
��� Quick sort

that it works� note �rst that $xs really is a recursion variant� The recursion
is unusual in that the recursive calls work not on xs� but on ys and zs�
However� we know that these are strictly shorter than xxs� For instance�
$ys � �$ys �� $zs� � $xs � $xxs so we do have a recursion variant�

Proposition ���� qsort terminates and satis�es its speci�cation�

Proof qsort !" clearly works correctly�
Now consider qsort xxs� The result� �qsort ys� �� !x"�� �qsort zs�� is
sorted� because

� �qsort ys� is sorted �the recursive calls can be assumed to be
satisfactory��

� �qsort ys� is a permutation of ys� and by the speci�cation of
Partition every element of ys is � x� so every element of �qsort ys� is
� x�

� similarly� �qsort zs� is sorted and all its elements are � x�

Also� it is a permutation of ys��!x"��zs� hence of x	ys��zs
� and hence �by
speci�cation of partition� of xxs� �

���� Arrays as lists

Miranda is a much simpler notation than Modula�� and it is often helpful to
be able to reason �rst in terms of Miranda and then transfer the reasoning
to Modula��� The most important properties of an array are its elements�
together with their order in other words� abstractly� the list or sequence of
elements� For example� suppose we have

A ARRAY !La��Ha" OF REAL�

B ARRAY !Lb��Hb" OF REAL�

Then

A represents the list �A�La�� A�La� ��� � � � � A�Ha��
B represents the list �B�Lb�� B�Lb� ��� � � � � B�Hb��
A��B represents the list �A�La�� � � � � A�Ha�� B�Lb�� � � � � B�Hb��

�Note how we can sensibly talk about the append A��B� even though in Modula�
� it is quite di�cult to construct it�� Also� hd�A� � A!La"� hd�B� � B!Lb"�
For computing purposes� we must also know how the elements are

subscripted hence the need for the bounds in the declarations� But the
numerical values of the subscripts may be quite irrelevant to our original
problem� and are just a computational necessity forced on us by the way
Modula�� accesses arrays� Then it is better to try to reason without them as
much as possible � in fact� speci�cations that put too great a reliance on
subscripts are said to su�er from �indexitis��

Quick sort in Modula� ���

That said� we can of course put a subscript structure onto a list and thus
treat it as an array� The conventional way in both Modula�� �for open array
parameters� and Miranda �for the # operation� is to say that the �rst element
has subscript �� Thus a Miranda list

t � !t#�� t#�� � � � � t#�$t� ��"
can be understood as an array with bounds !����$ t� ��"� �But of course you
cannot assign to the elements in Miranda��
Let us also introduce some notation � not part of Modula�� � for sublists�

Suppose A has been declared as A ARRAY �m��n�OF � � �� We write A!i to j"
to mean� essentially� the list

!!A!i"� A!i� �"� � � � � A!j""

This is provided that m � i � j � n� It is also useful to de�ne A!i to j" to
be empty if j � i� Recursively�

A!i to j" � !"� if j�i

� A!i"A!i�� to j"� otherwise

Some properties of this notation are

� As lists� A � A�m to n��
� A�i to j� is de�ned i� �i � j� � �m � i � j � n�� Use induction on j � i�
� If A�i to j� is de�ned and non�empty� then its length is j � i� ��
� If m � i � j � k � n then A�i to k� � A�i to j � ����A�j to k�
� A!i to j"��A!j � � to k"�

� A!i to i" � !A!i""�
� A!� to HIGH�A�" � A�

���� Quick sort in Modula��

A Miranda version would waste space by creating lots of new lists all the
time� In Modula��� with arrays �of integers� say�� we can instead try for
an in�place sort� rearranging the elements within the original array� The
recursive calls of qsort will now work on regions within the original array� so
the procedure must have extra parameters to specify the region� Let us say
that QuickSort�A� Start� Rest� is to sort A�Start to Rest���� �The �� lets
us specify empty regions by taking Start�Rest� even if Start � ���

PROCEDURE QuickSort �VAR A ARRAY OF INTEGER� Start�Rest CARDINAL��

��pre ��� Start �� Rest �� HIGH�A���

�post Perm�A� A���

� � A!� to Start��" � A��!� to Start��"

� � A!Rest to HIGH�A�" � A��!Rest to HIGH�A�"

� � Sorted�A!Start to Rest��"�

��

��	 Quick sort

Partition will also work in�place

PROCEDURE Partition �VAR A ARRAY OF INTEGER�

Start� Rest CARDINAL�

K INTEGER� CARDINAL�

��pre ��� Start �� Rest �� HIGH�A���

�post Start �� result �� Rest

� � Perm�A� A���

� � A!� to Start��" � A��!� to Start��"

� � A!Rest to HIGH�A�" � A��!Rest to HIGH�A�"

� � �A!Start to result��"� A!result to Rest��"�

� satisfies the Miranda specification for

� �partition K A��!Start to Rest��"�

��

Let us leave the implementation of Partition until after the Dutch national
�ag problem� but note that we do not need Partition to compute the same
function as partition �which� in any event� we have not de�ned yet�� only
to satisfy its speci�cation�
The functional qsort can now be translated into Modula��� using a call of

Partition

PROCEDURE QuickSort �� specified above ���

�� recursion variant � Rest�Start ��

VAR n CARDINAL�

x INTEGER�

BEGIN

IF Start � Rest

�� region is nonempty�

��qsort A��!Start to Rest��"� �

� �qsort ys���!A��!Start""���qsort zs�

� where �ys�zs� �

� partition A��!Start" A��!Start�� to Rest��"�from Miranda

��

THEN

n�Partition�A� Start��� Rest� A!Start"��

Swap�A!Start"� A!n��"��

���A!Start to n��"� A!n to Rest��"�

�is a valid result for

��partition A��!Start" A��!Start�� to Rest��"�

��

QuickSort�A� Start� n����

QuickSort�A� n� Rest�

��ELSE Start � Rest� region is empty� ��

END

END QuickSort�

Dutch national �ag ��

This really is just a translation of the Miranda qsort� though you might not
think it at �rst glance� �That is why we suggest that it is a good idea to see
the algorithm clearly in Miranda �rst��

Think of the call qsort	xxs
� In the Modula�� context� x is A�!Start"�
and xs is A�!Start�� to Rest��"� After n � Partition����� we
have a satisfactory result for Partition x xs� namely �A!Start�� to n��"�
A!n to Rest��"� �� �ys��zs��� say�� However� this is not quite yet the 	ys�zs

that is used for the recursive call of qsort� the reason being that we want
x in the middle instead of at the left�hand end where it is at the moment�
What we do next is to swap A!Start" with A!n��"� so that instead of having
the equivalent of !x"�� ys� �� zs� we have ys�� !x"�� zs where ys is a
permutation of ys� � its last element has been moved to the head � and
zs is just zs� renamed� 	ys�zs
 is still a satisfactory result for Partition x xs�
so if we apply the sorting algorithm recursively in place to ys and to zs we
obtain �qsort ys� �� !x" �� �qsort zs�� as required�

���� Dutch national �ag

This algorithm� due to the Dutch computer scientist Dijkstra� solves the
sorting problem in the very simple case where there are only three possible
values of the elements to be sorted�

The Dutch national �ag is a tricolour� red �at the top�� white and blue
�Figure ������ For the problem imagine that �a computer representation of�

Figure ����

the �ag gets scrambled �Figure ������ the stripes being cut up horizontally
and rearranged It is desired to correct this in one pass� that is� inspecting
each stripelet once only� We are not told whether the three stripes are cut
into the same number of stripelets� The only permitted way of rearranging
stripelets is by swapping them� two at a time

��� Quick sort

Figure ����

TYPE Colour � �red� white� blue��

PROCEDURE Restore �VAR A ARRAY OF Colour��

��pre none

�post Perm�A� A��� � Sorted�A�

��

The idea is to track through the stripelets and put each one in �the right
area�� Part way through� let us have the stripelets arranged as in Figure �����
We shall need to keep pointers to the boundaries between the four areas�

de�nitely

de�nitely

de�nitely

still jumbled

Figure ����

At each iteration� we inspect the �rst� that is� the top� grey �uninspected�
stripelet� If it is white� then it is already in the right place and we can move
on� If it is red� then we swap it with the �rst white and move on� If it is
blue� then we swap it with the last grey before the blues but do not move on
because we have now fetched another grey to inspect� Finally� when there are
no greys left� then the stripelets are in the right order�
If we invent names for the pointers� then we can improve the diagram
�Figure ������ We have adopted a convention here there are three boundaries
to be marked �red%white� white%grey and grey%blue�� and the corresponding
variable is always the index of the element just after the boundary� If two
adjacent markers are equal� it shows that that region is empty� In particular�
when GreyStart�BlueStart then there are no greys left and the �ag is in
order�
This diagram is essentially the loop invariant� At the appropriate points
in the computation� we can imagine freezing the computer� inspecting the

Dutch national �ag ���

WhiteStart
�

high�A���

BlueStart

GreyStart

Figure ����

variables and the array� and asking whether the stripelets from� for instance
WhiteStart to GreyStart��� are indeed all white� as the diagram suggests� In
other words� the diagram suggests a statement about the computer�s state�
and our next task is to translate this into logic as the invariant� You will see
this in the implementation�
The variant� which is a measure of the amount of work left to be done� is
the size of the jumbled �grey� area BlueStart�GreyStart� Progress is made
by reducing it

PROCEDURE Restore�VAR A ARRAY OF Colour��

VAR WhiteStart�GreyStart�BlueStart CARDINAL�

BEGIN

WhiteStart � �� GreyStart � ��

BlueStart � HIGH�A����

�� loop invariant

� Perm�A�A���

� � WhiteStart �� GreyStart �� BlueStart �� HIGH�A���

� � �A�inat� ��� �� i � WhiteStart �� A!i" � red�

� � �WhiteStart �� i � GreyStart �� A!i" � white�

� � �BlueStart �� i �� HIGH�A� �� A!i" � blue��

� variant � BlueStart�GreyStart

��

WHILE GreyStart � BlueStart DO

CASE A!GreyStart" OF

red Swap�A!WhiteStart"�A!GreyStart"��

WhiteStart � WhiteStart���

GreyStart � GreyStart��

�white GreyStart � GreyStart��

�blue Swap�A!GreyStart"�A!BlueStart��"��

BlueStart � BlueStart��

END

END

END Restore�

��� Quick sort

Sample reasoning

Let us us look at just two examples of how to verify parts of the procedure�
First� why is Perm 	A� A�
 always true� This is because all we ever do to the
array is swap pairs of its elements� and a sequence of swaps is a permutation�

Next� why does the red part of the CASE statement reestablish the invariant�
Let us write WS� GS� BS and A� for the values of WhiteStart� GreyStart�
BlueStart and A when the label red is reached�
We know that � � WS � GS � BS � HIGH�A� � �� so after the update�
when WhiteStart �WS � �� GreyStart � GS� � and BlueStart � BS� we have
� � WhiteStart � GreyStart � BlueStart � HIGH�A� � �� as required� To check
that the colours are correct after the update� let i be a natural number�
If � � i � WhiteStart� then � � i � WS� We must show that A!i" is red�

If i �WS� this follows from the speci�cation of Swap

� A!WS" � A�!GS" � red by the CASE switch�

� If i �WS� which is � GS� then i is neither WS nor GS� Hence A!i" was
una�ected by the Swap� so A!i" � A�!i" � red by the loop invariant�

Next� suppose WhiteStart � i � GreyStart� that is� WS � � � i � GS� Note in
this case that A�!WS" � white by the loop invariant� for WS �WS� � � GS�
�The point is that the situation where WS � GS� and so A�!WS" is grey�
is impossible given the i that we are considering�� Hence for i � GS� the
speci�cation of Swap tells us that A!GS" � A�!WS" � white�
If i � GS� then i is neither WS nor GS� Hence from the speci�cation of

Swap� A!i" is unchanged� and by the loop invariant it was white� For the
third case� take BlueStart � i � HIGH�A�� Again� A!i" is unchanged� and by
the loop invariant it was blue�

���� Partitions by the Dutch national �ag algorithm

Suppose� given a key integer K� you think of all integers as being coloured
integers � K are red
K is white
integers � K are blue
Then the Dutch national �ag algorithm� applied to an integer array� can do a
crude sort� The white region is likely to be small or non�existent� so it is
reasonable to merge it with the red region to make pink� The two regions
correspond to those that Partition discovers one for � K� one for � K�

We can therefore implement Partition by simplifying the Dutch national
�ag algorithm to cope with the �ag of the Royal College of Midwives �pink
and blue stripes�� QuickSort will then look as in Figure ����� with recursive
calls to sort the pink and blue regions� To implement Partition by adapting

Partitions by the Dutch national �ag algorithm ���

�white�

K grey

crude sort
�midwives� �ag�

K pink blue

�white� BlueStart

Kpink blue

BlueStart�white�

Figure ����

the Partition from the Dutch national �ag� we must

�� Simplify Restore to do the Midwives� sort �drop the �red� case and
WhiteStart� we can also turn the CASE statement to an IF statement��

�� Return the �nal BlueStart as a result in order to show the boundary of
the partition�

�� Convert the colours to arithmetic inequalities �� or � the key K��
�� Allow for partitioning regions� rather than the whole array�

There should be no need to reason that the implementation is correct because
we have done all the reasoning for Restore� But the loop invariant allows us
to check� in case of doubt

PROCEDURE Partition�VAR A ARRAY OF INTEGER� Start� Rest CARDINAL�

K INTEGER� CARDINAL�

��specification as before ��

VAR GreyStart� BlueStart CARDINAL�

x INTEGER�

BEGIN

GreyStart � Start� �� no pinks ��

BlueStart � Rest� �� no blues ��

�� loop invariant

� Perm�A� A ��

� � Start �� GreyStart �� BlueStart �� Rest

� � �A�inat�

� ��Start ��i� GreyStart �� A!i"��K�

��� Quick sort

� ��BlueStart ��i� Rest �� A!i"�K��

� variant � BlueStart�GreyStart

��

WHILE GreyStart � BlueStart DO

IF A!GreyStart"��K��pink��

THEN GreyStart � GreyStart��

ELSE

x�A!GreyStart"�

A!GreyStart" � A!BlueStart��"�

A!BlueStart��" � x�

BlueStart � BlueStart��

END

END�

RETURN BlueStart

END Partition�

���� Summary

� Functional de�nitions can be useful reasoning tools even if the �nal
implementation is to be imperative�

� Sometimes a diagram is the real loop invariant�
� The method of introducing logical constants to name the values of
computer variables is often �as in Restore� indispensable when you show
that the loop body reestablishes the invariant�

���	 Exercises

�� For the Dutch national �ag algorithm show the following

�a� the invariant is established by the initialization�

�b� the invariant is reestablished by each iteration �that is� do the blue
and white cases corresponding to the red case above��

�c� when looping stops� the post�condition has been set up�

�d� the variant strictly decreases on each iteration� but never goes
negative�

�e� for every array access or Swap� the subscripts are within bounds
�that is� � HIGH�A���

�� Consider the following idea for the Dutch national �ag problem� The

Exercises ���

white stripelets are to be put at the other end of the grey area

� Red jGrey jWhite jBlue �
� � �
GreyStart WhiteStart BlueStart

�a� Show that this is unsatisfactory for two reasons

� on average� more swaps are done than are necessary�
� this method can give wrong answers�

�b� Two other sequences of two swaps are possible� is either of them
correct�

�� Can the Dutch national �ag method be generalized to work with more
than three colours�

�� Implement partition in Miranda�
�� Modify the Miranda partition and qsort so that the order relation
used does not have to be �� but is supplied as a parameter lte� a
�comparison function� which takes two elements as arguments and gives
a Boolean result

partition�������� bool���� ��!�"���!�"�!�"�

qsort�������� bool���!�"��!�"

�The comparison function can be thought of as a two�place predicate� or
as a relation�� Give implementations for these� ensuring that qsort and
partition are �qsort� ���� and �partition� ����� To obtain a
downward ordered list� you would use �qsort������

Chapter ��

Warshall�s algorithm

Warshall�s algorithm is an example of an algorithm that is di�cult to
understand at all without some kind of reasoning based on a loop invariant�
The problem is to �nd the transitive closure of a relation� We shall �rst look
at an algorithm that is relatively clear� and then go on to one �Warshall�s
algorithm� that is clever� and more e�cient� but more di�cult to understand�

���� Transitive closure

Warshall�s algorithm computes transitive closures� a notion that comes from
the theory of relations� To keep the discussion here simple� we shall explain
this in terms of graphs� such as the one in Figure ����� A graph has a

a

b

c d

Figure ����

number of nodes �a� b� c and d here�� and some edges �the arrows�� In the sort
of graph that we shall be using� for any pair �x� y� of nodes� there will be at
most one edge from x to y �but possibly also one from y to x�� Let us write
�x� y� if there is an edge from x to y� In our example�

a� c� b� c and c� d
but not a� b� a� a� c� b� nor a� d�

We shall interest ourselves in the problem of �nding composite paths through
the graph� made by joining edges up� head to tail� like elephants on parade�

���

Transitive closure ���

Let us write �x�� y� if there is a path from x to y� so here we have

a�� c� b�� c� c�� d� a�� d and b�� d
but not a�� b� a�� a or c�� b�

Formally� x�� y i� we can �nd a sequence z�� � � � � zn with

x� z� � � � �� zn � y

�� is the transitive closure of ��
The length of the path is the number of edges� which is n here� We write

x�r y if there is a path of length r from x to y� Then

� x�� y i� �n nat� �� � n � x�n y�

� x� y i� x�� y

The following are some applications of �nding the transitive closure

� Suppose the nodes and edges represent airports and direct air �ights�
The paths are composite trips that can be made by plane alone�

� Suppose that nodes represent procedures in some program� and an edge
from a to b means that a calls b� Then a path from a to b means
that a calls b� though possibly indirectly �via some other procedures�� A
path from a to itself shows that a is potentially recursive� It may be
useful for a compiler to be able to discover this because non�recursive
procedures can be optimized to store return addresses� parameters and
local variables in �xed locations instead of on a stack�

Computer representation

The graph can also be thought of as a matrix� or array� and this is the
basis of the computer representation� If you give each node a number� then
the whereabouts of the edges can be described by a square array of Boolean
values

Edge�a� b� �

�
true if there is an edge from a to b� that is� a� b
false otherwise

This array� or matrix� is called the adjacency matrix of the graph� The
transitive closure can be described the same way

Path�a� b� �

�
true if there is a path from a to b� that is� a�� b
false otherwise

Let us give some suitable declarations� and also specify the transitive closure
procedure

��	 Warshall�s algorithm

CONST Size � ������number of nodes��

TYPE

Node � ���Size�

AdjMatrix � ARRAY Node�Node OF BOOLEAN�

PROCEDURE TransClos�Edge AdjMatrix� VAR Path AdjMatrix��

��pre none

�post Path represents transitive closure of Edge

��

You might decide to have Edge a VAR parameter� to avoid any possible
copying� Then you would need a pre�condition to say that Edge and Path

are di�erent arrays� and an extra post�condition to say that Edge � Edge��

���� First algorithm

We shall look at three algorithms� and all of them will use the same basic
idea� Some paths are more complicated than others� the simplest ones are
the single edges� and they can be put together to make more complicated
ones� The loop invariant will always say �the true entries in Path all
represent paths� and all paths up to a certain degree of complication have
been registered as trues in Path�� More formally�

�a� b Node� ��Path�a� b�� �a�� b��
���a�� b� by a path of degree of complication � N � Path�a� b���

The invariant will always be established initially by copying Edge to Path
�thus registering the simplest paths�� and each algorithm terminates when the
degree of complication is su�cient to cover all possible paths� One di�erence
between the algorithms lies in the measure of complication�

For the �rst two algorithms� we equate complication of a path with its
length�

Suppose Path has registered all the paths of length � n� and we now want
to �nd all paths of length � n�� the new ones that we must �nd are those
of length exactly n� �� But such a path from a to b splits up as a path of
length n �from a to cn� say�� which is already registered in Path� and then
an edge from cn to b� Hence we shall be able to recognize it by the fact
that Path�a� cn� � Edge�cn� b� � true� Our method is to look at all possible
combinations for a� b and c� and assign true to Path�a� b� if either it was
true already or we have Path�a� c� � Edge�c� b� � true�

Paths can be of arbitrary length� so we must �nd a way of stopping�
Actually� we can stop when we have registered all paths of length � Size� for
longer ones do not tell us anything new� To see this� suppose we have a path

First algorithm ��

from a to b of length n � Size

c� � c� � � � �� cn�� � cn where c� � a and cn � b

Consider c�� � � � � cn� There are at least Size� � of these symbols� but there
are only Size possible nodes� Therefore� one node appears twice � ci � cj
where i � j� But this path can now be collapsed to a shorter path from a to
b

a� c� � � � �� ci � cj � � � �� cn � b

�See Exercise � for a more rigorous induction proof��

Detailed reasoning

initialization This follows because a�� b i� Edge�a� b��

�nalization This follows because at the end N � Size� and a�� b i� a�r b
for some r � Size� as reasoned above�

reestablishing the invariant Let us split the invariant I� into two parts

I�� �def �a� b Node� �Path�a� b�� �a�� b��

I�� �def �a� b Node� ��r nat� �a�r b� � � � r � N � Path�a� b��

The �rst thing to notice is that nothing ever spoils the truth of I���
In particular� suppose it holds just before the assignment in the FOR

loop� The only possible change is if Path�i� j� becomes true because
we already have Path�i� k� and Edge�k� j�� but then from I�� we know
�i �� k� and �k � j�� so �i �� j�� as required� and I�� still holds
afterwards� Hence I�� holds right through the program�

Turning to I��� this involves N so we must take care to allow for the
increment N � N � �� Let us write N� for the old value of N � after
the increment� N � N� � �� Before the FOR loops� I� told us that
if a �r b with r � N� then Path�a� b� and this much is never spoiled
because Path�a� b� never changes from true to false� Now suppose
afterwards that a�N��� b� so there is a path of length N� � � from a
to b� The last step of this path goes from c �say� to b� so we know
a �N� c and Edge�c� b�� by the previous invariant we know Path�a� c��
Now consider the FOR loop iteration when i � a� j � b and k � c
because Path�a� c� � Edge�c� b� � true� this sets Path�a� b� to true and
it stays true for ever� as required�

This is a good example of the reasoning style for FOR loops that was suggested
in Section ����

�	� Warshall�s algorithm

Implementation

PROCEDURE TransClos�Edge AdjMatrix� VAR Path AdjMatrix��

��pre none

�post Path represents transitive closure of Edge

�notation write � a�� b iff Edge!a�b" � true

� �there is an edge from a to b�

� a�� �b iff a is related to b by the transitive closure

� of Edge �there is a path from a to b��

� a�� �n b iff there is a path from a to b of length n

��

VAR N CARDINAL�

i�j�k Node�

BEGIN

CopyAdjMatrix�Edge�Path��

N���

��loop invariant � call it I�

�N�� Size

� � �A�a�bNode�

� ��Path!a�b"�� �a�� �b��

� � �A�rnat� ��a�� �r b� � ���r��N �� Path!a�b"��

� variant � Size�N

��

WHILE N � Size DO

FOR i�� TO Size DO

FOR j�� TO Size DO

FOR k�� TO Size DO

Path!i�j" � Path!i�j" OR �Path!i�k" AND Edge!k�j"�

��NB Path!a�b" never changes from true to false ��

END

END

END�

N�N��

END

END TransClos�

PROCEDURE CopyAdjMatrix�From AdjMatrix� VAR To AdjMatrix��

��pre none

�post From � To

��

BEGIN

��exercise��

END CopyAdjMatrix�

Warshall�s algorithm �	�

E�ciency

There are four nested loops� controlled by N� i� j and k� Each is executed
roughly Size times�

�Size� � times for N � Size each for i� j� k� Total � Size��Size	�� Hence�
the total number of iterations is of the order of Size�� �For large graphs the
Size	 term is insigni�cant compared with Size���

This measures the complexity of the algorithm� Size measures how big the
problem is so the execution time increases roughly as the fourth power of
the size of the problem� Thus big problems �lots of nodes� will really take
quite a long time� Can we improve on this�

The �rst improvement is obvious but good� Suppose all paths of length N
or less are recorded in Path� Then any path of length �
N or less can be
decomposed into two parts� each of length N or less if a�r b with r � �
N �
then we can write r � s � t with s� t � N � and a�s c�t b for some node c�
Therefore� we have already registered Path�a� c� � Path�c� b� � true�

By this means� we can double N at each stage �that is� replace the
assignment N � N � � by N � �
N� by using the innermost statement

Path!i�j" � Path!i�j" OR �Path!i�k" AND Path!k�j"�

The outermost �N� loop is now executed approximately log�Size times� so the
total number of iterations is of the order of log�Size� Size	� This is good�
log�Size increases much more slowly than Size� Can we do better still�

���� Warshall�s algorithm

The path relation that we are building up is transitive�

�a� b� c Node� ��a�� c� � �c�� b�� �a�� b��

�This is proved by joining paths together�� One way of understanding
Warshall�s algorithm is through the idea that part way through the calculation�
Path will not be completely transitive but will be �partially� transitive in that
only certain values of c� not too big� will work in the above formula

�a� b� c Node� �Path�a� c� � Path�c� b��c � N � Path�a� b��

Now suppose we have achieved this partial transitivity� and we have a path

a� c� � c� � � � �� cn � b

The partial transitivity tells us that provided the nodes c�� � � � � cn �let us
call these the transit nodes of the path� as distinct from the endpoints a and
b� are all � N � then we have Path�a� b��

�	� Warshall�s algorithm

This leads to a new idea of how complicated a path is

A simple path is one whose transit nodes �no matter how many� are all
small � they have numerically small codes�

A complicated path is one whose transit nodes �no matter how few� include
big ones�

The simplest paths from a to b have no transit nodes at all they are just
edges a� b�

The next simplest are the paths that use node � as a transit node� These
are of the form a� �� b�

Next� with node � also as a transit node� we have the possible forms

a� �� b� a� �� �� b� a� �� �� b

We quantify this numerically by de�ning the transit maximum of a path to be
the maximum numerical code of its transit nodes �or � if there are none�� Let
us write a�N b if there is a path from a to b with transit maximum � N �
Suppose we have already determined where there are paths of transit

maximum � N � in other words we have computed the relation �N � Any path
from a to b of transit maximum N � � must use node N � � in transit� and
by much the same argument as before we do not need to consider such paths
that use node N � � more than once in transit ��nd the �rst and last transit
occurrences of N � � and cut out all the path in between them�� Then we
have

a� � � �� �N � ��� � � �� b

where the two sections of this have transit maximum at most N and so have
already been found� To reiterate� once we know about all the paths of transit
maximum � N � then all the paths of transit maximum N � � from a to b
can be recognized by the pattern a�N �N ����N b� the two sections of this
being paths that we already know about�

Detailed reasoning

initialization This follows because a�� b i� a� b�

�nalization Because a�Size b i� a�� b�

reestablishing the invariant Let N� be the value of N before the increment�
and let J be the following� which follows from the invariant I�

�a� b Node� �Path�a� b�� �a�� b�� � ��a�N�
b� Path�a� b���

No iteration of the FOR loops ever spoils the truth of J so it is still true
after the FOR loops� However� the invariant will say something stronger
than J because of the increment of N � and we must check this�

Warshall�s algorithm �	�

Suppose a�N b� so there is a path from a to b with transit maximum
� N �which is now N� � ��� If all its transit nodes are actually � N��
then a�N�

b and so by J we know Path�a� b�� The only remaining case
is when some transit node is equal to N � Then by splitting up the
path we see that a �N�

N �N�
b� so by J we know that Path�a�N �

and Path�N� b�� The FOR loop iteration when i � a and j � b makes
Path�a� b� equal to true and it remains so for ever�

Implementation

PROCEDURE TransClos�Edge AdjMatrix� VAR Path AdjMatrix��

��pre none

�post Path represents transitive closure of Edge

�notation a�� n b means there is some path

� a�� c��� c��� ��� �� cr �� b�r����

� where c�� ��� � cr are all ��n�i�e� its transit maximum is ��n�

� Hence a�� �b iff a�� Size b�

��

VAR N CARDINAL�

i�j Node�

BEGIN

CopyAdjMatrix�Path�Edge��

N���

��loop invariant I�

� N�� Size

� � �A�a�bNode�

� ��Path!a�b"�� �a�� �b��

� � ��a�� N b��� Path!a�b"��

�variant � Size�N

��

WHILE N � Size DO

N�N���

FOR i�� TO Size DO

FOR j�� TO Size DO

Path!i�j" � Path!i�j" OR �Path!i�N" AND Path!N�j"�

END

END

END

END TransClos�

�	� Warshall�s algorithm

E�ciency

There are now three nested loops �for N� i and j�� each one being executed
Size times� so the total number of iterations is of the order of Size	� This is
the best of our three algorithms�

We could optimize this further� For instance� we could replace the FOR

loops by

FOR i�� TO Size DO

IF Path!i�N"

THEN

FOR j�� TO N DO

Path!i�j" � Path!i�j" OR Path!N�j"

END

END

END

�Question� can you prove that this has the same result as the preceding
version�� However� this is local �ne tuning� The step from the original version
to Warshall�s was a fundamental change of algorithm� with a new Invariant�

���� Summary

� We have given three algorithms to compute transitive closures� each one
fundamentally more e�cient than the previous one�

� The most e�cient is Warshall�s algorithm� It would be di�cult to see
clearly why it works without the use of loop invariants�

� The reasoning about FOR loops was essentially di�erent from the loop
invariant technique used for WHILE loops�

���� Exercises

�� Given a graph with Size nodes� show that for any nodes a and b� if
a �� b then a �r b for some r � Size� Hint� use course of values
induction on n to show �n nat� P �n�� where

P �n� � �a�n b�� �r nat� �r � Size � �a�r b���

�� Use Warshall�s algorithm �in place� to implement the following procedure
�without using any array other than Graph�

Exercises �	�

PROCEDURE TransClos�VAR Graph AdjMatrix��

��pre none

�post Graph represents transitive closure of Graph��

��

�� Modify the detailed reasoning of the �rst algorithm to justify the second�
�� Warshall�s algorithm can be modi�ed to compute shortest paths between
nodes in a graph� Here is the speci�cation

TYPE Matrix � ARRAY Node� Node OF CARDINAL�

PROCEDURE ShortPaths�Edge AdjMatrix� VAR SP Matrix��

��pre none

�post �A�i�jNode� �A�rnat�

� �� �� SP!i�j" �� Size��

� � �SP!i�j" � r � r �� Size �� �i �� �r j��

� � ��i �� �r j� � r �� � �� SP!i�j" �� r��

��

The idea is that if there is any path at all from i to j then there is
one of length Size or less� and SP �i� j� is to be the shortest such length�
If there is no path� then SP �i� j� is to be Size � ��
Show how to modify the invariant and code of Warshall�s algorithm to
solve this new problem� You will probably need to use the relation �r

N �
de�ned by �i �r

N j� i� there is a path of length r from i to j� with
transit nodes all � N �

