206 An introduction to logic
Qualifiers and types

Often, a phrase that is to be translated using a universal quantifier is about a
certain type of thing rather than about all things and so you want to qualify
the quantifier. In the case of a universal quantifier this is done using an
implication. For instance, ‘all rational people abhor violence’, or ‘a rational
person abhors violence’, first becomes

V(rational)x. [z abhors violence]
where ‘rational’ is called a qualifier. This translates to

Va. [rational(x) — abhors-violence(x)]

If the quantification is existential then a conjunction is used to link the
main part with the qualifying part. For example if you want to make it
certain that Mary likes people in ‘Mary likes someone who likes logic’, you
could first write

J(person who likes logic)y. likes(Mary,y)

and then
dy. [person(y) A likes(y, logic) N likes(Mary, y)]

Notice the way ‘who’ links the conjuncts together.
Another rule of thumb is therefore

Get the structure of the sentence correct before dealing with the
qualifiers.

Qualifiers can always be translated using — or A as appropriate. However,
their use is quite convenient and so we will introduce a notation for them and
write Va : typename. [--] or dz : typename. [--] and call the quantifiers typed
quantifiers.

The notation is most often used for standard qualifiers, sometimes referred
to as ‘types’, and sentences using it can always be rewritten with the type
property made explicit. Standard qualifiers include persons, numbers (integers,
reals, etc.) strings, times, lists, enumerated sets, etc.

For example,

Va @ time. Yy : time. [x >y — after(x,y)]
would be shorthand for
VaVy. [time(z) A time (y) — (2 >y — after(z,y))]

Standard types are used extensively in writing program specifications, and
they correspond to the various data structures such as list, num, etc., used in
programs.

Earlier, we indicated that a sentence Va. P[x] is true iff every sentence P[t]

that can be obtained from P[xz] by substituting a value ¢ for every occurrence
of in Pla] is true.

Translation from English 207

For example, ‘all programs that work terminate’, which in logic is
Va. [program(x) — (works(x) — terminates(x))]
is true if each sentence obtained by substituting a value for z is true. It is
true if all sentences of the kind

program(quicksort) — (works(quicksort) — terminates(quicksort))
program(quacksort) — (works(quacksort) — terminates(quacksort))
program(Hessam) — (works(Hessam) — terminates(Hessam))

etc., are true. If the value ¢ substituted is a program, so that program(t) is
true, the resulting sentence
program(t) — (works(t) — terminates(t))
is true if works(t) — terminates(t) is true. If the value ¢ makes program(t)
false (that is, is not a program) then the resulting sentence is also true. In
practice, we evaluate the truth of a sentence in a situation in which the values
to be substituted for = are fixed beforehand. For example, they could be {all
programs written by me}, {programs} or even {names of living persons}.
When qualified quantifiers are used they are suggestive of the range of
values that should be substituted in order to test the truth of a sentence.
The sentence ‘All programs that work terminate’ would become
YVa : program. [works(x) — terminates(x)].
and it is suggestive that the only values we should consider for x are those
that name programs. As our analysis above showed, these are exactly the
values that are useful in showing that the sentence is true.
Similarly, if instead the sentence had been ‘Some programs that terminate
work’, which in logic is
Jdx. [program(x) A works(x) A terminates(x)]
then it would be true as long as at least one of the sentences obtained by
substituting terms ¢ for = were true. There is no point in trying values of ¢
for which program(t) is false for they cannot make the sentence true. This is
suggested by the typed quantifier version
Jx : program. [works(x) A terminates(x)].
Even so, a difficulty may arise. Consider the statement

‘Every integer is smaller than some natural number.’

which in logic is
Va :integer. Ju: nat. [z < ul.

This time there are an infinite number of sentences to consider, one for each
integer. How can you check them all? Of course, you cannot check them all
individually and finish the task. Instead, you would consider different cases.
For example, you may consider two cases here, * < 0 and x > 0. Then, all
negative integers are considered at once, as are all natural numbers. For the
first case the sentence is true by taking w =0, for 0 is a natural number and

208 An introduction to logic

it is greater than any negative integer; in the second case = 4+ 1 is a natural
number and will do for u. Sometimes, therefore, we have to use a proof to
justify the truth of a sentence; we look at proof in the next two chapters.

Some paradoxes

Generally, the need for a universal quantifier is indicated by the presence
of such words as all, every, any, anyone, everything, etc., and the words
‘someone’, ‘something’ indicate an existential quantifier, but it can happen
that ‘someone’ corresponds to V. This phenomenon is most likely in connection
with —.

To see how this might happen, consider ‘it someone is tall then the door
frame will be knocked’, which translates to

[Fz. tall(z)] — door-knocked.

‘Someone’ has become J here, just as you would expect. But note that there
is an equivalent translation using V. The original sentence could be rephrased
as ‘for anyone, if they are tall then the doorframe will be knocked’, which
becomes

Va. [tall(x) — knocked(doorframe)]

Hence, in this example, ‘someone’ can possibly become V.

Now consider ‘if someone is tall then he will bump his head’. This time the
pronoun is linked to ‘someone’ across the implication and you have to deal
with the quantification first. The only translation is

Va. [tall(z) — bumphead(x)]

so that ‘someone’ has to become V.

15.6 Introducing equivalence

Often, English sentences can be translated into more than one equivalent
formula in logic. For example, ‘if Steve is a vegetarian then he does not eat
chicken’ might be translated directly as vegetarian(Steve) — —eat(Steve, chicken)
but it could also be paraphrased as ‘Steve is not both a vegetarian and
a chicken-eater’, which translates to —(vegetarian(Steve) A eat(Steve, chicken)).
The two logic sentences are equivalent and any conclusion that follows from
using one form also follows from using the other. You will come across many
useful equivalences and a selection is presented in Appendix B. We write
A= B if A and B are equivalent. Two sentences are said to be equivalent (=)
iff they are both true in exactly the same situations. An important property
of equivalent sentences is that they may safely be substituted for each other
in any longer sentence without affecting the meaning of that sentence.

Some useful predicate equivalences 209

For example, if A=SVT and B=TV S then A is equivalent to B. If
E[A] is the sentence SV T — U (=A — U) then we can substitute B for A
giving the sentence E[B](=B — U), or TV S — U. We have E[A] = E[B].
S and T can themselves be any sentence; for example, if S =P A () and
T=RV~-P then (PANQ)V(RV-P)=(RV-P)V(PAQ).

In general, then, if A = B then E[A] = E[B], where A, B, FE are any
sentences with no variable occurrences. F[A] denotes that A occurs in £ and
E[B] denotes the result of substituting B for A in none or more of those
occurrences. This is so because if A evaluates to # in a situation then so will
B as they are equivalent, and the F[A] and F[B] have the same value. In
particular, E[A] could be just the sentence A, so K[B] is the sentence B and
B can be used in place of A.

Equivalences are frequently used, as it may be that one form of a sentence
is more convenient than another in some derivation. More discussion can be
found in Section 18.4, where we consider relaxing the condition on A and B.

Equivalences can be used in ‘algebraic reasoning’. For example,

~~

PAQ)AR

-=((PAQ)AR), since -=X =X
—(=2(PAQ)V -R), since 2(XAY)=-XVY
~(=PV-QV —R)

that is, (PAQ)ANR=—-(-PV-=QV -R).

As another example, the two sentence forms AV (SVT) and (AVS)VT
are equivalent; that 1is, V is an associative operator and hence the
parentheses can be omitted. The operator A behaves similarly. Using
this fact you can show easily that any number of sentences all disjoined
by V, or all conjoined by A, can be freely parenthesized; for example,
QVRVSVT=QV(RVSVT)=(QVR)V(SVT)=(QVRVS)VT.

If a sentence has a form which makes it always true it is called a tautology;
for example AV —A is a tautology. A sentence that is always false is called
a contradiction, or falsehood, for example A A —-A. Both tautologies and
contradictions will play an important role in the reasoning steps that we shall
be introducing.

15.7 Some useful predicate equivalences

In this section we look briefly at some useful equivalences using quantified
sentences.

The equivalences in Appendix B are schemes in which the constituents
represent sentence forms. For example, F'(x) indicates a constituent sentence
in which x occurs, whereas S (without an) indicates a constituent
sentence in which = does not occur. An instance of a scheme such as

210 An introduction to logic

Va. [SAF(x)] =S AVe. F(x) is obtained by replacing all occurrences of S
and F(x) by appropriate sentences, for example S could be Jy. G(y) and
F(x) could be P(x,a)V Q(x,b), where a and b are constants. The variables x
and y are like formal parameters and can be renamed. So —Vu. F(u,a) is an
instance of the scheme —Va. F(x) and rewrites to Ju. —~F(u,a).

NoTE: Jx. Vy. F(x,y) is not equivalent to Vy. Jx. F(x,y). In order to
help you to remember this one, find an interpretation for F' that distinguishes
clearly, for you, between the two sentences. For example, you could interpret
I as ‘“father’, so that the first sentence translates into ‘there is some = that is
the father of everyone’ and the second into ‘for each person y there is some
x that is the father of 3.

An instance of the important equivalence Jx. F(x) — B = Va. [F(x) — B]
is used in the following:

de. mother(Pam, ¢) — parent(Pam)
= Ve. [mother(Pam,¢) — parent(Pam)]

The occurrence of Jx. F(x) is de. mother(Pam,¢), in which the bound variable
x is renamed to ¢, and of B is parent(Pam). Notice that ¢ does not occur in
parent(Pam).

It is also true that equivalent forms of sentences involving variables and
quantifiers can be substituted for one another in any context as in the
following example. After reading Section 18.4 you will be able to prove this.

In the following example the equivalences used and the scheme occurrences
are not given. It is left as an exercise to list the equivalences at each step.

No student works all the time = All students fail to work some of
the time.

—ds. [student(s) A Vt. [time-period(t) — works-at(s,1)]]

= Vs. [nstudent(s) V VL. [time-period(t) — works-at(s,1)]]

= Vs. [nstudent(s) V 3t. [time-period(t) N —works-at(s,1)]]

= Vs. [student(s) — Tt. [time-period(t) N ~works-at(s,1)]]

The equivalences also hold if the quantifiers are typed. The above example

then becomes
—ds @ student. Vit : time-period. [works-at(s,t)] =

Vs @ student. 3t : time-period. [—works-at(s,t)]
and the transformation is simpler.

15.8 Summary

o Logic uses connectives to express the logical structure of natural language.
e The syntax and meanings of propositional logic follow the principles of
algebra.

FEzercises 211

o Atoms consist of predicates which have arguments called terms. Terms
can be constants, or function symbols and their arguments.

o For reference, the meanings can be summarized using a truth table. For
two propositions there are four different classes of situation: {#,#},

{a, [y, {4, 1}, {Jf, ff}. Each row of the truth table gives one situation.

[A[B[A B[AVB[AB[A<B]
Al -A | u t t t t
Lo il L/ ii Ir Ir
It /N ii ii Ir
Figy I t t
For example, from this truth table it can be seen that AV B is true
unless both A and B are false.

o To facilitate translation from English into logic, typed quantifiers are
introduced.

e The informal meaning of a sentence involving a quantifier is

Va. Plx] is true iff every sentence P[t] obtained by substituting ¢ for
x, where t is taken from a suitable range of values, is true.

Va. Plx] is false if some Plt] is false.

dz. P[] is true iff some sentence P[t] obtained by substituting ¢ for x,
where t is taken from a suitable range of values, is true.
dz. Plz] is false if no sentence Plt] is true.

e Equivalent sentences can be substituted for one another.

15.9 Exercises

1. Suggest some predicate and function symbols to express the following
propositions: Mary enjoys sailing; Bill enjoys hiking; Mabel is John’s
daughter; Ann is a student and Ann is Mabel’s daughter

2. Translate the following sentences into logic. First get the sentence
structure correct (where the A, V, etc., go) and then structure the
atoms, for example Frank likes grapes could become likes(Frank, grapes).

(a) If there is a drought, standpipes will be needed.

(b) The house will be finished only if the outstanding bill is paid or if
the proprietor works on it himself.

) James will work hard and pass, or he belongs to the drama society.
) Frank bought grapes and either apples or pears.

e) Janet likes cricket, but she likes baseball too.
)

All out unless it snows!

212 An introduction to logic

3. Translate the following into logic as faithfully as possible:
(a) All red things are in the box.

everywhere that Mary went her lamb was sure to go!

4. (a) Let A be #, B be #, C' be ff. Which of the following sentences
are true and which are false?
i. ((A—B)—-B)
. (mA—= (=BAC))V B)
ii. (AV-C)AN=B) = A)— (=BA-())
(b) If Ais ff, B is ff and C is #, which of the sentences in part (a)

are true and which are false?

(¢) If Ais ff, B is # and C is #, which of the sentences in part (a)
are true and which are false?

5. We mentioned, but did not prove, that associativity allows you to omit
parentheses if all the connectives are V or A. Explain how associativity
is used to show the equivalence of ((QV R)VS)VT and QV(RV(SVT)).

6. Show that the following are equivalent forms by considering all different
situations and showing that the pairs of sentences have the same truth
value in all of them. For example, for the equivalence P A ff = ff there
are two situations to consider — P =1# and P = ff. When P = [f,
PANf=ffnff=f, and when P=t#, PAff=#Aff = ff. In both
cases the sentence is ff. For the example PAQ = (P — —(Q) there are
four situations to consider which can be tabulated as

[P1QIPAQIP— Q| (P - Q]
it Ir

S S

S s

[/
[/
[/

S s

t
I
I

10.

FEzrercises 213

You can see that the two sentences have the same value in all four
situations and so are equivalent.

() PVQ=(P Q)= Q
) PAQ=~(P Q)
(¢) P— Q=@ « P (that is, < is commutative)

(d) P— (Q < R)=(P < Q) < R (that is, « is associative)
(e) P Q=-P < -0

(f) ~(P=@Q)=-P<Q

() P=(Q—-R)=PAQ—R

(h) P= (@A R)=(P Q)N (P = R)

Show that R= S iff R« S is a tautology. (HINT: consider the possible
classes of situations for R « 9.

Discuss how you would decide the truth or falsity of the sentences
below in the given situations. Also decide which are true in the given
situations and which are false (if feasible). The situation indicates the
possible values that can be substituted for the bound variables.

(a) All living creatures, animal or not:

i. Ya. [animal(x) — Jy. [animal(y) A (eats(x,y) V eats(y, x))]]
. Ju. [animal(u) A Vo. [anemal(v) — eats(v, u)]]
ii. Vy. Va. [animal(z) A animal(y) — (eats(x,y) < eats(y, x))]
iv. =3v. [anmemal(v) A Vu. [animal(u) — (—eats(u,v))]]

(b) There are three creatures Cat, Bird and Worm. Cat eats all three,
Worm is eaten by all three and Bird only eats Worm. Use the
sentences (i) through (iv) of part (a) of this question.

(c) The universe of positive integers:

i. Jx. [z is the product of two odd integers]
ii. Ya. [x is the product of two odd integers]
ii. Va. Jy. [y > 2]
iv. Va. Yy. [xy > 2]

By using the appropriate equivalences and translation of Va : T. P[z]

into Va. [is T(x) — Plz]] and Jz: T. Plz] into Jz. [is-T(x) A Plz]], show

that Vo : T. [Plx] = S] = (J=: T. Plz]) — S.

Show that the following pairs of sentences are equivalent by using

equivalences. State the equivalences you use at each step:

(a) Va. [=VYy. [woman(y) — —dislikes(x,y)] — dislikes(Jane, x)]
and Va. [Jy. [woman(y) A dislikes(x,y)] — dislikes(Jane, x)]

(b) —3x. [Martian(x) N ~dislikes(x, Mary) A age-more-than-25(x)]
and Va. [Martian(x) A\ age-more-than-25(x) — dislikes(x, Mary))

Chapter 16

Natural deduction

16.1 Arguments

Now that you can express properties of your programs in logic we consider
how to reason with them to form correct proofs. Initially, we will look at
reasoning with sentences that do not include any quantifiers.

The method we use is called natural deduction and it formalizes the
approach to reasoning embodied in the ‘argument form’

“This is so, that is so, so something else is so and hence something
else, and hence we have shown what we wanted to show.’

An argument leads from some statements, called the premisses, to a final
statement, called the conclusion. It is valid if whenever circumstances make
the premisses true then they make the conclusion true as well. The only way
in which the conclusion of a walid argument can be rejected is by rejecting
the premisses (a useful way out).

We justify a potential argument by putting it together from small reasoning
steps that are all known to be valid. We write AF B (pronounced ‘A proves
B’) to indicate that B can be derived from A using some correct rules of
reasoning. So, if we can find a derivation, then Ak B is true.

Schematically:

PEP {PP}-P - {P,P,....P.1}F P,
The steps are supposed to be so simple that there is no doubting the validity
of each one.

The following is a valid argument:

1. If Hessam’s program is less than 10 lines long then it is correct.
2. Hessam’s program is not correct.
3. Therefore Hessam’s program is more than 10 lines long.

The first two lines are the premisses and the last the conclusion. A
derivation of the conclusion in this case is the following: suppose Hessam’s

214

The natural deduction rules 215

program is less than 10 lines long; then it is correct. But this contradicts the
second premiss so we conclude that Hessam’s program is more than 10 lines
long. These reasoning steps mean that 1, 2 3.

Sometimes, we may be tempted to use invalid reasoning steps, in which the
conclusion does not always have to be the case even if the premisses are true.
Any justification involving such steps will not be correct.

The following is an invalid argument:

It T am wealthy then I give away lots of money.
I give away lots of money.
Therefore I am wealthy.

The reasoning is not valid because from the premisses you cannot derive the
conclusion; the premisses could be true and yet I could be poor and generous.

It AF B then the sentence A — B is a tautology because whenever A is
true B must be true also. The various tautologies such as AN B — A each
give rise to simple and valid arguments. This one yields the valid argument

ANBEF A

An informal example

The natural deduction rules to be introduced in this chapter are quite formal.
This is a good thing for it enables a structure to be imposed on a proof
so that you can be confident it is valid. When you are quite sure of the
structure imposed by the rules it is possible to present proofs in a more
relaxed style using English. Typical of such an English proof is the following
proof of the valid argument:

If Chris is at home then he is working.
It Ann is at work then she is working.
Ann is at work or Chris is at home.
Therefore someone is working.

A justification of this argument might follow the steps: to show someone is
working, find a person who is working — there are two cases to consider: if

Ann is at work, she is working and if Chris is at home, he is working. Either
way, someone is working.

16.2 The natural deduction rules

About the rules

There are two kinds of rule. The first kind tells us how to reason using
a sentence with a given connective, that is, how to exploit a premiss. For

216 Natural deduction

example, from A A B we can deduce each of A and B. The second kind
tells us how to deduce a sentence with a given connective, that is, how to
prove a conclusion. For example, to deduce A A B we must prove both A
and B. The first kind are called elimination rules and the second are called
introduction rules. They are labelled AE (pronounced and elimination), VE,
AT (pronounced and introduction), VI, etc.

It a formula is derived using the rules, the notation
F (formula)
will be used. When initial data is needed to prove a formula the notation is
(assumptions) F (formula).

S FC is called a sequent and can be read as:

A proof exists of goal sentence €' from data sentences S.

The initial data sentences S are placed at the top of the proof and the
conclusion C' is placed at the bottom. The actual proof goes in the middle.
Frequently, a proof will consist of subproofs, which will be written inside
boxes.

As you read a proof from top to bottom, you see more and more
consequences of the earlier sentences. However, that is not the way in which
a proof is constructed in the first place. As you will see, when proving
something we can work both forwards from the data and backwards from the
conclusion so that the middle part is not usually filled in straight from data
to conclusion. When a proof is written ‘in English” it is written to reflect this
‘construction order’ of the proof.

Each of the rules will be presented in the following style:

one or more antecedents

a conclusion (rule name)

‘Antecedent’ just means ‘something that has gone before’.

Often, it is just an earlier sentence, though sometimes it is a bigger chunk
of proof. The rules can either be read downwards — from the antecedents
the conclusion can be derived, or upwards — to derive the conclusion, you
must derive the antecedents. We will frequently omit the line between the
antecedents and the conclusion.

A-introduction (AZ) and A-elimination (AE) rules

The two rules of this section, AZ and AE, correspond closely to everyday
deduction.

The natural deduction rules 217

The first rule is AZ:

From each of P,...,P, as data or derived sentences, conclude
PyAN...ANP, or, to give a proof of Py A... A P,, derive proofs for
P,...,P,

The proof is structured using bozes:

P P,
PN AP, (AT)

The boxes are introduced to contain the proofs of Fi,..., P, prior to
deriving Py A ... A P,. The vertical dots indicate the proof that is to be filled
in. There is one box to contain the proof for each of P to P,. The use of
the AZ rule is automatic — there is a standard plan which you always use
when proving Py A ... A P,.

When a proof is presented, it is usually read from the top to the bottom,
but when you are actually proving something, you may work backwards from
the conclusion. So, in a proof, you will probably read an application of AZ
downwards, but when you have to prove P A (), you ask ‘how do 1 do it?’,
and the answer is by proving P and () separately. We can say that you work
backwards from the conclusion, deriving a new conclusion to achieve.

The second rule is AE:

from data or derived sentences Py A...A P, conclude any of
P,...,P,, or
PiAn. NP,
P (NE)

for each of P, 1 =1,...,n.

This time the rule is used exclusively in a forward direction, deriving new
data.

Figure 16.1 contains the first steps in a proof of ANBF BAA. If we
need to refer to lines in proofs then each row in the proof will be labelled
for reference. In the diagram, the given sentence A A B is initial data and is
placed at the start of the deduction, and the conclusion, or goal, is B A A,
which appears at the end. Our task is to fill in the middle.

There are now two ways to proceed — either forwards from the data or
backwards from the goal. In general, a natural deduction derivation involves
working in both directions. Here, as soon as you see the A in the conclusion,

218 Natural deduction

v AADB

, B
Figure 16.1

1 AADB

o .

s+ BANA NT
Figure 16.2

think (automatic step) AZ and prepare for it by making the preparation as in
Figure 16.2. Working backwards from the conclusion is generally applicable
when introduction rules are to be used. This example will require the use of
the AZ rule. The boxes are introduced to contain the subproofs of A and
B. It needs a tiny bit of ingenuity to notice that each of the subgoals can
now be derived by AE from the initial data A A B by working forwards. The

completed proof appears in Figure 16.3. Lesson — the AZ step is automatic
1 AAB
> B NE(L)||A AE(L))
35 BANA AT

Figure 16.3 ANBF BAA

— to prove AA B you must prove A and B separately. But to use AE
requires ingenuity — which conjunct should you choose?

An alternative proof construction for AANBF BA A is shown in Figure 16.4.
It works forwards only — first derive each of A and B from A A B and then
derive B A A.

You can see that these two rules are valid, from the definition of true
sentences of the form P A () given in Chapter 15. For if P A Q) is true then
so must each of P and @) be (AE), and vice versa (AZ).

The natural deduction rules 219

. AAB
. A AE(L)
s B AE(L)
4+ BAA NL

Figure 16.4 Another proof of ANBF BAA

V-elimination (VE) and V-introduction (VZ) rules

The V-elimination rule is frequently used in everyday deduction and is often
called a case analysis — a disjunction P; V P, (say) represents two possible
cases and in order to conclude C'; € should be proven from both cases, so
that it is provable whichever case actually pertains. It can be generalized to
n > 2 arguments and is

VE It C' can be derived from each of the separate cases Py,..., P,
then from Py V...V P,, derive goal C'.

Pl Pn
PivV...VPF,

C C

Co(ve)

There is one box for each of P, 1 =1,n.

Each box that is part of the preparation for the V& step represents a subproof
for one of the cases, and contains as an additional assumption the disjunct
P; that represents its case. The assumptions P; are only available inside the
box and their use corresponds to the FEnglish phrase ‘suppose that P;...".
Once the proof leaves the box we forget our supposition. Hence the box says
something significant: FP; is true in here.

The VI rule is
VT From any one of P,..., P, derive PV ...V P,
P
Pv...vP, (VI)

for each of P, 1 =1,...,n.

The V-introduction rule is usually used in a backward direction — in order to
show PV @ one of P or () must be shown. In the forward direction the rule

220 Natural deduction

is rather weak — if P is known then it does not seem very useful to derive
the weaker PV) (unless such a deduction is needed to obtain a particular
desired sentence, as in the next example). This rule, too, can be generalized
to n > 2 arguments.

This time, the V& rule is automatic, whereas the VZ rule is the one that
requires ingenuity — when proving P V...V P, which disjunct should we
choose to prove?

In the next example, a proof of AN(BVC)F (AANB)V(ANC), we illustrate
how a proof might be found. The first step is to place the initial assumption
at the top and the conclusion at the bottom as in Figure 16.5. Now, where

AN(BVCO)
(ANB)V(AAC)

Figure 16.5

do we go from here? There are no automatic steps — AE, and VI need
ingenuity. Can we obtain the conclusion by VZI?7 Does either of the sentences
ANB or AANC follow from the premiss? A little insight says no, so try A&
on AAN(BVC) — it is not so difficult and the result is given in Figure 16.6.
Now an automatic step is available — exploit BV C by VE (case analysis).

AN(BVCO)
A NE
BvC NE

(ANB)V(AAC)

Figure 16.6

The preparation is given in Figure 16.7. Look at the left-hand box. There
are no automatic steps, but look, we can prove AA B by using B and then
use VZ to show (AAB)V(AAC). Similarly in the right-hand box, proving
ANANC. The complete proof is given in Figure 16.8. It is often the case that a
disjunctive conclusion can be derived by exploiting a disjunction in the data.
Sometimes, an inspired guess can yield a result, as inside the boxes of the
example.

The natural deduction rules 221

AN(BVCO)
A NE
BvC NE
B C
(AANB)V (AAC) (AANB)V(AANC)
(AAB)V(AAC) VE
Figure 16.7
1 AN(BVCO)
2 A AE(L)
3 BvC AE(L)
4+ B C
5 AANDB ANL(2,4)|ANC AL(2,4)
6 (ANB)V(AAC) VI(5) [(AAB)V(AANC) VI(5)
7 (ANB)V(AAC) VE(3)

Figure 16.8 AN(BVC)F(AANB)V(AAC)

As an example of how a box proof is translated into English, we will give
the same proof in its more usual form.

Proposition 16.1 AAN(BVC)F(AANB)V(AAC)

Proof Since AA(BV (), then A and BV C. Consider BV C: suppose B,
then to show (AA B)V (AAC) we have to show either AANB or AANB. In
this case we can show A A B. On the other hand, suppose C. In that case
we can show AAC and hence (AN B)V (AAC). So in both cases we can
show (AAB)V (ANAC). O

From now on you will have to work through the examples in order to see
how they are derived, as only the final stage will usually be given.

It is easy to see that the VZI rule is valid; for X VY is true as long as
either X or Y is. It X VY is true then we know only that either X is true
or Y is true, but we cannot be sure which one is true. For the V& case,
therefore, we must be able to show (' from both so as to be sure that C
must be true.

222 Natural deduction

It is tempting to try to ignore the V& rule because it looks complicated.
But you must learn it by heart! It is automatic — as soon as you see V in a
premiss you should consider preparing for VE. Writing the conclusion in n+1
places seems odd at first, but this is what you must do. Each occurrence has
a different justification; it is V& outside the boxes and other reasons inside.

There is a special case of VE in which the number of disjuncts is zero. A
disjunction of n sentences says ‘at least one of the disjuncts is true’, but if
n = 0 that is impossible. To represent an impossible sentence, a contradiction,
we use the symbol L, which is pronounced bottom and is always false. If you
look at VE when n =0 you see that there are no cases to analyze and all

you are left with is
€L

C(LE)

—-elimination (—&) and —-introduction (—Z) rules

The first rule is

—& (pronounced arrow elimination)

from P and P — (Q derive ().

P P—Q
Q (=&)

It can be used both forwards from data and backwards from the conclusion.
To work backwards, suppose the conclusion is (), then any data of the form
P —) can be used to derive () if P can be derived. So P becomes a new
conclusion. In neither direction is the rule completely automatic — some
ingenuity is needed. The —& rule is commonly used in everyday arguments
and is also referred to as Modus Ponens.

The second rule is

—7 from a proof of () using the additional assumption P, derive
P — Q.
P
Q
P—Q (—=7)

The —I7 rule appears at first sight to be less familiar. In common with
other introduction rules —Z requires preparation — in this case, to derive

The natural deduction rules 223

P — @), a box is drawn to contain the assumption P and the subgoal @
has to be derived in this box. The English form of P — @, ‘if P then @,
indicates the proof technique exactly: if P holds then @ should follow, so
assume P and show that () does follow. Note that the box shows exactly
where the temporary assumption is available. —Z7 is an automatic rule and is
always used by working backwards from the conclusion.

The next example is to prove AANB — CF A — (B — C). The first
steps in this example are automatic. First, a preparation is made to prove
A — (B — (), and then a second preparation is made to prove B — (', both
by —Z. These result in Figure 16.9. There are then two possibilities —

AANB = C

B —C —7

A— (B—=C0C) —7

Figure 16.9

you can either use A and B to give AA B and hence (/, or you can use

ANB — C to reduce the goal C' to the goal A A B.
The final proof is given in Figure 16.10. How might this proof appear in

1 ANB—=C

2 A

3 B

s+ AANB NI(2,3)
e —&(1,4)
s B—=C =7

; A—(B—C) —7

Figure 16.10 ANB—-CFA— (B — ()

224 Natural deduction

English?
Proposition 16.2 ANB—-(CFA— (B— ()
Proof To show A — (B — (), assume A and show B — C. To do this,

assume B and show C. Now, to show (., show AA B. But we can show

AN B since we have assumed both A and B. O
The next three examples illustrate the use of the —& and —Z rules. They
also use the useful v’ rule — if you want to prove A, and A is in the data,
then you can just ‘check’ A.
A
A (V)
Show FA — A

There is only one real step in this example, and no initial data (Figure 16.11).

1 A
2 A v (1)
3 A—A —7

Figure 16.11 - A — A

Show AFB— A

LA
2 B

s A /(1)
s B—A 7

Figure 16.12 AF B — A

Notice that the assumption B is not used inside the box (Figure 16.12).

Show PVQHE(P—Q)—Q

In Figure 16.13 the preparation for —Z is made before that for VE. If
the preparation for using P V () were made before the preparation for the
conclusion, then the latter preparation would have to be made twice within
each of the boxes enforced by the preparation for VE&.

The natural deduction rules 225

. PVQ

. P—=Q

3 P Q

i Q —&(2,3)|@ v (3)
5 @ VE
6 (P—Q)—Q -1

Figure 16.13 PVQHF (P - Q) — @

The validity of —& 1is easy to see, for the truth of P — () and P force ()
to be true by the definition of —. For the —Z rule, remember that P — @)
is true if P is false, or if P and () are both true. So, in case P is true we
have to show) as well.

Rules for negation

There are three rules for negation, two of which are special cases of earlier rules,
whereas the third is new and does not conform to the introduction/elimination
pattern. The rules are

-7 If the assumption of P leads to a contradiction (written as L) then
conclude =P

=& From P and —P derive L

—-= From ——PF derive P

with formats

P -P ~— P
P
L (=& P (=)
1
-P (~7)

The —Z rule is very commonly used and is another example of an automatic
rule:

to show =P show that the assumption of P leads to a contradiction.

The =& rule can be used in a straightforward way in a forward direction, in
which case it simply ‘recognizes’ that a contradiction is present amongst the

