166 Quick sort

that it works, note first that #xs really is a recursion variant. The recursion
is unusual in that the recursive calls work not on s, but on ys and zs.
However, we know that these are strictly shorter than z:xs. For instance,
tys < (#ys ++ #zs) = #as < #x:2s so we do have a recursion variant.

Proposition 12.1 gsort terminates and satisfies its specification.

Proof gsort [] clearly works correctly.
Now consider gsort wz:axs. The result, (gsort ys) ++ [z]l++ (gsort zs), is
sorted, because

e (gsort ys) is sorted (the recursive calls can be assumed to be
satisfactory);

e (gsort ys) is a permutation of ys, and by the specification of
Partition every element of ys is < , so every element of (qsort ys) is
<

e similarly, (gsort zs) is sorted and all its elements are > a.

Also, it is a permutation of ys++[z]++zs, hence of x:(ys++zs), and hence (by
specification of partition) of z:us. a

12.3 Arrays as lists

Miranda is a much simpler notation than Modula-2 and it is often helpful to
be able to reason first in terms of Miranda and then transfer the reasoning
to Modula-2. The most important properties of an array are its elements,
together with their order: in other words, abstractly, the list or sequence of
elements. For example, suppose we have

A: ARRAY [La..Ha] OF REAL;
B: ARRAY [Lb..Hb] OF REAL;

Then

A represents the list [A[La], A[La+1],..., A[Had]]
B represents the list [B[Lb], B[Lb+ 1],..., B[Hb]]
A++B represents the list [A[Lda],..., A[Ha], B[Lb],..., B[HD]]

(Note how we can sensibly talk about the append A++B, even though in Modula-
2 it is quite difficult to construct it.) Also, hd(A) = A[Lal, hd(B)= BLLb].

For computing purposes, we must also know how the elements are
subscripted: hence the need for the bounds in the declarations. But the
numerical values of the subscripts may be quite irrelevant to our original
problem, and are just a computational necessity forced on us by the way
Modula-2 accesses arrays. Then it is better to try to reason without them as
much as possible — in fact, specifications that put too great a reliance on
subscripts are said to suffer from ‘indexitis’.

Quick sort in Modula-2 167

That said, we can of course put a subscript structure onto a list and thus
treat it as an array. The conventional way in both Modula-2 (for open array
parameters) and Miranda (for the ! operation) is to say that the first element
has subscript 0. Thus a Miranda list

t=[10,¢00,. ..t (#t —1)]
can be understood as an array with bounds [0..(# ¢ —1)]. (But of course you
cannot assign to the elements in Miranda.)

Let us also introduce some notation — not part of Modula-2 — for sublists.
Suppose A has been declared as A: ARRAY [m..n]OF We write A[i to j]
to mean, essentially, the list

[LALT, AL+ 11,..., Aly]]
This is provided that m <: < j < n. It is also useful to define A[: to 5] to
be empty if j < . Recursively,

Ali to j1 = [1, if j<i
= A[i]:A[i+1 to j], otherwise

Some properties of this notation are

As lists, A = A[m to n].

Al to j] is defined iff (¢ > j)V (m <@ <j <n). Use induction on j — .
If A7 to j] is defined and non-empty, then its length is j —¢ + 1.
Ifm<i<j<k<n then A[i to k] = A[i to j — 1]++A[j to k]

= Al to j1++A[j +1 to k.

Al to o] = [Ald].

A[0 to HIGH(A)] = A.

12.4 Quick sort in Modula-2

A Miranda version would waste space by creating lots of new lists all the
time. In Modula-2, with arrays (of INTEGERs, say), we can instead try for
an in-place sort, rearranging the elements within the original array. The
recursive calls of gsort will now work on regions within the original array, so
the procedure must have extra parameters to specify the region. Let us say
that QuickSort(A, Start, Rest) is to sort A[Start to Rest-1]. (The —1 lets
us specify empty regions by taking Start=Rest, even if Start=0.)

PROCEDURE QuickSort (VAR A: ARRAY OF INTEGER; Start,Rest: CARDINAL);
(*pre: 0<= Start <= Rest <= HIGH(A)+1
*post: Perm(A, A_O)

* & A[O to Start-1] = A_O0[0 to Start-1]
* & A[Rest to HIGH(A)] = A_O[Rest to HIGH(A)]
* & Sorted(A[Start to Rest-11)

168 Quick sort

Partition will also work in-place:

PROCEDURE Partition (VAR A: ARRAY OF INTEGER;
Start, Rest: CARDINAL;
K: INTEGER): CARDINAL;
(*pre: 0<= Start <= Rest <= HIGH(A)+1
*post: Start <= result <= Rest
& Perm(A, A_O)
& A[O to Start-1] = A_0[0 to Start-1]
& A[Rest to HIGH(A)] = A_O[Rest to HIGH(A)]
& (A[Start to result-1], Al[result to Rest-1])
satisfies the Miranda specification for
(partition K A_O[Start to Rest-1])

* X ¥ X X ¥

*)
Let us leave the implementation of Partition until after the Dutch national
flag problem; but note that we do not need Partition to compute the same
function as partition (which, in any event, we have not defined yet), only
to satisfy its specification.
The functional gsort can now be translated into Modula-2, using a call of
Partition
PROCEDURE QuickSort (* specified above *);
(* recursion variant = Rest-Start *)
VAR n: CARDINAL;
x: INTEGER;
BEGIN
IF Start < Rest
(* region is nonempty,
*x(gsort A_O[Start to Rest-1]) =

* (gsort ys)++[A_O[Start]]++(gsort zs)

* where (ys,zs) =

* partition A_O[Start] A_O[Start+l to Rest-1]-from Miranda
*)
THEN

n:=Partition(A, Start+1, Rest, A[Start]);
Swap(A[Start], Aln-1]);
(x*(A[Start to n-2], Aln to Rest-1])
*1s a valid result for
*(partition A_O[Start] A_O[Start+l to Rest-1])
*)
QuickSort(A, Start, n-1);
QuickSort(A, n, Rest)
(*ELSE Start = Rest, region is empty. *)
END
END QuickSort;

Duteh national flag 169

This really is just a translation of the Miranda gsort, though you might not
think it at first glance. (That is why we suggest that it is a good idea to see
the algorithm clearly in Miranda first.)

Think of the call gsort(z:zs). In the Modula-2 context, z is Ag[Startl,
and zs is AgLStart+1 to Rest-1]. After n := Partition(...) we
have a satisfactory result for Partition x s, namely (A[Start+1 to n-11,
Aln to Rest-11) (= (ys1,2$1), say). However, this is not quite yet the (ys,zs)
that is used for the recursive call of gsort, the reason being that we want
z in the middle instead of at the left-hand end where it is at the moment.
What we do next is to swap A[Start] with A[n-1], so that instead of having
the equivalent of [z]++ ys; ++ zs; we have ys++ [x]++ zs where ys is a
permutation of ys; — its last element has been moved to the head — and
zs is just zs; renamed. (ys,zs) is still a satisfactory result for Partition z s,
so if we apply the sorting algorithm recursively in place to ys and to zs we
obtain (gsort ys) ++ [2] ++ (gsort zs), as required.

12.5 Dutch national flag

This algorithm, due to the Dutch computer scientist Dijkstra, solves the
sorting problem in the very simple case where there are only three possible
values of the elements to be sorted.

The Dutch national flag is a tricolour, red (at the top), white and blue
(Figure 12.2). For the problem imagine that (a computer representation of)

Figure 12.2

the flag gets scrambled (Figure 12.3), the stripes being cut up horizontally
and rearranged: It is desired to correct this in one pass, that is, inspecting
each stripelet once only. We are not told whether the three stripes are cut
into the same number of stripelets. The only permitted way of rearranging
stripelets is by swapping them, two at a time:

170 Quick sort

Figure 12.3
TYPE Colour = (red, white, blue);

PROCEDURE Restore (VAR A: ARRAY OF Colour);

(*pre: none

*xpost: Perm(A, A_0) & Sorted(A)

*)

The idea is to track through the stripelets and put each one in ‘the right
area’. Part way through, let us have the stripelets arranged as in Figure 12.4.
We shall need to keep pointers to the boundaries between the four areas.

definitely %
definitely I:I

still jumbled =

Figure 12.4

At each iteration, we inspect the first, that is, the top, grey (uninspected)
stripelet. If it is white, then it is already in the right place and we can move
on. If it is red, then we swap it with the first white and move on. If it is
blue, then we swap it with the last grey before the blues but do not move on
because we have now fetched another grey to inspect. Finally, when there are
no greys left, then the stripelets are in the right order.

It we invent names for the pointers, then we can improve the diagram
(Figure 12.5). We have adopted a convention here: there are three boundaries
to be marked (red—white, white—grey and grey-blue), and the corresponding
variable is always the index of the element just after the boundary. If two
adjacent markers are equal, it shows that that region is empty. In particular,
when GreyStart=BlueStart then there are no greys left and the flag is in
order.

This diagram is essentially the loop invariant. At the appropriate points
in the computation, we can imagine freezing the computer, inspecting the

Duteh national flag 171

0 -

WhiteStart ———

GreyStart — o

HIGH(A)+]1 o

Figure 12.5

variables and the array, and asking whether the stripelets from, for instance
WhiteStart to GreyStart—1, are indeed all white, as the diagram suggests. In
other words, the diagram suggests a statement about the computer’s state,
and our next task is to translate this into logic as the invariant. You will see
this in the implementation.

The variant, which is a measure of the amount of work left to be done, is

the size of the jumbled (grey) area: BlueStart—GreyStart. Progress is made
by reducing it:
PROCEDURE Restore(VAR A: ARRAY OF Colour);
VAR WhiteStart,GreyStart,BlueStart: CARDINAL;
BEGIN

WhiteStart := 0; GreyStart := 0;

BlueStart := HIGH(A)+1;

(* loop invariant:

* Perm(A,A_0)

* & WhiteStart <= GreyStart <= BlueStart <= HIGH(A)+1
* & (A)i:nat. ((0 <= i < WhiteStart -> A[i] = red)

* & (WhiteStart <= i < GreyStart -> A[i] = white)

* & (BlueStart <= i <= HIGH(A) -> A[i] = blue))

* variant = BlueStart-GreyStart

*)
WHILE GreyStart < BlueStart DO
CASE A[GreyStart] OF
red: Swap (A[WhiteStart] ,A[GreyStart]);
WhiteStart := WhiteStart+1;
GreyStart := GreyStart+1l
|white: GreyStart := GreyStart+1
|blue: Swap(A[GreyStart],A[BlueStart-1]);
BlueStart := BlueStart-1
END
END
END Restore;

172 Quick sort
Sample reasoning

Let us us look at just two examples of how to verify parts of the procedure.
First, why is Perm (A, Ag) always true? This is because all we ever do to the
array is swap pairs of its elements, and a sequence of swaps is a permutation.

Next, why does the red part of the CASE statement reestablish the invariant?
Let us write WS, GS, BS and A; for the values of WhiteStart, GreyStart,
BlueStart and A when the label red is reached.

We know that 0 < WS < (S < BS < HIGH(A) + 1, so after the update,
when WhiteStart = WS+ 1, GreyStart = GS+ 1 and BlueStart = BS, we have
0 < WhiteStart < GreyStart < BlueStart < HIGH(A) + 1, as required. To check
that the colours are correct after the update, let ¢ be a natural number.

If 0 <1< WhiteStart, then 0 <: < WJS. We must show that A[:] is red.
It : = WS, this follows from the specification of Swap:

o ALWS] = A [GS] = red by the CASE switch.
o If : < WS, which is < (G5, then ¢ is neither WS nor GS. Hence A[:] was
unaffected by the Swap, so A[:] = A;[2] = red by the loop invariant.

Next, suppose WhiteStart < ¢ < GreyStart, that is, WS+ 1 < < GS. Note in
this case that A;[WS] = white by the loop invariant, for WS < WS+ 1 < GS.
(The point is that the situation where WS = GS, and so A;[WS] is grey,
is impossible given the ¢ that we are considering.) Hence for i = GS, the
specification of Swap tells us that ALGS] = A, [WS] = white.

It ¢ < GS, then ¢ is neither WS nor GS. Hence from the specification of
Swap, Al:] is unchanged, and by the loop invariant it was white. For the
third case, take BlueStart < i < HIGH(A). Again, A[:] is unchanged, and by
the loop invariant it was blue.

12.6 Partitions by the Dutch national flag algorithm

Suppose, given a key integer K, you think of all integers as being coloured:
integers < K are red

K is white

integers > K are blue

Then the Dutch national flag algorithm, applied to an integer array, can do a

crude sort. The white region is likely to be small or non-existent, so it is

reasonable to merge it with the red region to make pink. The two regions

correspond to those that Partition discovers: one for < K, one for > K.
We can therefore implement Partition by simplifying the Dutch national

flag algorithm to cope with the flag of the Royal College of Midwives (pink

and blue stripes). QuickSort will then look as in Figure 12.6, with recursive

calls to sort the pink and blue regions. To implement Partition by adapting

Partitions by the Dutch national flag algorithm 173

| K] grey |
1
(white) crude sort

(midwives’ flag)

| K| pink | blue |
t t
(white) BlueStart

[pink K] blue |

o

(white) BlueStart

Figure 12.6

the Partition from the Dutch national flag, we must:

1. Simplify Restore to do the Midwives’ sort (drop the ‘red’ case and
WhiteStart; we can also turn the CASE statement to an IF statement).

2. Return the final BlueStart as a result in order to show the boundary of
the partition.

3. Convert the colours to arithmetic inequalities (< or > the key K).

4. Allow for partitioning regions, rather than the whole array.

There should be no need to reason that the implementation is correct because
we have done all the reasoning for Restore. But the loop invariant allows us
to check, in case of doubt:

PROCEDURE Partition(VAR A: ARRAY OF INTEGER; Start, Rest: CARDINAL;
K: INTEGER): CARDINAL;

(*specification as before *)

VAR GreyStart, BlueStart: CARDINAL;

x: INTEGER;
BEGIN
GreyStart := Start; (* no pinks *)
BlueStart := Rest; (* no blues *)
(* loop invariant:
* Perm(A, AO)
* & Start <= GreyStart <= BlueStart <= Rest
* & (A)i:nat.
* ((Start <=i< GreyStart -> A[i]<=K)

174 Quick sort

* &(BlueStart <=i< Rest -> A[i]>K))
* variant = BlueStart-GreyStart
*)
WHILE GreyStart < BlueStart DO
IF A[GreyStart]<=K(*pink*)
THEN GreyStart := GreyStart+1
ELSE
x:=A[GreyStart];
A[GreyStart] := A[BlueStart-1];
A[BlueStart-1] := x;
BlueStart := BlueStart-1
END
END;
RETURN BlueStart
END Partition;

12.7 Summary

e Functional definitions can be useful reasoning tools even if the final
implementation is to be imperative.

e Sometimes a diagram is the real loop invariant.

e The method of introducing logical constants to name the values of
computer variables is often (as in Restore) indispensable when you show
that the loop body reestablishes the invariant.

12.8 Exercises

1. For the Dutch national flag algorithm show the following:

(a) the invariant is established by the initialization;

(b) the invariant is reestablished by each iteration (that is, do the blue
and white cases corresponding to the red case above);

(c) when looping stops, the post-condition has been set up;

(d) the variant strictly decreases on each iteration, but never goes
negative;

(e) for every array access or Swap, the subscripts are within bounds
(that is, <HIGH(A)).

2. Consider the following idea for the Dutch national flag problem. The

FEzercises 175

white stripelets are to be put at the other end of the grey area:

[Red |Grey |White |Blue]

T T T
GreyStart WhiteStart BlueStart

(a) Show that this is unsatisfactory for two reasons:

e on average, more swaps are done than are necessary;

e this method can give wrong answers.

(b) Two other sequences of two swaps are possible; is either of them
correct?

. Can the Dutch national flag method be generalized to work with more
than three colours?

. Implement partition in Miranda.

. Modify the Miranda partition and gsort so that the order relation
used does not have to be <, but is supplied as a parameter lte, a
‘comparison function’ which takes two elements as arguments and gives
a Boolean result:

partitionl:: (x=>%-> bool)->* ->[*]->([*],[*])
gsortl:: (¥=>*-> bool)->[*]->[*]

(The comparison function can be thought of as a two-place predicate, or
as a relation.) Give implementations for these, ensuring that gsort and
partition are (gsortl (<)) and (partitionl (<)). To obtain a
downward ordered list, you would use (gsorti(>)).

Chapter 13

Warshall's algorithm

Warshall’s algorithm is an example of an algorithm that is difficult to
understand at all without some kind of reasoning based on a loop invariant.
The problem is to find the transitive closure of a relation. We shall first look
at an algorithm that is relatively clear, and then go on to one (Warshall’s
algorithm) that is clever, and more efficient, but more difficult to understand.

13.1 Transitive closure

Warshall’s algorithm computes transitive closures, a notion that comes from
the theory of relations. To keep the discussion here simple, we shall explain
this in terms of graphs, such as the one in Figure 13.1. A graph has a

\
__

a

C —»d

b

Figure 13.1

number of nodes (a,b,c¢ and d here), and some edges (the arrows). In the sort
of graph that we shall be using, for any pair (x,y) of nodes, there will be at
most one edge from x to y (but possibly also one from y to x). Let us write
“r — y” if there is an edge from x to y. In our example,

a—c, b—cand c—d
but not a«—b, a — a, ¢ — b, nor a — d.

We shall interest ourselves in the problem of finding composite paths through
the graph, made by joining edges up, head to tail, like elephants on parade.

176

Transitive closure 177

”

Let us write “x —% y” if there is a path from 2 to y; so here we have

a—te, b—Te, c—Td a—Tdand b—1d
but not @ —%b, a =T a or c—T b

Formally, z —* y iff we can find a sequence z,...,z, with
R -

—7 is the transitive closure of —.
The length of the path is the number of edges, which is n here. We write
x —" y if there is a path of length r from z to y. Then

e v —t y iff Inmat. (1 <nAz—-"y)

o x —y iff z =ty
The following are some applications of finding the transitive closure:

e Suppose the nodes and edges represent airports and direct air flights.
The paths are composite trips that can be made by plane alone.

e Suppose that nodes represent procedures in some program, and an edge
from a to b means that a calls b. Then a path from a« to b means
that @ calls b, though possibly indirectly (via some other procedures). A
path from «a to itself shows that a is potentially recursive. It may be
useful for a compiler to be able to discover this because non-recursive
procedures can be optimized to store return addresses, parameters and
local variables in fixed locations instead of on a stack.

Computer representation

The graph can also be thought of as a matriz, or array, and this is the
basis of the computer representation. If you give each node a number, then
the whereabouts of the edges can be described by a square array of Boolean
values:

Edgela,b] = {

This array, or matrix, is called the adjacency matriz of the graph. The
transitive closure can be described the same way:

TRUE if there is an edge from a to b, that is, a — b
FALSE otherwise

TRUE if there is a path from a to b, that is, a —% b

Pathla, b] = { FALSE otherwise

Let us give some suitable declarations, and also specify the transitive closure
procedure:

178 Warshall’s algorithm

CONST Size = ...;(knumber of nodes*)

TYPE
Node = 1..Size;
AdjMatrix = ARRAY Node,Node OF BOOLEAN;

PROCEDURE TransClos(Edge: AdjMatrix; VAR Path: AdjMatrix);
(*pre: none
*post: Path represents transitive closure of Edge

*)

You might decide to have Edge a VAR parameter, to avoid any possible
copying. Then you would need a pre-condition to say that Edge and Path
are different arrays, and an extra post-condition to say that Edge = Edgey.

13.2 First algorithm

We shall look at three algorithms, and all of them will use the same basic
idea. Some paths are more complicated than others; the simplest ones are
the single edges, and they can be put together to make more complicated
ones. The loop invariant will always say ‘the TRUE entries in Path all
represent paths, and all paths up to a certain degree of complication have
been registered as TRUEs in Path’. More formally,

Va,b: Node. ((Pathla,b] — (a —T b))
A((a —T b) by a path of degree of complication < N — Pathla,b]))

The invariant will always be established initially by copying FEdge to Path
(thus registering the simplest paths), and each algorithm terminates when the
degree of complication is sufficient to cover all possible paths. One difference
between the algorithms lies in the measure of complication.

For the first two algorithms, we equate complication of a path with its
length.

Suppose Path has registered all the paths of length < n, and we now want
to find all paths of length <n+1: the new ones that we must find are those
of length exactly n+ 1. But such a path from a to b splits up as a path of
length n (from @ to ¢,, say), which is already registered in Path, and then
an edge from ¢, to b. Hence we shall be able to recognize it by the fact
that Pathla,c,] = Fdge[e,,b] = TRUE. Our method is to look at all possible
combinations for a,b and ¢, and assign TRUE to Path[a,b] if either it was
TRUE already or we have Pathla,c] = Edgelec, bl = TRUE.

Paths can be of arbitrary length, so we must find a way of stopping.
Actually, we can stop when we have registered all paths of length < Suze, for
longer ones do not tell us anything new. To see this, suppose we have a path

First algorithm 179

from a to b of length n > Size:
cp— € — ... Cph1 — C, Where cg =a and ¢, =0b

Consider ¢g,...,c,. There are at least Size + 1 of these symbols, but there
are only Size possible nodes. Therefore, one node appears twice — ¢; = ¢;

where ¢ < j. But this path can now be collapsed to a shorter path from a to
b:

a—c—...=¢=¢—...—~¢ =0

(See Exercise 1 for a more rigorous induction proof.)

Detailed reasoning

initialization: This follows because ¢ —' b iff Edgela,b].

finalization: This follows because at the end N = Size, and ¢ —»T b iff a =" b
for some r < Size, as reasoned above.

reestablishing the invariant: Let us split the invariant [; into two parts:
L1 =4et Va,b: Node. (Pathla,b] — (a —T b))
112 =gt Ya,b: Node. (Vr:nat. (a =" b) A1 <r <N — Path[a, b))

The first thing to notice is that nothing ever spoils the truth of I41.
In particular, suppose it holds just before the assignment in the FOR
loop. The only possible change is if Pathli, j] becomes TRUE because
we already have Path[i, k] and FEdge[k,j]; but then from 11 we know
(t =T k) and (k — j), so (i =T j), as required, and [;1 still holds
afterwards. Hence [;1 holds right through the program.

Turning to 12, this involves N so we must take care to allow for the
increment N := N + 1. Let us write N; for the old value of N; after
the increment, N = N; + 1. Before the FOR loops, I2 told us that
if @ =" b with r < N; then Pathla,b] and this much is never spoiled
because Path[a,b] never changes from TRUE to FALSE. Now suppose
afterwards that ¢ —™M7*! b, so there is a path of length N; 41 from «a
to b. The last step of this path goes from ¢ (say) to b, so we know
a —™ ¢ and Edge[e,b]; by the previous invariant we know Pathla, c].
Now consider the FOR loop iteration when ¢ =a, 7 =06 and k = ¢
because Pathla,c] = Fdge[c,b] = TRUE, this sets Path[a,b] to TRUE and
it stays TRUE for ever, as required.

This is a good example of the reasoning style for FOR loops that was suggested
in Section 10.6

180 Warshall’s algorithm

Implementation

PROCEDURE TransClos(Edge: AdjMatrix; VAR Path: AdjMatrix);
(*pre: none

*post: Path represents transitive closure of Edge
*notation: write - a-> b iff Edgela,b] = true
* (there is an edge from a to b)
* a-> +b 1ff a is related to b by the transitive closure
* of Edge (there is a path from a to b);
* a-> "n b 1iff there is a path from a to b of length n
*)
VAR N: CARDINAL;
1,]j,k: Node;
BEGIN

CopyAdjMatrix(Edge,Path) ;

N:=1;

(*loop invariant - call it I1:

*N<= Size

* & (A)a,b:Node.
* ((Pathl[a,b]l-> (a-> +b))
* & (A)r:nat. ((a-> "r b) & 1<=r<=N -> Pathl[a,b]))

* variant

*)

= Size-N

WHILE N < Size DO
FOR 1:=1 TO Size DO

FOR j:=1 TO Size DO
FOR k:=1 TO Size DO

Path[i,j] := Path[i,j] OR (Path[i,k] AND Edgelk,jl)

(*NB Path[a,b] never changes from true to false *)

END
END;
N:=N+1
END

END TransClos;

PROCEDURE CopyAdjMatrix(From: AdjMatrix; VAR To: AdjMatrix);
(*pre: none

*post: From = To
*)

BEGIN
(kexercisex)

END CopyAdjMatrix;

Warshall’s algorithm 181
Efficiency

There are four nested loops, controlled by N,:,5 and k. FEach is executed
roughly Size times.

(Size — 1 times for N, Size each for ¢, j, k. Total = Size* — Size®.) Hence,
the total number of iterations is of the order of Size®. (For large graphs the
Size® term is insignificant compared with Size.)

This measures the complexity of the algorithm. Size measures how big the
problem is: so the execution time increases roughly as the fourth power of
the size of the problem. Thus big problems (lots of nodes) will really take
quite a long time. Can we improve on this?

The first improvement is obvious but good. Suppose all paths of length N
or less are recorded in Path. Then any path of length 2% N or less can be
decomposed into two parts, each of length N or less: if @ =" b with r < 2% N,
then we can write r = s +¢ with s,# < N, and a —° ¢ =" b for some node c.
Therefore, we have already registered Pathla,c] = Pathle,b] = TRUE.

By this means, we can double N at each stage (that is, replace the
assignment N := N+ 1 by N:=2% N) by using the innermost statement

Path[i,j] := Path[i,j] OR (Path[i,k] AND Path[k,jl)

The outermost (N) loop is now executed approximately logsSize times, so the
total number of iterations is of the order of logySize x Size®. This is good.
logyStze increases much more slowly than Size. Can we do better still?

13.3 Warshall’s algorithm

The path relation that we are building up is transitive:
Va,b,c: Node. ((a =T ¢)A(c—=1b) — (a =T b))

(This is proved by joining paths together.) One way of understanding
Warshall’s algorithm is through the idea that part way through the calculation,
Path will not be completely transitive but will be ‘partially’ transitive in that
only certain values of ¢, not too big, will work in the above formula:

Va,b,c: Node. (Pathla,c] A Pathle,bjAe < N — Patha, b))
Now suppose we have achieved this partial transitivity, and we have a path
6 —¢ —C — ... —>¢C, — b

The partial transitivity tells us that provided the nodes ¢p,...,¢, (let us
call these the transit nodes of the path, as distinct from the endpoints a and
b) are all < N, then we have Path[a,b].

182 Warshall’s algorithm

This leads to a new idea of how complicated a path is:

A simple path is one whose transit nodes (no matter how many) are all
small — they have numerically small codes.

A complicated path is one whose transit nodes (no matter how few) include
big ones.

The simplest paths from a to 6 have no transit nodes at all: they are just
edges a — b.

The next simplest are the paths that use node 1 as a transit node. These
are of the form a — 1 — b.

Next, with node 2 also as a transit node, we have the possible forms

a—2—>ba—1—22—>b,a—2—->1—b

We quantify this numerically by defining the transit mazimum of a path to be
the maximum numerical code of its transit nodes (or 0 if there are none). Let
us write @ —x b if there is a path from « to b with transit maximum < N.

Suppose we have already determined where there are paths of transit
maximum < N, in other words we have computed the relation —y. Any path
from a to b of transit maximum N + 1 must use node N 4+ 1 in transit, and
by much the same argument as before we do not need to consider such paths
that use node N 4+ 1 more than once in transit (find the first and last transit
occurrences of N 41 and cut out all the path in between them). Then we
have

a— ... (N+1)—...—=b

where the two sections of this have transit maximum at most N and so have
already been found. To reiterate, once we know about all the paths of transit
maximum < N, then all the paths of transit maximum N + 1 from a to b
can be recognized by the pattern a —y (N +1) —x b, the two sections of this
being paths that we already know about.

Detailed reasoning

initialization: This follows because a —¢ b ifl ¢« — b.

finalization: Because a —g;., b iff a =T b.

reestablishing the invariant: Let N; be the value of N before the increment,
and let J be the following, which follows from the invariant I:

Va,b: Node. (Pathla,b] — (a =% b)) A ((a —n, b — Pathla,b]))

No iteration of the FOR loops ever spoils the truth of J so it is still true
after the FOR loops. However, the invariant will say something stronger
than J because of the increment of N, and we must check this.

Warshall’s algorithm 183

Suppose @ —n b, so there is a path from a to b with transit maximum
< N (which is now N; +1). If all its transit nodes are actually < Ny,
then a —p, b and so by J we know Path[a,b]. The only remaining case
is when some transit node is equal to N. Then by splitting up the
path we see that a —n, N —n, b, so by J we know that Path[a, N]
and Path[N,b]. The FOR loop iteration when 7 =a and j = b makes
Pathla,b] equal to TRUE and it remains so for ever.

Implementation

PROCEDURE TransClos(Edge: AdjMatrix; VAR Path: AdjMatrix);
(*pre: none

*post: Path represents transitive closure of Edge
*notation: a->n b means there is some path

* a-> cl-> c2-> ... => cr -> b(r>=0)
* where cl, ..., cr are all <=n,i.e. its transit maximum is <=n.
* Hence a-> +b 1iff a-> Size Db.

*)
VAR N: CARDINAL;

1,]: Node;
BEGIN
CopyAdjMatrix (Path,Edge) ;

N:=0;

(*loop invariant I2:

* N<= Size

* & (A)a,b:Node.

* ((Pathl[a,b]l-> (a-> +b))
* & ((a-> N b)-> Pathla,b]))
*variant = Size-N

*)
WHILE N < Size DO
N:=N+1;
FOR i:=1 TO Size DO
FOR j:=1 TO Size DO
Path[i,j] := Path[i,j] OR (Path[i,N] AND Path[N,j])
END
END
END

END TransClos;

184 Warshall’s algorithm
Efficiency

There are now three nested loops (for N,7 and j), each one being executed
Size times, so the total number of iterations is of the order of Size®. This is
the best of our three algorithms.

We could optimize this further. For instance, we could replace the FOR
loops by

FOR i:=1 TO Size DO
IF Path[i,N]
THEN
FOR j:=1 TO N DO
Path[i,j] := Path[i,j] OR Path[N,j]
END
END
END

(QUESTION: can you prove that this has the same result as the preceding
version?) However, this is local fine tuning. The step from the original version
to Warshall’s was a fundamental change of algorithm, with a new Invariant.

13.4 Summary

o We have given three algorithms to compute transitive closures, each one
fundamentally more efficient than the previous one.

o The most efficient is Warshall’s algorithm. It would be difficult to see
clearly why it works without the use of loop invariants.

e The reasoning about FOR loops was essentially different from the loop
invariant technique used for WHILE loops.

13.5 Exercises

1. Given a graph with Size nodes, show that for any nodes a and b, if
a —1 b then ¢ =" b for some r < Size. HINT: use course of values
induction on n to show Vn :nat. P(n), where

P(n)=(a—="b) — Ir:nat. (r < Size A (a =" b)).

2. Use Warshall’s algorithm ‘in place’ to implement the following procedure
(without using any array other than Graph):

FEzercises 185

PROCEDURE TransClos(VAR Graph: AdjMatrix);
(*pre: none
*post: Graph represents transitive closure of Graph_0

*)

. Modify the detailed reasoning of the first algorithm to justify the second.
. Warshall’s algorithm can be modified to compute shortest paths between
nodes in a graph. Here is the specification:

TYPE Matrix = ARRAY Node, Node OF CARDINAL;
PROCEDURE ShortPaths(Edge: AdjMatrix; VAR SP: Matrix);

(*pre: none
*xpost: (A)i,j:Node. (A)r:nat.

* (1 <= SP[i,j] <= Size+1

* & (SP[i,j] = r & r <= Size -> (1 -> "r j))
* & ((1 -> "r j) & r>=1 ->SP[i,j] <= 1))

*)

The idea is that if there is any path at all from ¢ to j then there is
one of length Size or less, and SP[i,] is to be the shortest such length.
If there is no path, then SP[z,] is to be Size + 1.

Show how to modify the invariant and code of Warshall’s algorithm to
solve this new problem. You will probably need to use the relation —%,
defined by (¢ —% j) iff there is a path of length r from ¢ to j, with
transit nodes all < N.

