
Chapter ��

Tail recursion

It is often convenient to do a lot of reasoning in Miranda because the language
has a more elegant notation that is more directly related to mathematical
ideas� For instance� the properties of list functions such as append and
reverse came out fairly simply in Miranda� However� in practice� you will
often want to use an imperative language for its greater e�ciency and so it
would be nice somehow to reuse that reasoning in the context of Modula���
We saw an example in Chapter ��� While on the subject of e�ciency� it is
worth mentioning that e�ciency is usually less important than clarity� This is
because any unclear piece of program can hide a fatal error� while it is only
in frequently used parts that ine�ciencies make a signi�cant di�erence�

The feature that we now address is the transfer from the recursive de�nitions
of Miranda to the iterative �looping� de�nitions of Modula��� Of course� one
can also give recursive de�nitions in Modula��� but it is generally less e�cient
to do so�

There is a general method by which a particular special kind of de�nition in
Miranda� the so�called tail recursive de�nition� can be converted automatically
into a WHILE loop implementation in Modula��� and even though not all
recursive de�nitions are tail recursive� there is still a chance of �nding
equivalent tail recursive de�nitions � ones that de�ne the same function�

���� Tail recursion

A de�nition of a function f is tail recursive i� the results of any recursive calls
of f are used immediately as the result of f � without any further calculation�
Therefore in a tail recursive de�nition� the recursion is used simply to call the
same function but with di�erent arguments�

The reason for this name is that the recursion occurs right at the end� the
tail� of the calculation� and there is no more to do afterwards� For instance�

�	�

Tail recursion �	�

the following de�nition of isin �to test whether a list t contains an element
x� is tail recursive� The result of the recursive call� �isin x ys�� is used
directly as the result of what was being de�ned �isin x �y ys���

isin x !"� False

isin x�yys�� True� if y�x

� isin x xs� otherwise

The following example� on the other hand� is not a tail recursive de�nition�
The result of the recursive call �append xs ys� is used in a further calculation
it has x cons�ed on the front�

append !" ys � ys

append �xxs� ys � x�append xs ys�

Figure ���� contains some function de�nitions� Which are tail recursive�
Answers� the de�nitions of rev�� gcd� f� and listcomp are tail recursive�
What is �f� a n� for general a� not necessarily ��

reverse !" � !"

reverse �xxs� � �reverse xs���!x"

��reverse xs � rev� !" xs

rev� as !" � as

rev� as �xxs� � rev� �xas� xs

gcd x y � x� if y��

� gcd y�x mod y�� otherwise

fact n � �� if n��

� n��fact �n����� otherwise

��fact n�f� � n

f� a n � a� if n��

� f� �a�n� �n���� otherwise

order � Before � Same � After

listcomp ! " ! " � Same

listcomp ! " �yt� � Before

listcomp �xs� ! " � After

listcomp �xs� �yt� � Before� if x � y

� After� if x � y

� listcomp s t� otherwise

Figure ���� Assorted Miranda de�nitions

�		 Tail recursion

Tail recursion and WHILE loops

Think of the tail recursion as meaning �do the same computation again�
but with new arguments�� In Modula��� you could keep variables for the
arguments� and then tail recursion means �update the variables� and repeat��
This is just looping�
To express this more precisely� we use the method of loop invariants

The loop invariant says the answer you originally wanted is the
same as if you calculated it starting with the variables you have
got now�

For instance� for isin the loop invariant would be

isin x ys� �isin calculated with original ys�
� isin x ys �isin calculated with current ys�

���� Example gcd

It is easy to imagine Euclid�s algorithm set out in a table� For instance� to
calculate the gcd of �� and ��� you could write

x y
�� ��
�� ��
�� �
� �
� � answer is �

At each stage� you replace x and y by y and x mod y� because the method
says that �gcd x y� � �gcd y �x mod y�� if y 	� �� The crucial property is
that in each line� �gcd x y� � �gcd x� y��� where x� and y� are the original
values of x and y ��� and �� here�� This is our loop invariant� Note also
that the loop variant y is the same as the recursion variant for gcd x y�

PROCEDURE GCD�x�y CARDINAL�CARDINAL�

��pre none

�post result � �gcd x�� y��� where gcd is as defined in Miranda�

��

VAR z CARDINAL �

BEGIN

�� loop invariant �gcd x y���gcd x�� y���

� variant � y

��

WHILE y$� DO z � x MOD y � x � y � y � z END �

RETURN x

END GCD �

General scheme �	

Justi�cation

initialization initially by de�nition x � x� and y � y�� so the invariant holds
without any initialization being necessary�

loop test and �nalization we stop looping when y � �� for then the �rst
clause in the Miranda de�nition tells us that �gcd x y� � x� and by the
loop invariant this is the answer we want� So we just return it�

reestablishing the invariant when y 	� �� then
�gcd x y� � �gcd y �x mod y���

Hence by replacing x and y by y and x mod y �which is what the
sequence of assignments does�� we leave �gcd x y� unchanged and hence
reestablish the invariant� Also� we have decreased the variant� y� �Note�
�x mod y� has a pre�condition� namely that y 	� �� This holds in this
part of the program��
To be slightly more formal� let x� and y� be the values of x and y at the
start of the iteration� The invariant tells us that gcd x� y� � gcd x� y��
It is easy to see that after the loop body we have x � y�� y � x� mod y�
�Exercise� prove this with mid�conditions�� Thus we have reestablished
the invariant for

gcd x y � gcd y� �x� mod y�� � gcd x� y� � gcd x� y��

Recall that in general we resolved not to assign to variables that were called
by value� This was to make the reasoning easier� However� with this method
it is particularly convenient and natural to break this resolution � after all�
the informal justi�cation was that we change the arguments of the function�
Therefore� we put in an explicit disclaimer to say that the call�by�value
parameters might change� In this example� of course� the only e�ects of this
are local to the procedure � the change cannot be detected in the outside
world�

���� General scheme

In general� a tail recursive de�nition in Miranda looks as follows

f x � a�� if c�

� a�� if c�

� ��� �� more non�recursive cases

� an� if cn

� f x�� if d�

� f x�� if d�

� ��� �� more recursive cases

�
� Tail recursion

a�� a�� � � � � an are expressions giving the answers in the non�recursive cases�
x�� x�� � � � are the new parameters used in the tail recursive cases�
a�� a�� � � � � an� x�� x�� � � �� as well as the guards c�� c�� � � � � cn� d�� d�� � � �� are all
calculated simply� without recursion� There is no di�culty in making this
work when f has more than one parameter�

Translation using WHILE loop

PROCEDURE f�x ��� � ����

�� NB Value parameter x may be changed

�pre any pre�conditions needed for f

�post result � �f x��� where f is as defined above in Miranda

��

BEGIN

�� loop invariant �f x� � �f x���

� variant recursion variant for Miranda f

��

WHILE NOT c� AND NOT c� AND ��� NOT cn DO

IF d� THEN x�x�

ELSIF d� THEN x�x�

ELSIF ���

END

END�

IF c� THEN RETURN a�

ELSIF c� THEN RETURN a�

ELSIF ���

END

END f�

Exercise� how does gcd �t this pattern� Note that the invariant and the
variant come automatically�

���� Example factorial

The following is the obvious recursive de�nition of the factorial function� but
it is not tail recursive

fact num �� num

��pre nat�n�

��post fact n � n#

fact n � �� if n��

� n��fact �n����� otherwise

Example� factorial �
�

After the recursive call �fact�n����� there is still a residual computation
�n
 � � ��� However� these can be �accumulated� into a single variable
f� a n � a� if n��

� f��a�n��n���� otherwise

and then �fact n� � �f� � n� �but we shall have to prove this�� a is the
accumulator parameter in f�� f� is tail recursive� so you can convert it into
a WHILE loop� But in fact� we do not need to implement f� separately in
Modula��� we can put its WHILE loop into the implementation for fact� with
an extra local variable for the accumulator parameter

PROCEDURE fact�n CARDINAL�CARDINAL�

�� NB may change n

�pre none

�post result � �fact n���

� where fact is as defined in Miranda

��

VAR a CARDINAL�

BEGIN

a � ��

��loop invariant �fact n��� � �f� a n� where f� as defined in Miranda

�variant � n

��

WHILE n$� DO a � a�n� n � n�� END�

RETURN a

END fact�

Justi�cation

initialization this relies on the property� promised but not yet proved� that
�fact n� � �f� � n��

loop test and �nalization when n � �� we know that �f� a n� is just a�
but this is the answer we require� so we can just return a as the result�

reestablishing the invariant when n 	� � then �f� a n� � �f� �a
n��n�����
so we reestablish the invariant by replacing a and n by a
 n and n� ��

It still remains to be shown that fact n � f� � n� The method to use is
induction� but some care is needed� Suppose we try to use simple induction
on n to prove �n nat� P �n�� where

P �n� � fact n � f� � n

�
� Tail recursion

For the induction step we assume P �n�� and prove P �n � ��

fact �n� �� � �n� ��� �fact n� � �n� ��� �f� � n�
� f� � �n � �� � f� �n� �� n

How can we bridge the gap and prove �n � �� � �f� � n� � f� �n� �� n�
The answer is that we cannot� The inductive hypothesis only tells us about
the behaviour of f� when its accumulator parameter is �� We actually have to
prove something more general and this involves understanding what �f� a n�
calculates for the general a it is a � n�� so we want to prove it equal to
a� �fact n��
Proposition ���� �n nat� fact n � f� � n

Proof We �rst prove by induction on n that �n nat� P �n� where
P �n� � �a nat� a
 �fact n� � f� a n

base case f� a � � a � a
 � � a
 �fact ��
induction step Assume P �n�� and prove P �n � ��� Let a be a natural

number� Then

f� a �n� �� � f��a
 �n� ���n
� a
 �n� ��
 �fact n� by induction
� a
 �fact �n� ���

Hence �
 �fact n� � fact n � f� � n�

�

For functions with accumulating parameters� you may need to �rst understand
how the accumulator works� and then formulate a stronger statement to prove�

���� Summary

� A recursive function is said to be tail recursive if in each recursive clause
of the de�nition the entire right�hand side of its equation consists of a
call to the function itself� A tail recursive function is similar to a loop�

� A general technique for transforming recursive Miranda de�nitions into
WHILE loop Modula�� de�nitions is as follows

�� Find an obvious solution in Miranda�

�� Find a �perhaps less obvious� tail recursive solution in Miranda�

�� Prove that they both give the same answers�

�� Translate the tail recursive version into Modula�� with WHILE loops�

�� Write down the loop invariant in terms of the Miranda function�

�� The loop variant is the recursion variant�

Exercises �
�

���� Exercises

�� Write Modula�� code for the tail recursive Miranda functions in
Section ����� Prove that reverse xs�rev� xs as claimed�

�� One way of viewing integer division x div y is that the result is how
many times you can subtract y from x �and the remainder x mod y is
what is left�� The following is an implementation of that idea

divmodnum��num���num�num�

��pre nat�m� � nat�n� � n �� �

��post divmod m n � �m div n� m mod n�

��i�e� nat�q� � nat�r� � r � n

�� � m � q�n � r

�� where �q�r� � divmod m n

divmod � f �

where f a m n � �a�m�� if m � n

� f �a��� �m�n� n� otherwise

How does this work� �Hint� using n as recursion variant for f a m n�
show that if a� m and n are natural numbers with n � �� then f a m n
satis�es the post�condition for divmod �m � a�n� n��

Use the fact that f is tail recursive to implement the method iteratively
in Modula���

�� De�ne a recursive function add in Miranda for the addition of two
diynat �as de�ned in Chapter �� natural numbers� Rewrite your function
in tail recursive style�

�� The Fibonacci sequence is

�� �� �� �� �� �� 	� ��� ��� ��� ��� � � �
Each number is the sum of the preceding two� and this can be de�ned
in Miranda by

fib num �� num

��pre nat�n�

��post fib n is the nth Fibonacci number

�� �starting with �zeroth���� �first����

fib n��� if n��

� �� if n��

� �fib �n������fib �n����� otherwise

This is terribly ine�cient� Try fib ��� Why does it take so long�

A more e�cient method is to calculate the pair �fib n� fib �n� ���

�
� Tail recursion

twofib num �� �num�num�

��pre nat�n�

��post twofib n � �fib n� fib�n����

twofib n������� if n��

��y�x�y�� otherwise

where �x�y� � twofib �n���

fib� n�x

where �x�y� � twofib n

Prove �by induction on n� that

�n nat� twofib n � �fib n fib �n� ���

�� Let us de�ne the generalized Fibonacci numbers �gfib x y n� by

gfib num �� num �� num �� num

��prenat�n�

��post g fib x y n is the nth generalized Fibonacci number

�� �starting with �zeroth��x� �first��y�

gfib x y n�x� if n��

�y� if n��

��gfib x y�n������gfib x y�n����� otherwise

They are generated by the same recurrence relation �the �otherwise�
alternative� as the ordinary Fibonaccis� but starting o� with x and y
instead of � and ��

�a� Prove by induction on n that

�n nat� fib n � gfib � � n

�b� Now the sequence �gfib y �x � y�� �as n varies� is the same as
the sequence �gfib x y� except that the �rst term x is omitted
�gfib x y �n� ��� � �gfib y �x� y� n�� Prove this by induction on
n�

Let us therefore de�ne

gfib� x y n � x� if n��

� gfib� y�x�y��n���� otherwise

�c� Prove by induction on n that

�n nat� �x� y num� gfib� x y n � gfib x y n

Part II

Logic

Chapter ��

An introduction to logic

���� Logic

In this part of Reasoned Programming we investigate mathematical logic� which
provides the formal underpinnings for reasoning about programming and is
all about formalizing and justifying arguments� It uses the same rules of
deduction which we all use in drawing conclusions from premisses� that is� in
reasoning from assumptions to a conclusion� The rules used in this book are
deductive � if the premisses are believed to be true� then the conclusions
are bound to be true� acceptance of the premisses forces acceptance of the
conclusion�
A program�s speci�cation can be used as the premiss for a logical argument

and various properties of the program may be deduced from it� These are
the conclusions about the program that we are forced to accept given that
the speci�cation is true�

A num �� num

�� pre none

��post returns �x�����

For example� in the program above� it can be deduced from the speci�cation
of A that� for whatever argument �input� x that A is applied to� it delivers a
result � �� We cannot deduce� however� that it will always deliver a result
� x� unless the pre�condition is strengthened� for example to x � ��
Examples of applications of correct� or valid� reasoning are �I wrote both

program A and program B so I wrote program A�� �if the machine is working
I run my programs� the machine is working so I run my programs�� �if my
programs are running the machine is working� the machine is not working so
my programs are not running�� etc�
It is not di�cult to spot examples of the use of invalid reasoning� political

debates are usually a good source� Some examples are �if wages increase

�
�

�
	 An introduction to logic

too fast then in�ation will get worse� in�ation does get worse so wages are
increasing too fast�� �some people manage to support their elderly relatives� so
all people can��
In this Chapter we introduce the language in which such deductions can be
expressed�

���� The propositional language

An example

In order to see clearly the logical structure of an English sentence we translate
it into a special logical notation which is unambiguous� This is what we mean
by �translating into logic�� For example� consider the sentence

If Humphrey is over �� and either he has previously been sentenced
to imprisonment or non�imprisonment is not appropriate then a
custodial sentence is possible�

We can translate this into logical notation in stages� by teasing out the logical
structure layer by layer� First� we may write

If Humphrey is over �� � �he has previously been sentenced
to imprisonment � non�imprisonment is not appropriate� then a
custodial sentence is possible�

Next�

�Humphrey is over �� � �he has previously been sentenced to
imprisonment � non�imprisonment is not appropriate� � � a
custodial sentence is possible�

Then� �
over��Humphrey��
�already�sentenced�Humphrey � � non�imprisonment�is�not�appropriate�

�

� possible�custodial�sentence�Humphrey�

and� �nally��
over��Humphrey��
�already�sentenced�Humphrey � � �non�imprisonment�is�appropriate�

�

� possible�custodial�sentence�Humphrey��

In this example we have introduced the connectives � �or or disjunction��
� �and or conjunction�� � �implies or if � � � then�� and � �not�� We also
used parentheses to disambiguate sentences� Without parentheses we cannot
tell whether A �B � C is really A � �B � C� or �A �B�� C�

The propositional language �

Eventually� the analysis reaches statements� or propositions� such as
�Humphrey is over ���� where we do not wish to analyze the logical structure
any further� These are called atoms �atomic means indivisible�� that is� not
made up using connectives� The connectives then connect atoms to make
sentences� We have also introduced a structure for the atoms� Propositions
usually have a subject �a thing� and then describe a property about that
thing� For example� �Humphrey� is a thing and �over ��� is a property�
or predicate� about it� Atoms are usually written as predicate�thing�� We
distinguish between terms� which are things� and predicates� which are the
properties�
As another example� consider �Jane likes logic and �she likes� programming��

The logical meaning is two sentences connected by �and�� In each one� Jane
is the subject� so the translation is

likes�Jane� logic� � likes�Jane� programming�

Notice how Jane appears twice in the logical structure� although only once
in English� The English �and� is more �exible because it can conjoin noun
phrases �logic and programming� as well as sentences �Jane likes logic and
Jane likes programming��
The use of parentheses to express priority can sometimes be avoided by a
convention analogous to that used in algebraic expressions

� binds less closely than � or � and � binds the closest of all�
Thus P � Q� R is shorthand for �P �Q� � R� not for P � �Q � R� and

�A � B is not the same as ��A � B�� Also� �as in English� we do not need
parentheses for P � Q � R � � � � or P � Q � R � � � �� but we do need them if
the � and � are mixed� as in �P �Q� �R�
The language of atoms and connectives is called propositional logic�

Atoms

An atom� or a proposition� is just a statement or a fact expressing that
a property holds for some individual or that a relationship holds between
several individuals� for example �Steve travels to work by train�� Sometimes�
the atoms are represented by single symbols such as Steve�goes�by�train� More
usually� the syntactic form is more complex� For instance� �Steve goes by
train� might be expressed as goesbytrain�Steve� or as travels�Steve� train��
The predicate symbol travels� � � requires two arguments in order to become

an atom� Steve�goes�by�train �or SGT for short� is called a proposition symbol�
or a predicate symbol that needs no arguments� The predicate symbol
goesbytrain needs one argument to become an atom� The two arguments
of travels used here are Steve and train and the argument of goesbytrain
is Steve� Adjectives are translated into predicate symbols and nouns into

��� An introduction to logic

arguments� which is why� for example �programming is fun� is translated into
fun�programming� rather than into programming�fun��

You may come across the word arity� which is the number of arguments
a predicate symbol has� Predicate symbols with no arguments are called
propositional� predicate symbols of arity one express properties of individuals
and predicate symbols of arity two or more express relations between
individuals�

In English� predicates often involve several words which are distributed
around the nouns� or in front of or behind the nouns� but when translating�
a convention is used that puts the predicate symbol �rst followed by the
arguments in parentheses and separated by commas� In case the predicate
has just two arguments it is sometimes written between the arguments in
in�x form� Whenever a predicate symbol is introduced a description of the
property or relation it represents should be given� For example� travels�x� y�
is read as �x travels by y��

The arguments of predicate symbols are called terms� Terms can be simple
constants� names for particular individuals� but you can also build up more
complex ones using a structured or functional term which is a function symbol
with one or more arguments� For example� whereas an empty list may
be denoted by the constant � �� a non�empty list is usually denoted by a
functional term of the form �head tail�� where head is the �rst element and
tail is the list consisting of the rest of the elements� Thus the list �cat�dog�
is represented by the term �cat �dog � ���� Here is an in�x function
symbol�

An example of the use of a pre�x function symbol is s���� Just as predicates
may have arities of any value � �� so can function symbols and each argument
of a functional term can also be a functional term� So functional terms can
be nested� as in mum�mum�Krysia�� or ��
��� ��� ���

���� Meanings of the connectives

In English� words such as �or� may have several slightly di�erent meanings�
but the logical connectives �� �� etc�� have a �xed unambiguous meaning�

A �B means A and B are both true�
A �B means at least one of A and B is true�
A� B means if A then B � or A implies B� or B if A�
�A means not A �or it is not the case that A is true��
A� B means A implies B and B implies A �or either both

A and B are true or both A and B are not true��

Figure ���� Meanings of the connectives

Meanings of the connectives ���

The meanings can be described using a truth table� shown in Figure ����� It
is possible for each atom to be either true �tt� or false �ff� so for two atoms
there are exactly four possibilities ftt� ttg� ftt� ffg� fff� ttg� fff� ffg� Each row
of the truth table gives the meaning of each connective in one situation�

A B A �B A �B A� B A� B

tt tt tt tt tt tt
tt ff ff tt ff ff
ff tt ff tt tt ff
ff ff ff ff tt tt

Figure ���� A truth table

From this truth table it can be seen that A �B is only true when both A
and B are true�

Determining whether a sentence is true or not in some situation is analogous
to calculating the value of an arithmetic expression� To �nd the value of the
expression �� �x
 y� when x and y have the values � and �� respectively� you
calculate � � ��
 �� � ��� Similarly� to �nd the value of A � �B � C� when A�
B and C are ff � tt and ff � respectively� you calculate ff � �tt � ff� � ff �

So� in order to decide if a complex sentence is true you need to look at its
atoms� decide if they are true� and then use the unambiguous meanings of
the connectives to decide whether the sentence is true� For example� consider
again the sentence

If Humphrey is over �� and either he has previously been sentenced
to imprisonment or non�imprisonment is not appropriate then a
custodial sentence is possible�

which was written in logic as

�
over���Humphrey��
�already�sentenced�Humphrey� � 	non�imprisonment�is�appropriate�

�

� possible�custodial�sentence�Humphrey��

Suppose that Humphrey is over ��� that he has not been sentenced to
imprisonment before and that non�imprisonment is appropriate� then the
condition of the implication is false � although the �rst conjunct is true the
second is not as each of the disjuncts is false� In this case� then� the whole
sentence is true� for an implication is true if its condition is false� You can
use this method for any other situation�

��� An introduction to logic

Some comments on the meanings of connectives

The truth tables give the connectives a meaning that is quite precise� more
precise in fact than that of their natural language counterparts� so care is
sometimes needed in translation�

The meaning of � is just like the meaning of �and� but notice that any
involvement of time is lost� Thus A and �then� B is simply A � B and�
for example� both �Krysia fell ill and had an operation� and �Krysia had
an operation and fell ill� are translated the same way� �A but B� is also
translated as A � B� even though in general it implies that B is not usually
the case� as in �Krysia fell ill but carried on working�� To properly express
these sentences you need to use the quanti�er language of Section �����

A � B means �A or B or both�� The stronger� �A or B but not both��
can be captured by the sentence �A � B� � ��A �B�� The stronger meaning
is called exclusive or� For example� consider �donations to the cause will be
accepted in cash or by cheque� and �you can have either co�ee or tea after
dinner�� �Which of these is using the stronger� exclusive or��

Consider the meaning of

diets�Jack� � lose�weight�Jack�

that is�

�If Jack diets then he will lose weight��

The only circumstance under which one can de�nitely say the statement is
false is when

Jack diets but stays fat�

In other circumstances� for example

Jack carries on eating� but gets thin
Jack carries on eating� and stays fat

there is no reason to doubt the original statement as the condition of that
statement is not true in these situations�

Natural language also uses other connectives� such as �only if� and �unless��
which can be translated using the connectives given already�

A unless B is usually translated as �A if �B� �that is� �B � A�� in which
B occurs rather like an escape clause� A unless B can also can be translated
as B �A� All of the sentences �Jack will not slim unless he diets�� �either Jack
diets or he will not slim� and �Jack will not slim if he does not diet� can be
translated in the same way as diets�Jack� �� slims�Jack��

The quanti�er language ���

�A only if B� is usually translated as A� B� as in �you can enter only if
you have clean shoes�� which would be �if you enter then you �must� have
clean shoes�� The temptation to translate A only if B as B � A instead of
A� B is very strong� To see the problem� consider

I shall go only if I am invited �A only if B�

Logically� it is A� B � if you start from knowledge about A then you can
go on to deduce B �or that B must have happened�� Temporally it is the
other way around � B �the invitation� comes �rst and results in A� But A
is not inevitable �I might fall ill and be unable to go� so there is no logical
B � A�
The sentence A� B� is often de�ned as A� B �B � A� which is A only

if B and A if B� or A if and only if B� which is often shortened to A i� B�

���� The quanti�er language

The logic language covered so far is not su�ciently expressive to fully analyze
sentences such as �all students enjoy themselves� or �Jack will always be fat�
� we need the use of generalizations�
Consider the sentence �the cat is striped�� or� in logical notation� striped�cat��

Before you can understand this sentence or consider whether it is true or not
cat needs to be de�ned so that you know exactly which cat is meant�
Now compare this with �something is striped�� �Something� here is rather

di�erent from �cat�� To test the truth of this sentence you do not need to
know beforehand exactly what �something� is� you just need to know the range
of acceptable possibilities and then you go through them one by one to �nd
at least one that is striped� If you succeed then �something is striped� is true�
In line with this distinction� we do not write striped�something� in logic�

but� instead� write �x� striped�x�� This is read literally as �for some x� x is
striped�� but we are sure that you can see this is equivalent to �something is
striped��
The meaning of this sentence is

there is some value� which when substituted for x in striped�x��
yields a true statement�

This is even more clear if you consider �the cat is striped and hungry��
striped�cat� � hungry�cat�� since the meaning of cat is �xed beforehand both
occurrences of �the cat� refer to the same thing� On the other hand� in
�something is striped and something is hungry�� �x� striped�x� � �y� hungry�y��
the two somethings could be di�erent�
It is also possible to say �something is both striped and hungry�� as in

�x� �striped�x� � hungry�x��� This time there is only one something referred to
and� whatever it is� it is hungry as well as striped�

��� An introduction to logic

Now� unlike cat� which was a constant� x has the potential to vary and is
called a variable� The x in �x announces that x is a variable and applies
to all of the following formula that follows the ���� For non�atomic formulas
parentheses �square or round� are needed to show the scope of the x� For
example� �x� �P �x��Q�x��� The occurrence of � is said to bind the occurrences
of x in that formula�
� is called a quanti�er �and �x is called a quanti�cation�� Another quanti�er

is �� the universal quanti�er� which can be read as �for all� or �every�� For
example� in �Fred likes everyone�� we do not write likes�Fred� everyone�� but
�x� likes�Fred� x�� To see if this sentence is true you need to check that Fred
likes all values in a speci�ed range� The meaning of this sentence is

for all values substituted for x� likes�Fred� x� is a true statement�

Something that is rather important is that when you have two occurrences
of the same variable bound by the same quanti�cation they must denote the
same value� For instance� the xs in �x� �striped�x� � hungry�x�� must denote
the same value� to make the sentence true you must �nd a value for x that is
both striped and hungry� On the other hand� in �x� striped�x���x� hungry�x�
the two xs are bound by di�erent quanti�cations and you just need to �nd
something that is striped and something that is hungry � the same or
di�erent� it does not matter � for the sentence to be true�
�x� �likes�x�Fred� � likes�x�Mary�� is true if every value tried for x

makes either likes�x�Fred� or likes�x�Mary� true� Compare this with
�x� likes�x�Fred� � �x� likes�x�Mary�� which is true if either �x� likes�x�Fred�
is true� or �x� likes�x�Mary� is true� In the second case the two xs are
bound by di�erent quanti�cations and again are really two di�erent variables�
In the sentence �someone likes everyone�� which is �x� �y� likes�x� y� the

two variables of the nested quanti�ers are di�erent� It would be asking for
trouble if they were the same and so we shall forbid it�
Quanti�ers which are of the same sort can be placed in any order� For

example�

�x� �y� �mother�x� y�� parent�x� y��

is no di�erent from

�y� �x� �mother�x� y�� parent�x� y���

They both mean that� for any x and y� if x is a mother of y then x is a
parent of y� Similarly� �x� �y� � � � means the same as �y� �x� � � ��
For quanti�ers of di�erent sorts the order is important� For instance�

�x� �y� mother�y� x�
does not mean the same as

�y� �x� mother�y� x�
The �rst says that everyone has a mother� literally� for all x there is some

y such that y is the mother of x and you know this is true when x and y
vary over people� The second says that there is one single person who is the

Translation from English ���

mother of everyone� literally� there is some y such that for all x� y is the
mother of x� This is a much stronger statement which you know is not true
when x and y can vary over people�

���� Translation from English

You have already seen how to translate from English to logic in the
propositional case� teasing out the logical structure connective by connective�
The same principles apply when you have quanti�ers and variables� but there
are also some speci�c new issues to consider�

There are several useful rules of thumb which aid the process of translation�

Pronouns

Pronouns� words such as �he�� �it� or �nothing�� do not in themselves refer to
any speci�c thing but gain their meaning from their context� You have already
seen how the words �something� and �everyone� are translated using quanti�ers
and �nothing� is similar � �nothing is striped� becomes ��x� striped�x��
Words such as �she� or �it� are used speci�cally as a reference to someone or

something that has already been mentioned� so they inevitably correspond to
two or more references to the same value� When you come across a pronoun
such as this you must work out exactly what it does refer to� If that is a
constant then you replace it by the constant so �Chris adores Pat who adores
her� becomes adores�Chris� Pat� � adores�Pat� Chris��

That is easy� but when the pronoun refers to a variable you must �rst set
up a quanti�cation and ensure that it applies to them both�

For instance� consider �something is spotted and it is hungry�� An erroneous
approach is to translate the two phrases �something is spotted� and �it is
hungry� separately� This is wrong because the �something� and �it� are linked
across the connective �and� and you must set up a variable to deal with this
linkage

�x� �x is spotted and x is hungry�

and then deal with the �and�

�x� �spotted�x� � hungry�x��

The rule of thumb is

If pronouns are linked across a connective� deal with the pronouns
before the connective�

