which must be a string. WSDL.Proxy will not coerce datatypes for you; you need to
pass the exact datatypes that the server expects.

124 Again, the server returns a SOAP Fault, and the human-readable part of the error gives a clue as to the
problem: you're calling a getTemp function with an integer value, but there is no function defined with that
name that takes an integer. In theory, SOAP allows you to overload functions, so you could have two function
in the same SOAP service with the same name and the same number of arguments, but the arguments were
different datatypes. This is why it's important to match the datatypes exactly, and why WSDL.Proxy doesn't
coerce datatypes for you. If it did, you could end up calling a completely different function! Good luck
debugging that one. It's much easier to be picky about datatypes and fail as quickly as possible if you get ther
wrong.

It's also possible to write Python code that expects a different number of return values than the remote function

actually returns.

Example 12.17. Calling a Method and Expecting the Wrong Number of Return Values

>>> wsdlFile = 'http://www.xmethods.net/sd/2001/TemperatureService.wsdl'
>>> server = WSDL.Proxy(wsdlIFile)
>>> (city, temperature) = server.getTemp(27502) (1]
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: unpack non-sequence

Q Dpid you spot the mistake? server.getTemp only returns one value, a float, but you've written code that
assumes you're getting two values and trying to assign them to two different variables. Note that this does not
fail with a SOAP fault. As far as the remote server is concerned, nothing went wrong at all. The error only
occurred after the SOAP transaction was complete, WSDL.Proxy returned a float, and your local Python
interpreter tried to accomodate your request to split it into two different variables. Since the function only
returned one value, you get a Python exception trying to split it, not a SOAP Fault.

What about Google's web service? The most common problem I've had with it is that | forget to set the application

key properly.

Example 12.18. Calling a Method With An Application—Specific Error

>>> from SOAPpy import WSDL

>>> server = WSDL.Proxy(r'/path/to/local/GoogleSearch.wsdl')

>>> results = server.doGoogleSearch('foo’, 'mark’, 0, 10, False, ", (1]
False, ", "utf-8", "utf-8")

Dive Into Python 180

<Fault SOAP-ENV:Server:
Exception from service object: Invalid authorization key: foo:
<SOAPpy.Types.structType detail at 14164616>:
{'stackTrace":
‘com.google.soap.search.GoogleSearchFault: Invalid authorization key: foo
at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(
QueryLimits.java:220)
at com.google.soap.search.QueryLimits.validateKey(QueryLimits.java:127)
at com.google.soap.search.GoogleSearchService.doPublicMethodChecks(
GoogleSearchService.java:825)
at com.google.soap.search.GoogleSearchService.doGoogleSearch(
GoogleSearchService.java:121)
at sun.reflect. GeneratedMethodAccessor13.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorimpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at org.apache.soap.server.RPCRouter.invoke(RPCRouter.java:146)
at org.apache.soap.providers.RPCJavaProvider.invoke(
RPCJavaProvider.java:129)
at org.apache.soap.server.http.RPCRouterServlet.doPost(
RPCRouterServlet.java:288)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:760)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:853)
at com.google.gse.HttpConnection.runServlet(HttpConnection.java:237)
at com.google.gse.HttpConnection.run(HttpConnection.java:195)
at com.google.gse.DispatchQueue$WorkerThread.run(DispatchQueue.java:201)

Caused by: com.google.soap.search.UserKeylnvalidException: Key was of wrong size.

at com.google.soap.search.UserKey.<init>(UserKey.java:59)
at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(
QueryLimits.java:217)
... 14 more
1>
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 453, in __call__
return self.__r_call(*args, **kw)
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 475, in __r_call
self.__hd, self.__ma)
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 389, in __call
raise p

SOAPpy.Types.faultType: <Fault SOAP-ENV:Server: Exception from service object:

Invalid authorization key: foo:
<SOAPpy.Types.structType detail at 14164616>:
{'stackTrace":
‘com.google.soap.search.GoogleSearchFault: Invalid authorization key: foo
at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(
QueryLimits.java:220)
at com.google.soap.search.QueryLimits.validateKey(QueryLimits.java:127)
at com.google.soap.search.GoogleSearchService.doPublicMethodChecks(
GoogleSearchService.java:825)
at com.google.soap.search.GoogleSearchService.doGoogleSearch(
GoogleSearchService.java:121)
at sun.reflect. GeneratedMethodAccessor13.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorimpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at org.apache.soap.server.RPCRouter.invoke(RPCRouter.java:146)
at org.apache.soap.providers.RPCJavaProvider.invoke(
RPCJavaProvider.java:129)
at org.apache.soap.server.http.RPCRouterServlet.doPost(
RPCRouterServlet.java:288)
at javax.servlet.http.HttpServlet.service(HttpServlet.java: 760)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:853)
at com.google.gse.HttpConnection.runServlet(HttpConnection.java:237)
at com.google.gse.HttpConnection.run(HttpConnection.java:195)

Dive Into Python

181

at com.google.gse.DispatchQueue$WorkerThread.run(DispatchQueue.java:201)
Caused by: com.google.soap.search.UserKeylnvalidException: Key was of wrong size.
at com.google.soap.search.UserKey.<init>(UserKey.java:59)
at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(
QueryLimits.java:217)
... 14 more

1>

Q can you spot the mistake? There's nothing wrong with the calling syntax, or the number of arguments, or the
datatypes. The problem is application—specific: the first argument is supposed to be my application key, but
foo is not a valid Google key.

® The Google server responds with a SOAP Fault and an incredibly long error message, which includes a
complete Java stack trace. Remember that all SOAP errors are signified by SOAP Faults: errors in
configuration, errors in function arguments, and application—specific errors like this. Buried in there
somewhere is the crucial piece of information: Invalid authorization key: foo.

Further Reading on Troubleshooting SOAP

* New developments for SOAPpy

(http://Imvww—-106.ibm.com/developerworks/webservices/library/ws—pyth17.html) steps through trying to
connect to another SOAP service that doesn't quite work as advertised.

12.9. Summary

SOAP web services are very complicated. The specification is very ambitious and tries to cover many different use
cases for web services. This chapter has touched on some of the simpler use cases.

Before diving into the next chapter, make sure you're comfortable doing all of these things:
« Connecting to a SOAP server and calling remote methods
 Loading a WSDL file and introspecting remote methods

» Debugging SOAP calls with wire traces
 Troubleshooting common SOAP-related errors

Dive Into Python 182

http://www-106.ibm.com/developerworks/webservices/library/ws-pyth17.html

Chapter 13. Unit Testing

13.1. Introduction to Roman numerals

In previous chapters, you "dived in" by immediately looking at code and trying to understand it as quickly as possibl
Now that you have some Python under your belt, you're going to step back and look at the steps that happen befor
code gets written.

In the next few chapters, you're going to write, debug, and optimize a set of utility functions to convert to and from
Roman numerals. You saw the mechanics of constructing and validating Roman numerals in Section 7.3, Case
Study: Roman Numerals , but now let's step back and consider what it would take to expand that into a two—-way
utility.

The rules for Roman numerals lead to a number of interesting observations:

1. There is only one correct way to represent a particular number as Roman numerals.

2.The converse is also true: if a string of characters is a valid Roman numeral, it represents only one number
(i.e. it can only be read one way).

3. There is a limited range of numbers that can be expressed as Roman numerals, specifically 1 through 3999
(The Romans did have several ways of expressing larger numbers, for instance by having a bar over a num
to represent that its normal value should be multiplied by 1000, but you're not going to deal with that. For the
purposes of this chapter, let's stipulate that Roman numerals go from 1 to 3999.)

4. There is no way to represent 0 in Roman numerals. (Amazingly, the ancient Romans had no concept of O as
number. Numbers were for counting things you had; how can you count what you don't have?)

5. There is no way to represent negative numbers in Roman numerals.

6. There is no way to represent fractions or non—integer numbers in Roman numerals.

Given all of this, what would you expect out of a set of functions to convert to and from Roman numerals?

roman.py requirements

1.toRoman should return the Roman numeral representation for all integers 1 to 3999.

2.toRoman should fail when given an integer outside the range 1 to 3999.

3.toRoman should fail when given a non—integer number.

4. fromRoman should take a valid Roman numeral and return the number that it represents.

5. fromRoman should fail when given an invalid Roman numeral.

6. If you take a number, convert it to Roman numerals, then convert that back to a number, you should end up
with the number you started with. So fromRoman(toRoman(n)) == n for all n in 1..3999.

7.toRoman should always return a Roman numeral using uppercase letters.

8. fromRoman should only accept uppercase Roman numerals (i.e. it should fail when given lowercase input).

Further reading
* This site (http://www.wilkiecollins.demon.co.uk/roman/front.htm) has more on Roman numerals, including a

fascinating history (http://www.wilkiecollins.demon.co.uk/roman/intro.htm) of how Romans and other
civilizations really used them (short answer: haphazardly and inconsistently).

Dive Into Python 183

http://www.wilkiecollins.demon.co.uk/roman/front.htm
http://www.wilkiecollins.demon.co.uk/roman/intro.htm

13.2. Diving in

Now that you've completely defined the behavior you expect from your conversion functions, you're going to do
something a little unexpected: you're going to write a test suite that puts these functions through their paces and mz
sure that they behave the way you want them to. You read that right: you're going to write code that tests code that
you haven't written yet.

This is called unit testing, since the set of two conversion functions can be written and tested as a unit, separate fro
any larger program they may become part of later. Python has a framework for unit testing, the appropriately—name
unittest module.

unittest is included with Python 2.1 and later. Python 2.0 users can download it from

pyunit.sourceforge.net (http://pyunit.sourceforge.net/).

Unit testing is an important part of an overall testing—centric development strategy. If you write unit tests, it is
important to write them early (preferably before writing the code that they test), and to keep them updated as code
requirements change. Unit testing is not a replacement for higher—level functional or system testing, but it is import:
in all phases of development:

 Before writing code, it forces you to detail your requirements in a useful fashion.

» While writing code, it keeps you from over—coding. When all the test cases pass, the function is complete.

» When refactoring code, it assures you that the new version behaves the same way as the old version.

* When maintaining code, it helps you cover your ass when someone comes screaming that your latest chang
broke their old code. ("But sir, all the unit tests passed when | checked itin...")

* When writing code in a team, it increases confidence that the code you're about to commit isn't going to bre:
other peoples' code, because you can run their unittests first. (I've seen this sort of thing in code sprints. A
team breaks up the assignment, everybody takes the specs for their task, writes unit tests for it, then shares
their unit tests with the rest of the team. That way, nobody goes off too far into developing code that won't
play well with others.)

13.3. Introducing romantest.py

This is the complete test suite for your Roman numeral conversion functions, which are yet to be written but will
eventually be in roman.py. It is not immediately obvious how it all fits together; none of these classes or methods
reference any of the others. There are good reasons for this, as you'll see shortly.

Example 13.1. romantest.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—-examples—5.4.zip) used in this book.

"""Unit test for roman.py

import roman
import unittest

class KnownValues(unittest. TestCase):
knownValues = ((1, '),
(2,1),
(3, ',
4, 'V,
6, 'V),

Dive Into Python 184

http://pyunit.sourceforge.net/
http://diveintopython.org/download/diveintopython-examples-5.4.zip

(6, VI,

(7, VI,

(8, VI,

(9, '1X),

(10, XY,

(50, L),

(100, 'C,

(500, 'D'),

(1000, 'M),

(31, 'XXXI'),

(148, 'CXLVIIIY,

(294, 'CCXCIV),

(312, 'CCCXIN),

(421, 'CDXXI"),

(528, 'DXXVIIIY,

(621, 'DCXXI),

(782, 'DCCLXXXII),
(870, 'DCCCLXX),
(941, 'CMXLIY),

(1043, 'MXLIIIY,

(1110, 'MCX),

(1226, 'MCCXXVI),
(1301, '"MCCCI),
(1485, 'MCDLXXXV'),
(1509, 'MDIXY),

(1607, 'MDCVIIY),
(1754, 'MDCCLIV'),
(1832, 'MDCCCXXXII),
(1993, 'MCMXCIII'),
(2074, MMLXXIV'),
(2152, 'MMCLIIY),
(2212, 'MMCCXII'),
(2343, 'MMCCCXLIIIY,
(2499, 'MMCDXCIX),
(2574, 'MMDLXXIV"),
(2646, 'MMDCXLVI),
(2723, 'MMDCCXXIII',
(2892, 'MMDCCCXCII"),
(2975, 'MMCMLXXV"),
(3051, 'MMMLI"),
(3185, 'MMMCLXXXV"),
(3250, 'MMMCCL)),
(3313, 'MMMCCCXIII),
(3408, 'MMMCDVIII),
(3501, 'MMMDI'),
(3610, 'MMMDCX),
(3743, 'MMMDCCXLIII'),

(3844, 'MMMDCCCXLIV'"),
(3888, 'MMMDCCCLXXXVIIIY),

(3940, 'MMMCMXL)),
(3999, 'MMMCMXCIX))

def testToRomanKnownValues(self):

toRoman should give known result with known input™™
for integer, numeral in self.knownValues:

result = roman.toRoman(integer)
self.assertEqual(numeral, result)

def testFromRomanKnownValues(self):

for integer, numeral in self.knownValues:
result = roman.fromRoman(numeral)

self.assertEqual(integer, result)

Dive Into Python

185

class ToRomanBadInput(unittest. TestCase):
def testTooLarge(self):

""toRoman should fail with large input

self.assertRaises(roman.OutOfRangeError, roman.toRoman, 4000)

def testZero(self):
""toRoman should fail with 0 input"™
self.assertRaises(roman.OutOfRangeError, roman.toRoman, 0)

def testNegative(self):
"""toRoman should fail with negative input
self.assertRaises(roman.OutOfRangeError, roman.toRoman, -1)

def testNonlInteger(self):
""toRoman should fail with non-integer input
self.assertRaises(roman.NotintegerError, roman.toRoman, 0.5)

class FromRomanBadInput(unittest. TestCase):
def testTooManyRepeatedNumerals(self):
""fromRoman should fail with too many repeated numerals
for sin (MMMM', 'DD', 'CCCC', 'LL', "XXXX', "VV', "lllI'):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

def testRepeatedPairs(self):
""fromRoman should fail with repeated pairs of numerals™"
for s in (CMCM', 'CDCD', 'XCXC', "XLXL', 'IXIX', 'IVIV"):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

def testMalformedAntecedent(self):
""fromRoman should fail with malformed antecedents
for siin (IIMXCC', 'VX', 'DCM', 'CMM', "IXIV",
'MCMC', 'XCX', 'IVI', 'LM', 'LD', 'LC"):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

class SanityCheck(unittest.TestCase):
def testSanity(self):
""fromRoman(toRoman(n))==n for all n""
for integer in range(1, 4000):
numeral = roman.toRoman(integer)
result = roman.fromRoman(numeral)
self.assertEqual(integer, result)

class CaseCheck(unittest.TestCase):
def testToRomanCase(self):
""toRoman should always return uppercase
for integer in range(1, 4000):
numeral = roman.toRoman(integer)
self.assertEqual(numeral, numeral.upper())

def testFromRomanCase(self):
""fromRoman should only accept uppercase input
for integer in range(1, 4000):
numeral = roman.toRoman(integer)
roman.fromRoman(numeral.upper())
self.assertRaises(roman.InvalidRomanNumeralError,
roman.fromRoman, numeral.lower())

if _name__ =="_ main__"
unittest.main()

Further reading

Dive Into Python 186

« The PyUnit home page (http://pyunit.sourceforge.net/) has an in—depth discussion of using the unittest
framework (http://pyunit.sourceforge.net/pyunit.html), including advanced features not covered in this
chapter.

« The PyUnit FAQ (http://pyunit.sourceforge.net/pyunit.html) explains why test cases are stored separately
(http://pyunit.sourceforge.net/pyunit. ntmi#WHERE) from the code they test.

« Python Library Reference (http://www.python.org/doc/current/lib/) summarizes the unittest
(http://mvww.python.org/doc/current/lib/module-unittest.html) module.

« ExtremeProgramming.org (http://www.extremeprogramming.org/) discusses why you should write unit tests
(http://www.extremeprogramming.org/rules/unittests.html).

« The Portland Pattern Repository (http://www.c2.com/cgi/wiki) has an ongoing discussion of unit tests
(http:/Imwvww.c2.com/cgi/wiki?UnitTests), including a standard definition
(http:/imwvww.c2.com/cgi/wiki?StandardDefinitionOfUnitTest), why you should code unit tests first
(http://www.c2.com/cgi/wiki?CodeUnitTestFirst), and several in—depth case studies
(http:/iwww.c2.com/cgi/wiki?UnitTestTrial).

13.4. Testing for success

The most fundamental part of unit testing is constructing individual test cases. A test case answers a single questio
about the code it is testing.

A test case should be able to...

» ...run completely by itself, without any human input. Unit testing is about automation.

» ...determine by itself whether the function it is testing has passed or failed, without a human interpreting the
results.

e ...run in isolation, separate from any other test cases (even if they test the same functions). Each test case i
island.

Given that, let's build the first test case. You have the following requirement:

1.toRoman should return the Roman numeral representation for all integers 1 to 3999.

Example 13.2. testToRomanKnownValues

class KnownValues(unittest. TestCase): (1]
knownValues = ((1, 'l),

@),
(3, 'y,
@'V,
5,'V),
(6,'VI),
(7, v,
(8, v,
(9, '1X),
(10, X),
(50, 'L),
(100, 'CY,
(500, 'DY),
(2000, 'M"),
(31, "XXXI),
(148, 'CXLVIIIY,
(294, 'CCXCIV"),
(312, 'ccexin,
(421, 'CDXXI"),
(528, 'DXXVIIIY,

Dive Into Python 187

http://pyunit.sourceforge.net/
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html#WHERE
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-unittest.html
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/rules/unittests.html
http://www.c2.com/cgi/wiki
http://www.c2.com/cgi/wiki?UnitTests
http://www.c2.com/cgi/wiki?StandardDefinitionOfUnitTest
http://www.c2.com/cgi/wiki?CodeUnitTestFirst
http://www.c2.com/cgi/wiki?UnitTestTrial

(621, 'DCXXIY),

(782, 'DCCLXXXII),
(870, 'DCCCLXX),
(941, 'CMXLIY),

(1043, "MXLIIIY,

(1110, 'MCX),

(1226, 'MCCXXVI),
(1301, 'MCCCI),

(1485, '"MCDLXXXV'),
(1509, 'MDIXY),

(1607, '"MDCVII'),
(1754, 'MDCCLIV'),
(1832, 'MDCCCXXXII),
(1993, 'MCMXCIIIY),
(2074, MMLXXIV'),
(2152, 'MMCLII",
(2212, 'MMCCXII'),
(2343, 'MMCCCXLIIIY),
(2499, 'MMCDXCIX),
(2574, "MMDLXXIV'),
(2646, 'MMDCXLVI),
(2723, 'MMDCCXXIII'),
(2892, 'MMDCCCXCII'),
(2975, 'MMCMLXXV"),
(3051, 'MMMLI"),

(3185, 'MMMCLXXXV"),
(3250, 'MMMCCL)),
(3313, 'MMMCCCXIII),
(3408, 'MMMCDVIII),
(3501, 'MMMDI'),
(3610, 'MMMDCX),
(3743, 'MMMDCCXLIII'),
(3844, 'MMMDCCCXLIV),
(3888, 'MMMDCCCLXXXVIIIY),
(3940, 'MMMCMXL)),

(3999, 'MMMCMXCIX?)) (2
def testToRomanKnownValues(self): (3]
""" toRoman should give known result with known input™™
for integer, numeral in self.knownValues:
result = roman.toRoman(integer) 006
self.assertEqual(numeral, result) (6]

@ 1o write a test case, first subclass the TestCase class of the unittest module. This class provides many
useful methods which you can use in your test case to test specific conditions.

® Thisis a list of integer/numeral pairs that | verified manually. It includes the lowest ten numbers, the highest
number, every number that translates to a single—character Roman numeral, and a random sampling of other
valid numbers. The point of a unit test is not to test every possible input, but to test a representative sample.

(3] Every individual test is its own method, which must take no parameters and return no value. If the method exi
normally without raising an exception, the test is considered passed; if the method raises an exception, the te
is considered failed.

© Here you call the actual toRoman function. (Well, the function hasn't be written yet, but once it is, this is the
line that will call it.) Notice that you have now defined the API for the toRoman function: it must take an
integer (the number to convert) and return a string (the Roman numeral representation). If the API is different
than that, this test is considered failed.

® Also notice that you are not trapping any exceptions when you call toRoman. This is intentional. toRoman
shouldn't raise an exception when you call it with valid input, and these input values are all valid. If toRoman
raises an exception, this test is considered failed.

Dive Into Python 188

16/ Assuming the toRoman function was defined correctly, called correctly, completed successfully, and returned
a value, the last step is to check whether it returned the right value. This is a common question, and the
TestCase class provides a method, assertEqual, to check whether two values are equal. If the result
returned from toRoman (result) does not match the known value you were expecting (numeral),
assertEqual will raise an exception and the test will fail. If the two values are equal, assertEqual will
do nothing. If every value returned from toRoman matches the known value you expect, assertEqual
never raises an exception, so testToRomanKnownValues eventually exits normally, which means
toRoman has passed this test.

13.5. Testing for failure

It is not enough to test that functions succeed when given good input; you must also test that they fail when given b
input. And not just any sort of failure; they must fail in the way you expect.

Remember the other requirements for toRoman:

2.toRoman should fail when given an integer outside the range 1 to 3999.
3. toRoman should fail when given a non—integer number.

In Python, functions indicate failure by raising exceptions, and the unittest module provides methods for testing
whether a function raises a particular exception when given bad input.

Example 13.3. Testing bad input to toRoman

class ToRomanBadInput(unittest. TestCase):
def testTooLarge(self):
""toRoman should fail with large input™"
self.assertRaises(roman.OutOfRangeError, roman.toRoman, 4000) (1]

def testZero(self):
"""toRoman should fail with 0 input™"
self.assertRaises(roman.OutOfRangeError, roman.toRoman, 0) (2]

def testNegative(self):
""toRoman should fail with negative input""
self.assertRaises(roman.OutOfRangeError, roman.toRoman, —1)

def testNonlInteger(self):

self.assertRaises(roman.NotintegerError, roman.toRoman, 0.5) (3]

© The TestCase class of the unittest provides the assertRaises method, which takes
the following arguments: the exception you're expecting, the function you're testing, and the
arguments you're passing that function. (If the function you're testing takes more than one
argument, pass them all to assertRaises, in order, and it will pass them right along to the
function you're testing.) Pay close attention to what you're doing here: instead of calling
toRoman directly and manually checking that it raises a particular exception (by wrapping it in
a try...except block), assertRaises has encapsulated all of that for us. All you do is
give it the exception (roman.OutOfRangeError), the function (toRoman), and
toRoman's arguments (4000), and assertRaises takes care of calling toRoman and
checking to make sure that it raises roman.OutOfRangeError. (Also note that you're
passing the toRoman function itself as an argument; you're not calling it, and you're not
passing the name of it as a string. Have | mentioned recently how handy it is that everything in
Python is an object, including functions and exceptions?)

Dive Into Python 189

124 Along with testing numbers that are too large, you need to test numbers that are too small.
Remember, Roman numerals cannot express 0 or negative numbers, so you have a test case for
each of those (testZero and testNegative). In testZero, you are testing that
toRoman raises a roman.OutOfRangeError exception when called with O; if it does not
raise a roman.OutOfRangeError (either because it returns an actual value, or because it
raises some other exception), this test is considered failed.

© Requirement #3 specifies that toRoman cannot accept a non-integer number, so here you test
to make sure that toRoman raises a roman.NotIntegerError exception when called
with 0.5. If toRoman does not raise a roman.NotIintegerError, this test is considered
failed.
The next two requirements are similar to the first three, except they apply to fromRoman instead of toRoman:

4. fromRoman should take a valid Roman numeral and return the number that it represents.
5. fromRoman should fail when given an invalid Roman numeral.

Requirement #4 is handled in the same way as requirement #1, iterating through a sampling of known values and
testing each in turn. Requirement #5 is handled in the same way as requirements #2 and #3, by testing a series of |
inputs and making sure fromRoman raises the appropriate exception.

Example 13.4. Testing bad input to fromRoman

class FromRomanBadInput(unittest. TestCase):
def testTooManyRepeatedNumerals(self):
"""fromRoman should fail with too many repeated numerals™"
for s in (MMMM', 'DD’, 'CCCC', 'LL', 'XXXX', "VV', "llll"):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s) (1]

def testRepeatedPairs(self):
""fromRoman should fail with repeated pairs of numerals
for s in (CMCM', 'CDCD', 'XCXC', "XLXL', 'IXIX', 'IVIV"):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

def testMalformedAntecedent(self):
"""fromRoman should fail with malformed antecedents
for s in (IIMXCC', 'VX', 'DCM', 'CMM', 'IXIV',
'MCMC', 'XCX', 'IVI', 'LM', 'LD', 'LC"):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

@ Not much new to say about these; the pattern is exactly the same as the one you used to test bad input to
toRoman. | will briefly note that you have another exception: roman.InvalidRomanNumeralError.
That makes a total of three custom exceptions that will need to be defined in roman.py (along with
roman.OutOfRangeError and roman.NotintegerError). You'll see how to define these custom
exceptions when you actually start writing roman.py, later in this chapter.

13.6. Testing for sanity

Often, you will find that a unit of code contains a set of reciprocal functions, usually in the form of conversion
functions where one converts A to B and the other converts B to A. In these cases, it is useful to create a "sanity
check" to make sure that you can convert A to B and back to A without losing precision, incurring rounding errors, o
triggering any other sort of bug.

Consider this requirement:

Dive Into Python 190

6. If you take a number, convert it to Roman numerals, then convert that back to a number, you should end up
with the number you started with. So fromRoman(toRoman(n)) == n for all n in 1..3999.

Example 13.5. Testing toRoman against fromRoman

class SanityCheck(unittest.TestCase):
def testSanity(self):
""fromRoman(toRoman(n))==n for all n
for integer in range(1, 4000): (1 2]
numeral = roman.toRoman(integer)
result = roman.fromRoman(numeral)
self.assertEqual(integer, result) (3]

©® vou've seenthe range function before, but here it is called with two arguments, which returns a list
of integers starting at the first argument (1) and counting consecutively up to but not including the
second argument (4000). Thus, 1..3999, which is the valid range for converting to Roman
numerals.

e just wanted to mention in passing that integer is not a keyword in Python; here it's just a variable
name like any other.

® The actual testing logic here is straightforward: take a number (integer), convert it to a Roman
numeral (numeral), then convert it back to a number (result) and make sure you end up with the
same number you started with. If not, assertEqual will raise an exception and the test will
immediately be considered failed. If all the numbers match, assertEqual will always return
silently, the entire testSanity method will eventually return silently, and the test will be considered
passed.

The last two requirements are different from the others because they seem both arbitrary and trivial:

7.toRoman should always return a Roman numeral using uppercase letters.
8. fromRoman should only accept uppercase Roman numerals (i.e. it should fail when given lowercase input).

In fact, they are somewhat arbitrary. You could, for instance, have stipulated that fromRoman accept lowercase anc
mixed case input. But they are not completely arbitrary; if toRoman is always returning uppercase output, then
fromRoman must at least accept uppercase input, or the "sanity check" (requirement #6) would fail. The fact that it
only accepts uppercase input is arbitrary, but as any systems integrator will tell you, case always matters, so it's wo
specifying the behavior up front. And if it's worth specifying, it's worth testing.

Example 13.6. Testing for case

class CaseCheck(unittest.TestCase):
def testToRomanCase(self):
"""toRoman should always return uppercase
for integer in range(1, 4000):
numeral = roman.toRoman(integer)
self.assertEqual(numeral, numeral.upper()) (1]

def testFromRomanCase(self):
""fromRoman should only accept uppercase input™"
for integer in range(1, 4000):
numeral = roman.toRoman(integer)

roman.fromRoman(numeral.upper()) (23]
self.assertRaises(roman.InvalidRomanNumeralError,
roman.fromRoman, numeral.lower()) (4]

Dive Into Python 191

The most interesting thing about this test case is all the things it doesn't test. It doesn't test that the value
returned from toRoman is right or even consistent; those questions are answered by separate test cases. Yol
have a whole test case just to test for uppercase—ness. You might be tempted to combine this with the sanity
check, since both run through the entire range of values and call toRBIr&ut that would violate one of the
fundamental rules: each test case should answer only a single question. Imagine that you combined this case
check with the sanity check, and then that test case failed. You would need to do further analysis to figure out
which part of the test case failed to determine what the problem was. If you need to analyze the results of you
unit testing just to figure out what they mean, it's a sure sign that you've mis—designed your test cases.

There's a similar lesson to be learned here: even though "you know" that toRoman always returns uppercase,
you are explicitly converting its return value to uppercase here to test that fromRoman accepts uppercase
input. Why? Because the fact that toRoman always returns uppercase is an independent requirement. If you
changed that requirement so that, for instance, it always returned lowercase, the testToRomanCase test case
would need to change, but this test case would still work. This was another of the fundamental rules: each tes
case must be able to work in isolation from any of the others. Every test case is an island.

Note that you're not assigning the return value of fromRoman to anything. This is legal syntax in Python; if a
function returns a value but nobody's listening, Python just throws away the return value. In this case, that's
what you want. This test case doesn't test anything about the return value; it just tests that fromRoman accep
the uppercase input without raising an exception.

This is a complicated line, but it's very similar to what you did in the ToRomanBadInput and
FromRomanBadInput tests. You are testing to make sure that calling a particular function
(roman.fromRoman) with a particular value (numeral.lower(), the lowercase version of the current

Roman numeral in the loop) raises a particular exception (roman.InvalidRomanNumeralError). If it

does (each time through the loop), the test passes; if even one time it does something else (like raises a diffel
exception, or returning a value without raising an exception at all), the test fails.

In the next chapter, you'll see how to write code that passes these tests.

6] *| can resist everything except temptation." ——Oscar Wilde

Dive Into Python 192

Chapter 14. Test-First Programming

14.1. roman.py, stage 1

Now that the unit tests are complete, it's time to start writing the code that the test cases are attempting to test. You
going to do this in stages, so you can see all the unit tests fail, then watch them pass one by one as you fill in the g:
in roman.py.

Example 14.1. romanl.py
This file is available in py/roman/stagel/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

"""Convert to and from Roman numerals"™

#Define exceptions

class RomanError(Exception): pass

class OutOfRangeError(RomanError): pass

class NotlntegerError(RomanError): pass

class InvalidRomanNumeralError(RomanError): pass

@ ©e

def toRoman(n):
""" convert integer to Roman numeral™"
pass (4

def fromRoman(s):

pass

® Thisis how you define your own custom exceptions in Python. Exceptions are classes, and
you create your own by subclassing existing exceptions. It is strongly recommended (but not
required) that you subclass Exception, which is the base class that all built—in exceptions
inherit from. Here | am defining RomanError (inherited from Exception) to act as the
base class for all my other custom exceptions to follow. This is a matter of style; | could just
as easily have inherited each individual exception from the Exception class directly.

® The OutOfRangeError and NotintegerError exceptions will eventually be used by
toRoman to flag various forms of invalid input, as specified in ToRomanBadInput.

® The InvalidRomanNumeralError exception will eventually be used by fromRoman
to flag invalid input, as specified in FromRomanBadInput.

O Atthis stage, you want to define the API of each of your functions, but you don't want to
code them yet, so you stub them out using the Python reserved word pass.

Now for the big moment (drum roll please): you're finally going to run the unit test against this stubby little module.
At this point, every test case should fail. In fact, if any test case passes in stage 1, you should go back to
romantest.py and re—evaluate why you coded a test so useless that it passes with do—nothing functions.

Run romantestl.py with the —v command-line option, which will give more verbose output so you can see

exactly what's going on as each test case runs. With any luck, your output should look like this:

Example 14.2. Output of romantestl.py against romanl.py

Dive Into Python 193

http://diveintopython.org/download/diveintopython-examples-5.4.zip

fromRoman should only accept uppercase input ... ERROR
toRoman should always return uppercase ... ERROR
fromRoman should fail with malformed antecedents ... FAIL
fromRoman should fail with repeated pairs of numerals ... FAIL
fromRoman should fail with too many repeated numerals ... FAIL
fromRoman should give known result with known input ... FAIL
toRoman should give known result with known input ... FAIL
fromRoman(toRoman(n))==n for all n ... FAIL

toRoman should fail with non—integer input ... FAIL

toRoman should fail with negative input ... FAIL

toRoman should fail with large input ... FAIL

toRoman should fail with O input ... FAIL

ERROR: fromRoman should only accept uppercase input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 154, in testFromRomanCase
romanl.fromRoman(numeral.upper())
AttributeError: 'None' object has no attribute 'upper’

ERROR: toRoman should always return uppercase

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 148, in testToRomanCase
self.assertEqual(numeral, numeral.upper())
AttributeError: 'None' object has no attribute 'upper’

FAIL: fromRoman should fail with malformed antecedents

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1.py", line 133, in testMalformedAntecedent
self.assertRaises(romanl.InvalidRomanNumeralError, romanl.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with repeated pairs of numerals

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1l.py", line 127, in testRepeatedPairs
self.assertRaises(romanl.InvalidRomanNumeralError, romanl.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with too many repeated numerals

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1l.py", line 122, in testTooManyRepeatedNumerals
self.assertRaises(romanl.InvalidRomanNumeralError, romanl.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should give known result with known input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1l.py", line 99, in testfromRomanKnownValues
self.assertEqual(integer, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 1= None

Dive Into Python 194

FAIL: toRoman should give known result with known input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1l.py", line 93, in testToRomanKnownValues
self.assertEqual(numeral, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: | = None

FAIL: fromRoman(toRoman(n))==n for all n

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1.py", line 141, in testSanity
self.assertEqual(integer, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 = None

FAIL: toRoman should fail with non-integer input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1.py", line 116, in testNonInteger
self.assertRaises(romanl.NotintegerError, romanl.toRoman, 0.5)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: NotintegerError

FAIL: toRoman should fail with negative input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1l.py", line 112, in testNegative
self.assertRaises(romanl.0OutOfRangeError, romanl.toRoman, —1)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: OutOfRangeError

FAIL: toRoman should fail with large input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1.py", line 104, in testToolLarge
self.assertRaises(romanl.OutOfRangeError, romanl.toRoman, 4000)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: OutOfRangeError

FAIL: toRoman should fail with O input (1]

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 108, in testZero
self.assertRaises(romanl.0OutOfRangeError, romanl.toRoman, 0)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: OutOfRangeError (2]
Ran 12 tests in 0.040s (3]
FAILED (failures=10, errors=2) (4

® Running the script runs unittest.main(), which runs each test case, which is to say each method defined
in each class within romantest.py. For each test case, it prints out the doc string of the method and
whether that test passed or failed. As expected, none of the test cases passed.

Dive Into Python 195

® For each failed test case, unittest displays the trace information showing exactly what happened. In this
case, the call to assertRaises (also called failUnlessRaises) raised an AssertionError because
it was expecting toRoman to raise an OutOfRangeError and it didn't.

After the detail, unittest displays a summary of how many tests were performed and how long it took.

Overall, the unit test failed because at least one test case did not pass. When a test case doesn't pass,
unittest distinguishes between failures and errors. A failure is a call to an assertXYZ method, like

asserteEqual or assertRaises, that fails because the asserted condition is not true or the expected

exception was not raised. An error is any other sort of exception raised in the code you're testing or the unit te
case itself. For instance, the testFrromRomanCase method (“fromRoman should only accept uppercase
input") was an error, because the call to numeral.upper() raised an AttributeError exception,

because toRoman was supposed to return a string but didn't. But testZero ("toRoman should fail with O
input") was a failure, because the call to fromRoman did not raise the InvalidRomanNumeral exception

that assertRaises was looking for.

14.2. roman.py, stage 2

L~)

Now that you have the framework of the roman module laid out, it's time to start writing code and passing test case:

Example 14.3. roman2.py
This file is available in py/roman/stage2/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

"""Convert to and from Roman numerals"™

#Define exceptions

class RomanError(Exception): pass

class OutOfRangeError(RomanError): pass

class NotintegerError(RomanError): pass

class InvalidRomanNumeralError(RomanError): pass

#Define digit mapping

romanNumeralMap = (('M', 1000), 1]
('CM', 900),
(D', 500),
('CD', 400),
(‘'C, 100),
('XC', 90),
(L', 50),
('XL', 40),
(X', 10),
(1X,9),
('Vlv 5)1
(V' 4),
(r, 1)

def toRoman(n):
""" convert integer to Roman numeral™"
result=""
for numeral, integer in romanNumeralMap:
while n >= integer:
result += numeral
n —= integer
return result

Dive Into Python 196

http://diveintopython.org/download/diveintopython-examples-5.4.zip

def fromRoman(s):

pass
o romanNumeralMap is a tuple of tuples which defines three things:

1. The character representations of the most basic Roman numerals. Note that this is not just the
single—character Roman numerals; you're also defining two—character pairs like CM ("one hundred les
than one thousand"); this will make the toRoman code simpler later.

2. The order of the Roman numerals. They are listed in descending value order, from M all the way dowr
to l.

3. The value of each Roman numeral. Each inner tuple is a pair of (numeral, value).

® Here's where your rich data structure pays off, because you don't need any special logic to handle the
subtraction rule. To convert to Roman numerals, you simply iterate through romanNumeralMap looking for
the largest integer value less than or equal to the input. Once found, you add the Roman numeral representat
to the end of the output, subtract the corresponding integer value from the input, lather, rinse, repeat.

Example 14.4. How toRoman works

If you're not clear how toRoman works, add a print statement to the end of the while loop:

while n >= integer:
result += numeral
n —= integer
print 'subtracting’, integer, 'from input, adding', numeral, 'to output'

>>> import roman2

>>> roman2.toRoman(1424)

subtracting 1000 from input, adding M to output
subtracting 400 from input, adding CD to output
subtracting 10 from input, adding X to output
subtracting 10 from input, adding X to output
subtracting 4 from input, adding IV to output
'MCDXXIV'

So toRoman appears to work, at least in this manual spot check. But will it pass the unit testing? Well no, not
entirely.

Example 14.5. Output of romantest2.py against roman2.py
Remember to run romantest2.py with the —-v command-line flag to enable verbose mode.

fromRoman should only accept uppercase input ... FAIL

toRoman should always return uppercase ... ok (1]
fromRoman should fail with malformed antecedents ... FAIL

fromRoman should fail with repeated pairs of numerals ... FAIL

fromRoman should fail with too many repeated numerals ... FAIL

fromRoman should give known result with known input ... FAIL

toRoman should give known result with known input ... ok (2]
fromRoman(toRoman(n))==n for all n ... FAIL
toRoman should fail with non—integer input ... FAIL (3]

toRoman should fail with negative input ... FAIL
toRoman should fail with large input ... FAIL
toRoman should fail with O input ... FAIL

Dive Into Python 197

@ toRoman does, in fact, always return uppercase, because romanNumeralMap defines the Roman numeral
representations as uppercase. So this test passes already.

@ Here'sthe big news: this version of the toRoman function passes the known values test. Remember, it's not
comprehensive, but it does put the function through its paces with a variety of good inputs, including inputs th
produce every single—character Roman numeral, the largest possible input (3999), and the input that produce
the longest possible Roman numeral (3888). At this point, you can be reasonably confident that the function
works for any good input value you could throw at it.

(3] However, the function does not "work" for bad values; it fails every single bad input test. That makes sense,

because you didn't include any checks for bad input. Those test cases look for specific exceptions to be raiset
(via assertRaises), and you're never raising them. You'll do that in the next stage.

Here's the rest of the output of the unit test, listing the details of all the failures. You're down to 10.

FAIL: fromRoman should only accept uppercase input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 156, in testFromRomanCase
roman2.fromRoman, numeral.lower())
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with malformed antecedents

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 133, in testMalformedAntecedent
self.assertRaises(roman2.InvalidRomanNumeralError, roman2.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with repeated pairs of numerals

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 127, in testRepeatedPairs
self.assertRaises(roman2.InvalidRomanNumeralError, roman2.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with too many repeated numerals

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 122, in testTooManyRepeatedNumerals
self.assertRaises(roman2.InvalidRomanNumeralError, roman2.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should give known result with known input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 99, in testfromRomanKnownValues
self.assertEqual(integer, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 1= None

FAIL: fromRoman(toRoman(n))==n for all n

Dive Into Python 198

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 141, in testSanity
self.assertEqual(integer, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 = None

FAIL: toRoman should fail with non—integer input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 116, in testNonInteger
self.assertRaises(roman2.NotintegerError, roman2.toRoman, 0.5)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: NotintegerError

FAIL: toRoman should fail with negative input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 112, in testNegative
self.assertRaises(roman2.0OutOfRangeError, roman2.toRoman, —1)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: OutOfRangeError

FAIL: toRoman should fail with large input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 104, in testTooLarge
self.assertRaises(roman2.0OutOfRangeError, roman2.toRoman, 4000)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: OutOfRangeError

FAIL: toRoman should fail with O input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 108, in testZero
self.assertRaises(roman2.0OutOfRangeError, roman2.toRoman, 0)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: OutOfRangeError

Ran 12 tests in 0.320s

FAILED (failures=10)

14.3. roman.py, stage 3

Now that toRoman behaves correctly with good input (integers from 1 to 3999), it's time to make it behave
correctly with bad input (everything else).

Example 14.6. roman3.py

This file is available in py/roman/stage3/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—-examples—5.4.zip) used in this book.

Dive Into Python 199

http://diveintopython.org/download/diveintopython-examples-5.4.zip

"""Convert to and from Roman numerals™™

#Define exceptions

class RomanError(Exception): pass

class OutOfRangeError(RomanError): pass

class NotIntegerError(RomanError): pass

class InvalidRomanNumeralError(RomanError): pass

#Define digit mapping

romanNumeralMap = (('M', 1000),
('CM', 900),
(D', 500),
('CD, 400),
(‘'C, 100),
('XC', 90),
(L', 50),
('XL', 40),
(X', 10),
(X', 9),
('Vlv 5)1
(v, 4),
(r, 1)

def toRoman(n):
""" convert integer to Roman numeral

if not (0 < n < 4000): (1]
raise OutOfRangeError, "number out of range (must be 1..3999)" (2]

if int(n) <> n: (3]
raise NotintegerError, "non-integers can not be converted"

result="" (4]

for numeral, integer in romanNumeralMap:
while n >= integer:
result += numeral
n —= integer
return result

def fromRoman(s):
"""convert Roman numeral to integer
pass

©® Thisis anice Pythonic shortcut: multiple comparisons at once. This is equivalent to if not ((0 < n)
and (n < 4000)), but it's much easier to read. This is the range check, and it should catch inputs that are
too large, negative, or zero.

® you raise exceptions yourself with the raise statement. You can raise any of the built-in exceptions, or you
can raise any of your custom exceptions that you've defined. The second parameter, the error message, is
optional; if given, it is displayed in the traceback that is printed if the exception is never handled.

® This is the non-integer check. Non-integers can not be converted to Roman numerals.
@ The rest of the function is unchanged.

Example 14.7. Watching toRoman handle bad input

>>> import roman3
>>> roman3.toRoman(4000)
Traceback (most recent call last):

File "<interactive input>", line 1, in ?

File "roman3.py", line 27, in toRoman

raise OutOfRangeError, "number out of range (must be 1..3999)"

OutOfRangeError: number out of range (must be 1..3999)
>>> roman3.toRoman(1.5)

Dive Into Python 200

Traceback (most recent call last):
File "<interactive input>", line 1, in ?
File "roman3.py", line 29, in toRoman
raise NotIntegerError, "non-integers can not be converted"
NotIntegerError: non—integers can not be converted

Example 14.8. Output of romantest3.py against roman3.py

fromRoman should only accept uppercase input ... FAIL
toRoman should always return uppercase ... ok

fromRoman should fail with malformed antecedents ... FAIL
fromRoman should fail with repeated pairs of numerals ... FAIL
fromRoman should fail with too many repeated numerals ... FAIL
fromRoman should give known result with known input ... FAIL

toRoman should give known result with known input ... ok (1]
fromRoman(toRoman(n))==n for all n ... FAIL

toRoman should fail with non—integer input ... ok (2]
toRoman should fail with negative input ... ok (3]

toRoman should fail with large input ... ok
toRoman should fail with O input ... ok

©® toRoman still passes the known values test, which is comforting. All the tests that passed in stage 2 still pass,
so the latest code hasn't broken anything.

® More exciting is the fact that all of the bad input tests now pass. This test, testNonInteger, passes because
of the int(n) <> n check. When a non—-integer is passed to toRoman, the int(n) <> n check notices it
and raises the NotintegerError exception, which is what testNonlInteger is looking for.

® This test, testNegative, passes because of the not (0 < n < 4000) check, which raises an
OutOfRangeError exception, which is what testNegative is looking for.

FAIL: fromRoman should only accept uppercase input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 156, in testFromRomanCase
roman3.fromRoman, numeral.lower())
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with malformed antecedents

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 133, in testMalformedAntecedent
self.assertRaises(roman3.InvalidRomanNumeralError, roman3.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with repeated pairs of numerals

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 127, in testRepeatedPairs
self.assertRaises(roman3.InvalidRomanNumeralError, roman3.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with too many repeated numerals

Traceback (most recent call last):

Dive Into Python 201

File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 122, in testTooManyRepeatedNumerals
self.assertRaises(roman3.InvalidRomanNumeralError, roman3.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should give known result with known input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 99, in testFrromRomanKnownValues
self.assertEqual(integer, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 1= None

FAIL: fromRoman(toRoman(n))==n for all n

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage3\romantest3.py", line 141, in testSanity
self.assertEqual(integer, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 != None

Ran 12 tests in 0.401s

FAILED (failures=6) (1]

® vYou're down to 6 failures, and all of them involve fromRoman: the known values test, the three separate bad
input tests, the case check, and the sanity check. That means that toRoman has passed all the tests it can pa
by itself. (It's involved in the sanity check, but that also requires that fromRoman be written, which it isn't
yet.) Which means that you must stop coding toRoman now. No tweaking, no twiddling, no extra checks "just
in case". Stop. Now. Back away from the keyboard.

The most important thing thia“[comprehensive unit testing can tell you is when to stop coding. When all the unit test
for a function pass, stop coding the function. When all the unit tests for an entire module pass, stop coding the
module.

14.4. roman.py, stage 4

Now that toRoman is done, it's time to start coding fromRoman. Thanks to the rich data structure that maps
individual Roman numerals to integer values, this is no more difficult than the toRoman function.

Example 14.9. roman4.py
This file is available in py/roman/stage4/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—-examples—5.4.zip) used in this book.

"""Convert to and from Roman numerals"™

#Define exceptions

class RomanError(Exception): pass

class OutOfRangeError(RomanError): pass

class NotintegerError(RomanError): pass

class InvalidRomanNumeralError(RomanError): pass

Dive Into Python 202

http://diveintopython.org/download/diveintopython-examples-5.4.zip

#Define digit mapping

romanNumeralMap = (('M', 1000),
(‘'CM', 900),
('D', 500),
('CD', 400),
('C, 100),
('XC', 90),
(L', 50),
('XL', 40),
(X', 10),
(X, 9),
(V' 5),
(V' 4),
(r, 1)

toRoman function omitted for clarity (it hasn't changed)

def fromRoman(s):

result=0
index =0
for numeral, integer in romanNumeralMap:
while s[index:index+len(numeral)] == numeral: 1]

result += integer
index += len(numeral)
return result

Q9 The pattern here is the same as toRoman. You iterate through your Roman numeral data structure (a tuple of
tuples), and instead of matching the highest integer values as often as possible, you match the "highest" Rorr
numeral character strings as often as possible.

Example 14.10. How fromRoman works

If you're not clear how fromRoman works, add a print statement to the end of the while loop:

while s[index:index+len(numeral)] == numeral:
result += integer
index += len(numeral)
print 'found', numeral, 'of length’, len(numeral), ', adding’, integer

>>> import roman4

>>> roman4.fromRoman('MCMLXXII")
found M, of length 1, adding 1000
found CM , of length 2, adding 900
found L, of length 1, adding 50

found X, of length 1, adding 10

found X, of length 1, adding 10

found |, of length 1, adding 1

found I, of length 1, adding 1

1972

Example 14.11. Output of romantest4.py against roman4.py

fromRoman should only accept uppercase input ... FAIL

toRoman should always return uppercase ... ok

fromRoman should fail with malformed antecedents ... FAIL

fromRoman should fail with repeated pairs of numerals ... FAIL

fromRoman should fail with too many repeated numerals ... FAIL

fromRoman should give known result with known input ... ok (1]

Dive Into Python 203

toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok (2]
toRoman should fail with non—integer input ... ok

toRoman should fail with negative input ... ok

toRoman should fail with large input ... ok

toRoman should fail with 0 input ... ok

9 Two pieces of exciting news here. The first is that fromRoman works for good input, at least for all the known

values you test.

® The second is that the sanity check also passed. Combined with the known values tests, you can be reasonal
sure that both toRoman and fromRoman work properly for all possible good values. (This is not guaranteed,;
it is theoretically possible that toRoman has a bug that produces the wrong Roman numeral for some
particular set of inputs, and that fromRoman has a reciprocal bug that produces the same wrong integer value
for exactly that set of Roman numerals that toRoman generated incorrectly. Depending on your application
and your requirements, this possibility may bother you; if so, write more comprehensive test cases until it

doesn't bother you.)

FAIL: fromRoman should only accept uppercase input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage4\romantest4.py", line 156, in testFromRomanCase
roman4.fromRoman, numeral.lower())
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with malformed antecedents

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage4\romantest4.py", line 133, in testMalformedAntecedent
self.assertRaises(roman4.InvalidRomanNumeralError, roman4.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with repeated pairs of numerals

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage4\romantest4.py", line 127, in testRepeatedPairs
self.assertRaises(roman4.InvalidRomanNumeralError, roman4.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with too many repeated numerals

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage4\romantest4.py", line 122, in testTooManyRepeatedNumerals
self.assertRaises(roman4.InvalidRomanNumeralError, roman4.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

Ran 12 tests in 1.222s

FAILED (failures=4)

Dive Into Python

204

14.5. roman.py, stage 5

Now that fromRoman works properly with good input, it's time to fit in the last piece of the puzzle: making it work
properly with bad input. That means finding a way to look at a string and determine if it's a valid Roman numeral.
This is inherently more difficult than validating numeric input in toRoman, but you have a powerful tool at your
disposal: regular expressions.

If you're not familiar with regular expressions and didn't read Chapter 7, Regular Expressions, now would be a gooc
time.

As you saw in Section 7.3, Case Study: Roman Numerals , there are several simple rules for constructing a Romat
numeral, using the letters M, D, C, L, X, V, and I. Let's review the rules:

1. Characters are additive. I is 1, Il is 2, and lll is 3. VI is 6 (literally, "5 and 1"), VIl is 7, and VIl is 8.

2.The tens characters (I, X, C, and M) can be repeated up to three times. At 4, you need to subtract from the r
highest fives character. You can't represent 4 as llll; instead, it is represented as IV ("1 less than 5"). 40 is
written as XL ("10 less than 50"), 41 as XLI, 42 as XLlIl, 43 as XLIIl, and then 44 as XLIV ("10 less
than 50, then 1 less than 5").

3. Similarly, at 9, you need to subtract from the next highest tens character: 8 is VIII, but 9 is IX ("1 less than
10"), not VIIII (since the | character can not be repeated four times). 90 is XC, 900 is CM.

4. The fives characters can not be repeated. 10 is always represented as X, never as VV. 100 is always C, ne\
LL.

5. Roman numerals are always written highest to lowest, and read left to right, so order of characters matters
very much. DC is 600; CD is a completely different number (400, "100 less than 500"). Cl is 101; IC is
not even a valid Roman numeral (because you can't subtract 1 directly from 100; you would need to write it
as XCIX, "10 less than 100, then 1 less than 10").

Example 14.12. roman5.py
This file is available in py/roman/stage5/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

"""Convert to and from Roman numerals"™
import re

#Define exceptions

class RomanError(Exception): pass

class OutOfRangeError(RomanError): pass

class NotIntegerError(RomanError): pass

class InvalidRomanNumeralError(RomanError): pass

#Define digit mapping

romanNumeralMap = (('M', 1000),
('CM', 900),
(D', 500),
('CD, 400),
('C, 100),
('XC', 90),
(L', 50),
('XL', 40),
(X', 10),
(1X,9),
('Vlv 5)1

Dive Into Python 205

http://diveintopython.org/download/diveintopython-examples-5.4.zip

(1V', 4),
(1, 1)

def toRoman(n):
""convert integer to Roman numeral™"
if not (0 < n < 4000):
raise OutOfRangeError, "number out of range (must be 1..3999)"
if int(n) <> n:
raise NotintegerError, "non-integers can not be converted"
result=""
for numeral, integer in romanNumeralMap:
while n >= integer:
result += numeral
n —= integer
return result

#Define pattern to detect valid Roman numerals

romanNumeralPattern = *"M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)(IX[IV|V?I?1?1?)$' (1]
def fromRoman(s):

""" convert Roman numeral to integer""

if not re.search(romanNumeralPattern, s): (2]

raise InvalidRomanNumeralError, 'Invalid Roman numeral: %s' % s

result=0
index =0
for numeral, integer in romanNumeralMap:
while s[index:index+len(numeral)] == numeral:
result += integer
index += len(numeral)
return result

Q Thisis just a continuation of the pattern you discussed in Section 7.3, Case Study: Roman Numerals . The
tens places is either XC (90), XL (40), or an optional L followed by 0 to 3 optional X characters. The ones plac
is either I1X (9), IV (4), or an optional V followed by 0 to 3 optional | characters.

124 Having encoded all that logic into a regular expression, the code to check for invalid Roman numerals becom:
trivial. If re.search returns an object, then the regular expression matched and the input is valid; otherwise,
the input is invalid.

At this point, you are allowed to be skeptical that that big ugly regular expression could possibly catch all the types |

invalid Roman numerals. But don't take my word for it, look at the results:

Example 14.13. Output of romantest5.py against roman5.py

fromRoman should only accept uppercase input ... ok (1]
toRoman should always return uppercase ... ok

fromRoman should fail with malformed antecedents ... ok (2
fromRoman should fail with repeated pairs of numerals ... ok (3]

fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok

toRoman should fail with non—integer input ... ok

toRoman should fail with negative input ... ok

toRoman should fail with large input ... ok

toRoman should fail with 0 input ... ok

Ran 12 tests in 2.864s

Dive Into Python 206

OK

(4]

One thing | didn't mention about regular expressions is that, by default, they are case—sensitive. Since the
regular expression romanNumeralPattern was expressed in uppercase characters, the re.search check
will reject any input that isn't completely uppercase. So the uppercase input test passes.

More importantly, the bad input tests pass. For instance, the malformed antecedents test checks cases like
MCMC. As you've seen, this does not match the regular expression, so fromRoman raises an
InvalidRomanNumeralError exception, which is what the malformed antecedents test case is looking

for, so the test passes.

In fact, all the bad input tests pass. This regular expression catches everything you could think of when you
made your test cases.

And the anticlimax award of the year goes to the word "OK", which is printed by the unittest module when
all the tests pass.

When all of your tests pass; stop coding.

Dive Into Python 207

Chapter 15. Refactoring

15.1. Handling bugs

Despite your best efforts to write comprehensive unit tests, bugs happen. What do | mean by "bug"? A bug is a test
case you haven't written yet.

Example 15.1. The bug

>>> import roman5
>>> roman5.fromRoman(™") (1]
0

©® Remember in the previous section when you kept seeing that an empty string would match
the regular expression you were using to check for valid Roman numerals? Well, it turns out
that this is still true for the final version of the regular expression. And that's a bug; you want
an empty string to raise an InvalidRomanNumeralError exception just like any other
sequence of characters that don't represent a valid Roman numeral.
After reproducing the bug, and before fixing it, you should write a test case that fails, thus illustrating the bug.

Example 15.2. Testing for the bug (romantest61.py)

class FromRomanBadInput(unittest. TestCase):
previous test cases omitted for clarity (they haven't changed)

def testBlank(self):
""" fromRoman should fail with blank string™"
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, ") 1]

o Pretty simple stuff here. Call fromRoman with an empty string and make sure it raises an
InvalidRomanNumeralError exception. The hard part was finding the bug; now that you know about it,
testing for it is the easy part.

Since your code has a bug, and you now have a test case that tests this bug, the test case will fail:

Example 15.3. Output of romantest61.py against roman61.py

fromRoman should only accept uppercase input ... ok
toRoman should always return uppercase ... ok

fromRoman should fail with blank string ... FAIL

fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok

toRoman should fail with non—integer input ... ok

toRoman should fail with negative input ... ok

toRoman should fail with large input ... ok

toRoman should fail with 0 input ... ok

Dive Into Python 208

FAIL: fromRoman should fail with blank string

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage6\romantest61.py", line 137, in testBlank
self.assertRaises(roman6l.InvalidRomanNumeralError, roman61.fromRoman, ")
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

Ran 13 tests in 2.864s

FAILED (failures=1)

Now you can fix the bug.

Example 15.4. Fixing the bug (roman62.py)
This file is available in py/roman/stage6/ in the examples directory.

def fromRoman(s):
"""convert Roman numeral to integer™"
if not s:
raise InvalidRomanNumeralError, 'Input can not be blank’
if not re.search(romanNumeralPattern, s):
raise InvalidRomanNumeralError, 'Invalid Roman numeral: %s' % s

result=0
index =0
for numeral, integer in romanNumeralMap:
while s[index:index+len(numeral)] == numeral:
result += integer
index += len(numeral)
return result

o Only two lines of code are required: an explicit check for an empty string, and a raise statement.

Example 15.5. Output of romantest62.py against roman62.py

fromRoman should only accept uppercase input ... ok
toRoman should always return uppercase ... ok

fromRoman should fail with blank string ... ok 1]
fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok

toRoman should fail with non—integer input ... ok

toRoman should fail with negative input ... ok

toRoman should fail with large input ... ok

toRoman should fail with 0 input ... ok

Ran 13 tests in 2.834s
oK @

Q@ The blank string test case now passes, so the bug is fixed.

Dive Into Python 209

@ Al the other test cases still pass, which means that this bug fix didn't break anything else. Stop coding.

Coding this way does not make fixing bugs any easier. Simple bugs (like this one) require simple test cases; compl
bugs will require complex test cases. In a testing—centric environment, it may seem like it takes longer to fix a bug,
since you need to articulate in code exactly what the bug is (to write the test case), then fix the bug itself. Then if th
test case doesn't pass right away, you need to figure out whether the fix was wrong, or whether the test case itself |
bug in it. However, in the long run, this back—and-forth between test code and code tested pays for itself, because
makes it more likely that bugs are fixed correctly the first time. Also, since you can easily re—run all the test cases
along with your new one, you are much less likely to break old code when fixing new code. Today's unit test is
tomorrow's regression test.

15.2. Handling changing requirements

Despite your best efforts to pin your customers to the ground and extract exact requirements from them on pain of
horrible nasty things involving scissors and hot wax, requirements will change. Most customers don't know what the
want until they see it, and even if they do, they aren't that good at articulating what they want precisely enough to b
useful. And even if they do, they'll want more in the next release anyway. So be prepared to update your test cases
requirements change.

Suppose, for instance, that you wanted to expand the range of the Roman numeral conversion functions. Rememb
the rule that said that no character could be repeated more than three times? Well, the Romans were willing to mak
an exception to that rule by having 4 M characters in a row to represent 4000. If you make this change, you'll be ab
to expand the range of convertible numbers from 1..3999 to 1..4999. But first, you need to make some changes

to the test cases.

Example 15.6. Modifying test cases for new requirements (romantest71.py)
This file is available in py/roman/stage7/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—-examples—5.4.zip) used in this book.

import roman71
import unittest

class KnownValues(unittest. TestCase):
knownValues = ((1, "),

(2,1r),
3,1y,
@, '),
(5,'V),
(6,'VI),
(7, v,
(8, v,
(9, '1X),
(10, X),
(50, 'L),
(100, 'CY,
(500, 'DY),
(1000, 'M"),
(31, "XXXI),
(148, 'CXLVIIIY,
(294, 'CCXCIV"),
(312, 'ccexin,
(421, 'CDXXI"),
(528, 'DXXVIIIY,

Dive Into Python 210

http://diveintopython.org/download/diveintopython-examples-5.4.zip

(621, 'DCXXI'),

(782, 'DCCLXXXII,

(870, 'DCCCLXXY),

(941, 'CMXLI'),

(1043, 'MXLIII),

(1110, 'MCXY),

(1226, 'MCCXXVI'),
(1301, 'MCCCI'"),

(1485, 'MCDLXXXV'),
(1509, 'MDIX),

(1607, '"MDCVII'),

(1754, 'MDCCLIV),
(1832, 'MDCCCXXXII'),
(1993, 'MCMXCIII),
(2074, "MMLXXIV"),
(2152, '"MMCLII'),

(2212, '"MMCCXII'),

(2343, 'MMCCCXLIII,
(2499, 'MMCDXCIX'),
(2574, 'MMDLXXIV"),
(2646, 'MMDCXLVI'),
(2723, 'MMDCCXXIII'),
(2892, 'MMDCCCXCII"),
(2975, 'MMCMLXXV"),
(3051, 'MMMLI'),

(3185, 'MMMCLXXXV"),
(3250, 'MMMCCL)),
(3313, 'MMMCCCXIIIY,
(3408, 'MMMCDVIII),
(3501, 'MMMDI'),

(3610, 'MMMDCX'),
(3743, 'MMMDCCXLIIIY,
(3844, 'MMMDCCCXLIV"),
(3888, 'MMMDCCCLXXXVIII'),
(3940, 'MMMCMXL"),
(3999, 'MMMCMXCIX),
(4000, 'MMMM?), (1]
(4500, 'MMMMD?),

(4888, 'MMMMDCCCLXXXVIII'),
(4999, 'MMMMCMXCIX'))

def testToRomanKnownValues(self):
""toRoman should give known result with known input"™
for integer, numeral in self.knownValues:
result = roman71.toRoman(integer)
self.assertEqual(numeral, result)

def testFromRomanKnownValues(self):
""fromRoman should give known result with known input™"
for integer, numeral in self.knownValues:
result = roman71.fromRoman(numeral)
self.assertEqual(integer, result)

class ToRomanBadInput(unittest. TestCase):
def testTooLarge(self):

self.assertRaises(roman71.0utOfRangeError, roman71.toRoman, 5000) (2]

def testZero(self):
""toRoman should fail with 0 input
self.assertRaises(roman71.0utOfRangeError, roman71.toRoman, 0)

def testNegative(self):

Dive Into Python 211

""toRoman should fail with negative input™"
self.assertRaises(roman71.0utOfRangeError, roman71.toRoman, —1)

def testNonlInteger(self):
"""toRoman should fail with non-integer input™"
self.assertRaises(roman71.NotintegerError, roman71.toRoman, 0.5)

class FromRomanBadInput(unittest. TestCase):
def testTooManyRepeatedNumerals(self):
""fromRoman should fail with too many repeated numerals™"
for s in (MMMMM', 'DD', 'CCCC', 'LL', 'XXXX', "VV', "lllI'): (3]
self.assertRaises(roman71.InvalidRomanNumeralError, roman71.fromRoman, s)

def testRepeatedPairs(self):
""fromRoman should fail with repeated pairs of numerals™"
for sin (CMCM', 'CDCD', '"XCXC', 'XLXL', 'IXIX", 'IVIV"):
self.assertRaises(roman71.InvalidRomanNumeralError, roman71.fromRoman, s)

def testMalformedAntecedent(self):
for siin (IIMXCC', 'VX', 'DCM', 'CMM', "IXIV",
'MCMC', 'XCX', 'IVI', 'LM', 'LD', 'LC":
self.assertRaises(roman71.InvalidRomanNumeralError, roman71.fromRoman, s)

def testBlank(self):
""" fromRoman should fail with blank string™™"
self.assertRaises(roman71l.InvalidRomanNumeralError, roman71.fromRoman, ")

class SanityCheck(unittest.TestCase):
def testSanity(self):
""fromRoman(toRoman(n))==n for all n"""
for integer in range(1, 5000): (4
numeral = roman71.toRoman(integer)
result = roman71.fromRoman(numeral)
self.assertEqual(integer, result)

class CaseCheck(unittest.TestCase):
def testToRomanCase(self):

for integer in range(1, 5000):
numeral = roman71.toRoman(integer)
self.assertEqual(numeral, numeral.upper())

def testFromRomanCase(self):

for integer in range(1, 5000):
numeral = roman71.toRoman(integer)
roman71.fromRoman(numeral.upper())
self.assertRaises(roman71.InvalidRomanNumeralError,
roman71.fromRoman, numeral.lower())

if _name__=="_main__":
unittest.main()

Q@ The existing known values don't change (they're all still reasonable values to test), but you need to add a
few more in the 4000 range. Here I've included 4000 (the shortest), 4500 (the second shortest), 4888
(the longest), and 4999 (the largest).

® The definition of "large input" has changed. This test used to call toRoman with 4000 and expect an
error; now that 4000—-4999 are good values, you need to bump this up to 5000.

® The definition of "too many repeated numerals" has also changed. This test used to call fromRoman
with 'MMMM' and expect an error; now that MMMM is considered a valid Roman numeral, you need to

Dive Into Python 212

bump this up to ' MMMMM'.

Q@ The sanity check and case checks loop through every number in the range, from 1 to 3999. Since the
range has now expanded, these for loops need to be updated as well to go up to 4999.

Now your test cases are up to date with the new requirements, but your code is not, so you expect several of the te
cases to fail.

Example 15.7. Output of romantest71.py against roman71.py

fromRoman should only accept uppercase input ... ERROR (1]
toRoman should always return uppercase ... ERROR

fromRoman should fail with blank string ... ok

fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ERROR
toRoman should give known result with known input ... ERROR
fromRoman(toRoman(n))==n for all n ... ERROR

toRoman should fail with non—integer input ... ok

toRoman should fail with negative input ... ok

toRoman should fail with large input ... ok

toRoman should fail with 0 input ... ok

o0

@ Our case checks now fail because they loop from 1 to 4999, but toRoman only accepts numbers from
1 to 3999, so it will fail as soon the test case hits 4000.

® The fromRoman known values test will fail as soon as it hits 'MMMM', because fromRoman still
thinks this is an invalid Roman numeral.

® The toRoman known values test will fail as soon as it hits 4000, because toRoman still thinks this is
out of range.

Q@ The sanity check will also fail as soon as it hits 4000, because toRoman still thinks this is out of range.

ERROR: fromRoman should only accept uppercase input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage7\romantest71.py", line 161, in testfromRomanCase
numeral = roman71.toRoman(integer)
File "roman71.py", line 28, in toRoman
raise OutOfRangeError, "number out of range (must be 1..3999)"
OutOfRangeError: number out of range (must be 1..3999)

ERROR: toRoman should always return uppercase

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage7\romantest71.py", line 155, in testToRomanCase
numeral = roman71.toRoman(integer)
File "roman71.py", line 28, in toRoman
raise OutOfRangeError, "number out of range (must be 1..3999)"
OutOfRangeError: number out of range (must be 1..3999)

ERROR: fromRoman should give known result with known input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage7\romantest71.py", line 102, in testFromRomanKnownValues
result = roman71.fromRoman(numeral)
File "roman71.py", line 47, in fromRoman
raise InvalidRomanNumeralError, 'Invalid Roman numeral: %s' % s
InvalidRomanNumeralError: Invalid Roman numeral: MMMM

Dive Into Python 213

ERROR: toRoman should give known result with known input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage7\romantest71.py", line 96, in testToRomanKnownValues
result = roman71.toRoman(integer)
File "roman71.py", line 28, in toRoman
raise OutOfRangeError, "number out of range (must be 1..3999)"
OutOfRangeError: number out of range (must be 1..3999)

ERROR: fromRoman(toRoman(n))==n for all n

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage7\romantest71.py", line 147, in testSanity
numeral = roman71.toRoman(integer)
File "roman721.py", line 28, in toRoman
raise OutOfRangeError, "number out of range (must be 1..3999)"
OutOfRangeError: number out of range (must be 1..3999)

Ran 13 tests in 2.213s

FAILED (errors=5)

Now that you have test cases that fail due to the new requirements, you can think about fixing the code to bring it in
line with the test cases. (One thing that takes some getting used to when you first start coding unit tests is that the «
being tested is never "ahead" of the test cases. While it's behind, you still have some work to do, and as soon as it
catches up to the test cases, you stop coding.)

Example 15.8. Coding the new requirements (roman72.py)

This file is available in py/roman/stage7/ in the examples directory.

""Convert to and from Roman numerals
import re

#Define exceptions

class RomanError(Exception): pass

class OutOfRangeError(RomanError): pass

class NotintegerError(RomanError): pass

class InvalidRomanNumeralError(RomanError): pass

#Define digit mapping

romanNumeralMap = (('M', 1000),
(‘'CM', 900),
('D', 500),
('CD', 400),
('C, 100),
('XC', 90),
(L', 50),
('XL', 40),
(X', 10),
(X, 9),
(V' 5),
(v, 4),
(r, 1)

def toRoman(n):
""convert integer to Roman numeral™"
if not (0 < n < 5000): (1]
raise OutOfRangeError, "number out of range (must be 1..4999)"
if int(n) <> n:

Dive Into Python 214

result =

raise NotintegerError, "non-integers can not be converted"

for numeral, integer in romanNumeralMap:

while n >= integer:

result += numeral
n —= integer

return result

#Define pattern to detect valid Roman numerals
romanNumeralPattern = *"M?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)(IX|IV|V?I1?1?1?)$' (2]

def fromRoman(s):

if not s:

raise InvalidRomanNumeralError, 'Input can not be blank’

if not re.search(romanNumeralPattern, s):

raise InvalidRomanNumeralError, 'Invalid Roman numeral: %s' % s

result=0
index =0
for numeral, integer in romanNumeralMap:

while s[index:index+len(numeral)] == numeral:

result += integer
index += len(numeral)

return result

toRoman only needs one small change, in the range check. Where you used to check 0 < n <4000, you
now check 0 < n <5000. And you change the error message that you raise to reflect the new acceptable
range (1..4999 instead of 1..3999). You don't need to make any changes to the rest of the function; it
handles the new cases already. (It merrily adds 'M' for each thousand that it finds; given 4000, it will spit out
'MMMM'. The only reason it didn't do this before is that you explicitly stopped it with the range check.)

You don't need to make any changes to fromRoman at all. The only change is to romanNumeralPattern;

if you look closely, you'll notice that you added another optional M in the first section of the regular expression
This will allow up to 4 M characters instead of 3, meaning you will allow the Roman numeral equivalents of
4999 instead of 3999. The actual fromRoman function is completely general; it just looks for repeated

Roman numeral characters and adds them up, without caring how many times they repeat. The only reason it
didn't handle 'MMMM' before is that you explicitly stopped it with the regular expression pattern matching.

You may be skeptical that these two small changes are all that you need. Hey, don't take my word for it; see for
yourself:

Example 15.9. Output of romantest72.py against roman72.py

fromRoman should only accept uppercase input ... ok
toRoman should always return uppercase ... ok

fromRoman should fail with blank string ... ok

fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok

toRoman should fail with non—integer input ... ok

toRoman should fail with negative input ... ok

toRoman should fail with large input ... ok

toRoman should fail with 0 input ... ok

Dive Into Python 215

Ran 13 tests in 3.685s

ok @

@ Al the test cases pass. Stop
coding.
Comprehensive unit testing means never having to rely on a programmer who says "Trust me."

15.3. Refactoring

The best thing about comprehensive unit testing is not the feeling you get when all your test cases finally pass, or €
the feeling you get when someone else blames you for breaking their code and you can actually prove that you didi
The best thing about unit testing is that it gives you the freedom to refactor mercilessly.

Refactoring is the process of taking working code and making it work better. Usually, "better" means "faster",
although it can also mean "using less memory", or "using less disk space", or simply "more elegantly". Whatever it
means to you, to your project, in your environment, refactoring is important to the long—term health of any program.

Here, "better" means "faster". Specifically, the fromRoman function is slower than it needs to be, because of that bi
nasty regular expression that you use to validate Roman numerals. It's probably not worth trying to do away with th
regular expression altogether (it would be difficult, and it might not end up any faster), but you can speed up the
function by precompiling the regular expression.

Example 15.10. Compiling regular expressions

>>> import re
>>> pattern = "M?M?M?$'

>>> re.search(pattern, 'M’) 1]
<SRE_Match object at 01090490>
>>> compiledPattern = re.compile(pattern) (2]

>>> compiledPattern

<SRE_Pattern object at 00FO6E28>

>>> dir(compiledPattern) (3]
[findall', 'match’, 'scanner’, 'search’, 'split’, 'sub’, 'subn']

>>> compiledPattern.search('M’)

<SRE_Match object at 01104928>

Q Thisis the syntax you've seen before: re.search takes a regular expression as a string (pattern) and a
string to match against it (‘'M"). If the pattern matches, the function returns a match object which can be
queried to find out exactly what matched and how.

® Thisis the new syntax: re.compile takes a regular expression as a string and returns a pattern object. Note
there is no string to match here. Compiling a regular expression has nothing to do with matching it against an
specific strings (like 'M"); it only involves the regular expression itself.

® The compiled pattern object returned from re.compile has several useful-looking functions, including
several (like search and sub) that are available directly in the re module.

4 Calling the compiled pattern object's search function with the string 'M' accomplishes the same thing as
calling re.search with both the regular expression and the string '‘M'. Only much, much faster. (In fact, the
re.search function simply compiles the regular expression and calls the resulting pattern object's search
method for you.)

Whenever you are going tefuse a regular expression more than once, you should compile it to get a pattern object,
then call the methods on the pattern object directly.

Dive Into Python 216

Example 15.11. Compiled regular expressions in roman81.py
This file is available in py/roman/stage8/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—-examples—5.4.zip) used in this book.

toRoman and rest of module omitted for clarity

romanNumeralPattern =\
re.compile(*"M?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)(IX|IV|V?1?1?1?)$") (1]

def fromRoman(s):
""" convert Roman numeral to integer™"
if not s:
raise InvalidRomanNumeralError, 'Input can not be blank’
if not romanNumeralPattern.search(s): (2]
raise InvalidRomanNumeralError, 'Invalid Roman numeral: %s' % s

result=0
index =0
for numeral, integer in romanNumeralMap:
while s[index:index+len(numeral)] == numeral:
result += integer
index += len(numeral)
return result

@ This looks very similar, but in fact a lot has changed. romanNumeralPattern is no longer a
string; it is a pattern object which was returned from re.compile.

® That means that you can call methods on romanNumeralPattern directly. This will be
much, much faster than calling re.search every time. The regular expression is compiled
once and stored in romanNumeralPattern when the module is first imported; then, every
time you call fromRoman, you can immediately match the input string against the regular
expression, without any intermediate steps occurring under the covers.

So how much faster is it to compile regular expressions? See for yourself:

Example 15.12. Output of romantest81.py against roman81.py

............. (1]
Ran 13 tests in 3.385s (2]
OK (3]

Q® Justanotein passing here: this time, | ran the unit test without the —v option, so instead of the full doc
string for each test, you only get a dot for each test that passes. (If a test failed, you'd get an F, and if
it had an error, you'd get an E. You'd still get complete tracebacks for each failure and error, so you
could track down any problems.)

® vou ran 13 tests in 3.385 seconds, compared to 3.685 seconds without precompiling the regular
expressions. That's an 8% improvement overall, and remember that most of the time spent during the
unit test is spent doing other things. (Separately, | time—tested the regular expressions by themselves,
apart from the rest of the unit tests, and found that compiling this regular expression speeds up the
search by an average of 54%.) Not bad for such a simple fix.

® Onh, andin case you were wondering, precompiling the regular expression didn't break anything, and you

Dive Into Python 217

http://diveintopython.org/download/diveintopython-examples-5.4.zip

just proved it.
There is one other performance optimization that | want to try. Given the complexity of regular expression syntax, it
should come as no surprise that there is frequently more than one way to write the same expression. After some
discussion about this module on comp.lang.python (http://groups.google.com/groups?group=comp.lang.python),
someone suggested that | try using the {m,n} syntax for the optional repeated characters.

Example 15.13. roman82.py
This file is available in py/roman/stage8/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—-examples—5.4.zip) used in this book.

rest of program omitted for clarity

#old version
#romanNumeralPattern =\
re.compile("M?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?2X?X2X?2)(IX|IV|V?I?121?)$)

#new version
romanNumeralPattern =\
re.compile(*M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX]|IV|V?K0,3}1)$") (1]

Q@ vou have replaced M?M?M?M? with M{0,4}. Both mean the same thing: "match 0 to 4 M characters".
Similarly, C?C?C? became C{0,3} ("match 0 to 3 C characters") and so forth for X and I.

This form of the regular expression is a little shorter (though not any more readable). The big question is, is it any

faster?

Example 15.14. Output of romantest82.py against roman82.py

Ran 13 tests in 3.315s (1]
OK (2]

@ Overall, the unit tests run 2% faster with this form of regular expression. That doesn't sound exciting,
but remember that the search function is a small part of the overall unit test; most of the time is spent
doing other things. (Separately, | time—tested just the regular expressions, and found that the search
function is 11% faster with this syntax.) By precompiling the regular expression and rewriting part of it
to use this new syntax, you've improved the regular expression performance by over 60%, and improved
the overall performance of the entire unit test by over 10%.

® More important than any performance boost is the fact that the module still works perfectly. This is the

freedom | was talking about earlier: the freedom to tweak, change, or rewrite any piece of it and verify

that you haven't messed anything up in the process. This is not a license to endlessly tweak your code

just for the sake of tweaking it; you had a very specific objective ("make fromRoman faster"), and you

were able to accomplish that objective without any lingering doubts about whether you introduced new

bugs in the process.
One other tweak | would like to make, and then | promise I'll stop refactoring and put this module to bed. As you've
seen repeatedly, regular expressions can get pretty hairy and unreadable pretty quickly. | wouldn't like to come bac
this module in six months and try to maintain it. Sure, the test cases pass, so | know that it works, but if | can't figure
out how it works, it's still going to be difficult to add new features, fix new bugs, or otherwise maintain it. As you saw

Dive Into Python 218

http://groups.google.com/groups?group=comp.lang.python
http://diveintopython.org/download/diveintopython-examples-5.4.zip

in Section 7.5, Verbose Regular Expressions , Python provides a way to document your logic line-by-line.

Example 15.15. roman83.py
This file is available in py/roman/stage8/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—-examples—5.4.zip) used in this book.

rest of program omitted for clarity

#old version
#romanNumeralPattern =\
re.compile(*M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX]IV|V?{0,3})$")

#new version
romanNumeralPattern = re.compile(™

A # beginning of string

M{0,4} # thousands — 0to 4 M's

(CM|CD|D?C{0,3}) # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
or 500-800 (D, followed by 0 to 3 C's)

(XC|XL|L?X{0,3}) # tens — 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
or 50-80 (L, followed by 0 to 3 X's)
(IX[IVI[V?K{0,3}) # ones -9 (IX), 4 (IV), 0-3 (0 to 3 I's),
or 5-8 (V, followed by 0 to 3 I's)
$ # end of strin&
", re.VERBOSE)

Q@ The re.compile function can take an optional second argument, which is a set of one or more flags that
control various options about the compiled regular expression. Here you're specifying the re.VERBOSE flag,
which tells Python that there are in—-line comments within the regular expression itself. The comments and all
the whitespace around them are not considered part of the regular expression; the re.compile function
simply strips them all out when it compiles the expression. This new, "verbose" version is identical to the old
version, but it is infinitely more readable.

Example 15.16. Output of romantest83.py against roman83.py

Ran 13 tests in 3.315s (1]

OK (2]

© This new, "verbose" version runs at exactly the same speed as the old version. In fact, the compiled
pattern objects are the same, since the re.compile function strips out all the stuff you added.

® This new, "verbose" version passes all the same tests as the old version. Nothing has changed, except

that the programmer who comes back to this module in six months stands a fighting chance of
understanding how the function works.

15.4. Postscript

A clever reader read the previous section and took it to the next level. The biggest headache (and performance dra
in the program as it is currently written is the regular expression, which is required because you have no other way
breaking down a Roman numeral. But there's only 5000 of them; why don't you just build a lookup table once, then
simply read that? This idea gets even better when you realize that you don't need to use regular expressions at all.

Dive Into Python 219

http://diveintopython.org/download/diveintopython-examples-5.4.zip

you build the lookup table for converting integers to Roman numerals, you can build the reverse lookup table to
convert Roman numerals to integers.

And best of all, he already had a complete set of unit tests. He changed over half the code in the module, but the ur
tests stayed the same, so he could prove that his code worked just as well as the original.

Example 15.17. roman9.py
This file is available in py/roman/stage9/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—-examples—5.4.zip) used in this book.

#Define exceptions

class RomanError(Exception): pass

class OutOfRangeError(RomanError): pass

class NotintegerError(RomanError): pass

class InvalidRomanNumeralError(RomanError): pass

#Roman numerals must be less than 5000
MAX_ROMAN_NUMERAL = 4999

#Define digit mapping

romanNumeralMap = (('M', 1000),
('CM', 900),
(D', 500),
(‘'CD', 400),
('C, 100),
('XC', 90),
(L', 50),
('XL', 40),
(X', 10),
(X, 9),
(V' 5),
(v, 4),
(r, 1)

#Create tables for fast conversion of roman numerals.

#See fillLookupTables() below.

toRomanTable = [None] # Skip an index since Roman numerals have no zero
fromRomanTable = {}

def toRoman(n):
""" convert integer to Roman numeral
if not (0 < n <= MAX_ROMAN_NUMERAL):
raise OutOfRangeError, "number out of range (must be 1..%s)" % MAX_ROMAN_NUMERAL
if int(n) <> n:
raise NotintegerError, "non-integers can not be converted"
return toRomanTable[n]

def fromRoman(s):
"""convert Roman numeral to integer
if not s:
raise InvalidRomanNumeralError, "Input can not be blank"
if not fromRomanTable.has_key(s):
raise InvalidRomanNumeralError, "Invalid Roman numeral: %s" % s
return fromRomanTable[s]

def toRomanDynamic(n):

Dive Into Python 220

http://diveintopython.org/download/diveintopython-examples-5.4.zip

convert integer to Roman numeral using dynamic programming™"
result=""
for numeral, integer in romanNumeralMap:
if n >= integer:
result = numeral
n —= integer
break
if n>0:
result += toRomanTable[n]
return result

def fillLookupTables():
""" compute all the possible roman numerals™"
#Save the values in two global tables to convert to and from integers.
for integer in range(1, MAX_ROMAN_NUMERAL + 1):
romanNumber = toRomanDynamic(integer)
toRomanTable.append(romanNumber)
fromRomanTable[romanNumber] = integer

fillLookupTables()

So how fast is it?

Example 15.18. Output of romantest9.py against roman9.py

Ran 13 tests in 0.791s

OK

Remember, the best performance you ever got in the original version was 13 tests in 3.315 seconds. Of course, it's
entirely a fair comparison, because this version will take longer to import (when it fills the lookup tables). But since
import is only done once, this is negligible in the long run.

The moral of the story?

* Simplicity is a virtue.

 Especially when regular expressions are involved.

« And unit tests can give you the confidence to do large—scale refactoring... even if you didn't write the origina
code.

15.5. Summary

Unit testing is a powerful concept which, if properly implemented, can both reduce maintenance costs and increase
flexibility in any long—term project. It is also important to understand that unit testing is not a panacea, a Magic
Problem Solver, or a silver bullet. Writing good test cases is hard, and keeping them up to date takes discipline
(especially when customers are screaming for critical bug fixes). Unit testing is not a replacement for other forms of
testing, including functional testing, integration testing, and user acceptance testing. But it is feasible, and it does
work, and once you've seen it work, you'll wonder how you ever got along without it.

This chapter covered a lot of ground, and much of it wasn't even Python—specific. There are unit testing framework
for many languages, all of which require you to understand the same basic concepts:

Dive Into Python 221

« Designing test cases that are specific, automated, and independent

« Writing test cases before the code they are testing

« Writing tests that test good input and check for proper results

« Writing tests that test bad input and check for proper failures

« Writing and updating test cases to illustrate bugs or reflect new requirements

» Refactoring mercilessly to improve performance, scalability, readability, maintainability, or whatever other
—ility you're lacking

Additionally, you should be comfortable doing all of the following Python—specific things:
« Subclassing unittest. TestCase and writing methods for individual test cases
« Using assertEqual to check that a function returns a known value
« Using assertRaises to check that a function raises a known exception
« Calling unittest.main() in your if __name___ clause to run all your test cases at once
* Running unit tests in verbose or regular mode

Further reading

« XProgramming.com (http://www.xprogramming.com/) has links to download unit testing frameworks
(http:/mww.xprogramming.com/software.htm) for many different languages.

Dive Into Python 222

http://www.xprogramming.com/
http://www.xprogramming.com/software.htm

Chapter 16. Functional Programming

16.1. Diving in

In Chapter 13, Unit Testing, you learned about the philosophy of unit testing. In Chapter 14, Test-First Programmin
you stepped through the implementation of basic unit tests in Python. In Chapter 15, Refactoring, you saw how unit
testing makes large—scale refactoring easier. This chapter will build on those sample programs, but here we will foc
more on advanced Python-specific techniques, rather than on unit testing itself.

The following is a complete Python program that acts as a cheap and simple regression testing framework. It takes
unit tests that you've written for individual modules, collects them all into one big test suite, and runs them all at onc
| actually use this script as part of the build process for this book; | have unit tests for several of the example progra
(not just the roman.py module featured in Chapter 13, Unit Testing), and the first thing my automated build script
does is run this program to make sure all my examples still work. If this regression test fails, the build immediately
stops. | don't want to release non-working examples any more than you want to download them and sit around
scratching your head and yelling at your monitor and wondering why they don't work.

Example 16.1. regression.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

"""Regression testing framework

This module will search for scripts in the same directory named
XYZtest.py. Each such script should be a test suite that tests a
module through PyUnit. (As of Python 2.1, PyUnit is included in
the standard library as "unittest".) This script will aggregate all

found test suites into one big test suite and run them all at once.

import sys, 0s, re, unittest

def regressionTest():
path = os.path.abspath(os.path.dirname(sys.argv[0]))
files = os.listdir(path)
test = re.compile("test\.py$", re.IGNORECASE)
files = filter(test.search, files)
filenameToModuleName = lambda f: os.path.splitext(f)[0]
moduleNames = map(filenameToModuleName, files)
modules = map(__import__, moduleNames)
load = unittest.defaultTestLoader.loadTestsFromModule
return unittest. TestSuite(map(load, modules))

if _name__=="_ main__":
unittest.main(defaultTest="regressionTest")

Running this script in the same directory as the rest of the example scripts that come with this book will find all the
unit tests, named moduletest.py, run them as a single test, and pass or fail them all at once.

Example 16.2. Sample output of regression.py

[you@localhost py]$ python regression.py —v
help should fail with no object ... ok 1]

Dive Into Python 223

http://diveintopython.org/download/diveintopython-examples-5.4.zip

help should return known result for apihelper ... ok

help should honor collapse argument ... ok

help should honor spacing argument ... ok

buildConnectionString should fail with list input ... ok (2]
buildConnectionString should fail with string input ... ok
buildConnectionString should fail with tuple input ... ok
buildConnectionString handles empty dictionary ... ok
buildConnectionString returns known result with known input ... ok
fromRoman should only accept uppercase input ... ok (3]
toRoman should always return uppercase ... ok

fromRoman should fail with blank string ... ok

fromRoman should fail with malformed antecedents ... ok
fromRoman should fail with repeated pairs of numerals ... ok
fromRoman should fail with too many repeated numerals ... ok
fromRoman should give known result with known input ... ok
toRoman should give known result with known input ... ok
fromRoman(toRoman(n))==n for all n ... ok

toRoman should fail with non—integer input ... ok

toRoman should fail with negative input ... ok

toRoman should fail with large input ... ok

toRoman should fail with O input ... ok

kgp aref test ... ok

kgp b ref test ... ok

kgp c ref test ... ok

kgp d ref test ... ok

kgp e ref test ... ok

kgp f ref test ... ok

kgp g ref test ... ok

Ran 29 tests in 2.799s

OK

© The first 5 tests are from apihelpertest.py, which tests the example script from Chapter 4, The Power Of
Introspection.

@ The next 5 tests are from odbchelpertest.py, which tests the example script from Chapter 2, Your First
Python Program.

® The rest are from romantest.py, which you studied in depth in Chapter 13, Unit Testing.

16.2. Finding the path

When running Python scripts from the command line, it is sometimes useful to know where the currently running
script is located on disk.

This is one of those obscure little tricks that is virtually impossible to figure out on your own, but simple to remembe
once you see it. The key to it is sys.argv. As you saw in Chapter 9, XML Processing, this is a list that holds the list
of command-line arguments. However, it also holds the name of the running script, exactly as it was called from the
command line, and this is enough information to determine its location.

Example 16.3. fullpath.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—-examples—5.4.zip) used in this book.

import sys, 0s

Dive Into Python 224

http://diveintopython.org/download/diveintopython-examples-5.4.zip

print 'sys.argv[0] =', sys.argv|[0] (1]

pathname = os.path.dirname(sys.argv[0]) (2]
print ‘path =', pathname
print 'full path =', os.path.abspath(pathname) (3]

o Regardless of how you run a script, sys.argv[0] will always contain the hame of the script, exactly as it
appears on the command line. This may or may not include any path information, as you'll see shortly.

(2 os.path.dirname takes a filename as a string and returns the directory path portion. If the given filename
does not include any path information, os.path.dirname returns an empty string.

© os.path.abspath is the key here. It takes a pathname, which can be partial or even blank, and returns a
fully qualified pathname.

os.path.abspath deserves further explanation. It is very flexible; it can take any kind of pathname.

Example 16.4. Further explanation of os.path.abspath

>>> import 0s

>>> o0s.getcwd()

/homel/you

>>> os.path.abspath(")
/homel/you

>>> os.path.abspath('.ssh’)
/homel/you/.ssh

>>> ps.path.abspath('/home/you/.ssh')
/homelyou/.ssh

>>> ps.path.abspath(’.ssh/../foo/")
/homel/you/foo

e o0 o

o os.getcwd() returns the current working directory.

Calling os.path.abspath with an empty string returns the current working directory, same as
os.getcwd().

(2]

(3 Calling os.path.abspath with a partial pathname constructs a fully qualified pathname out of it, based on
the current working directory.

4

(5

Calling os.path.abspath with a full pathname simply returns it.

os.path.abspath also normalizes the pathname it returns. Note that this example worked even though |
don't actually have a 'foo' directory. os.path.abspath never checks your actual disk; this is all just string
manipulation.

The pathnames and filenamies you pass to os.path.abspath do not need to exist.

os.path.abspath not only ¢enstructs full path names, it also normalizes them. That means that if you are in the
{usr/ directory, os.path.abspath('bin/../local/bin’) will return /usr/local/bin. It

normalizes the path by making it as simple as possible. If you just want to normalize a pathname like this without
turning it into a full pathname, use os.path.normpath instead.

Example 16.5. Sample output from fullpath.py

[you@Ilocalhost py]$ python /home/you/diveintopython/common/py/fullpath.py (1]
sys.argv[0] = /homel/you/diveintopython/common/py/fullpath.py

path = /home/you/diveintopython/common/py

full path = /home/you/diveintopython/common/py

[you@localhost diveintopython]$ python common/py/fullpath.py (2]
sys.argv[0] = common/py/fullpath.py

path = common/py

full path = /home/you/diveintopython/common/py

[you@localhost diveintopython]$ cd common/py

Dive Into Python 225

[you@localhost py]$ python fullpath.py (3]
sys.argv[0] = fullpath.py

path =

full path = /home/you/diveintopython/common/py

Q |n the first case, sys.argv[0] includes the full path of the script. You can then use the
os.path.dirname function to strip off the script name and return the full directory name, and
os.path.abspath simply returns what you give it.

O fthe script is run by using a partial pathname, sys.argv[0] will still contain exactly what appears on the
command line. os.path.dirname will then give you a partial pathname (relative to the current directory),
and os.path.abspath will construct a full pathname from the partial pathname.

® fthe script is run from the current directory without giving any path, os.path.dirname will simply return
an empty string. Given an empty string, os.path.abspath returns the current directory, which is what you
want, since the script was run from the current directory.

Like the other functions in‘#he os and os.path modules, os.path.abspath is cross—platform. Your results
will look slightly different than my examples if you're running on Windows (which uses backslash as a path
separator) or Mac OS (which uses colons), but they'll still work. That's the whole point of the os module.

Addendum. One reader was dissatisfied with this solution, and wanted to be able to run all the unit tests in the curre
directory, not the directory where regression.py is located. He suggests this approach instead:

Example 16.6. Running scripts in the current directory

import sys, 0s, re, unittest

def regressionTest():

path = os.getcwd() (1]
sys.path.append(path) (2]
files = os.listdir(path) (3]

Q® |nstead of setting path to the directory where the currently running script is located, you set it to the
current working directory instead. This will be whatever directory you were in before you ran the script,
which is not necessarily the same as the directory the script is in. (Read that sentence a few times until
you get it.)

2] Append this directory to the Python library search path, so that when you dynamically import the unit
test modules later, Python can find them. You didn't need to do this when path was the directory of the
currently running script, because Python always looks in that directory.

® The rest of the function is the same.

This technique will allow you to re—use this regression.py script on multiple projects. Just put the script in a
common directory, then change to the project's directory before running it. All of that project's unit tests will be foun
and tested, instead of the unit tests in the common directory where regression.py is located.

16.3. Filtering lists revisited

You're already familiar with using list comprehensions to filter lists. There is another way to accomplish this same
thing, which some people feel is more expressive.

Python has a built-in filter function which takes two arguments, a function and a list, and returns &lighe
function passed as the first argument to filter must itself take one argument, and the list that filter returns will
contain all the elements from the list passed to filter for which the function passed to filter returns true.

Got all that? It's not as difficult as it sounds.

Dive Into Python 226

Example 16.7. Introducing filter

>>> def odd(n): (1]
return n % 2

>>>1i=[1,2,3,5,9, 10, 256, -3]

>>> filter(odd, Ii) (2]

[1,3,5,9 -3]

>>> [e for e in i if odd(e)] (3]

>>> filteredList = []

>>>fornin li: (4]
if odd(n):

filteredList.append(n)

>>> filteredList
[1,3,5,9, -3]

@ odd uses the built-in mod function "%" to return True if n is odd and False if n is even.

D filter takes two arguments, a function (odd) and a list (li). It loops through the list and calls odd with
each element. If odd returns a true value (remember, any non-zero value is true in Python), then the element
included in the returned list, otherwise it is filtered out. The result is a list of only the odd numbers from the
original list, in the same order as they appeared in the original.

You could accomplish the same thing using list comprehensions, as you saw in Section 4.5, Filtering Lists .

You could also accomplish the same thing with a for loop. Depending on your programming background, this
may seem more "straightforward", but functions like filter are much more expressive. Not only is it easier

to write, it's easier to read, too. Reading the for loop is like standing too close to a painting; you see all the
details, but it may take a few seconds to be able to step back and see the bigger picture: "Oh, you're just
filtering the list!"

L~)

Example 16.8. filter in regression.py

files = os.listdir(path) (1]
test = re.compile("test\.py$", re.IGNORECASE) (2]
files = filter(test.search, files) (3]

9 As you saw in Section 16.2, Finding the path, path may contain the full or partial pathname of the
directory of the currently running script, or it may contain an empty string if the script is being run from
the current directory. Either way, files will end up with the names of the files in the same directory
as this script you're running.

® This is a compiled regular expression. As you saw in Section 15.3, Refactoring , if you're going to
use the same regular expression over and over, you should compile it for faster performance. The
compiled object has a search method which takes a single argument, the string to search. If the
regular expression matches the string, the search method returns a Match object containing
information about the regular expression match; otherwise it returns None, the Python null value.

® For each element in the files list, you're going to call the search method of the compiled regular

expression object, test. If the regular expression matches, the method will return a Match object,

which Python considers to be true, so the element will be included in the list returned by filter. If

the regular expression does not match, the search method will return None, which Python considers

to be false, so the element will not be included.
Historical note. Versions of Python prior to 2.0 did not have list comprehensions, so you couldn't filter using list
comprehensions; the filter function was the only game in town. Even with the introduction of list comprehensions
in 2.0, some people still prefer the old—style filter (and its companion function, map, which you'll see later in this
chapter). Both techniques work at the moment, so which one you use is a matter of style. There is discussion that n
and filter might be deprecated in a future version of Python, but no decision has been made.

Dive Into Python 227

Example 16.9. Filtering using list comprehensions instead

files = os.listdir(path)
test = re.compile(“test\.py$", re.IGNORECASE)
files = [f for f in files if test.search(f)] (1]

Q@ This will accomplish exactly the same result as using the filter function. Which way is more expressive?
That's up to you.

16.4. Mapping lists revisited

You're already familiar with using list comprehensions to map one list into another. There is another way to
accomplish the same thing, using the built—=in map function. It works much the same way as the filter function.

Example 16.10. Introducing map

>>> def double(n):
return n*2

>>>li=[1, 2,3, 5,09, 10, 256, -3]

>>> map(double, li) 1]
[2, 4,6, 10, 18, 20, 512, —6]
>>> [double(n) for n in Ii] (2]

[2, 4, 6,10, 18, 20, 512, -6]

>>> newlist = []

>>>for nin li: (3]
newlist.append(double(n))

>>> newlist
[2, 4,6, 10, 18, 20, 512, -6]

o map takes a function and a fis&nd returns a new list by calling the function with each element of the
list in order. In this case, the function simply multiplies each element by 2.

® You could accomplish the same thing with a list comprehension. List comprehensions were first
introduced in Python 2.0; map has been around forever.

® You could, if you insist on thinking like a Visual Basic programmer, use a for loop to accomplish the
same thing.

Example 16.11. map with lists of mixed datatypes

>>> i =[5, 'a, (2, 'b"]
>>> map(double, li) °
[10, 'aa’, (2, 'b', 2, 'bY)]

©® Asaside note, I'd like to point out that map works just as well with lists of mixed datatypes, as long as the
function you're using correctly handles each type. In this case, the double function simply multiplies the
given argument by 2, and Python Does The Right Thing depending on the datatype of the argument. For
integers, this means actually multiplying it by 2; for strings, it means concatenating the string with itself; for

tuples, it means making a new tuple that has all of the elements of the original, then all of the elements of the

original again.
All right, enough play time. Let's look at some real code.

Example 16.12. map in regression.py

Dive Into Python 228

filenameToModuleName = lambda f: os.path.splitext(f)[0] (1]
moduleNames = map(filenameToModuleName, files) (2]

9 As you saw in Section 4.7, Using lambda Functions , lambda defines an inline function. And as you saw in
Example 6.17, Splitting Pathnames , os.path.splitext takes a filename and returns a tuple (name,
extension). So filenameToModuleName is a function which will take a filename and strip off the file
extension, and return just the name.

124 Calling map takes each filename listed in files, passes it to the function filenameToModuleName, and
returns a list of the return values of each of those function calls. In other words, you strip the file extension off
of each filename, and store the list of all those stripped filenames in moduleNames.
As you'll see in the rest of the chapter, you can extend this type of data—centric thinking all the way to the final goal,
which is to define and execute a single test suite that contains the tests from all of those individual test suites.

16.5. Data—centric programming

By now you're probably scratching your head wondering why this is better than using for loops and straight function
calls. And that's a perfectly valid question. Mostly, it's a matter of perspective. Using map and filter forces you to
center your thinking around your data.

In this case, you started with no data at all; the first thing you did was get the directory path of the current script, ant
got a list of files in that directory. That was the bootstrap, and it gave you real data to work with: a list of filenames.

However, you knew you didn't care about all of those files, only the ones that were actually test suites. You had too
much data, so you needed to filter it. How did you know which data to keep? You needed a test to decide, so you
defined one and passed it to the filter function. In this case you used a regular expression to decide, but the
concept would be the same regardless of how you constructed the test.

Now you had the filenames of each of the test suites (and only the test suites, since everything else had been filtere
out), but you really wanted module names instead. You had the right amount of data, but it was in the wrong format
So you defined a function that would transform a single filename into a module name, and you mapped that functiol
onto the entire list. From one filename, you can get a module name; from a list of filenames, you can get a list of
module names.

Instead of filter, you could have used a for loop with an if statement. Instead of map, you could have used a

for loop with a function call. But using for loops like that is busywork. At best, it simply wastes time; at worst, it
introduces obscure bugs. For instance, you need to figure out how to test for the condition "is this file a test suite?"
anyway; that's the application—specific logic, and no language can write that for us. But once you've figured that out
do you really want go to all the trouble of defining a new empty list and writing a for loop and an if statement and
manually calling append to add each element to the new list if it passes the condition and then keeping track of
which variable holds the new filtered data and which one holds the old unfiltered data? Why not just define the test
condition, then let Python do the rest of that work for us?

Oh sure, you could try to be fancy and delete elements in place without creating a new list. But you've been burned
that before. Trying to modify a data structure that you're looping through can be tricky. You delete an element, then
loop to the next element, and suddenly you've skipped one. Is Python one of the languages that works that way? H
long would it take you to figure it out? Would you remember for certain whether it was safe the next time you tried?
Programmers spend so much time and make so many mistakes dealing with purely technical issues like this, and it
all pointless. It doesn't advance your program at all; it's just busywork.

| resisted list comprehensions when | first learned Python, and | resisted filter and map even longer. | insisted on

making my life more difficult, sticking to the familiar way of for loops and if statements and step—by-step
code—centric programming. And my Python programs looked a lot like Visual Basic programs, detailing every step «

Dive Into Python 229

every operation in every function. And they had all the same types of little problems and obscure bugs. And it was &
pointless.

Let it all go. Busywork code is not important. Data is important. And data is not difficult. It's only data. If you have
too much, filter it. If it's not what you want, map it. Focus on the data; leave the busywork behind.

16.6. Dynamically importing modules
OK, enough philosophizing. Let's talk about dynamically importing modules.
First, let's look at how you normally import modules. The import module syntax looks in the search path for the

named module and imports it by name. You can even import multiple modules at once this way, with a
comma-separated list. You did this on the very first line of this chapter's script.

Example 16.13. Importing multiple modules at once

import sys, 0s, re, unittest (1]

Q@ This imports four modules at once: sys (for system functions and access to the command line
parameters), os (for operating system functions like directory listings), re (for regular expressions), and
unittest (for unit testing).

Now let's do the same thing, but with dynamic imports.

Example 16.14. Importing modules dynamically

>>>sys = import__('sys’) (1]
>>>0s =__import__('0s")

>>>re = __import__(‘re')

>>> ynittest = __import__ (‘'unittest’)

>>> sys (2]
>>> <module 'sys' (built=in)>

>>> 0S

>>> <module 'os' from '/ust/local/lib/python2.2/0s.pyc'>

Q® The built-in __import__ function accomplishes the same goal as using the import statement, but
it's an actual function, and it takes a string as an argument.

® The variable sys is now the sys module, just as if you had said import sys. The variable os is

now the os module, and so forth.
So ___import__ imports a module, but takes a string argument to do it. In this case the module you imported was
just a hard—coded string, but it could just as easily be a variable, or the result of a function call. And the variable tha
you assign the module to doesn't need to match the module name, either. You could import a series of modules an
assign them to a list.

Example 16.15. Importing a list of modules dynamically

>>> moduleNames = ['sys', '0s', 're’, 'unittest’] (1]
>>> moduleNames

['sys', 'os', 're', 'unittest']

>>> modules = map(__import__, moduleNames) (2]
>>> modules (3]
[<module 'sys' (built-in)>,

Dive Into Python 230

<module 'os' from 'c:\Python22\lib\os.pyc'>,

<module 're' from 'c:\Python22\lib\re.pyc'>,

<module 'unittest' from 'c:\Python22\lib\unittest.pyc'>]

>>> modules[0].version (4
'2.2.2 (#37, Nov 26 2002, 10:24:37) [MSC 32 bit (Intel)]'

>>> import sys

>>> gys.version

'2.2.2 (#37, Nov 26 2002, 10:24:37) [MSC 32 bit (Intel)]'

©® moduleNames is just a list of strings. Nothing fancy, except that the strings happen to be names
of modules that you could import, if you wanted to.

(2 Surprise, you wanted to import them, and you did, by mapping the __import__ function onto
the list. Remember, this takes each element of the list (moduleNames) and calls the function
(__import__) over and over, once with each element of the list, builds a list of the return
values, and returns the result.

® S0 now from a list of strings, you've created a list of actual modules. (Your paths may be
different, depending on your operating system, where you installed Python, the phase of the

moon, etc.)
© To drive home the point that these are real modules, let's look at some module attributes.
Remember, modules[0] is the sys module, so modules[0].version is sys.version.

All the other attributes and methods of these modules are also available. There's nothing magic
about the import statement, and there's nothing magic about modules. Modules are objects.
Everything is an object.

Now you should be able to put this all together and figure out what most of this chapter's code sample is doing.

16.7. Putting it all together

You've learned enough now to deconstruct the first seven lines of this chapter's code sample: reading a directory ai
importing selected modules within it.

Example 16.16. The regressionTest function

def regressionTest():
path = os.path.abspath(os.path.dirname(sys.argv[0]))
files = os.listdir(path)
test = re.compile("test\.py$", re.IGNORECASE)
files = filter(test.search, files)
filenameToModuleName = lambda f: os.path.splitext(f)[0]
moduleNames = map(filenameToModuleName, files)
modules = map(__import__, moduleNames)
load = unittest.defaultTestLoader.loadTestsFromModule
return unittest. TestSuite(map(load, modules))

Let's look at it line by line, interactively. Assume that the current directory is c:\diveintopython\py, which
contains the examples that come with this book, including this chapter's script. As you saw in Section 16.2, Finding
the path , the script directory will end up in the path variable, so let's start hard—code that and go from there.

Example 16.17. Step 1: Get all the files

>>> import sys, 0s, re, unittest
>>> path = r'c:\diveintopython\py'
>>> files = os.listdir(path)

>>> files

Dive Into Python 231

[BaseHTMLProcessor.py', 'LICENSE.txt', ‘apihelper.py’, '‘apihelpertest.py’,
‘argecho.py', ‘autosize.py', 'builddialectexamples.py’, 'dialect.py’,

fileinfo.py', 'fullpath.py', 'kgptest.py', 'makerealworddoc.py’,

‘odbchelper.py’, 'odbchelpertest.py', 'parsephone.py', ‘piglatin.py’,

‘plural.py’, ‘pluraltest.py’, 'pyfontify.py', 'regression.py’, 'roman.py’, romantest.py’,
‘uncurly.py', 'unicode2koi8r.py', 'urllister.py’, 'kgp', 'plural’, ‘roman’,

‘colorize.py']

Q files is a list of all the files and directories in the script's directory. (If you've been running some of the
examples already, you may also see some .pyc files in there as well.)

Example 16.18. Step 2: Filter to find the files you care about

>>> test = re.compile("test\.py$", re.IGNORECASE)

>>> files = filter(test.search, files)

>>> files

['apihelpertest.py’, 'kgptest.py’, ‘odbchelpertest.py’, ‘pluraltest.py’, 'romantest.py']

o0e

Q@ This regular expression will match any string that ends with test.py. Note that you need to escape the
period, since a period in a regular expression usually means "match any single character", but you actually we
to match a literal period instead.

® The compiled regular expression acts like a function, so you can use it to filter the large list of files and
directories, to find the ones that match the regular expression.

® And you're left with the list of unit testing scripts, because they were the only ones named
SOMETHINGtest.py.

Example 16.19. Step 3: Map filenames to module names

>>> filenameToModuleName = lambda f: os.path.splitext(f)[0] (1]
>>> filenameToModuleName(‘romantest.py') (2]
‘romantest'

>>> filenameToModuleName(‘'odchelpertest.py’)

‘odbchelpertest’

>>> moduleNames = map(filenameToModuleName, files) ©
>>> moduleNames (4
['apihelpertest’, 'kgptest', ‘'odbchelpertest’, 'pluraltest’, 'romantest']

9 As you saw in Section 4.7, Using lambda Functions , lambda is a quick—and-dirty way of
creating an inline, one-line function. This one takes a filename with an extension and returns
just the filename part, using the standard library function os.path.splitext that you saw
in Example 6.17, Splitting Pathnames .

® filenameToModuleName is a function. There's nothing magic about lambda functions as
opposed to regular functions that you define with a def statement. You can call the
filenameToModuleName function like any other, and it does just what you wanted it to do:
strips the file extension off of its argument.

©® Now you can apply this function to each file in the list of unit test files, using map.
@ Andthe result is just what you wanted: a list of modules, as strings.

Example 16.20. Step 4: Mapping module names to modules

>>> modules = map(__import__, moduleNames)
>>> modules

[<module 'apihelpertest' from ‘apihelpertest.py'>,
<module 'kgptest' from 'kgptest.py'>,

<module 'odbchelpertest’ from ‘odbchelpertest.py'>,

®©e

Dive Into Python 232

<module 'pluraltest’ from 'pluraltest.py'>,

<module 'romantest' from 'romantest.py'>]

>>> modules[-1] (3]
<module 'romantest' from ‘'romantest.py'>

9 As you saw in Section 16.6, Dynamically importing modules , you can use a combination of map and
__import__ to map a list of module names (as strings) into actual modules (which you can call or
access like any other module).

® modules is now a list of modules, fully accessible like any other module.
® The last module in the list is the romantest module, just as if you had said import romantest.

Example 16.21. Step 5: Loading the modules into a test suite

>>> |oad = unittest.defaultTestLoader.loadTestsFromModule
>>> map(load, modules)
[<unittest. TestSuite tests=[
<unittest.TestSuite tests=[<apihelpertest.BadInput testMethod=testNoObject>]>,
<unittest. TestSuite tests=[<apihelpertest. KnownValues testMethod=testApiHelper>]>,
<unittest. TestSuite tests=[
<apihelpertest.ParamChecks testMethod=testCollapse>,
<apihelpertest.ParamChecks testMethod=testSpacing>]>,

=
]

>>> unittest. TestSuite(map(load, modules)) (2]

@ These are real module objects. Not only can you access them like any other module, instantiate classes and «
functions, you can also introspect into the module to figure out which classes and functions it has in the first
place. That's what the loadTestsFromModule method does: it introspects into each module and returns a
unittest.TestSuite object for each module. Each TestSuite object actually contains a list of
TestSuite objects, one for each TestCase class in your module, and each of those TestSuite objects
contains a list of tests, one for each test method in your module.

2] Finally, you wrap the list of TestSuite objects into one big test suite. The unittest module has no
problem traversing this tree of nested test suites within test suites; eventually it gets down to an individual test
method and executes it, verifies that it passes or fails, and moves on to the next one.
This introspection process is what the unittest module usually does for us. Remember that magic—looking
unittest.main() function that our individual test modules called to kick the whole thing off?
unittest.main() actually creates an instance of unittest.TestProgram, which in turn creates an instance
of a unittest.defaultTestLoader and loads it up with the module that called it. (How does it get a reference
to the module that called it if you don't give it one? By using the equally-magic __import__('__main__")
command, which dynamically imports the currently—running module. | could write a book on all the tricks and
techniques used in the unittest module, but then I'd never finish this one.)

Example 16.22. Step 6: Telling unittest to use your test suite

if _name__=="_main__ "
unittest.main(defaultTest="regressionTest") (1]

Q® |nstead of letting the unittest module do all its magic for us, you've done most of it
yourself. You've created a function (regressionTest) that imports the modules
yourself, calls unittest.defaultTestLoader yourself, and wraps it all up in a test
suite. Now all you need to do is tell unittest that, instead of looking for tests and
building a test suite in the usual way, it should just call the regressionTest function,

Dive Into Python 233

which returns a ready-to—use TestSuite.

16.8. Summary
The regression.py program and its output should now make perfect sense.
You should now feel comfortable doing all of these things:

« Manipulating path information from the command line.

« Filtering lists using filter instead of list comprehensions.

« Mapping lists using map instead of list comprehensions.
« Dynamically importing modules.

(7] Technically, the second argument to filter can be any sequence, including lists, tuples, and custom classes that
act like lists by defining the __getitem___ special method. If possible, filter will return the same datatype as
you give it, so filtering a list returns a list, but filtering a tuple returns a tuple.

(8] Again, | should point out that map can take a list, a tuple, or any object that acts like a sequence. See previous
footnote about filter.

Dive Into Python 234

Chapter 17. Dynamic functions

17.1. Diving in

| want to talk about plural nouns. Also, functions that return other functions, advanced regular expressions, and
generators. Generators are new in Python 2.3. But first, let's talk about how to make plural nouns.

If you haven't read Chapter 7, Regular Expressions, now would be a good time. This chapter assumes you underst:
the basics of regular expressions, and quickly descends into more advanced uses.

English is a schizophrenic language that borrows from a lot of other languages, and the rules for making singular
nouns into plural nouns are varied and complex. There are rules, and then there are exceptions to those rules, and
there are exceptions to the exceptions.

If you grew up in an English—speaking country or learned English in a formal school setting, you're probably familiai
with the basic rules:

1l.Ifaword endsin S, X, or Z, add ES. "Bass" becomes "basses", "fax" becomes "faxes", and "waltz" become:
"waltzes".

2.1f a word ends in a noisy H, add ES; if it ends in a silent H, just add S. What's a noisy H? One that gets
combined with other letters to make a sound that you can hear. So "coach" becomes "coaches" and "rash"
becomes "rashes", because you can hear the CH and SH sounds when you say them. But "cheetah” becon
"cheetahs", because the H is silent.

3.If aword ends in Y that sounds like I, change the Y to IES; if the Y is combined with a vowel to sound like
something else, just add S. So "vacancy" becomes "vacancies", but "day" becomes "days".

4.1f all else fails, just add S and hope for the best.

(I know, there are a lot of exceptions. "Man" becomes "men" and "woman" becomes "women", but "human" become
"humans". "Mouse" becomes "mice" and "louse" becomes "lice", but "house" becomes "houses". "Knife" becomes
"knives" and "wife" becomes "wives", but "lowlife" becomes "lowlifes". And don't even get me started on words that
are their own plural, like "sheep", "deer", and "haiku".)

Other languages are, of course, completely different.

Let's design a module that pluralizes nouns. Start with just English nouns, and just these four rules, but keep in min
that you'll inevitably need to add more rules, and you may eventually need to add more languages.

17.2. plural.py, stage 1

So you're looking at words, which at least in English are strings of characters. And you have rules that say you nee
find different combinations of characters, and then do different things to them. This sounds like a job for regular
expressions.

Example 17.1. plurall.py

import re

def plural(noun):
if re.search('[sxz]$', noun):
return re.sub('$', 'es’, noun)
elif re.search('[*aeioudgkprt]h$', noun):

®oe

Dive Into Python 235

return re.sub('$', 'es’, noun)
elif re.search('[*aeiou]y$', noun):

return re.sub('y$', 'ies', noun)
else:

return noun +'s'

Q Ok thisisa regular expression, but it uses a syntax you didn't see in Chapter 7, Regular Expressions. The
square brackets mean "match exactly one of these characters". So [sxz] means "s, or X, or 2", but only one of
them. The $ should be familiar; it matches the end of string. So you're checking to see if noun ends with s, x,
or z.

® This re.sub function performs regular expression—based string substitutions. Let's look at it in more detail.

Example 17.2. Introducing re.sub

>>> import re

>>> re.search([abc]’, 'Mark’) (1]

<_sre.SRE_Match object at 0x001C1FA8>

>>> re.sub('[abc], '0', 'Mark’) (2]

'‘Mork'

>>> re.sub('[abc], '0', 'rock’) ©

'rook’

>>> re.sub('[abc], '0', 'caps') 4]

‘oops'

©® Dpoesthe string Mark contain a, b, or c? Yes, it contains a.

® 0K, nowfind a, b, or ¢, and replace it with 0. Mark becomes Mork.
® The same function turns rock into rook.

Q@ vyou might think this would turn caps into oaps, but it doesn't. re.sub replaces all of the matches, not just

the first one. So this regular expression turns caps into oops, because both the ¢ and the a get turned into o.

Example 17.3. Back to plurall.py

import re

def plural(noun):

if re.search('[sxz]$', noun):
return re.sub('$', 'es’, noun)

elif re.search('[*aeioudgkprt]h$', noun):
return re.sub('$', 'es’, noun)

elif re.search('[*aeiou]y$', noun):
return re.sub('y$', 'ies', noun)

else:
return noun +'s'

o0Q

©® Backto the plural function. What are you doing? You're replacing the end of string with es. In other words,
adding es to the string. You could accomplish the same thing with string concatenation, for example noun +
'es’, but I'm using regular expressions for everything, for consistency, for reasons that will become clear later
in the chapter.

® | ook closely, this is another new variation. The » as the first character inside the square brackets means
something special: negation. [*abc] means "any single character exaept or c". So [*aeioudgkprt]
means any character except a, €, i, 0, u, d, g, k, p, r, or t. Then that character needs to be followed by h,
followed by end of string. You're looking for words that end in H where the H can be heard.

® same pattern here: match words that end in Y, where the character before thea & hat, or u. You're
looking for words that end in Y that sounds like I.

Dive Into Python 236

Example 17.4. More on negation regular expressions

>>> import re

>>> re.search('[*aeiou]y$', 'vacancy') (1]
<_sre.SRE_Match object at 0x001C1FA8>
>>> re.search('[*aeiouly$', 'boy") (2]

>>>

>>> re.search('[*aeiouly$', 'day")

>>>

>>> re.search('[*aeiouly$', 'pita’) (3]
>>>

o vacancy matches this regular expression, because it ends in cy, and c is not a, e, i, 0, or u.

(2 boy does not match, because it ends in oy, and you specifically said that the character before the y could
not be o. day does not match, because it ends in ay.

(3 pita does not match, because it does not end in y.

Example 17.5. More on re.sub

>>> re.sub('y$', 'ies', 'vacancy') (1]
'vacancies'

>>> re.sub('y$', 'ies', ‘agency’)

‘agencies’

>>> re.sub('([*aeiou])y$', r'\lies', 'vacancy') (2]
‘vacancies'

Q@ This regular expression turns vacancy into vacancies and agency into agencies, which is
what you wanted. Note that it would also turn boy into boies, but that will never happen in the
function because you did that re.search first to find out whether you should do this re.sub.

® Justin passing, | want to point out that it is possible to combine these two regular expressions (one to

find out if the rule applies, and another to actually apply it) into a single regular expression. Here's what

that would look like. Most of it should look familiar: you're using a remembered group, which you

learned in Section 7.6, Case study: Parsing Phone Numbers , to remember the character before the y.

Then in the substitution string, you use a new syntax, \1, which means "hey, that first group you

remembered? put it here". In this case, you remember the ¢ before the y, and then when you do the

substitution, you substitute c in place of ¢, and ies in place of y. (If you have more than one

remembered group, you can use \2 and \3 and so on.)
Regular expression substitutions are extremely powerful, and the \1 syntax makes them even more powerful. But
combining the entire operation into one regular expression is also much harder to read, and it doesn't directly map t
the way you first described the pluralizing rules. You originally laid out rules like "if the word ends in S, X, or Z, then
add ES". And if you look at this function, you have two lines of code that say "if the word ends in S, X, or Z, then ad
ES". It doesn't get much more direct than that.

17.3. plural.py, stage 2
Now you're going to add a level of abstraction. You started by defining a list of rules: if this, then do that, otherwise

go to the next rule. Let's temporarily complicate part of the program so you can simplify another part.

Example 17.6. plural2.py

import re

def match_sxz(noun):

Dive Into Python 237

return re.search('[sxz]$', noun)

def apply_sxz(noun):
return re.sub('$’, 'es’, noun)

def match_h(noun):

return re.search('[*aeioudgkprt]h$', noun)

def apply_h(noun):
return re.sub('$’, 'es’, noun)

def match_y(noun):
return re.search('[*aeiou]y$', noun)

def apply_y(noun):
return re.sub('y$', 'ies', noun)

def match_default(noun):
return 1

def apply_default(noun):
return noun +'s'

rules = ((match_sxz, apply_sxz),
(match_h, apply_h),

(match_y, apply_y),
(match_default, apply_default)

) 0
def plural(noun):
for matchesRule, applyRule in rules: (2]
if matchesRule(noun): (3]
return applyRule(noun) (4
@ This version looks more complicated (it's certainly longer), but it does exactly the same thing: try to match fou
different rules, in order, and apply the appropriate regular expression when a match is found. The difference i
that each individual match and apply rule is defined in its own function, and the functions are then listed in this
rules variable, which is a tuple of tuples.
(2 Using a for loop, you can pull out the match and apply rules two at a time (one match, one apply) from the
rules tuple. On the first iteration of the for loop, matchesRule will get match_sxz, and applyRule
will get apply_sxz. On the second iteration (assuming you get that far), matchesRule will be assigned
match_h, and applyRule will be assigned apply_h.
® Remember that everything in Python is an object, including functions. rules contains actual functions; not
names of functions, but actual functions. When they get assigned in the for loop, then matchesRule and
applyRule are actual functions that you can call. So on the first iteration of the for loop, this is equivalent
to calling matches_sxz(noun).
4]

On the first iteration of the for loop, this is equivalent to calling apply_sxz(noun), and so forth.

If this additional level of abstraction is confusing, try unrolling the function to see the equivalence. This for loop is
equivalent to the following:

Example 17.7. Unrolling the plural function

def plural(noun):
if match_sxz(noun):

return apply_sxz(noun)

if match_h(noun):

return apply_h(noun)

Dive Into Python 238

if match_y(noun):
return apply_y(noun)

if match_default(noun):
return apply_default(noun)

The benefit here is that that plural function is now simplified. It takes a list of rules, defined elsewhere, and iterates
through them in a generic fashion. Get a match rule; does it match? Then call the apply rule. The rules could be
defined anywhere, in any way. The plural function doesn't care.

Now, was adding this level of abstraction worth it? Well, not yet. Let's consider what it would take to add a new rule
to the function. Well, in the previous example, it would require adding an if statement to the plural function. In

this example, it would require adding two functions, match_foo and apply_foo, and then updating the rules

list to specify where in the order the new match and apply functions should be called relative to the other rules.

This is really just a stepping stone to the next section. Let's move on.

17.4. plural.py, stage 3

Defining separate named functions for each match and apply rule isn't really necessary. You never call them directl
you define them in the rules list and call them through there. Let's streamline the rules definition by anonymizing
those functions.

Example 17.8. plural3.py

import re

rules =\

(
(

lambda word:
lambda word:
)
(

re.search('[sxz]$', word),
re.sub('$', 'es', word)

lambda word:
lambda word:

),
(

lambda word:
lambda word:

re.search('["aeioudgkprt]h$', word),
re.sub('$', 'es’, word)

re.search('[*aeiou]y$', word),
re.sub('y$', 'ies', word)

)
(
lambda word:

lambda word:

)
) (1]

re.search('$', word),
re.sub('$', 's', word)

def plural(noun):
for matchesRule, applyRule in rules:
if matchesRule(noun):
return applyRule(noun)

© This is the same set of rules as you defined in stage 2. The only difference is that instead of defining
named functions like match_sxz and apply_sxz, you have "inlined" those function definitions
directly into the rules list itself, using lambda functions.

® Note that the plural function hasn't changed at all. It iterates through a set of rule functions, checks

Dive Into Python 239

the first rule, and if it returns a true value, calls the second rule and returns the value. Same as above,
word for word. The only difference is that the rule functions were defined inline, anonymously, using
lambda functions. But the plural function doesn't care how they were defined,; it just gets a list of

rules and blindly works through them.

Now to add a new rule, all you need to do is define the functions directly in the rules list itself: one match rule, and
one apply rule. But defining the rule functions inline like this makes it very clear that you have some unnecessary
duplication here. You have four pairs of functions, and they all follow the same pattern. The match function is a sing
call to re.search, and the apply function is a single call to re.sub. Let's factor out these similarities.

17.5. plural.py, stage 4

Let's factor out the duplication in the code so that defining new rules can be easier.

Example 17.9. plurald.py

import re

def buildMatchAndApplyFunctions((pattern, search, replace)):

matchFunction = lambda word: re.search(pattern, word) (1]
applyFunction = lambda word: re.sub(search, replace, word) (2]
return (matchFunction, applyFunction) (3]

o buildMatchAndApplyFunctions is a function that builds other functions dynamically. It takes
pattern, search and replace (actually it takes a tuple, but more on that in a minute), and you can build
the match function using the lambda syntax to be a function that takes one parameter (word) and calls
re.search with the pattern that was passed to the buildMatchAndApplyFunctions function, and
the word that was passed to the match function you're building. Whoa.

2] Building the apply function works the same way. The apply function is a function that takes one parameter, an
calls re.sub with the search and replace parameters that were passed to the
buildMatchAndApplyFunctions function, and the word that was passed to the apply function you're
building. This technique of using the values of outside parameters within a dynamic function is called closures
You're essentially defining constants within the apply function you're building: it takes one parameter (word),
but it then acts on that plus two other values (search and replace) which were set when you defined the
apply function.

© Finally, the buildMatchAndApplyFunctions function returns a tuple of two values: the two functions
you just created. The constants you defined within those functions (pattern within matchFunction, and
search and replace within applyFunction) stay with those functions, even after you return from
buildMatchAndApplyFunctions. That's insanely cool.

If this is incredibly confusing (and it should be, this is weird stuff), it may become clearer when you see how to use |

Example 17.10. plural4.py continued

patterns =\

(
([sxz]$', '$', 'es"),
([*aeioudgkprt]h$', '$', 'es’),
((qu|[~aeiou])y$', 'y$', ‘ies"),
($,'$,'s")

©e

rules = map(buildMatchAndApplyFunctions, patterns)

Dive Into Python 240

® Our pluralization rules are now defined as a series of strings (not functions). The first string is the regular
expression that you would use in re.search to see if this rule matches; the second and third are the search
and replace expressions you would use in re.sub to actually apply the rule to turn a noun into its plural.

@ Thislineis magic. It takes the list of strings in patterns and turns them into a list of functions. How? By
mapping the strings to the buildMatchAndApplyFunctions function, which just happens to take three
strings as parameters and return a tuple of two functions. This means that rules ends up being exactly the
same as the previous example: a list of tuples, where each tuple is a pair of functions, where the first function
the match function that calls re.search, and the second function is the apply function that calls re.sub.

| swear | am not making this up: rules ends up with exactly the same list of functions as the previous example.

Unroll the rules definition, and you'll get this:

Example 17.11. Unrolling the rules definition

rules =\

(

lambda word: re.search('[sxz]$', word),
lambda word: re.sub('$', 'es', word)

),

(

lambda word: re.search('[*aeioudgkprt]h$', word),
lambda word: re.sub('$', 'es’, word)

),

(

lambda word: re.search('[*aeiou]y$', word),
lambda word: re.sub('y$', ‘ies', word)

),
(
lambda word: re.search('$', word),
lambda word: re.sub('$', 's', word)

)
)

Example 17.12. plural4.py, finishing up

def plural(noun):
for matchesRule, applyRule in rules: (1]
if matchesRule(noun):
return applyRule(noun)

@ Since the rules list is the same as the previous example, it should come as no surprise that the plural
function hasn't changed. Remember, it's completely generic; it takes a list of rule functions and calls them in
order. It doesn't care how the rules are defined. In stage 2, they were defined as seperate hamed functions. Ir
stage 3, they were defined as anonymous lambda functions. Now in stage 4, they are built dynamically by
mapping the buildMatchAndApplyFunctions function onto a list of raw strings. Doesn't matter; the
plural function still works the same way.

Just in case that wasn't mind—blowing enough, | must confess that there was a subtlety in the definition of

buildMatchAndApplyFunctions that | skipped over. Let's go back and take another look.

Example 17.13. Another look at buildMatchAndApplyFunctions

def buildMatchAndApplyFunctions((pattern, search, replace)): (1]

Dive Into Python 241

@ Notice the double parentheses? This function doesn't actually take three parameters; it actually takes one
parameter, a tuple of three elements. But the tuple is expanded when the function is called, and the three
elements of the tuple are each assigned to different variables: pattern, search, and replace. Confused
yet? Let's see it in action.

Example 17.14. Expanding tuples when calling functions

>>> def foo((a, b, ¢)):
print c
print b
print a
>>> parameters = (‘apple’, 'bear’, ‘catnap’)
>>> foo(parameters)
catnap
bear

apple

Q@ The proper way to call the function foo is with a tuple of three elements. When the function is called, the
elements are assigned to different local variables within foo.

Now let's go back and see why this auto—tuple—expansion trick was necessary. patterns was a list of tuples, and

each tuple had three elements. When you called map(buildMatchAndApplyFunctions, patterns), that

means that buildMatchAndApplyFunctions is not getting called with three parameters. Using map to map a

single list onto a function always calls the function with a single parameter: each element of the list. In the case of

patterns, each element of the list is a tuple, so buildMatchAndApplyFunctions always gets called with the

tuple, and you use the auto—-tuple—expansion trick in the definition of buildMatchAndApplyFunctions to

assign the elements of that tuple to named variables that you can work with.

17.6. plural.py, stage 5

You've factored out all the duplicate code and added enough abstractions so that the pluralization rules are defined
list of strings. The next logical step is to take these strings and put them in a separate file, where they can be
maintained separately from the code that uses them.

First, let's create a text file that contains the rules you want. No fancy data structures, just space— (or tab-)delimitec

strings in three columns. You'll call it rules.en; "en" stands for English. These are the rules for pluralizing English
nouns. You could add other rule files for other languages later.

Example 17.15. rules.en

[sxz]$ $ es
[*aeioudgkprt]h$ $ es
[raeiouly$ y$ ies
$ $ s

Now let's see how you can use this rules file.

Example 17.16. plural5.py

import re
import string

def buildRule((pattern, search, replace)):
return lambda word: re.search(pattern, word) and re.sub(search, replace, word) (1]

Dive Into Python 242

def plural(noun, language='en’):
lines = file('rules.%s' % language).readlines()
patterns = map(string.split, lines)
rules = map(buildRule, patterns)
for rule in rules:
result = rule(noun)
if result: return result

®@0Q

(6]

@ 0000

You're still using the closures technique here (building a function dynamically that uses variables defined
outside the function), but now you've combined the separate match and apply functions into one. (The reason
for this change will become clear in the next section.) This will let you accomplish the same thing as having
two functions, but you'll need to call it differently, as you'll see in a minute.

Our plural function now takes an optional second parameter, language, which defaults to en.

You use the language parameter to construct a filename, then open the file and read the contents into a list. I
language is en, then you'll open the rules.en file, read the entire thing, break it up by carriage returns,
and return a list. Each line of the file will be one element in the list.

As you saw, each line in the file really has three values, but they're separated by whitespace (tabs or spaces,
makes no difference). Mapping the string.split function onto this list will create a new list where each

element is a tuple of three strings. So a line like [sxz]$ $ es will be broken up into the tuple

([sxz]$', '$, 'es’). This means that patterns will end up as a list of tuples, just like you

hard—coded it in stage 4.

If patterns is a list of tuples, then rules will be a list of the functions created dynamically by each call to
buildRule. Calling buildRule(('[sxz]$', '$', 'es")) returns a function that takes a single

parameter, word. When this returned function is called, it will execute re.search('[sxz]$', word)

and re.sub('$', 'es’, word).

Because you're now building a combined match—and-apply function, you need to call it differently. Just call
the function, and if it returns something, then that's the plural; if it returns nothing (None), then the rule didn't
match and you need to try another rule.

So the improvement here is that you've completely separated the pluralization rules into an external file. Not only ce
the file be maintained separately from the code, but you've set up a naming scheme where the same plural functior
can use different rule files, based on the language parameter.

The downside here is that you're reading that file every time you call the plural function. | thought | could get
through this entire book without using the phrase "left as an exercise for the reader"”, but here you go: building a
caching mechanism for the language-specific rule files that auto—refreshes itself if the rule files change between ca
is left as an exercise for the reader. Have fun.

17.7. plural.py, stage 6

Now you're ready to talk about generators.

Example 17.17. plural6.py

import re

def rules(language):
for line in file('rules.%s' % language):

pattern, search, replace = line.split()
yield lambda word: re.search(pattern, word) and re.sub(search, replace, word)

def plural(noun, language="en’):

Dive Into Python 243

for applyRule in rules(language):
result = applyRule(noun)
if result: return result

This uses a technique called generators, which I'm not even going to try to explain until you look at a simpler examj

first.

Example 17.18. Introducing generators

>>> def make_counter(x):
print 'entering make_counter'
while 1:
yield x (1]
print incrementing X'
XxX=x+1

>>> counter = make_counter(2)
>>> counter

<generator object at 0x001C9C10>
>>> counter.next()

entering make_counter

2

>>> counter.next() (5]
incrementing x

3

>>> counter.next() (6]
incrementing x

4

o o0

Q@ The presence of the yield keyword in make_counter means that this is not a normal function. It is a
special kind of function which generates values one at a time. You can think of it as a resumable function.
Calling it will return a generator that can be used to generate successive values of x.

® 1o create an instance of the make_counter generator, just call it like any other function. Note that this does
not actually execute the function code. You can tell this because the first line of make_counter is a print
statement, but nothing has been printed yet.

The make_counter function returns a generator object.
The first time you call the next() method on the generator object, it executes the code in make_counter

(-]

up to the first yield statement, and then returns the value that was yielded. In this case, that will be 2, because

you originally created the generator by calling make_counter(2).

15/ Repeatedly calling next() on the generator object resumes where you left off and continues until you hit the
next yield statement. The next line of code waiting to be executed is the print statement that prints
incrementing X, and then after that the x = x + 1 statement that actually increments it. Then you loop
through the while loop again, and the first thing you do is yield x, which returns the current value of x
(now 3).

® The second time you call counter.next(), you do all the same things again, but this time x is now 4. And
so forth. Since make_counter sets up an infinite loop, you could theoretically do this forever, and it would

just keep incrementing x and spitting out values. But let's look at more productive uses of generators instead.

Example 17.19. Using generators instead of recursion

def fibonacci(max):

a,b=0,1 (1]
while a < max:
yield a (2]
a,b=b, ath (3]

Dive Into Python 244

® The Fibonacci sequence is a sequence of numbers where each number is the sum of the two numbers before
It starts with 0 and 1, goes up slowly at first, then more and more rapidly. To start the sequence, you need twt

variables: a starts at 0, and b starts at 1.
@ ais the current number in the sequence, so yield it.
(3]

b is the next number in the sequence, so assign that to a, but also calculate the next value (a+b) and assign t

to b for later use. Note that this happens in parallel; if ais 3 and b is 5, then a, b = b, atb will setato 5
(the previous value of b) and b to 8 (the sum of the previous values of a and b).

So you have a function that spits out successive Fibonacci numbers. Sure, you could do that with recursion, but thi:

way is easier to read. Also, it works well with for loops.

Example 17.20. Generators in for loops

>>> for n in fibonacci(1000): 1]
print n, (2]
01123581321 345589 144 233 377 610 987

©® Youcanusea generator like fibonacci in a for loop directly. The for loop will create the generator
object and successively call the next() method to get values to assign to the for loop index variable (n).

® Eachtime through the for loop, n gets a new value from the yield statement in fibonacci, and all you do
is print it out. Once fibonacci runs out of numbers (a gets bigger than max, which in this case is 1000),
then the for loop exits gracefully.

OK, let's go back to the plural function and see how you're using this.

Example 17.21. Generators that generate dynamic functions

def rules(language):
for line in file('rules.%s' % language):
pattern, search, replace = line.split()
yield lambda word: re.search(pattern, word) and re.sub(search, replace, word)

o0e

def plural(noun, language='en’):
for applyRule in rules(language): (4
result = applyRule(noun)
if result: return result

Q@ forlinein file(...) is a common idiom for reading lines from a file, one line at a time. It
works becaustle actually returns a generator whose next() method returns the next line of the
file. That is so insanely cool, | wet myself just thinking about it.

® No magic here. Remember that the lines of the rules file have three values separated by whitespace, so
line.split() returns a tuple of 3 values, and you assign those values to 3 local variables.

® Andthen you yield. What do you yield? A function, built dynamically with lambda, that is actually a
closure (it uses the local variables pattern, search, and replace as constants). In other words,
rules is a generator that spits out rule functions.

© Sincerulesisa generator, you can use it directly in a for loop. The first time through the for
loop, you will call the rules function, which will open the rules file, read the first line out of it,
dynamically build a function that matches and applies the first rule defined in the rules file, and yields
the dynamically built function. The second time through the for loop, you will pick up where you left
off in rules (which was in the middle of the for line in file(...) loop), read the second
line of the rules file, dynamically build another function that matches and applies the second rule
defined in the rules file, and yields it. And so forth.

Dive Into Python 245

What have you gained over stage 5? In stage 5, you read the entire rules file and built a list of all the possible rules
before you even tried the first one. Now with generators, you can do everything lazily: you open the first and read tt
first rule and create a function to try it, but if that works you don't ever read the rest of the file or create any other
functions.

Further reading

« PEP 255 (http://www.python.org/peps/pep—0255.html) defines generators.
« Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) has many more examples of
generators (http://www.google.com/search?g=generators+cookbook+site:aspn.activestate.com).

17.8. Summary

You talked about several different advanced techniques in this chapter. Not all of them are appropriate for every
situation.

You should now be comfortable with all of these techniques:

» Performing string substitution with regular expressions.

* Treating functions as objects, storing them in lists, assigning them to variables, and calling them through thc
variables.

* Building dynamic functions with lambda.

« Building closures, dynamic functions that contain surrounding variables as constants.

« Building generators, resumable functions that perform incremental logic and return different values each tim
you call them.

Adding abstractions, building functions dynamically, building closures, and using generators can all make your code

simpler, more readable, and more flexible. But they can also end up making it more difficult to debug later. It's up to
you to find the right balance between simplicity and power.

Dive Into Python 246

http://www.python.org/peps/pep-0255.html
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.google.com/search?q=generators+cookbook+site:aspn.activestate.com

Chapter 18. Performance Tuning

Performance tuning is a many-splendored thing. Just because Python is an interpreted language doesn't mean yol
shouldn't worry about code optimization. But don't worry about it too much.

18.1. Diving in
There are so many pitfalls involved in optimizing your code, it's hard to know where to start.

Let's start here: are you sure you need to do it at all? Is your code really so bad? Is it worth the time to tune it? Ovel
the lifetime of your application, how much time is going to be spent running that code, compared to the time spent
waiting for a remote database server, or waiting for user input?

Second, are you sure you're done coding? Premature optimization is like spreading frosting on a half-baked cake.
You spend hours or days (or more) optimizing your code for performance, only to discover it doesn't do what you
need it to do. That's time down the drain.

This is not to say that code optimization is worthless, but you need to look at the whole system and decide whether
the best use of your time. Every minute you spend optimizing code is a minute you're not spending adding new
features, or writing documentation, or playing with your kids, or writing unit tests.

Oh yes, unit tests. It should go without saying that you need a complete set of unit tests before you begin performat
tuning. The last thing you need is to introduce new bugs while fiddling with your algorithms.

With these caveats in place, let's look at some techniques for optimizing Python code. The code in question is an
implementation of the Soundex algorithm. Soundex was a method used in the early 20th century for categorizing
surnames in the United States census. It grouped similar—sounding names together, so even if a name was misspe
researchers had a chance of finding it. Soundex is still used today for much the same reason, although of course w
use computerized database servers now. Most database servers include a Soundex function.

There are several subtle variations of the Soundex algorithm. This is the one used in this chapter:

1. Keep the first letter of the name as-is.
2. Convert the remaining letters to digits, according to a specific table:
¢ B, F, P,and V become 1.
¢ C, G, JK QS X, and Z become 2.
¢ Dand T become 3.
¢ L becomes 4.
¢ M and N become 5.
¢ R becomes 6.
¢ All other letters become 9.
3. Remove consecutive duplicates.
4.Remove all 9s altogether.
5. If the result is shorter than four characters (the first letter plus three digits), pad the result with trailing zeros.
6. if the result is longer than four characters, discard everything after the fourth character.

For example, my name, Pilgrim, becomes P942695. That has no consecutive duplicates, so nothing to do there.
Then you remove the 9s, leaving P4265. That's too long, so you discard the excess character, leaving P426.

Another example: Woo becomes W99, which becomes W9, which becomes W, which gets padded with zeros to
become WO0OO.

Dive Into Python 247

Here's a first attempt at a Soundex function:

Example 18.1. soundex/stagel/soundexla.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—-examples—5.4.zip) used in this book.

import string, re

charToSoundex = {"A": "9",

"B" "1,
"cm 2,
"D": "3,
"E" "9,
"Fr
"G" "2,
"H" "9,
""",

g2t
"K" 2",
"L": "4,
"M": "5",
"N" "S5,
"o" "9,
"Prt1,
"Q" "2,
"R"™ "6",
"sh2,
T3,
"u" o,
VAN A
"W "9,
X2,
"y "9,
"z 2"

def soundex(source):
"convert string to Soundex equivalent"

Soundex requirements:

source string must be at least 1 character

and must consist entirely of letters

allChars = string.uppercase + string.lowercase

if not re.search("\[%s]+$' % allChars, source):
return "0000"

Soundex algorithm:
1. make first character uppercase
source = source[0].upper() + source[1:]

2. translate all other characters to Soundex digits

digits = source[0]
for s in source[1:]:
s = s.upper()
digits += charToSoundex(s]

3. remove consecutive duplicates
digits2 = digits[0]
for d in digits[1:]:
if digits2[-1] !=d:
digits2 +=d

Dive Into Python

248

http://diveintopython.org/download/diveintopython-examples-5.4.zip

4. remove all "9"s
digits3 = re.sub('9', ", digits2)

5. pad end with "0"s to 4 characters
while len(digits3) < 4:
digits3 +="0"

6. return first 4 characters
return digits3[:4]

if _name__=='_main__"
from timeit import Timer
names = (‘Woo', 'Pilgrim’, 'Flingjingwaller’)
for name in names:
statement = "soundex('%s")" % name
t = Timer(statement, "from __main__ import soundex")
print name.ljust(15), soundex(name), min(t.repeat())

Further Reading on Soundex

« Soundexing and Genealogy (http://www.avotaynu.com/soundex.html) gives a chronology of the evolution of
the Soundex and its regional variations.

18.2. Using the timeit Module

The most important thing you need to know about optimizing Python code is that you shouldn't write your own timin
function.

Timing short pieces of code is incredibly complex. How much processor time is your computer devoting to running
this code? Are there things running in the background? Are you sure? Every modern computer has background
processes running, some all the time, some intermittently. Cron jobs fire off at consistent intervals; background
services occasionally "wake up" to do useful things like check for new mail, connect to instant messaging servers,
check for application updates, scan for viruses, check whether a disk has been inserted into your CD drive in the la
100 nanoseconds, and so on. Before you start your timing tests, turn everything off and disconnect from the networ
Then turn off all the things you forgot to turn off the first time, then turn off the service that's incessantly checking
whether the network has come back yet, then ...

And then there's the matter of the variations introduced by the timing framework itself. Does the Python interpreter
cache method name lookups? Does it cache code block compilations? Regular expressions? Will your code have s
effects if run more than once? Don't forget that you're dealing with small fractions of a second, so small mistakes in
your timing framework will irreparably skew your results.

The Python community has a saying: "Python comes with batteries included." Don't write your own timing
framework. Python 2.3 comes with a perfectly good one called timeit.

Example 18.2. Introducing timeit

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

>>> import timeit

>>> t = timeit. Timer("soundex.soundex('Pilgrim’)",
"import soundex")

>>> t.timeit() (2]

Dive Into Python 249

http://www.avotaynu.com/soundex.html
http://diveintopython.org/download/diveintopython-examples-5.4.zip

8.21683733547
>>> t.repeat(3, 2000000) (3]
[16.48319309109, 16.46128984923, 16.44203948912]

©® The timeit module defines one class, Timer, which takes two arguments. Both arguments are
strings. The first argument is the statement you wish to time; in this case, you are timing a call to the
Soundex function within the soundex with an argument of 'Pilgrim'. The second argument to the
Timer class is the import statement that sets up the environment for the statement. Internally, timeit
sets up an isolated virtual environment, manually executes the setup statement (importing the soundex
module), then manually compiles and executes the timed statement (calling the Soundex function).

® Once you have the Timer object, the easiest thing to do is call timeit(), which calls your function 1
million times and returns the number of seconds it took to do it.

® The other major method of the Timer object is repeat(), which takes two optional arguments. The
first argument is the number of times to repeat the entire test, and the second argument is the number of
times to call the timed statement within each test. Both arguments are optional, and they default to 3 and
1000000 respectively. The repeat() method returns a list of the times each test cycle took, in
seconds.

You can use the timeit madule on the command line to test an existing Python program, without modifying the
code. See http://docs.python.org/lib/node396.html for documentation on the command-line flags.

Note that repeat() returns a list of times. The times will almost never be identical, due to slight variations in how
much processor time the Python interpreter is getting (and those pesky background processes that you can't get ric
Your first thought might be to say "Let's take the average and call that The True Number."

In fact, that's almost certainly wrong. The tests that took longer didn't take longer because of variations in your code
in the Python interpreter; they took longer because of those pesky background processes, or other factors outside «
the Python interpreter that you can't fully eliminate. If the different timing results differ by more than a few percent,
you still have too much variability to trust the results. Otherwise, take the minimum time and discard the rest.

Python has a handy min function that takes a list and returns the smallest value:

>>> min(t.repeat(3, 1000000))
8.22203948912

The timeit module only warks if you already know what piece of code you need to optimize. If you have a larger
Python program and don't know where your performance problems are, check out the hotshot module.
(http://docs.python.org/lib/module—hotshot.html)

18.3. Optimizing Regular Expressions

The first thing the Soundex function checks is whether the input is a non—empty string of letters. What's the best we
to do this?

If you answered "regular expressions”, go sit in the corner and contemplate your bad instincts. Regular expressions
almost never the right answer; they should be avoided whenever possible. Not only for performance reasons, but
simply because they're difficult to debug and maintain. Also for performance reasons.

This code fragment from soundex/stagel/soundexla.py checks whether the function argument source is a
word made entirely of letters, with at least one letter (not the empty string):

allChars = string.uppercase + string.lowercase
if not re.search('"[%s]+$' % allChars, source):
return "0000"

Dive Into Python 250

http://docs.python.org/lib/node396.html
http://docs.python.org/lib/module-hotshot.html

How does soundexla.py perform? For convenience, the _main__ section of the script contains this code that
calls the timeit module, sets up a timing test with three different names, tests each name three times, and displays
the minimum time for each:

if _name__=='__main__"
from timeit import Timer
names = (‘Woo', 'Pilgrim’, 'Flingjingwaller’)
for name in names:
statement = "soundex('%s")" % name
t = Timer(statement, "from __main___ import soundex")
print name.ljust(15), soundex(name), min(t.repeat())

So how does soundexla.py perform with this regular expression?

C:\samples\soundex\stagel>python soundexla.py
Woo WO000 19.3356647283

Pilgrim P426 24.0772053431

Flingjingwaller F452 35.0463220884

As you might expect, the algorithm takes significantly longer when called with longer names. There will be a few
things we can do to narrow that gap (make the function take less relative time for longer input), but the nature of the
algorithm dictates that it will never run in constant time.

The other thing to keep in mind is that we are testing a representative sample of names. Woo is a kind of trivial cas
in that it gets shorted down to a single letter and then padded with zeros. Pilgrim is a normal case, of average lengt
and a mixture of significant and ignored letters. Flingjingwaller is extraordinarily long and contains

consecutive duplicates. Other tests might also be helpful, but this hits a good range of different cases.

So what about that regular expression? Well, it's inefficient. Since the expression is testing for ranges of characters
(A-Z in uppercase, and a-z in lowercase), we can use a shorthand regular expression syntax. Here is
soundex/stagel/soundexl1b.py:

if not re.search("[A-Za-z]+$', source):
return "0000"

timeit says soundexl1b.py is slightly faster than soundexla.py, but nothing to get terribly excited about:

C:\samples\soundex\stagel>python soundexl1b.py
Woo WO000 17.1361133887

Pilgrim P426 21.8201693232

Flingjingwaller F452 32.7262294509

We saw in Section 15.3, Refactoring that regular expressions can be compiled and reused for faster results. Since
this regular expression never changes across function calls, we can compile it once and use the compiled version.
is soundex/stagel/soundexlc.py:

isOnlyChars = re.compile(""[A-Za-z]+$').search
def soundex(source):
if not isOnlyChars(source):
return "0000"

Using a compiled regular expression in soundex1c.py is significantly faster:

C:\samples\soundex\stagel>python soundexlc.py
Woo WO000 14.5348347346

Pilgrim P426 19.2784703084

Flingjingwaller F452 30.0893873383

Dive Into Python 251

But is this the wrong path? The logic here is simple: the input source needs to be non—-empty, and it needs to be
composed entirely of letters. Wouldn't it be faster to write a loop checking each character, and do away with regular
expressions altogether?

Here is soundex/stagel/soundexl1d.py:

if not source:
return "0000"
for ¢ in source:
if not (A" <=c <="'Z") and not ('a' <= ¢ <="2'):
return "0000"

It turns out that this technique in soundex1d.py is not faster than using a compiled regular expression (although it
is faster than using a non—compiled regular expression):

C:\samples\soundex\stagel>python soundexl1d.py
Woo WO000 15.4065058548

Pilgrim P426 22.2753567842

Flingjingwaller F452 37.5845122774

Why isn't soundex1d.py faster? The answer lies in the interpreted nature of Python. The regular expression engine
is written in C, and compiled to run natively on your computer. On the other hand, this loop is written in Python, and
runs through the Python interpreter. Even though the loop is relatively simple, it's not simple enough to make up for
the overhead of being interpreted. Regular expressions are never the right answer... except when they are.

It turns out that Python offers an obscure string method. You can be excused for not knowing about it, since it's nev
been mentioned in this book. The method is called isalpha(), and it checks whether a string contains only letters.

This is soundex/stagel/soundexle.py:

if (not source) and (not source.isalpha()):
return "0000"

How much did we gain by using this specific method in soundexle.py? Quite a bit.

C:\samples\soundex\stagel>python soundexle.py
Woo WO000 13.5069504644

Pilgrim P426 18.2199394057

Flingjingwaller F452 28.9975225902

Example 18.3. Best Result So Far: soundex/stagel/soundexle.py

import string, re

charToSoundex = {"A": "9",
"B": "1",
"c™ 2",
"D "3",
"E": "9",
"F
"G™ 2",
"H": "9",
""",
"Jrr2n,
"K' 2n,
"L 4,
"M": "5",

Dive Into Python 252

"N": "5",
"O" "9,
"Prt1,
"QM "2,
"R" "6",
"Sh2n,
T3,
"u" "o,
AV
"W": "9,
X2,
"y,
"z 2t

def soundex(source):
if (not source) and (not source.isalpha()):
return "0000"
source = source[0].upper() + source[1:]
digits = source[0]
for s in source[1:]:
s = s.upper()
digits += charToSoundex[s]
digits2 = digits[0]
for d in digits[1:]:
if digits2[-1] I=d:
digits2 +=d
digits3 = re.sub('9', ", digits2)
while len(digits3) < 4:
digits3 +="0"
return digits3[:4]

if _name__=='_ main__"
from timeit import Timer
names = (‘Woo', 'Pilgrim’, 'Flingjingwaller’)
for name in names:
statement = "soundex('%s")" % name
t = Timer(statement, "from __main___ import soundex")
print name.ljust(15), soundex(name), min(t.repeat())

18.4. Optimizing Dictionary Lookups

The second step of the Soundex algorithm is to convert characters to digits in a specific pattern. What's the best we
do this?

The most obvious solution is to define a dictionary with individual characters as keys and their corresponding digits
values, and do dictionary lookups on each character. This is what we have in soundex/stagel/soundexlc.py
(the current best result so far):

charToSoundex = {"A": "9",
"B": 1",
"crt2,
"D": "3",
"E" "9",
"FUt1n,
"G 2",
"H" "9,
""",
g2,
"K' "2,
"L 4
"M": "5",

Dive Into Python 253

"N": "5",

"O" "9,
"Prt1,
"QM "2,
"R" "6",
"Sh2n,
T3,
"u" "o,
AV
"W": "9,
X2,
"y,
"z 2t

def soundex(source):
... input check omitted for brevity ...
source = source[0].upper() + source[1:]
digits = source[0]
for s in source[1:]:
s = s.upper()
digits += charToSoundex[s]

You timed soundexlc.py already; this is how it performs:

C:\samples\soundex\stagel>python soundexlc.py
Woo WO000 14.5341678901

Pilgrim P426 19.2650071448

Flingjingwaller F452 30.1003563302

This code is straightforward, but is it the best solution? Calling upper() on each individual character seems
inefficient; it would probably be better to call upper() once on the entire string.

Then there's the matter of incrementally building the digits string. Incrementally building strings like this is
horribly inefficient; internally, the Python interpreter needs to create a new string each time through the loop, then
discard the old one.

Python is good at lists, though. It can treat a string as a list of characters automatically. And lists are easy to combir
into strings again, using the string method join().

Here is soundex/stage2/soundex2a.py, which converts letters to digits by using | and lambda:

def soundex(source):
...
source = source.upper()
digits = source[0] + ".join(map(lambda c: charToSoundex[c], source[1:]))

Surprisingly, soundex2a.py is not faster:

C:\samples\soundex\stage2>python soundex2a.py
Woo WO000 15.0097526362

Pilgrim P426 19.254806407

Flingjingwaller F452 29.3790847719

The overhead of the anonymous lambda function kills any performance you gain by dealing with the string as a list
of characters.

soundex/stage2/soundex2b.py uses a list comprehension instead of | and lambda:

Dive Into Python 254

source = source.upper()
digits = source[0] + "".join([charToSoundex]|c] for ¢ in source[1:]])

Using a list comprehension in soundex2b.py is faster than using | and lambda in soundex2a.py, but still not
faster than the original code (incrementally building a string in soundexl1c.py):

C:\samples\soundex\stage2>python soundex2b.py
Woo WO000 13.4221324219

Pilgrim P426 16.4901234654

Flingjingwaller F452 25.8186157738

It's time for a radically different approach. Dictionary lookups are a general purpose tool. Dictionary keys can be an
length string (or many other data types), but in this case we are only dealing with single-character keys and
single—character values. It turns out that Python has a specialized function for handling exactly this situation: the
string.maketrans function.

This is soundex/stage2/soundex2c.py:

allChar = string.uppercase + string.lowercase
charToSoundex = string.maketrans(allChar, "91239129922455912623919292" * 2)
def soundex(source):

#...

digits = source[0].upper() + source[1:].translate(charToSoundex)

What the heck is going on here? string.maketrans creates a translation matrix between two strings: the first
argument and the second argument. In this case, the first argument is the string
ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijkimnopgrstuvwxyz, and the second argument is the string
9123912992245591262391929291239129922455912623919292. See the pattern? It's the same

conversion pattern we were setting up longhand with a dictionary. A maps to 9, B maps to 1, C maps to 2, and so
forth. But it's not a dictionary; it's a specialized data structure that you can access using the string method
translate, which translates each character into the corresponding digit, according to the matrix defined by
string.maketrans.

timeit shows that soundex2c.py is significantly faster than defining a dictionary and looping through the input
and building the output incrementally:

C:\samples\soundex\stage2>python soundex2c.py
Woo WO000 11.437645008

Pilgrim P426 13.2825062962

Flingjingwaller F452 18.5570110168

You're not going to get much better than that. Python has a specialized function that does exactly what you want to
use it and move on.

Example 18.4. Best Result So Far: soundex/stage2/soundex2c.py

import string, re

allChar = string.uppercase + string.lowercase
charToSoundex = string.maketrans(allChar, "91239129922455912623919292" * 2)
isOnlyChars = re.compile(""[A-Za-z]+$').search

def soundex(source):
if not isOnlyChars(source):
return "0000"
digits = source[0].upper() + source[1:].translate(charToSoundex)

Dive Into Python 255

digits2 = digits[0]
for d in digits[1:]:
if digits2[-1] I=d:
digits2 +=d
digits3 = re.sub('9', ", digits2)
while len(digits3) < 4:
digits3 +="0"
return digits3[:4]
if _name__==' main__"
from timeit import Timer
names = (‘Woo', 'Pilgrim’, ‘Flingjingwaller’)
for name in names:
statement = "soundex('%s")" % name
t = Timer(statement, "from __main___ import soundex")
print name.ljust(15), soundex(name), min(t.repeat())

18.5. Optimizing List Operations
The third step in the Soundex algorithm is eliminating consecutive duplicate digits. What's the best way to do this?

Here's the code we have so far, in soundex/stage2/soundex2c.py:

digits2 = digits[0]

for d in digits[1:]:
if digits2[-1] I=d:

digits2 +=d

Here are the performance results for soundex2c.py:

C:\samples\soundex\stage2>python soundex2c.py
Woo WO000 12.6070768771

Pilgrim P426 14.4033353401

Flingjingwaller F452 19.7774882003

The first thing to consider is whether it's efficient to check digits[-1] each time through the loop. Are list indexes
expensive? Would we be better off maintaining the last digit in a separate variable, and checking that instead?

To answer this question, here is soundex/stage3/soundex3a.py:

digits2 ="
last_digit ="
for d in digits:
if d != last_digit:
digits2 +=d
last_digit =d

soundex3a.py does not run any faster than soundex2c.py, and may even be slightly slower (although it's not
enough of a difference to say for sure):

C:\samples\soundex\stage3>python soundex3a.py
Woo WO000 11.5346048171

Pilgrim P426 13.3950636184

Flingjingwaller F452 18.6108927252

Why isn't soundex3a.py faster? It turns out that list indexes in Python are extremely efficient. Repeatedly
accessing digits2[-1] is no problem at all. On the other hand, manually maintaining the last seen digit in a
separate variable means we have two variable assignments for each digit we're storing, which wipes out any small

Dive Into Python 256

gains we might have gotten from eliminating the list lookup.

Let's try something radically different. If it's possible to treat a string as a list of characters, it should be possible to U
a list comprehension to iterate through the list. The problem is, the code needs access to the previous character in
list, and that's not easy to do with a straightforward list comprehension.

However, it is possible to create a list of index numbers using the built-in range() function, and use those index
numbers to progressively search through the list and pull out each character that is different from the previous
character. That will give you a list of characters, and you can use the string method join() to reconstruct a string
from that.

Here is soundex/stage3/soundex3b.py:

digits2 = "".join([digits[i] for i in range(len(digits))
if i == 0 or digits[i—1] != digits]i]])

Is this faster? In a word, no.

C:\samples\soundex\stage3>python soundex3b.py
Woo WO000 14.2245271396

Pilgrim P426 17.8337165757

Flingjingwaller F452 25.9954005327

It's possible that the techniques so far as have been "string—centric”. Python can convert a string into a list of
characters with a single command: list(‘abc’) returns ['a’, 'b’, 'c']. Furthermore, lists can be modified

in place very quickly. Instead of incrementally building a new list (or string) out of the source string, why not move
elements around within a single list?

Here is soundex/stage3/soundex3c.py, which modifies a list in place to remove consecutive duplicate
elements:

digits = list(source[0].upper() + source[1l:].translate(charToSoundex))
i=0
for item in digits:

if item==digits[i]: continue

i+=1
digits[i]=item
del digits[i+1:]

digits2 = "".join(digits)
Is this faster than soundex3a.py or soundex3b.py? No, in fact it's the slowest method yet:

C:\samples\soundex\stage3>python soundex3c.py
Woo WO000 14.1662554878

Pilgrim P426 16.0397885765

Flingjingwaller F452 22.1789341942

We haven't made any progress here at all, except to try and rule out several "clever" techniques. The fastest code

we've seen so far was the original, most straightforward method (soundex2c.py). Sometimes it doesn't pay to be
clever.

Example 18.5. Best Result So Far: soundex/stage2/soundex2c.py

import string, re

Dive Into Python 257

allChar = string.uppercase + string.lowercase
charToSoundex = string.maketrans(allChar, "91239129922455912623919292" * 2)
isOnlyChars = re.compile(""[A-Za-z]+$").search

def soundex(source):
if not isOnlyChars(source):
return "0000"
digits = source[0].upper() + source[1:].translate(charToSoundex)
digits2 = digits[0]
for d in digits[1:]:
if digits2[-1] !=d:
digits2 +=d
digits3 = re.sub('9', ", digits2)
while len(digits3) < 4:
digits3 +="0"
return digits3[:4]

if _name__=='_main__"
from timeit import Timer
names = (‘Woo', 'Pilgrim’, 'Flingjingwaller’)
for name in names:
statement = "soundex('%s")" % name
t = Timer(statement, "from __main__ import soundex")
print name.ljust(15), soundex(name), min(t.repeat())

18.6. Optimizing String Manipulation

The final step of the Soundex algorithm is padding short results with zeros, and truncating long results. What is the
best way to do this?

This is what we have so far, taken from soundex/stage2/soundex2c.py:

digits3 = re.sub('9', ", digits2)
while len(digits3) < 4:

digits3 +="0"
return digits3[:4]

These are the results for soundex2c.py:

C:\samples\soundex\stage2>python soundex2c.py
Woo WO000 12.6070768771

Pilgrim P426 14.4033353401

Flingjingwaller F452 19.7774882003

The first thing to consider is replacing that regular expression with a loop. This code is from
soundex/stage4/soundex4a.py:

digits3 ="
for d in digits2:
ifd!="9"
digits3 +=d

Is soundex4a.py faster? Yes it is:

C:\samples\soundex\stage4>python soundex4a.py
Woo WO000 6.62865531792

Pilgrim P426 9.02247576158

Flingjingwaller F452 13.6328416042

Dive Into Python 258

But wait a minute. A loop to remove characters from a string? We can use a simple string method for that. Here's
soundex/stage4/soundex4b.py:

digits3 = digits2.replace('9', ")
Is soundex4b.py faster? That's an interesting question. It depends on the input:

C:\samples\soundex\stage4>python soundex4b.py
Woo WO000 6.75477414029

Pilgrim P426 7.56652144337

Flingjingwaller F452 10.8727729362

The string method in soundex4b.py is faster than the loop for most names, but it's actually slightly slower than
soundex4a.py in the trivial case (of a very short name). Performance optimizations aren't always uniform; tuning
that makes one case faster can sometimes make other cases slower. In this case, the majority of cases will benefit
the change, so let's leave it at that, but the principle is an important one to remember.

Last but not least, let's examine the final two steps of the algorithm: padding short results with zeros, and truncating
long results to four characters. The code you see in soundex4b.py does just that, but it's horribly inefficient. Take a
look at soundex/stage4/soundex4c.py to see why:

digits3 +='000'
return digits3[:4]

Why do we need a while loop to pad out the result? We know in advance that we're going to truncate the result to
four characters, and we know that we already have at least one character (the initial letter, which is passed unchan
from the original source variable). That means we can simply add three zeros to the output, then truncate it. Don't
get stuck in a rut over the exact wording of the problem; looking at the problem slightly differently can lead to a
simpler solution.

How much speed do we gain in soundex4c.py by dropping the while loop? It's significant:

C:\samples\soundex\stage4>python soundex4c.py
Woo WO000 4.89129791636

Pilgrim P426 7.30642134685

Flingjingwaller F452 10.689832367

Finally, there is still one more thing you can do to these three lines of code to make them faster: you can combine
them into one line. Take a look at soundex/stage4/soundex4d.py:

return (digits2.replace('9', ") + '000")[:4]
Putting all this code on one line in soundex4d.py is barely faster than soundex4c.py:

C:\samples\soundex\stage4>python soundex4d.py
Woo WO000 4.93624105857

Pilgrim P426 7.19747593619

Flingjingwaller F452 10.5490700634

It is also significantly less readable, and for not much performance gain. Is that worth it? | hope you have good

comments. Performance isn't everything. Your optimization efforts must always be balanced against threats to your
program's readability and maintainability.

Dive Into Python 259

18.7. Summary

This chapter has illustrated several important aspects of performance tuning in Python, and performance tuning in
general.

« If you need to choose between regular expressions and writing a loop, choose regular expressions. The reg
expression engine is compiled in C and runs natively on your computer; your loop is written in Python and
runs through the Python interpreter.

« If you need to choose between regular expressions and string methods, choose string methods. Both are
compiled in C, so choose the simpler one.

» General—purpose dictionary lookups are fast, but specialtiy functions such as string.maketrans and
string methods such as isalpha() are faster. If Python has a custom-tailored function for you, use it.

» Don't be too clever. Sometimes the most obvious algorithm is also the fastest.

» Don't sweat it too much. Performance isn't everything.

| can't emphasize that last point strongly enough. Over the course of this chapter, you made this function three time
faster and saved 20 seconds over 1 million function calls. Great. Now think: over the course of those million functiol
calls, how many seconds will your surrounding application wait for a database connection? Or wait for disk I/O? Or
wait for user input? Don't spend too much time over—optimizing one algorithm, or you'll ignore obvious
improvements somewhere else. Develop an instinct for the sort of code that Python runs well, correct obvious
blunders if you find them, and leave the rest alone.

Dive Into Python 260

Appendix A. Further reading

Chapter 1. Installing Python
Chapter 2. Your First Python Program
« 2.3. Documenting Functions

¢ PEP 257 (http://lwww.python.org/peps/pep—0257.html) defines doc string conventions.
¢ Python Style Guide (http://www.python.org/doc/essays/styleguide.html) discusses how to write a
good doc string.
¢ Python Tutorial (http://www.python.org/doc/current/tut/tut.ntml) discusses conventions for spacing in
doc strings
(http://mwww.python.org/doc/current/tut/node6.html#SECTIONO006750000000000000000).
e 2.4.2. What's an Object?

¢ Python Reference Manual (http://www.python.org/doc/current/ref/) explains exactly what it means to
say that everything in Python is an object (http://www.python.org/doc/current/ref/objects.html),
because some people are pedantic and like to discuss this sort of thing at great length.
+ eff-bot (http://www.effbot.org/guides/) summarizes Python objects
(http:/Iwww.effbot.org/guides/python—-objects.htm).
¢ 2.5. Indenting Code

+ Python Reference Manual (http://www.python.org/doc/current/ref/) discusses cross—platform
indentation issues and shows various indentation errors
(http://mwww.python.org/doc/current/ref/indentation.html).

¢ Python Style Guide (http://www.python.org/doc/essays/styleguide.html) discusses good indentation
style.

« 2.6. Testing Modules

¢ Python Reference Manual (http://www.python.org/doc/current/ref/) discusses the low—-level details of
importing modules (http://www.python.org/doc/current/ref/import.html).

Chapter 3. Native Datatypes
« 3.1.3. Deleting Items From Dictionaries

¢ How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about
dictionaries and shows how to use dictionaries to model sparse matrices
(http://www.ibiblio.org/obp/thinkCSpy/chapl10.htm).

¢ Python Knowledge Base (http://www.faqts.com/knowledge—-base/index.phtml/fid/199/) has a lot of
example code using dictionaries (http://www.fagts.com/knowledge—-base/index.phtml/fid/541).

¢ Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) discusses how to sort the
values of a dictionary by key (http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306).

¢ Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the dictionary
methods (http://www.python.org/doc/current/lib/typesmapping.html).

¢ 3.2.5. Using List Operators

¢ How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about lists

and makes an important point about passing lists as function arguments
(http://www.ibiblio.org/obp/thinkCSpy/chap08.htm).

Dive Into Python 261

http://www.python.org/peps/pep-0257.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/objects.html
http://www.effbot.org/guides/
http://www.effbot.org/guides/python-objects.htm
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/indentation.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/import.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/541
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesmapping.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap08.htm

¢ Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to use lists as stacks and
queues (http://www.python.org/doc/current/tut/node7.htmi#SECTIONO007110000000000000000).

¢ Python Knowledge Base (http://www.fagts.com/knowledge—base/index.phtml/fid/199/) answers
common questions about lists (http://www.fagts.com/knowledge-base/index.phtml/fid/534) and has «
lot of example code using lists (http://www.fagts.com/knowledge-base/index.phtml/fid/540).

¢ Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the list methods
(http://www.python.org/doc/current/lib/typesseq—mutable.html).

« 3.3. Introducing Tuples

¢ How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about tuples
and shows how to concatenate tuples (http://www.ibiblio.org/obp/thinkCSpy/chap10.htm).

¢ Python Knowledge Base (http://www.fagts.com/knowledge-base/index.phtml/fid/199/) shows how to
sort a tuple (http://www.fagts.com/knowledge-base/view.phtml/aid/4553/fid/587).

¢ Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to define a tuple with
one element
(http://mvww.python.org/doc/current/tut/node7.html#SECTIONOO07300000000000000000).

« 3.4.2. Assigning Multiple Values at Once

¢ Python Reference Manual (http://www.python.org/doc/current/ref/) shows examples of when you car
skip the line continuation character (http://www.python.org/doc/current/ref/implicit—joining.html) and
when you need to use it (http://www.python.org/doc/current/ref/explicit—joining.html).
¢ How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) shows how to use
multi-variable assignment to swap the values of two variables
(http://www.ibiblio.org/obp/thinkCSpy/chap09.htm).
« 3.5. Formatting Strings

¢ Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the string
formatting format characters (http://www.python.org/doc/current/lib/typesseq-strings.html).

¢ Effective AWK Programming (http://www-gnats.gnu.org:8080/cgi—bin/info2www?(gawk) Top)
discusses all the format characters
(http:/mww—gnats.gnu.org:8080/cgi—bin/info2www?(gawk)Control+Letters) and advanced string
formatting techniques like specifying width, precision, and zero—padding
(http:/mww—gnats.gnu.org:8080/cgi—bin/info2www?(gawk) Format+Modifiers).

« 3.6. Mapping Lists

¢ Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses another way to map lists
using the built=in map function
(http://mwww.python.org/doc/current/tut/node7.html#SECTIONO07130000000000000000).
¢ Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to do nested list
comprehensions
(http://mwww.python.org/doc/current/tut/node7.html#SECTIONO07140000000000000000).
« 3.7. Joining Lists and Splitting Strings

¢ Python Knowledge Base (http://www.fagts.com/knowledge-base/index.phtml/fid/199/) answers
common questions about strings (http://www.fagts.com/knowledge-base/index.phtml/fid/480) and
has a lot of example code using strings (http://www.faqts.com/knowledge—base/index.phtml/fid/539).

¢ Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the string methods
(http://mwww.python.org/doc/current/lib/string—methods.html).

¢ Python Library Reference (http://www.python.org/doc/current/lib/) documents the string module
(http:/mvww.python.org/doc/current/lib/module-string.html).

¢ The Whole Python FAQ (http://www.python.org/doc/FAQ.html) explains why join is a string
method

Dive Into Python 262

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/534
http://www.faqts.com/knowledge-base/index.phtml/fid/540
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-mutable.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/4553/fid/587
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/explicit-joining.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap09.htm
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-strings.html
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Top
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Control+Letters
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Format+Modifiers
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007140000000000000000
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/480
http://www.faqts.com/knowledge-base/index.phtml/fid/539
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/string-methods.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-string.html
http://www.python.org/doc/FAQ.html

(http:/mvww.python.org/cgi—bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search)
instead of a list method.

Chapter 4. The Power Of Introspection
* 4.2. Using Optional and Named Arguments

¢ Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses exactly when and how
default arguments are evaluated
(http://mvww.python.org/doc/current/tut/node6.htmI#SECTION006710000000000000000), which
matters when the default value is a list or an expression with side effects.
* 4.3.3. Built-In Functions

¢ Python Library Reference (http://www.python.org/doc/current/lib/) documents all the built—in
functions (http://www.python.org/doc/current/lib/built—in—funcs.html) and all the built—in exceptions
(http://mwww.python.org/doc/current/lib/module—exceptions.html).
* 4.5, Filtering Lists

¢ Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses another way to filter lists
using the built=in filter function
(http://mww.python.org/doc/current/tut/node7.html#SECTIONO07130000000000000000).
¢ 4.6.1. Using the and-or Trick

¢ Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) discusses alternatives to
the and-or trick (http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310).
* 4.7.1. Real-World lambda Functions

¢ Python Knowledge Base (http://www.faqts.com/knowledge—base/index.phtml/fid/199/) discusses
using lambda to call functions indirectly
(http:/mwww.fagts.com/knowledge—base/view.phtml/aid/6081/fid/241).

¢ Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to access outside
variables from inside a lambda function
(http://mwww.python.org/doc/current/tut/node6.htmI#SECTION006740000000000000000). (PEP 227
(http://python.sourceforge.net/peps/pep—0227.html) explains how this will change in future versions
of Python.)

¢ The Whole Python FAQ (http://www.python.org/doc/FAQ.html) has examples of obfuscated
one-liners using lambda
(http:/mvww.python.org/cgi—bin/faqw.py?query=4.15&querytype=simple&casefold=yes&req=search).

Chapter 5. Objects and Object-Orientation
¢ 5.2. Importing Modules Using from module import

¢ eff-bot (http://www.effbot.org/guides/) has more to say on import module vdrom module
import (http://www.effbot.org/guides/import—confusion.htm).
¢ Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses advanced import
techniques, including from module import *
(http://mwww.python.org/doc/current/tut/node8.htmI#SECTION008410000000000000000).
« 5.3.2. Knowing When to Use self and __init__

¢ Learning to Program (http://www.freenetpages.co.uk/hp/alan.gauld/) has a gentler introduction to
classes (http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm).

Dive Into Python 263

http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/built-in-funcs.html
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/6081/fid/241
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://python.sourceforge.net/peps/pep-0227.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.15&querytype=simple&casefold=yes&req=search
http://www.effbot.org/guides/
http://www.effbot.org/guides/import-confusion.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node8.html#SECTION008410000000000000000
http://www.freenetpages.co.uk/hp/alan.gauld/
http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm

¢ How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) shows how to use
classes to model compound datatypes (http://www.ibiblio.org/obp/think CSpy/chap12.htm).
¢ Python Tutorial (http://www.python.org/doc/current/tut/tut.html) has an in—depth look at classes,
namespaces, and inheritance (http://www.python.org/doc/current/tut/nodell1.html).
¢ Python Knowledge Base (http://www.fagts.com/knowledge-base/index.phtml/fid/199/) answers
common questions about classes (http://www.fagts.com/knowledge-base/index.phtml/fid/242).
* 5.4.1. Garbage Collection

¢ Python Library Reference (http://www.python.org/doc/current/lib/) summarizes built-in attributes
like class__ (http://www.python.org/doc/current/lib/specialattrs.html).
¢ Python Library Reference (http://www.python.org/doc/current/lib/) documents the gc module
(http:/imvww.python.org/doc/current/lib/module—gc.html), which gives you low-level control over
Python's garbage collection.
« 5.5. Exploring UserDict: A Wrapper Class

¢ Python Library Reference (http://www.python.org/doc/current/lib/) documents the UserDict
module (http://www.python.org/doc/current/lib/module-UserDict.html) and the copy module
(http:/imvww.python.org/doc/current/lib/module—copy.html).
« 5.7. Advanced Special Class Methods

+ Python Reference Manual (http://www.python.org/doc/current/ref/) documents all the special class
methods (http://www.python.org/doc/current/ref/specialnames.html).
* 5.9. Private Functions

¢ Python Tutorial (http://www.python.org/doc/current/tut/tut.nhtml) discusses the inner workings of

private variables
(http://mwvww.python.org/doc/current/tut/node11.htmI#SECTION0011600000000000000000).

Chapter 6. Exceptions and File Handling
« 6.1.1. Using Exceptions For Other Purposes

¢ Python Tutorial (http://www.python.org/doc/current/tut/tut.ntml) discusses defining and raising your
own exceptions, and handling multiple exceptions at once
(http://mwww.python.org/doc/current/tut/node 10.htmI#SECTION0010400000000000000000).

¢ Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the built-in
exceptions (http://www.python.org/doc/current/lib/module—exceptions.html).

¢ Python Library Reference (http://www.python.org/doc/current/lib/) documents the getpass
(http://mwww.python.org/doc/current/lib/module—getpass.html) module.

¢ Python Library Reference (http://www.python.org/doc/current/lib/) documents the traceback
module (http://www.python.org/doc/current/lib/module-traceback.html), which provides low-level
access to exception attributes after an exception is raised.

¢ Python Reference Manual (http://www.python.org/doc/current/ref/) discusses the inner workings of
the try...except block (http://www.python.org/doc/current/ref/try.html).

¢ 6.2.4. Writing to Files

¢ Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses reading and writing files,
including how to read a file one line at a time into a list
(http://mww.python.org/doc/current/tut/node9.htmI#SECTION009210000000000000000).

+ eff-bot (http://www.effbot.org/guides/) discusses efficiency and performance of various ways of
reading a file (http://www.effbot.org/guides/readline—performance.htm).

¢ Python Knowledge Base (http://www.fagts.com/knowledge—base/index.phtml/fid/199/) answers

Dive Into Python 264

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap12.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/242
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/specialattrs.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-gc.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-UserDict.html
http://www.python.org/doc/current/lib/module-copy.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/specialnames.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html#SECTION0011600000000000000000
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-getpass.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-traceback.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/try.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.effbot.org/guides/
http://www.effbot.org/guides/readline-performance.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/

common questions about files (http://www.fagts.com/knowledge-base/index.phtml/fid/552).
+ Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the file object
methods (http://www.python.org/doc/current/lib/bltin—file—objects.html).
¢ 6.4. Using sys.modules

¢ Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses exactly when and how
default arguments are evaluated
(http://mwww.python.org/doc/current/tut/node6.html#SECTIONO006710000000000000000).
¢ Python Library Reference (http://www.python.org/doc/current/lib/) documents the sys
(http:/mww.python.org/doc/current/lib/module-sys.html) module.
« 6.5. Working with Directories

¢ Python Knowledge Base (http://www.fagts.com/knowledge—base/index.phtml/fid/199/) answers
questions about the os module (http://www.fagts.com/knowledge—base/index.phtml/fid/240).

¢ Python Library Reference (http://www.python.org/doc/current/lib/) documents the os
(http:/imvww.python.org/doc/current/lib/module—os.html) module and the os.path
(http://mvww.python.org/doc/current/lib/module-os.path.html) module.

Chapter 7. Regular Expressions
e 7.6. Case study: Parsing Phone Numbers

¢ Regular Expression HOWTO (http://py—howto.sourceforge.net/regex/regex.html) teaches about
regular expressions and how to use them in Python.

¢ Python Library Reference (http://www.python.org/doc/current/lib/) summarizes the re module
(http://mvww.python.org/doc/current/lib/module-re.html).

Chapter 8. HTML Processing
¢ 8.4. Introducing BaseHTMLProcessor.py

¢ W3C (http://lwww.w3.org/) discusses character and entity references
(http:/mww.w3.0org/TR/IREC-html40/charset.html#entities).
¢ Python Library Reference (http://www.python.org/doc/current/lib/) confirms your suspicions that the
htmlentitydefs module (http://www.python.org/doc/current/lib/module—htmlentitydefs.html) is
exactly what it sounds like.
« 8.9. Putting it all together

¢ You thought | was kidding about the server—side scripting idea. So did I, until | found this web—basec
dialectizer (http://rinkworks.com/dialect/). Unfortunately, source code does not appear to be available

Chapter 9. XML Processing
* 9.4, Unicode

¢ Unicode.org (http://www.unicode.org/) is the home page of the unicode standard, including a brief
technical introduction (http://www.unicode.org/standard/principles.html).

¢ Unicode Tutorial (http://www.reportlab.com/i1l8n/python_unicode _tutorial.ntml) has some more
examples of how to use Python's unicode functions, including how to force Python to coerce unicode
into ASCII even when it doesn't really want to.

¢ PEP 263 (http://www.python.org/peps/pep—0263.html) goes into more detail about how and when to
define a character encoding in your .py files.

Dive Into Python 265

http://www.faqts.com/knowledge-base/index.phtml/fid/552
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/bltin-file-objects.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-sys.html
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/240
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-os.html
http://www.python.org/doc/current/lib/module-os.path.html
http://py-howto.sourceforge.net/regex/regex.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-re.html
http://www.w3.org/
http://www.w3.org/TR/REC-html40/charset.html#entities
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-htmlentitydefs.html
http://rinkworks.com/dialect/
http://www.unicode.org/
http://www.unicode.org/standard/principles.html
http://www.reportlab.com/i18n/python_unicode_tutorial.html
http://www.python.org/peps/pep-0263.html

Chapter 10. Scripts and Streams
Chapter 11. HTTP Web Services
¢ 11.1. Diving in

¢ Paul Prescod believes that pure HTTP web services are the future of the Internet
(http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html).

Chapter 12. SOAP Web Services
¢ 12.1. Diving In

¢ http://www.xmethods.net/ is a repository of public access SOAP web services.
¢ The SOAP specification (http://www.w3.0rg/TR/soap/) is surprisingly readable, if you like that sort of
thing.
« 12.8. Troubleshooting SOAP Web Services

¢+ New developments for SOAPpy
(http:/mww—-106.ibm.com/developerworks/webservices/library/ws—pyth17.html) steps through trying
to connect to another SOAP service that doesn't quite work as advertised.

Chapter 13. Unit Testing
¢ 13.1. Introduction to Roman numerals

¢ This site (http://www.wilkiecollins.demon.co.uk/roman/front.htm) has more on Roman numerals,
including a fascinating history (http://www.wilkiecollins.demon.co.uk/roman/intro.htm) of how
Romans and other civilizations really used them (short answer: haphazardly and inconsistently).
« 13.3. Introducing romantest.py

+ The PyUnit home page (http://pyunit.sourceforge.net/) has an in—depth discussion of using the
unittest framework (http://pyunit.sourceforge.net/pyunit.ntml), including advanced features not
covered in this chapter.

¢ The PyUnit FAQ (http://pyunit.sourceforge.net/pyunit.html) explains why test cases are stored
separately (http://pyunit.sourceforge.net/pyunit.htmi#WHERE) from the code they test.

¢ Python Library Reference (http://www.python.org/doc/current/lib/) summarizes the unittest
(http://mvww.python.org/doc/current/lib/module-unittest.html) module.

¢ ExtremeProgramming.org (http://www.extremeprogramming.org/) discusses why you should write
unit tests (http://www.extremeprogramming.org/rules/unittests.html).

¢ The Portland Pattern Repository (http://www.c2.com/cgi/wiki) has an ongoing discussion of unit tests
(http:/Imwww.c2.com/cgi/wiki?UnitTests), including a standard definition
(http:/imwww.c2.com/cgi/wiki? StandardDefinitionOfUnitTest), why you should code unit tests first
(http://mwvww.c2.com/cgi/wiki?CodeUnitTestFirst), and several in—depth case studies
(http:/mwww.c2.com/cgi/wiki?UnitTestTrial).

Chapter 14. Test-First Programming
Chapter 15. Refactoring

¢ 15.5. Summary

Dive Into Python 266

http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html
http://www.xmethods.net/
http://www.w3.org/TR/soap/
http://www-106.ibm.com/developerworks/webservices/library/ws-pyth17.html
http://www.wilkiecollins.demon.co.uk/roman/front.htm
http://www.wilkiecollins.demon.co.uk/roman/intro.htm
http://pyunit.sourceforge.net/
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html#WHERE
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-unittest.html
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/rules/unittests.html
http://www.c2.com/cgi/wiki
http://www.c2.com/cgi/wiki?UnitTests
http://www.c2.com/cgi/wiki?StandardDefinitionOfUnitTest
http://www.c2.com/cgi/wiki?CodeUnitTestFirst
http://www.c2.com/cgi/wiki?UnitTestTrial

¢ XProgramming.com (http://www.xprogramming.com/) has links to download unit testing frameworks
(http:/mww.xprogramming.com/software.htm) for many different languages.

Chapter 16. Functional Programming
Chapter 17. Dynamic functions
« 17.7. plural.py, stage 6
¢ PEP 255 (http://www.python.org/peps/pep—0255.html) defines generators.
¢ Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) has many more examples
of generators (http://www.google.com/search?g=generators+cookbook+site:aspn.activestate.com).
Chapter 18. Performance Tuning

« 18.1. Diving in

¢ Soundexing and Genealogy (http://www.avotaynu.com/soundex.html) gives a chronology of the
evolution of the Soundex and its regional variations.

Dive Into Python 267

http://www.xprogramming.com/
http://www.xprogramming.com/software.htm
http://www.python.org/peps/pep-0255.html
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.google.com/search?q=generators+cookbook+site:aspn.activestate.com
http://www.avotaynu.com/soundex.html

Appendix B. A 5—minute review

Chapter 1. Installing Python

«1.1.

1.2

*1.3.

1.4,

* 1.5

* 1.6.

«1.7.

*1.8.

« 1.9

Which Python is right for you?

The first thing you need to do with Python is install it. Or do you?
Python on Windows

On Windows, you have a couple choices for installing Python.
Python on Mac OS X

On Mac OS X, you have two choices for installing Python: install it, or don't install it. You
probably want to install it.
Python on Mac OS 9

Mac OS 9 does not come with any version of Python, but installation is very simple, and there
is only one choice.
Python on RedHat Linux

Download the latest Python RPM by going to http://www.python.org/ftp/python/ and
selecting the highest version number listed, then selecting the rpms/ directory within that.
Then download the RPM with the highest version number. You can install it with the rpm
command, as shown here:

Python on Debian GNU/Linux

If you are lucky enough to be running Debian GNU/Linux, you install Python through the apt
command.
Python Installation from Source

If you prefer to build from source, you can download the Python source code from
http://www.python.org/ftp/python/. Select the highest version number listed, download the
.tgz file), and then do the usualconfigure, = make, make install dance.

The Interactive Shell

Now that you have Python installed, what's this interactive shell thing you're running?
Summary

You should now have a version of Python installed that works for you.

Chapter 2. Your First Python Program

« 2.1.

2.2,

* 2.3.

Diving in

Here is a complete, working Python program.
Declaring Functions

Python has functions like most other languages, but it does not have separate header files like
C++ or interface/implementation sections like Pascal. When you need a function,
just declare it, like this:

Documenting Functions

Dive Into Python 268

http://www.python.org/ftp/python/
http://www.python.org/ftp/python/

2.4,

* 2.5,

* 2.6.

You can document a Python function by giving it a doc string.
Everything Is an Object

A function, like everything else in Python, is an object.
Indenting Code

Python functions have no explicit begin or end, and no curly braces to mark where the
function code starts and stops. The only delimiter is a colon () and the indentation of the
code itself.

Testing Modules

Python modules are objects and have several useful attributes. You can use this to easily test
your modules as you write them. Here's an example that uses thendme___ trick.

Chapter 3. Native Datatypes

* 3.1.

* 3.2

* 3.3.

* 3.4.

* 3.5.

* 3.6.

* 3.7.

* 3.8.

Introducing Dictionaries

One of Python's built-in datatypes is the dictionary, which defines one—to—one relationships
between keys and values.
Introducing Lists

Lists are Python's workhorse datatype. If your only experience with lists is arrays in Visual
Basic or (God forbid) the datastore in Powerbuilder, brace yourself for Python lists.
Introducing Tuples

A tuple is an immutable list. A tuple can not be changed in any way once it is created.
Declaring variables

Python has local and global variables like most other languages, but it has no explicit variable
declarations. Variables spring into existence by being assigned a value, and they are
automatically destroyed when they go out of scope.

Formatting Strings

Python supports formatting values into strings. Although this can include very complicated
expressions, the most basic usage is to insert values into a string with the %s placeholder.
Mapping Lists

One of the most powerful features of Python is the list comprehension, which provides a
compact way of mapping a list into another list by applying a function to each of the elements
of the list.

Joining Lists and Splitting Strings

You have a list of key-value pairs in the form key=value, and you want to join them into a
single string. To join any list of strings into a single string, use the join method of a string
object.

Summary

The odbchelper.py program and its output should now make perfect sense.

Chapter 4. The Power Of Introspection

Dive Into Python 269

*4.1.

4.2,

*4.3.

°* 4.4,

* 45,

* 4.6.

*4.7.

*4.8.

*49.

Diving In

Here is a complete, working Python program. You should understand a good deal about it just
by looking at it. The numbered lines illustrate concepts covered in Chapter 2, Your First
Python Program. Don't worry if the rest of the code looks intimidating; you'll learn all about
it throughout this chapter.

Using Optional and Named Arguments

Python allows function arguments to have default values; if the function is called without the
argument, the argument gets its default value. Futhermore, arguments can be specified in any
order by using named arguments. Stored procedures in SQL Server Transact/SQL can do this,
so if you're a SQL Server scripting guru, you can skim this part.

Using type, str, dir, and Other Built-In Functions

Python has a small set of extremely useful built-in functions. All other functions are

partitioned off into modules. This was actually a conscious design decision, to keep the core

language from getting bloated like other scripting languages (cough cough, Visual Basic).
Getting Object References With getattr

You already know that Python functions are objects. What you don't know is that you can get
a reference to a function without knowing its name until run—time, by using the getattr
function.

Filtering Lists

As you know, Python has powerful capabilities for mapping lists into other lists, via list

comprehensions (Section 3.6, Mapping Lists). This can be combined with a filtering

mechanism, where some elements in the list are mapped while others are skipped entirely.
The Peculiar Nature of and and or

In Python, and and or perform boolean logic as you would expect, but they do not return
boolean values; instead, they return one of the actual values they are comparing.
Using lambda Functions

Python supports an interesting syntax that lets you define one-line mini—functions on the fly.
Borrowed from Lisp, these so—called lambda functions can be used anywhere a function is
required.

Putting It All Together

The last line of code, the only one you haven't deconstructed yet, is the one that does all the
work. But by now the work is easy, because everything you need is already set up just the
way you need it. All the dominoes are in place; it's time to knock them down.

Summary

The apihelper.py program and its output should now make perfect sense.

Chapter 5. Objects and Object-Orientation

*5.1.

Diving In

Here is a complete, working Python program. Read the doc strings of the module, the
classes, and the functions to get an overview of what this program does and how it works. As
usual, don't worry about the stuff you don't understand; that's what the rest of the chapter is

Dive Into Python 270

for.
¢ 5.2. Importing Modules Using from module import

Python has two ways of importing modules. Both are useful, and you should know when to
use each. One way, import module, you've already seen in Section 2.4, Everything Is an
Object . The other way accomplishes the same thing, but it has subtle and important
differences.

« 5.3. Defining Classes

Python is fully object—-oriented: you can define your own classes, inherit from your own or
built-in classes, and instantiate the classes you've defined.
« 5.4. Instantiating Classes

Instantiating classes in Python is straightforward. To instantiate a class, simply call the class
as if it were a function, passing the arguments that the __init_ method defines. The return
value will be the newly created obiject.

« 5.5, Exploring UserDict: A Wrapper Class

As you've seen, Filelnfo is a class that acts like a dictionary. To explore this further, let's
look at the UserDict class in the UserDict module, which is the ancestor of the
Filelnfo class. This is nothing special; the class is written in Python and stored in a .py
file, just like any other Python code. In particular, it's stored in the lib directory in your
Python installation.

« 5.6. Special Class Methods

In addition to normal class methods, there are a number of special methods that Python
classes can define. Instead of being called directly by your code (like normal methods),
special methods are called for you by Python in particular circumstances or when specific
syntax is used.

« 5.7. Advanced Special Class Methods

Python has more special methods than just __ getitem___ and __ setitem__. Some of
them let you emulate functionality that you may not even know about.

« 5.8. Introducing Class Attributes
You already know about data attributes, which are variables owned by a specific instance of a
class. Python also supports class attributes, which are variables owned by the class itself.

* 5.9. Private Functions
Unlike in most languages, whether a Python function, method, or attribute is private or public
is determined entirely by its name.

¢ 5.10. Summary

That's it for the hard—core object trickery. You'll see a real-world application of special class
methods in Chapter 12, which uses getattr to create a proxy to a remote web service.

Chapter 6. Exceptions and File Handling
« 6.1. Handling Exceptions

Like many other programming languages, Python has exception handling via
try...except blocks.

Dive Into Python 271

* 6.2. Working with File Objects

Python has a built-in function, open, for opening a file on disk. open returns a file object,
which has methods and attributes for getting information about and manipulating the opened
file.

* 6.3. Iterating with for Loops

Like most other languages, Python has for loops. The only reason you haven't seen them
until now is that Python is good at so many other things that you don't need them as often.
¢ 6.4. Using sys.modules

Modules, like everything else in Python, are objects. Once imported, you can always get a
reference to a module through the global dictionary sys.modules.
« 6.5. Working with Directories

The os.path module has several functions for manipulating files and directories. Here,
we're looking at handling pathnames and listing the contents of a directory.
¢ 6.6. Putting It All Together

Once again, all the dominoes are in place. You've seen how each line of code works. Now
let's step back and see how it all fits together.
¢ 6.7. Summary

The fileinfo.py program introduced in Chapter 5 should now make perfect sense.
Chapter 7. Regular Expressions
« 7.1. Diving In

If what you're trying to do can be accomplished with string functions, you should use them.

They're fast and simple and easy to read, and there's a lot to be said for fast, simple, readable

code. But if you find yourself using a lot of different string functions with if statements to

handle special cases, or if you're combining them with split and join and list

comprehensions in weird unreadable ways, you may need to move up to regular expressions.
e 7.2. Case Study: Street Addresses

This series of examples was inspired by a real-life problem I had in my day job several years
ago, when | needed to scrub and standardize street addresses exported from a legacy system
before importing them into a newer system. (See, | don't just make this stuff up; it's actually
useful.) This example shows how | approached the problem.

« 7.3. Case Study: Roman Numerals

You've most likely seen Roman numerals, even if you didn't recognize them. You may have
seen them in copyrights of old movies and television shows ("Copyright MCMXLVI" instead
of "Copyright 1946"), or on the dedication walls of libraries or universities ("established
MDCCCLXXXVIII" instead of "established 1888"). You may also have seen them in
outlines and bibliographical references. It's a system of representing numbers that really does
date back to the ancient Roman empire (hence the name).

e 7.4. Using the {n,m} Syntax

In the previous section, you were dealing with a pattern where the same character could be
repeated up to three times. There is another way to express this in regular expressions, which

Dive Into Python 272

some people find more readable. First look at the method we already used in the previous
example.
« 7.5. Verbose Regular Expressions

So far you've just been dealing with what I'll call "compact” regular expressions. As you've
seen, they are difficult to read, and even if you figure out what one does, that's no guarantee
that you'll be able to understand it six months later. What you really need is inline
documentation.

e 7.6. Case study: Parsing Phone Numbers

So far you've concentrated on matching whole patterns. Either the pattern matches, or it
doesn't. But regular expressions are much more powerful than that. When a regular
expression does match, you can pick out specific pieces of it. You can find out what matched
where.

e 7.7. Summary

This is just the tiniest tip of the iceberg of what regular expressions can do. In other words,
even though you're completely overwhelmed by them now, believe me, you ain't seen nothing
yet.

Chapter 8. HTML Processing
« 8.1. Diving in

| often see questions on comp.lang.python
(http://groups.google.com/groups?group=comp.lang.python) like "How can I list all the
[headers|images|links] in my HTML document?" "How do | parse/translate/munge the text of
my HTML document but leave the tags alone?" "How can | add/remove/quote attributes of all
my HTML tags at once?" This chapter will answer all of these questions.

« 8.2. Introducing sgmllib.py

HTML processing is broken into three steps: breaking down the HTML into its constituent
pieces, fiddling with the pieces, and reconstructing the pieces into HTML again. The first step
is done by sgmllib.py, a part of the standard Python library.

« 8.3. Extracting data from HTML documents

To extract data from HTML documents, subclass the SGMLParser class and define methods
for each tag or entity you want to capture.
¢ 8.4. Introducing BaseHTMLProcessor.py

SGMLParser doesn't produce anything by itself. It parses and parses and parses, and it calls
a method for each interesting thing it finds, but the methods don't do anything. SGMLParser
is an HTML consumer: it takes HTML and breaks it down into small, structured pieces. As
you saw in the previous section, you can subclass SGMLParser to define classes that catch
specific tags and produce useful things, like a list of all the links on a web page. Now you'll
take this one step further by defining a class that catches everything SGMLParser throws at
it and reconstructs the complete HTML document. In technical terms, this class will be an
HTML producer.

« 8.5. locals and globals

Let's digress from HTML processing for a minute and talk about how Python handles
variables. Python has two built—in functions, locals and globals, which provide

Dive Into Python 273

http://groups.google.com/groups?group=comp.lang.python

dictionary—based access to local and global variables.
« 8.6. Dictionary—based string formatting

There is an alternative form of string formatting that uses dictionaries instead of tuples of
values.

« 8.7. Quoting attribute values

A common question on comp.lang.python
(http://groups.google.com/groups?group=comp.lang.python) is "I have a bunch of HTML
documents with unquoted attribute values, and | want to properly quote them all. How can |
do this?® (This is generally precipitated by a project manager who has found the
HTML-is—a—standard religion joining a large project and proclaiming that all pages must
validate against an HTML validator. Unquoted attribute values are a common violation of the
HTML standard.) Whatever the reason, unquoted attribute values are easy to fix by feeding
HTML through BaseHTMLProcessor.

« 8.8. Introducing dialect.py

Dialectizer is a simple (and silly) descendant of BaseHTMLProcessor. It runs blocks
of text through a series of substitutions, but it makes sure that anything within a
<pre>...</pre> block passes through unaltered.

« 8.9. Putting it all together

It's time to put everything you've learned so far to good use. | hope you were paying attention.
¢ 8.10. Summary

Python provides you with a powerful tool, sgmllib.py, to manipulate HTML by turning
its structure into an object model. You can use this tool in many different ways.

Chapter 9. XML Processing
« 9.1. Diving in

There are two basic ways to work with XML. One is called SAX ("Simple API for XML"),

and it works by reading the XML a little bit at a time and calling a method for each element it
finds. (If you read Chapter 8, HTML Processing, this should sound familiar, because that's
how the sgmllib module works.) The other is called DOM ("Document Object Model"),

and it works by reading in the entire XML document at once and creating an internal
representation of it using native Python classes linked in a tree structure. Python has standard

modules for both kinds of parsing, but this chapter will only deal with using the DOM.
« 9.2. Packages

Actually parsing an XML document is very simple: one line of code. However, before you
get to that line of code, you need to take a short detour to talk about packages.
« 9.3. Parsing XML

As | was saying, actually parsing an XML document is very simple: one line of code. Where
you go from there is up to you.
* 9.4, Unicode

Unicode is a system to represent characters from all the world's different languages. When
Python parses an XML document, all data is stored in memory as unicode.
« 9.5, Searching for elements

Dive Into Python 274

http://groups.google.com/groups?group=comp.lang.python

Traversing XML documents by stepping through each node can be tedious. If you're looking
for something in particular, buried deep within your XML document, there is a shortcut you
can use to find it quickly: getElementsByTagName.

* 9.6. Accessing element attributes

XML elements can have one or more attributes, and it is incredibly simple to access them
once you have parsed an XML document.
¢ 9.7. Segue

OK, that's it for the hard—core XML stuff. The next chapter will continue to use these same
example programs, but focus on other aspects that make the program more flexible: using
streams for input processing, using getattr for method dispatching, and using

command-line flags to allow users to reconfigure the program without changing the code.

Chapter 10. Scripts and Streams
« 10.1. Abstracting input sources

One of Python's greatest strengths is its dynamic binding, and one powerful use of dynamic
binding is the file-like object.
« 10.2. Standard input, output, and error

UNIX users are already familiar with the concept of standard input, standard output, and
standard error. This section is for the rest of you.
« 10.3. Caching node lookups

kgp.py employs several tricks which may or may not be useful to you in your XML
processing. The first one takes advantage of the consistent structure of the input documents to
build a cache of nodes.

« 10.4. Finding direct children of a node

Another useful techique when parsing XML documents is finding all the direct child elements
of a particular element. For instance, in the grammar files, a ref element can have several p
elements, each of which can contain many things, including other p elements. You want to
find just the p elements that are children of the ref, not p elements that are children of other
p elements.

« 10.5. Creating separate handlers by node type

The third useful XML processing tip involves separating your code into logical functions,
based on node types and element names. Parsed XML documents are made up of various
types of nodes, each represented by a Python object. The root level of the document itself is
represented by a Document object. The Document then contains one or more Element
objects (for actual XML tags), each of which may contain other Element objects, Text
objects (for bits of text), or Comment objects (for embedded comments). Python makes it
easy to write a dispatcher to separate the logic for each node type.

¢ 10.6. Handling command-line arguments

Python fully supports creating programs that can be run on the command line, complete with
command-line arguments and either short- or long-style flags to specify various options.
None of this is XML-specific, but this script makes good use of command-line processing,
so it seemed like a good time to mention it.

« 10.7. Putting it all together

Dive Into Python 275

» 10.8.

You've covered a lot of ground. Let's step back and see how all the pieces fit together.
Summary

Python comes with powerful libraries for parsing and manipulating XML documents. The
minidom takes an XML file and parses it into Python objects, providing for random access
to arbitrary elements. Furthermore, this chapter shows how Python can be used to create a
"real" standalone command-line script, complete with command-line flags, command-line
arguments, error handling, even the ability to take input from the piped result of a previous
program.

Chapter 11. HTTP Web Services

«11.1.

« 11.2.

« 11.3.

114,

« 11.5.

« 11.6.

« 11.7.

« 11.8.

« 11.9.

Diving in

You've learned about HTML processing and XML processing, and along the way you saw
how to download a web page and how to parse XML from a URL, but let's dive into the more
general topic of HTTP web services.

How not to fetch data over HTTP

Let's say you want to download a resource over HTTP, such as a syndicated Atom feed. But
you don't just want to download it once; you want to download it over and over again, every
hour, to get the latest news from the site that's offering the news feed. Let's do it the
quick—and-dirty way first, and then see how you can do better.

Features of HTTP

There are five important features of HTTP which you should support.
Debugging HTTP web services

First, let's turn on the debugging features of Python's HTTP library and see what's being sent
over the wire. This will be useful throughout the chapter, as you add more and more features.
Setting the User—Agent

The first step to improving your HTTP web services client is to identify yourself properly
with a User—Agent. To do that, you need to move beyond the basic urllib and dive into
urllib2.

Handling Last—-Modified and ETag

Now that you know how to add custom HTTP headers to your web service requests, let's look
at adding support for Last-Modified and ETag headers.
Handling redirects

You can support permanent and temporary redirects using a different kind of custom URL
handler.
Handling compressed data

The last important HTTP feature you want to support is compression. Many web services
have the ability to send data compressed, which can cut down the amount of data sent over
the wire by 60% or more. This is especially true of XML web services, since XML data
compresses very well.

Putting it all together

You've seen all the pieces for building an intelligent HTTP web services client. Now let's see

Dive Into Python 276

how they all fit together.
¢ 11.10. Summary

The openanything.py and its functions should now make perfect sense.
Chapter 12. SOAP Web Services
¢ 12.1. Diving In

You use Google, right? It's a popular search engine. Have you ever wished you could
programmatically access Google search results? Now you can. Here is a program to search
Google from Python.

¢ 12.2. Installing the SOAP Libraries

Unlike the other code in this book, this chapter relies on libraries that do not come
pre—installed with Python.
« 12.3. First Steps with SOAP

The heart of SOAP is the ability to call remote functions. There are a number of public access
SOAP servers that provide simple functions for demonstration purposes.
« 12.4. Debugging SOAP Web Services

The SOAP libraries provide an easy way to see what's going on behind the scenes.
¢ 12.5. Introducing WSDL

The SOAPProxy class proxies local method calls and transparently turns then into
invocations of remote SOAP methods. As you've seen, this is a lot of work, and SOAPProxy
does it quickly and transparently. What it doesn't do is provide any means of method
introspection.

« 12.6. Introspecting SOAP Web Services with WSDL

Like many things in the web services arena, WSDL has a long and checkered history, full of
political strife and intrigue. | will skip over this history entirely, since it bores me to tears.
There were other standards that tried to do similar things, but WSDL won, so let's learn how
to use it.

« 12.7. Searching Google

Let's finally turn to the sample code that you saw that the beginning of this chapter, which
does something more useful and exciting than get the current temperature.

« 12.8. Troubleshooting SOAP Web Services
Of course, the world of SOAP web services is not all happiness and light. Sometimes things
go wrong.

* 12.9. Summary
SOAP web services are very complicated. The specification is very ambitious and tries to
cover many different use cases for web services. This chapter has touched on some of the
simpler use cases.

Chapter 13. Unit Testing

¢ 13.1. Introduction to Roman numerals

Dive Into Python 277

In previous chapters, you "dived in" by immediately looking at code and trying to understand
it as quickly as possible. Now that you have some Python under your belt, you're going to
step back and look at the steps that happen before the code gets written.

¢ 13.2. Diving in

Now that you've completely defined the behavior you expect from your conversion functions,

you're going to do something a little unexpected: you're going to write a test suite that puts

these functions through their paces and makes sure that they behave the way you want them

to. You read that right: you're going to write code that tests code that you haven't written yet.
« 13.3. Introducing romantest.py

This is the complete test suite for your Roman numeral conversion functions, which are yet to
be written but will eventually be in roman.py. It is not immediately obvious how it all fits
together; none of these classes or methods reference any of the others. There are good reasons
for this, as you'll see shortly.
« 13.4. Testing for success

The most fundamental part of unit testing is constructing individual test cases. A test case
answers a single question about the code it is testing.
« 13.5. Testing for failure

It is not enough to test that functions succeed when given good input; you must also test that
they fail when given bad input. And not just any sort of failure; they must fail in the way you
expect.

« 13.6. Testing for sanity

Often, you will find that a unit of code contains a set of reciprocal functions, usually in the
form of conversion functions wh