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Foreword

How do you describe what a computer program does without getting bogged
down in how it does it? If the program hasn’t been written yet, we can ask
the same question using a different tense and slightly different wording: How
do you specify what a program should do without determining exactly how it
should do it? Then we can add the question: When the program is written,
how do you judge that it satisfies its specification?

In civil engineering, one can ask a very similar pair of questions: How can
you specify what a bridge should do without determining its design? And,
when it has been designed, how can you judge whether it does indeed do
what it should?

This book is about these questions for software engineering, and its answers
can usefully be compared with what happens in civil engineering. First, a
specification is a different kind of thing from a design; the specification of a
bridge may talk about load-bearing capacity, deflection under high winds and
resistance of piers to water erosion, while the design talks about quite different
things such as structural components and their assembly. For software, too,
specifications talk about external matters and programs talk about internal
matters.

The second of the two questions is about judging that one thing satisfies
another. The main message of the book, and a vitally important one, is that
judgement relies upon understanding. This is obviously true in the case of the
bridge; the judgement that the bridge can bear the specified load rests on
structural properties of components, enshrined in engineering principles, which
in turn rest upon the science of materials. Thus the judgement rests upon a
tower of understanding.

This tower is well-established for the older engineering disciplines; for
software engineering, it is still being built. (We may call it ‘software science’.)
The authors have undertaken to tell students in their first or second year
about the tower as it now stands, rather than dictate principles to them. This

xi



xii  Foreword

is refreshing; in software engineering there has been a tendency to substitute
formality for understanding. Since a program is written in a very formal
language, and the specification is also often written in formal logical terms, it
is natural to emphasize formality in making the judgement that one satisfies
the other. But in teaching it is stultifying to formalize before understanding,
and software science is no exception — even if the industrial significance of a
formal verification is increasingly being recognized.

This book is therefore very approachable. It makes the interplay between
specification and programming into a human and flexible one, albeit guided
by rigour. After a gentle introduction, it treats three or four good-sized
examples, big enough to give confidence that the approach will scale up to
industrial software; at the same time, there is a spirit of scientific enquiry.
The authors have made the book self-contained by including an introduction
to logic written in the same spirit. They have tempered their care for
accuracy with a light style of writing and an enthusiasm which I believe will
endear the book to students.

Robin Milner
University of Edinburgh
January 1994



Preface

Can we ever be sure that our computer programs will work reliably? One
approach to this problem is to attempt a mathematical proof of reliability,
and this has led to the idea of Formal Methods: if you have a formal, logical
specification of the properties meant by ‘working reliably’, then perhaps you
can give a formal mathematical proof that the program (presented as a formal
text) satisfies them.

Of course, this is by no means trivial. Before we can even get started
on a formal proof we must turn the informal ideas intended by ‘working
reliably’ into a formal specification, and we also need a formal account of
what it means to say that a program satisfies a specification (this amounts
to a semantics of the programming language, an account of the meaning of
programs). None the less, Formal Methods are now routinely practised by a
number of software producers.

However, a tremendous overhead derives from the stress on formality,
that is to say, working by the manipulation of symbolic forms. A formal
mathematical proof is a very different beast from the kind of proof that you
will see in mathematical text books. It includes the minutest possible detail,
both in proof steps and in background assumptions, and is not for human
consumption — sophisticated software support tools are needed to handle it.
For this reason, Formal Methods are often considered justifiable only in ‘safety
critical” systems, for which reliability is an overriding priority.

The aim of this book is to present wnformal formal methods, showing
the benefits of the approach even without strict formality: although we use
logic as a notation for the specifications, we rely on informal semantics
— a programmer’s ordinary intuitions about what small, linear stretches of
code actually do — and we use proofs to the level of rigour of ordinary
mathematics.

This can, of course, serve as a first introduction to strict Formal Methods,
but it should really be seen much more broadly. The benefits of Formal

x1il



xiv  Preface

Methods do not accrue just from the formality. The very effort of writing a
specification prior to the coding focuses attention on what the user wants to
get out of the program, as opposed to what the computer has to do, and the
satisfaction proof, even if informal, expresses our idea of how the algorithm
works. This does not require support tools, and the method — which amounts
really to methodical commenting — is practicable in all programming tasks.

Moreover, the logic plays a key role in modularization, because it bundles
the code up into small, self-contained chunks, each with its specific task
defined by the logic.

Although most of the techniques presented are not new (and can be found,
for instance, in the classic texts of Gries and Reynolds), we believe that many
aspects of our approach are of some novelty. In particular

Functional programming: Functional programming is presented as a
programming language in its own right (and we include a description
of the main features of Miranda); but we also use it as a reasoning
tool in imperative programming. This is useful because the language
of functional programming is very often much clearer and more concise
than that of imperative programming (the reason being that functional
programs contain less detail about how to solve a problem than do
imperative programs).

Procedures: It is difficult to give a semantics that covers procedures, and
many treatments (though not Reynolds’) ignore them. This is reinforced
by the standard list of ingredients of structured programming (sequence,
decision and iteration), which are indeed all that is structurally necessarys;
but in fact procedures are the single most effective structure in making
large programs tractable to human minds and this is because they are the
basic unit of interface between specification and code — both inwards,
between the specification and implementing code, and outwards, between
the specification and calling code. The role of the logical specification
in promoting modularity is crucial, and we have paid unusual attention
to showing not only how specifications may be satisfied but also to how
they may be used.

Loop invariants: We have tried hard to show loop invariants as an expression
of initial intuitions about the computation, rather than as either a post
hoc justification or as something that appears by magic by playing with
the post-condition. Often they arise naturally out of diagrams; nearly
always they can function as statements of intent for what sections of
the code are to do. We have never shirked the duty of providing them.
Experience even with machine code shows that the destinations of jumps
are critical places at which comments are vital, and this covers the case
of loop invariants.

Real programming languages: We have done our best to address real
programming problems by facing up to the complexities of real imperative



Preface xv

languages, saying what can be said rather than restricting ourselves to
artificial simplicities. Thus, while pointing out that reasoning is simpler
if features such as side-effects are avoided, we have tried to show how
the more complicated features might be attacked, at least informally.

The book is divided into two complementary parts, the first on Programming
and the second on Logic. Though they are both about logical reasoning, the
first half concerns the ideas about programs that the reasoning is intended
to capture, while the second half is more about the formal machinery.
The distinction is somewhat analogous to that often seen in books about
programming languages: a first part is an introduction to programming using
the language, and a second part is a formal report on it.

To read our book from scratch, one would most likely read the two parts in
parallel, and this is in fact how we teach the material for our main computer
science course at Imperial. However, the division into two reasonably disjoint
parts means that people who already have some background in logic can see
the programming story told without interruption.

The approach to the logic section has been strongly influenced by our
experience in teaching the subject as part of a computer science course. We
put great stress right from the start on the use of the full predicate logic as
a means of expression, and our formal treatment of logical proof is based on
natural deduction because it is natural — its formal structure does reflect
the way informal mathematical reasoning is carried out (in the first part, for
instance). We have taken the opportunity to use the two parts to enrich each
other, so, for instance, some of the proofs about programs in the first part
are presented as illustrations of the box proof techniques of the second part,
and many of the logic examples in the second part are programs.

Part T Programming Part II Logic

1 Introduction

2 Functions and expressions 15 An introduction to logic

3 Specifications

4 Functional programming in Miranda

5 Recursion and induction

6 Lists 16 Natural deduction

7 Types

8 Higher-order functions
17 Natural deduction for predicate logic
18 Models

9 Specification for Modula-2 programs

10 Loops

11 Binary chop

12 Quick sort

13 Warshall’s algorithm

14 Tail recursion
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The preceding contents list shows the order in which we cover the material
in the first year of our undergraduate computer science course. The gap in
Part I, between Chapters 8 and 9, is where we teach Modula-2 as a language.
Students who have already been taught an imperative programming language
would be able to carry straight on from Chapter 8 to Chapter 9.

There are other courses that could be based on this book. Either part makes
a course without the other, and indeed in a different class we successfully
teach the Part II material separately with Part I following. For the more
mathematically minded who find imperative program reasoning inelegant,
Chapters 9 through 14 could be omitted and this would then enable the
material to be taught in a single semester course.
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Chapter 1

Introduction

1.1 How do you know a program does what you want it to?

You write a computer program in order to get the computer to do something
for you, so it is not difficult to understand that when you have written
a program you want to be reasonably confident that it does what you
intended. A common approach is simply to run it and see. If it does
something unexpected, then you can try to correct the errors. (It is common
to call these ‘bugs’, as though the program had blamelessly caught some
disabling infection. Let us instead be ruthlessly frank and call them ‘errors’,
or ‘mistakes’.) Unfortunately, as the computer scientist Edgser Dijkstra has
pointed out, testing can only establish the presence of errors, not the absence,
and it is common to regard programs as hopelessly error-prone. It would
be easy to say that the answer is simple: Don’t write any errors! Get the
program right first time! Novice programmers quickly see the fatuity of this,
but then fall into the opposite trap of not taking care to keep errors out.

In practical programming there are various techniques designed to combat
errors. Some help you to write error-free programs in the first place, while
others aim to catch errors early when they are easier to correct. This book
explains one particular and fundamental idea: the better you understand what
it is that the program is supposed to do, the easier it is to write it correctly.

1.2 Why bother?

Here is the warranty on a well-known and perfectly reputable operating
system:

The Supplier makes no warranty or representation, either express or implied,
with respect to this software, its quality, performance, merchantability, or
fitness for a particular purpose. As a result, this software is sold ‘as 1s’



2 Introduction

and you the purchaser are assuming the entire risk as to its quality and
performance.

Fortunately, the programmers engaged to write the software did not treat
this legal disclaimer as the definitive statement of what the program was
supposed to do.  They worked hard and conscientiously to produce a
well-thought-out and wuseful product of which they could be proud. None
the less, the potential is for even the tiniest of software errors to produce
catastrophic failures. This worries the legal department, and, for the sake at
least of legal consequences, they do their best to dissociate the company from
uses to which the software is put in the real world.

There are other contexts where litigation is not even a theoretical factor.
For instance, if you work in a software house, your colleagues may need to use
your software, and they will want to be confident that it works. If something
goes wrong, blanket disclaimers are quite beside the point. The management
will want to know what went wrong and what you are doing about it.

More subtly, you are often your own customer when you write different
parts of the program at different times or reuse parts of other programs. This
is because, by the time you come to reuse the code, it is easy to forget what
it did.

All in all, therefore, we see that the quality you are trying to achieve in
your software, and the responsibility for avoiding errors, goes beyond what
can be defined by legal or contractual obligations.

1.3 What did you want your program to do?

Your finished software will contain lots of code — instructions for the computer
written in some programming language or other. It is important to recognize
that the activity that this describes is essentially meaningless from the point
of view of the users because they do not need to know what is happening
inside the computer. This remains true even for users who are able to read
and understand the code. Users are interested in such questions as:

What is the program’s overall effect?
Is it easy to understand what it does?
Is it easy to use?

Does it help you detect and correct your mistakes, or does it cover them
up and punish you for them?

How fast is it?

e How much memory does it use?

e Does it contain any errors?

None of these is expressed directly by the code. Generally speaking, the
collection of computer instructions in itself tells you nothing about what the
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program achieves when run in the real world.

It follows that in progressing from your first vague intention to the completed
software you have done two distinct things: first, you have turned the vague
ideas into something precise enough for the computer to execute; and second,
you have converted the users’ needs and requirements into something quite
different — instructions for the computer.

The sole purpose of this book is to show how to divide this progression into
two parts: first, to turn the vagueness into a precise account of the users’
needs and wants; and then to turn that into computer instructions.

This ‘precise account of the users’ needs and wants’ is called a specification,
and the crucial point to understand is that it is expressing something quite
different from the code, that is, the users’ interests instead of the computer’s.
It the specification and code end up saying the same thing in different ways
— and this can easily happen if you think too much from the computer’s
point of view when you specify — then doing both of them is largely a waste
of time.

1.4 Local versus global behaviour

One distinction between the code and the specification is that whereas the
code describes individual execution steps — local behaviour — the specification
is often about the overall, global behaviour. The following is an example
(though it does not use an orthodox programming language).

WALKIES: Walking According to Local Kommands In FEasy Steps. The
following is an example WALKIES program:

GO 3 METRES; TURN LEFT 90 DEGREES;
GO 3 METRES; TURN LEFT 90 DEGREES;
GO 3 METRES; TURN LEFT 90 DEGREES;
GO 3 METRES; TURN LEFT 90 DEGREES

The local behaviour of this is that it does four walks with right angles
in between; a global property is that it ends up at the starting position.
The program does not explicitly describe this global property; we need some
geometry to deduce it. This is not trivial because, with the wrong geometry,
the global property can fail! Therefore, the geometric reasoning must be deep
enough to resolve this.

Consider this program:

GO 10000 km; TURN LEFT 90 DEGREES;
GO 10000 km; TURN LEFT 90 DEGREES;
GO 10000 km; TURN LEFT 90 DEGREES;
GO 10000 km; TURN LEFT 90 DEGREES
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North Pole

Librgville

Figure 1.1

You would not end up where you started, if you started at the North Pole
and walked round the Earth (Figure 1.1).

The metre was originally defined as one ten millionth part of the Earth’s
circumference from the North Pole to the Equator via Paris, so the WALKIES
trip here goes from the North Pole to Libreville (via Paris), then near to a
little island called Nias, then back to the North Pole, and then on to Libreville
again. You don’t get back to where you started. Thus the global properties
of a program can depend very much on hidden geometrical assumptions: is
our world flat or round? They are not explicit in the program.

WALKIES is not a typical programming language, and properties of programs
do not typically depend on geometry, although like WALKIES, their behaviour
may depend on environmental factors. But it is nevertheless true that program
code usually describes just the individual execution steps and how they are
strung together, not their overall effect.

1.5 Reasoned programs

Once we have made both the code and the specification precise, then it is a
valid and useful exercise to try and compare them as precisely as possible.
In later chapters we shall see specific mathematical techniques for making
this comparison. What they amount to is that we try to give mathematical
precision not only to the vague overall intention (obtaining a specification),
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but also to all the comments in the program. They can be written logically,
and whether they fit the code can be analyzed precisely.

When code is supported by this kind of careful specification and reasoning,
it is a much more stable product. When you have written it, you have greater
confidence that it works. When you reuse it, you know exactly what it is
supposed to do. When you modify it, you have a clearer idea of how your
changes fit into its structure.

Here, then, is our overall goal:

‘speciﬁcation + reasoning + code — a Reasoned Program

1.6 Reasoned programming

We have presented the Reasoned Program as the desired software end product,
but there is also something important to say about the process of developing
it, in other words about Reasoned Programming.

It is possible to see the purpose of the specification as being to say what
the code does; but that is the wrong way round. Really, the purpose of the
code is to achieve what the specification sets out. This means that it is much
better to specify first and then to code. In everyday terms, you can perform
a task more effectively if you can understand first what it is that you are
trying to achieve.

In the words of Hamming,

‘“Typing is no substitute for thinking.’

This means make your ideas precise before you type them in — work out
what you want before you tell the computer how to do it. In the thirty years
since Hamming formulated his ideas, our ideas of how to set about this have
advanced greatly, and this book is written to teach you, in practical terms,
how the modern ideas work.

It is always tempting to start straight off on the code. You gain your
initial experience in very short programs and find that this method works. It
gets something into the computer, and you get feedback that is gratifyingly
quick, even if it often shows that mistakes are present. Many programmers
continue to work in this way for the whole of their careers. They find that
even if they accept the idea of aiming for Reasoned Programs, it all seems an
impossible dream ‘Yes, all right in theory, but ...’. They write the code, and
then — perhaps just before a deadline — try to clarify the reasons.

This is a mistake. There are two essential aspects to the final product that
distinguish it from the initial vague intentions, namely precision and local
execution steps, and if you go for the code first, you are trying to obtain both
aspects at once. On the other hand, if you first think about the specification,
then you are just looking for precision. After all, it is the specification that



