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derived sentences. It is also often used in a backward direction, in which case
some ingenuity is needed. Suppose a sentence —P is already derived, and L is
required, for example to use —Z, then the —& rule requires P to be derived
in order to obtain L. Thus P becomes the new conclusion.

- A can be equivalently written as A — 1, and then the =7 and —& rules
become special cases of the =7 and —& rules.

In the next example all three negation rules are used!

Show - AV -4
1 (AV-A)
2 A
3 AV-A VI(2)
s L -&(1,3)
5 —A -7
6 AV-A VI(5)
7 L -&(1,6)
8 (A V-A) -7
9 AV-A =—(8)

Figure 16.14 - AV -A

In Figure 16.14 the crucial step is to realize that AV —A will follow from
—=(AV —A). Some ingenuity is again needed at lines 5 and 6 in deciding that
to prove AV —A it is appropriate to show —A.

The —— rule is obviously valid. For —&, notice that a proof of P and
of =P gives P AP, which is always false. For =7, we have to show that
P must be false — well, it must be if P leads to a contradiction, 1, for
otherwise 1L would have to be true, which it cannot be.

Using boxes to structure proofs

Boxes are used in the natural deduction rules to structure a proof; initially,
any data that is given is placed at the top of the proof and the conclusion
is placed at the bottom. As a proof progresses, the gap in between is
gradually filled up, sometimes working downwards from the top as in A&,
—& or V&, and sometimes working upwards from the bottom as in AZ, VI
or =—. Many of the steps are automatic, for example, —Z, and only require
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some preparation, in the form of some more boxes perhaps. Non-automatic
steps, for example, VZ, cause more problems as they require insight and if
the correct step is not seen the proof may not be found.

As boxes are introduced, the available sentences within each box will vary.
Initially, only the initial data are available. Inside boxes additional sentences
are also available if they are assumptions made when the box is formed; for
example, in —Z to show A — B, A is such an assumption. The structure
imposed by boxes also means that any derived sentences that occur in a
proof above a box X may be used within X, for their proof only required
assumptions that are also available within X.

The system of box deductions is a very formal way of writing proofs; the
finished product can be read from top to bottom but it gives no clue as to
how the proof was derived. Doing the proof with proof boxes allows you to
be more confident that your argument is correct. Eventually, you will be able
to derive correct arguments every time and dispense with the explicit use of
proof boxes, as is done in the majority of proofs in this book.

Derived rules

A tautology, such as PV —P, is a sentence that is always true. It can
be derived as in Figure 16.14 using no data, and is also called a theorem.
Theorems can be used anywhere in a proof if they are needed. Suppose you
have derived the theorem =(AV B) — =AA =B, then, if the sentence =(AV B)
appears in a proof, the theorem can be used to derive, by —&, A A =B,
which may be a more useful form.

When F =(AV B) - “AA-B is derived, A and B can be any sentences
and the theorem is a scheme — any instance of the form of the scheme,
obtained by substituting any sentences throughout for A and B, is also a
theorem. If you become stuck in finding a derivation, you may find that
using a theorem in order to transform a particular sentence makes everything
easy again. FEquivalences are especially useful for this purpose; for example,
F=(AAB) < (mAV-B) — so from (A A B) and one half of the equivalence

you can derive mAV —B.

Proving theorems and then including them in a proof can make finding
derivations much easier than starting from first principles and using just the
given rules. Using derived rules can also simplify derivations. As an example,
consider the following scheme, which is a typical sequence of steps for deriving
S by contradiction. The derived rule in this case will be called PC for proof
by contradiction:
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P
3 L
s S ~—(4)

The steps can be contracted into a new proof rule:

-5

PC

It is not essential to make use of any derived rules, for the preceding rules
are enough for any proof; but they can be used to shorten a proof. The
following are some more derived rules:

contrapositive from A — B and —B derive = A
simple resolution 1 from AV B and —A derive B

simple resolution 2 from =AV B and A derive B
resolution from AV B and ~AV C derive BV (C

As an example, the derivation of the resolution rule is given in Figure 16.15.

. AVB

2 "AVC

3 A B

4 A C BvC VT

5 L =£(3,)|BVvC v

6 BvC L&

7 BvC VE(2)

8 Bv(C VvE(L)

Figure 16.15
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Some hints for deriving natural deduction proofs

You have put the assumptions at the top of a proof and the conclusion
at the bottom — what do you do next? You might be able to use some
automatic steps, —Z for example, which yield a requirement for deriving
various subproofs. Or, you might be able to use some insight, for example to
prove C'V D using VZ, prove (. Since introduction rules produce conclusions
they are usually used when filling in a proof from the bottom upwards —
their use is dictated by the form of the conclusion. Elimination rules work on
the data and so these are usually used when filling in a proof from the top
downwards.

In addition to these guidelines there are many useful tactics which you will
discover for yourself. We describe an assortment of such tactics next.

o — as ‘if’ — If there is a sentence of the form D — (' and the conclusion
is C' then try to show D. C follows using —&. D — (' can be read as
C if D, from which the tactic gets its name.

e make use of =S — If the conclusion is 1, then perhaps there is a
negative sentence =S that is available which could be used in a =& step
once S had been proved.

e 1 & anywhere — If you cannot see what to do next perhaps you can
derive 1 and then use 1&. This often happens in some branches of a
VE box, in those branches which ‘are not what the argument is about’
(for example, in the left-hand inner box of Figure 16.15).

e combined V rules — The VZI and V& rules often go together — first
use V& and then VZ. Suppose the data is X VY and the conclusion is
CV D. vE will force two subproofs, one using X and one using Y, and
perhaps in one you can prove C' and in the other D. In both cases VZ
will yield C'V D, as you required.

e equivalence — Any sentence can be rewritten using an equivalence.
When filling in a proot downwards, data can be rewritten into new data
and when filling in a proof upwards, conclusions can be rewritten into
new conclusions.

o theorem — Remember that it is possible to use theorems anywhere in a
proof, for these are previously proved sequents that do not depend on
any data and so could be used anywhere.

e lemma — In some cases a large proof can best be tackled by breaking it
down into smaller steps. If your problem is to show Data = Conclusion
then maybe you could show Data - Lemma and then make use of
Lemma to show Conclusion — (Data and Lemma) F Conclusion. The
choice of which lemma to prove is often called a ‘Eureka’ step for it
sometimes requires considerable ingenuity.

o excluded middle — If there are no negative sentences, then perhaps you
can introduce a theorem of the form Z V —Z and immediately use VE.
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Of course, some ingenuity is needed to choose a suitable Z, but it is
worth trying Z as the conclusion you are trying to prove.

e PC — Perhaps you can use the proof by contradiction derived rule.

o If all else fails, use PC; or excluded middle.
And if all else does not fail then do not use PC — the negated
assumptions it introduces often make the proof more difficult to
understand.

Most practical proofs make use of three of the tactics on a large scale; they
are the lemma, equivalence and theorem tactics:

e The lemma tactic is used to break the proof into smaller steps.

e The equivalence tactic is used to rewrite the data into the most
appropriate form for the problem.

o The theorem tactic is used to make large steps in one go by appealing
to a previous proof.

In practice, we make use of hundreds of theorems, some of which are exercises

in this book and some of which you will discover for yourself. So watch out
for them!

16.3 Examples

The various rules and tactics of this chapter are illustrated in the following
examples.

Show =P+ P — (@

1 P

s L E(1,2)
4 Q 1E&(3)

s P—Q —7

Figure 16.16 - P+ P — ()

The derivation in Figure 16.16 is a useful one to remember. It is used in the
following example which derives a famous law called ‘Pierce’s law’ after the
logician Charles Pierce.
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Show - (P - Q) — P)— P

Two proofs are given (in Figures 16.17 and 16.18) — the first uses PV =P
and the second uses PC. They both illustrate the benefit of planning in a
proof. In the first proof it is clear that the sentence (P — Q) — P will yield
P, the conclusion, if P — () can be proven. Also, the sentence PV —P means
that since P can be derived from P, P — () will have to be proven from
—P. And we have shown this in Figure 16.16. In the second proof a useful
technique is used —‘use PC if all else fails’. Applying it in this example
leads to the goal of L — the necessary —& step will require a sentence and
its negation to be derived. =P is already an assumption so consider deriving
P. This can be done by deriving P — (), which follows from =P, again as in
Figure 16.16. Notice that here we have had to use some insight in order to

L (P—=Q)—7P

2 ~PVP (Th)
— P

. P—Q (Fig. 16.16)|P v (3)
s P —&(1,4)

6 P VE(2)
7 (P—=Q)—=P)—P -1

Figure 16.17 - (P - Q) — P)—> P

L (P=Q)—=P

. P

s P—Q (Fig. 16.16)
. P —£&(1,3)

s L ~&(2,4)

6 P PC

7 (P=Q)—=P)=7P —1

Figure 16.18 - (P - Q) — P)—> P

apply the heuristics in the correct order. If you tried to use ‘— as if’ before
PC, that is, tried to prove P — () without obtaining =P, you would fail.
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Show ANB— C, =D - ~(F - F),C - (E—=F)FA— (B— D)

The derivation for this example (in Figure 16.19) proves, and then uses, the
lemma F — F' to help fill in the proof between lines 5 and 12. That is,
E — F can be proved first and then it can be used to prove D. If the proof

1 A/\B—>C
2 2D —=(F—=F)

4 A

5 B

6 AAND AI(4,5)
7 C —£(6,1)
8 (F— 1) —&(3,7)(a lemma)
g —D

o ~(E — ) —£(2,9)
oL ~£(10,8)
12 D rc

13 B—=D -7

s A—(B— D) 7

Figure 16.19 ANB—-C,-D - ~(F - F),C - (L - F)FA—(B— D)

were to be written in English it might look as follows.

Proposition 16.3 ANB — C,-D - =(£ — F),C - (E = F)FA— (B —
D)

Proof To show A — (B — D) assume A and show B — D. So assume B
and try to show D. (Next a little bit of ingenuity is required. You notice
that to show D it would suffice to show that F — F, as the assumption of
- D then leads to a contradiction.) So, try to show E — F. From A and
B derive ¢ and hence F — F. Finally, D can be shown by using proof by
contradiction. =D leads to =(E — F), which gives a contradiction with the
lemma £ — F. O

A specification example

One of the Miranda programs considered earlier was min :: num -> num ->
num with specification: VaVyVz. [z <z Az<yA(z=aVz=y)|, where z =
min x y. This can be used to define a function min3 that yields the smallest
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value of three numbers. What is the specification of such a function min3?
The result must certainly be one of the three numbers and should also be <
each number. A suitable program is

min3 :: num -> num -> num -> num
min3 x y z = min ( min x y) z

That is, find the minimum of the first two numbers and then the minimum
of this result and the third number. To show that the program meets the
specification, we must show that:
VaVyVz. [min3 < 2 Amin3 < y Amin3 < z A (min3 = z Vmin3 = y V min3 = z)]
that is
min (min 2 y) 2 <2 Amin (min 2 y) 2 < yA
min (min z y) z < 2A
(min (min 2 y) 2 =2 Vmin (min 2 y) 2 =yV
min (min 2 y)z = z)

To show that a sentence is true for all z,y,z we should show that it is
true for any arbitrary values in place of x,y,z. (See Section 17.2.) Suppose
X,Y, 7 are arbitrary values for x,y,z. Then we have to show

min (min X V) Z< X Amin (min X V) Z<Y Amin (min X V) Z < ZA
(min (min X V) Z=XVmin (min X V) Z=Y Vmin (min X Y)Z = 2)
First, what are the initial assumptions? The specification of min for a start.

Ya,y, 2.

Any other assumptions can be added as the proof progresses. A look at the
sentence to be proved reveals that it is a conjunction of four sentences, so
each one has to be proved.

The first is min (min X Y) Z < X. Use the specification of min — write
min X Y as w, then min v Z <wAmin v Z < Z. (Since the result of
min X Y is a num, it satisfies the implicit pre-condition for the first argument
of min in min (min X Y) Z.) Also, u < X Au <Y. Hence, after using the
fact that < is transitive, min v Z < X, min v Z <Y, min v Z < Z. This
gives the first three parts. The fourth is a disjunction.

One way to prove a disjunction is to use another. From the specification
of min, u =XVu=Y, and min v Z =uVmin v Z = 7. Take the second
of these: min u Z = 7Z will yield the result after VZ. Assuming now that
min v Z = u, from the first disjunction there are two cases: u = X for one
case, and v =Y for the other. Together, u =X and min v Z = u give
min u Z = X, which again yields the result. The other case is similar. The
box proof is shown in Figure 16.20. (Notice that lines 7, 8, 9 and 10—14
give the derivations of the four conjuncts in line 16.)
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min v« Z=wuVmin v Z =27

u=XVu=Y

u< XAu<Y

4 u<X, u<Y NE(3)
5 min v Z <uAmin u Z <
6 min « Z <w, min u Z < AE(D)

min v Z < X
" by transitivity of < (4, 6)

min v Z <Y
® by transitivity of < (4, 6)
9 min u Z <7 v (6)
1o min v 4 =u min v £ =7
n ou=X u=Y min v Z =XV

min v Z =YV vI(10)
2 minw Z=X  (10,11)min v Z =Y  (10,11)| _
. . min v £ =7

(by equality) (by equality)

min v 7 =XV min v Z =XV
S ominu Z=YV vI(12) min v Z =YV vI(12)

min v /=7 min v Z =7
14 min v Z=XVmin v Z=YV VE(2)

min v /=7
15 min w Z=XVmin v« Z=Y Vmin v Z =74 Ve
16 min uZ < X Amin v Z <Y Amin u Z < ZA NT

min v« Z=XVmin v« Z=Y Vmin v Z =27

Figure 16.20




Summary 235
16.4 Summary

o A valid argument consists of a collection of premisses and a conclusion
such that if the premisses are true then the conclusion must be true,
too.

o The basic natural deduction rules for propositional sentences are given
in Appendix C.

o The VI, AE, —&, —& rules require some ingenuity, choosing which
rules to apply and when, whereas the AZ, V&, —Z, =7 rules are all
automatic, requiring just some preparation, and should be applied as
soon as you realize that they can be applied.

o Derived rules can be useful, especially the rule PC', proot by contradiction.

e Boxes are useful for structuring proofs and to show where assumptions

hold.

e There are various tactics for finding derivations:
— as ‘if’
making use of =5
use L& anywhere
PC
excluded middle
combined V rules
equivalence
theorem

lemma

16.5 Exercises

1. Show
a) FPAQ—P (b) PFQ— (PAQ)
) P—Q,-QF-P (d) -PFP—=Q
e) -PPVQFQ (f) —IAN=FF-(IVFEF)
g) FP—(Q—7P) (h) P=S(P—-Q)—SFS

F— (BVW),~(BVP),W — PtF—=F
P—-Q,-P—-RQ—S R—-S5SFS
(CAN)—=T,HAN-S,HAN-(SV(C)—=PF(NA-T)—= P
R—-1,IVF-FF-R

m) P Q=R (P Q) — (PR

—.

AAAAA/_\/_\/_\/_\
- =~ -
=
N
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2. For each of the equivalences A = B show AF B and B A.

(a) PA(PVQ)=P (b) PV(PANQ)=P
(¢c) P—=>Q=-Q— P (d) P—-Q=-PVQ
) ~(PAQ) =PV -Q 1) ~(PVQ)=-PA-Q
&) (PAQ) = R=P—(Q—R)

1) PVQ=Z—(-PA-Q)

) PVQ=(P Q) 0

i) (P A-Q) =PV

(k) PV(QAR)=(PVQ)AN(PVR)

) (PVQ)— R=(P—R)AN(Q — R)

m) (P QIAQ = P)=(PAQIV (-P A-Q)

3. Derive an introduction and elimination rule for <+ based on the equivalences
AeoB=(A—=B)A(B— A) and A B=(AANB)V(mAA-B). Use
your new rules to show:

(a) 2(P=Q)=-P =

(b) P> (PANQ)=P —(Q

(¢) P> (PVQ)=Q — P

(d) PoQ=Q«< P

@) Po(@o R)=(P e Q) o R

4. Many tautologies of the form F A — B give rise to derived rules of the
form A F B. Explain how.

5. Formulate a derived natural deduction rule for :f-then-else 7 and
tf-then-else €. The first will be based on the rules AZ and —Z, the
second on AE and —&. (HINT: if-then-else(x,y,z) is equivalent to
r—yA-x—z.)

Use the rules to show

(a) tf-then-else(A, B,C) F if-then-else(=A,C, B)

(b) if-then-else(A,if-then-else(D, B,C),C)
Fif-then-else(D,if-then-else(A, B,C),C)

6. (a) Derive the rules ‘contrapositive’ , ‘simpler resolution 1’ and ‘simpler
resolution 2’.

(b) Prove the rule == as a derived rule using the schema @ V —@Q.

(c) Prove the inverse of == (that is, from () derive ==()) as a derived
rule.



Chapter 17

Natural deduction for predicate logic

In the preceding chapter we looked at natural deduction rules for the various
logical connectives. Fach connective was associated with an introduction rule
for use in deriving a sentence involving the connective, and an elimination
rule for deriving further sentences from a sentence using the connective.

There are six more natural deduction rules to be introduced in this
chapter. Four of them cover the quantifiers, which also have elimination and
introduction rules — VZ, V&, 37, 3&. The other two are for reasoning with
equality, which is an important predicate that has its own rules: egsub, which
acts rather like an equality elimination rule, and reflex, which acts like an
equality introduction rule.

17.1 V-elimination (V&) and J-introduction (3Z) rules

The rules

VE From a sentence Va. Plx] you may derive P[t] for any ground term ¢ that
is available, where ¢ is substituted for z everywhere that it occurs in

Plz].

Va. Plx]
Pl (v€)

17 A sentence Jx. Plz] can be derived from P[b], where b is any available
ground term and x is substituted for one or more occurrences of b in
P[b], or to show dz. P[z] try to show P[b] for some available ground
term b:

g
dz. Pla] (37)

237



238  Natural deduction for predicate logic

A ground term is one that contains no variables. In addition, the terms ¢ or b
may only involve constants and/or function symbols that are already available
in the current context.

Function symbols and constants appearing in proofs cannot be invented as
the fancy takes you; rather, they must:

e cither be occurring in sentences in the overall problem (that is, sentences
which are mentioned in the premisses or conclusion);

e or be implicit because a particular interpretation of the predicates is
known (for example, various numbers);

e or be introduced when using the rules VI or 3€ (see Section 17.2).

This means that at different places in a proof different constants may be
available for substitution in the use of V& or d7.

The VE rule is frequently used and allows a general sentence about all
individuals to become a particular sentence about some individual . The 47
rule is mostly used when filling in a proof from the conclusion upwards. That
is, to show dz. P[z], first a particular b is chosen (using some ingenuity) and
then an attempt to show P[b] is made.

Notice that the term ¢ in an application of V& must be substituted for all
occurrences of the bound variable, for otherwise the resulting sentence would
not be properly formed.

The 37 rule can also be used forwards, for if a sentence P[b] has been
derived then certainly dz. P[z] is true, too. In that case, any number of
occurrences (> 1) of the selected term b can be replaced by the bound
variable z. In order that the resulting sentence dx. P[z] is properly formed
the bound variable x should be new to P[b].

Quite a bit of ingenuity is necessary in using these rules; in the use of the
VE rule you need to prevent too many particular sentences being generated
that are not going to be useful to the proof; in the backward use of the 37
rule you need to pick an individual b for which P[b] can indeed be proved.

The notation using typed quantifiers is widely used in specifying programs,
especially for qualifiers such as ‘person’, ‘lists’, ‘numbers’, etc. The V& and
d7 rules each have a typed counterpart that is derived from the translations

Va @ type. Plx] translates to Va. [is-type(x) — Plx]]
and
Jda : type. Plx] translates to Ju. [is-type(x) A Plx]]
The typed rules are
is-type(t)  Va : type. Plx] is-type(b) Pb]
Plt]  (V€) dz : type. Pla] (37)

For V& the term ¢ must be of the correct type and satisfy is-type(?) in
order for an implicit —& step to be made to derive P[t]. For the 37 rule
the term b must satisfy is-type(b) so that an implicit AZ step can be made.

These conditions mean that an additional check must be made on the terms
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being substituted. Suppose, as an example, that a term of type ‘integer’ was
required in a V& step. The derivation so far may not mention any numbers
explicitly, but implicitly the data includes a whole theory about integers,
including all the facts we know about numbers such as 2 # 3, 5 is prime, and
so on. Any integer can be used as a substitute for f. Similarly, before using
37 to derive Ja : int. P(x) from P(2), say, you must check that is-int(2) is
true, which of course it is.

The VE rule is often used together with —& or =& to form combined rules
called, respectively, V—& and V—&. In both of these cases the VE step is
implicit. Moreover, just as —& and —& can be used backwards as well as
forwards, so, too, can the combinations be used backwards as well as forwards.
We will see several examples of this in the next section.

The formats are

Va. [Plx] — Qlz]] Pl¢] annd V. =Plz] Pl
Q[d] (V=€) L (V=€)

The V=& rule can be used to show a contradiction by showing some sentence
Ple] and then implicitly using V& to derive —P[¢|] and the contradiction.

Some examples

In our first example, shown in Figure 17.1, we give a proof of
tired(lenny) A lion(lenny) — does(lenny, sleep).  The initial data appears in
lines 1—3 and, after the automatic step of —Z, several non-automatic
steps are made in lines 4—8. The V—& rule is used several times. For
example, at line 7 V& is first (implicitly) applied to line 1, to derive
lion(lenny) — does(lenny, hunt) V does(lenny, sleep) and then —& is applied to
derive does(lenny, hunt) V does (lenny, sleep). After that, another automatic
step is made to prepare for VE&.

The second example, shown in Figures 17.2 and 17.3, is a proof of an
existentially quantified sentence Jx. —shot(x, Diana). The initial data given in
lines 1—4 can be used to show the conclusion in two different ways. The
simpler way is given first. This example is typical of real situations when more
data than is required to prove the given goal is available, making ingenuity
even more necessary in finding the proof.

The first derivation proves that Diana did not shoot herself, and the second
that Janet did not shoot Diana. The combined rule V—& is used in the second
derivation at line 8 — the new conclusion inhouse(Janet) A ingarden(Janet) is
derived because if this is proved then V& using line 3 will give a contradiction.
All uses of V& and 37 require some insight into which substitutions for the
bound variable will prove suitable. In this case there are two names, Janet
and Diana, and either might be appropriate.
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Va. [lion(z) — does(z, hunt) V does(z, sleep)]

[

2 Ya. Vy. [does(x,y) — can(z,y)]

3 Va. [tired(x) A lion(z) — —can(z, hunt)]

4 tlired(lenny) A lion(lenny)

5 tired(lenny) NE(4)
6 lion(lenny) NE(4)
7 does(lenny, hunt) V does(lenny, sleep) V—£(1,6)
8 —can(lenny, hunt) V—£&(3,4)
o does(lenny, hunt) does(lenny, sleep)
10 can(lenny, hunt) V—£&(9,2)| does(lenny, sleep) v (9)
oL ~£(10,8)
12z does(lenny, sleep) 1E
13 does(lenny, sleep) VE(T)
14 tired(lenny) A lion(lenny) — does(lenny, sleep) -7

Figure 17.1 Proof of tired(lenny) A lion(lenny) — does(lenny, sleep)

v Ya. —shot(z,x)

2 inhouse(Janet)

3 Va. (inhouse(x) A ingarden(z))

4 Y. [shot(z, Diana) — ingarden(z )]

5 —shot( Diana, Diana) VE(L)
6 dx. —shot(x, Diana) 3Z(5)

Figure 17.2 Proof of Jx. —shot(x, Diana)

Show P(a)V P(b),Yz. [P(x) — Q)] F Jx. Q(x)

Figure 17.4 illustrates a feature of the 37 rule.  Many problems are
straightforward in that there is a particular term that makes Jz. A[z]
follow from the current data. (For example, if the data had been
Vae. [P(x) — Q(a)], P(a) then dz. Q(x) would follow because of Q(a). )

Sometimes, this is not the case, and although Jx. A[x] follows from the
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v Ya. —shot(z,x)
2 inhouse(Janet)
3 Va. (inhouse(x) A ingarden(z))

4 V. [shot(x, Diana) — ingarden(z )]

5 shot(Janet, Diana)
6 ingarden(Janet) V—£&(4,5)
7 inhouse(Janet) A ingarden(Janet) NL(2,6)
g L V=£€(7,3)
o —shot(Janet, Diana) -7

1o dz. —shot(x, Diana) 3Z(9)

Figure 17.3 Another proof of Jx. —shot(x, Diana)

. P(a)V P(b)
2 Vo [P(z) — Q(z)]

3 P(a) P(b)

4 Qa) V—£&(2,3)|Q(b) V—£&(3,2)
5 dz. Qz) 3z Jz. Q) 3z

6 dz. Q(z) VvE(L)

Figure 17.4 P(a)V P(b),Vz. [P(z) — Q(z)] F Jz. Q(x)

available data there may be uncertainty as to which term makes it do so.

Typically, this occurs when there is a disjunction in the data and one
‘witness’ (substitution for x) is appropriate in the context of one disjunct and
another in the context of a second. Our example has a disjunction in its data
which is applied before the application of 7. On the other hand, in the proof
of Ya. [P(x) — Q(z)],~P(b) — P(a) F Ja. Q(x), shown in Figure 17.5, the
disjunction P(b)V = P(b) is added as a theorem. This is a common technique,
but you may need several attempts before you find the correct disjunction
to introduce. The one used here is not the only possibility for either of

P(a)V =P(a) or Ja. Q(z)V —Jx. Q(x) could have been used instead.
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. =P(b) — P(a)
2 Vo [P(z) — Q(z)]

5 —P(b) Vv P(b) (Th)
. —P(b) P(b)

s Pla) —~&(1,4) |Q(b) ¥—E(2,4)
6 Q(a) ¥—£(2,5)|3e. Q(2) 37(5)

; Ju. Qa) 37(6)

s Jz. Qx) VE(3)

1 Va:inum. P(z)
2 P(25) vEQ)
3 Jdz:num. P(x) 37(2)

Figure 17.6 Vo : num. P(x)F 3z : num. P(x)

Show VY : num. P(x)F Jz:num. P(x) (Figure 17.6)

Here, in order to show the conclusion an assumption has to be made that
there are some numbers, so suppose that there are. Two checks then have to
be made — that ‘25" is a number in deriving line 2 from line 1, and that
‘257 is a number in deriving line 3.

17.2  V-introduction (VZ) and J-elimination (3&) rules

V-introduction

The next rule that we consider is VZ, and its use introduces a new constant
into the proof. The rule is

A proof of Y. P[x] can be obtained from a proof of Pl¢] for some
new constant c.
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c VT
Pl
Va. Plx] (VI)
or typed
e VI ist(c)
Plc]
The ‘new’ means that ¢ is introduced for the first time inside the box

that contains the subproof of P[c]; ¢ is only available within that box and it
cannot be mentioned outside it. So, in particular, ¢ cannot occur in Va. Plz].
The ¢ VZ in the left-hand corner is a reminder that ¢ must be new.

The version using a typed quantifier is derived from the untyped version
and —Z using the translation of Va :t. Plx] into Va. [is-t(z) — P[x]].

The VI rule is completely automatic and is used in a backwards direction
from goal to subgoal. The motivation behind this rule is the commonly quoted
law:

If one can show Pu] for an arbitrary wu, then Va. P[] holds.

The use of a new term for ¢ implements the ‘arbitrary’ part of the law.

The following is an informal explanation of why the rule ‘works™ in order
to derive Ya. P[z], the derivation should work for whatever value v could be
substituted for # and should not depend on properties of a particular v. Since
¢ is new, any data that is used to prove P[c] will not mention ¢ and the
derivation cannot rely on special properties of ¢ (apart from that it is of type
t), as there are none. Properties are either not relevant or are completely
general, of the form V--- in which case they apply to any value.

A very common pattern used in quantified sentences is Va. [Plz] — Qz]].
If this sentence is a conclusion then two automatic steps are immediately
applicable — first a VZ step and then a —Z step. These can be combined
into one step, V—Z, that requires just one box instead of two, as is done
implicitly in deriving a typed version of the VZ rule.

Remember that in Chapter 15 we encountered a difficulty in checking
whether a universal sentence was true when there was an infinite number of
values to check? Well, now we have an alternative approach. The sentence is
checked for one or more arbitrary values which between them cover all the
possible cases. For example, to show that Va :int. P[x], we might try to
show that P[c] for an arbitrary integer ¢. Now, any integer is either < 0,
=0 or >0, so we could try to show that P[c] is true in each of the three
cases. (Alternatively, any integer is also prime or non-prime, so we could try
to show that P[c| is true in those two cases.)
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J-elimination

The dE rule is another completely automatic rule that introduces a new
constant into a proof. It may seem a little difficult at first sight and you
should thus learn it by heart and understand why it appears as it does.

To derive ) using Jx. P[z], derive @) using Plc], where ¢ is a new
constant.

The format for the 3& rule is:
dz. Plzx]

c3€ Pl

Q
Q (38)

or typed
dz :t. Pla]
c3€ Pl

is-t(c)

Q
Q (36)

The version using a typed quantifier is derived from the untyped version and
AE using the translation of Jx :¢. Plx] into Ja. [is-t(x) A Plz]].

Again, ¢ must be a new constant and the box is used to indicate where ¢

is available. In particular, the conclusion () must not mention ¢. Notice that
the conclusion appears twice; outside the box it is justified by 3€ and inside
by something else. The rule is best applied as soon as possible in a proof so
that the new constant ¢ is available as soon as possible.

An informal explanation of why the rule works is as follows: in order to
use Jz. P[x] a name has to be given to fix the ‘z that makes P[x] true’.
Although it would be possible to keep referring to this value as ‘the x that
makes P[z] true’, this is a very cumbersome name and also one that could
be ambiguous if there were more than one such z, so a new constant ¢ is
introduced. ¢ must be new since all that is known about it is that P[c] is
true (and if the quantifier is typed that ¢ is of type ¢). If ¢ were not a
new constant, then the proof of () might inadvertently use some additional
properties that were true of some values but not all, and it could be that the
‘z that makes P[z] true’ was one of those values for which these additional
properties were not true.
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Some more examples

In this section we look at some typical examples involving sentences with
quantifiers.

Show Jy. Va. P(x,y)F Yu. Jv. P(u,v) (Figure 17.7)
‘If there is some y that makes P(x,y) true for all x, then for every u there
is some v (the same one for each case) that makes P(u,v) true.’

The first two steps, VZ and d&, are automatic but could easily have been
in the opposite order. Once a and b have been introduced there are enough
clues in the proof so far (lines 1—3 and 5—7) to fill in the gap. Notice that
the reverse deduction is not valid:

Yu. Jv. P(u,v) ¥ Jy. Ye. P, y)

v Jy. Ya. P(a,y)

T =
a3 3 Va. P(z,a)
s P(b,a) VE(3)
s v, P(b,v) 37(4)
6 Jv. P(b,v) 3E(1)
; Vu. Jv. Plu,v) VI

Figure 17.7 Jy. Va. P(z,y) F Yu. Jv. P(u,v)

In the next example, shown in Figure 17.8, lines 1—3 form the initial data.
The data include a commonly occurring pattern of quantifiers — Vz. Jy. Each
time the V& rule is applied to a sentence such as Va. Jy. likes(x,y), the €
rule can be applied to generate a new constant. In turn, the new constant
can be used in another application of V&, which generates yet another new
constant, and so on. In this case only one round is needed. Also, note that
as B must be new it cannot be A. After that, the rest can be filled in fairly
easily. NOTE: If a sentence has the form Qz.Qy. [---], where @) is either V
or 1, then, usually, you will want to eliminate both the quantifiers in one
elimination step or introduce them in one introduction step. This is quite
acceptable and the two steps together are still labelled by V&, 1€, 37 or VI
(and not by VVE, for example!)

Show Ya. Yy : num. [(3z: num. 2* =y) — R(x,y)] F Vw : num. R(w,w)
(Figure 17.9). Here, there are two lines where checks must be made that
the terms being substituted are of the correct type. The information at line



