246 Natural deduction for predicate logic

v V. Jy. likes(z,y)
2 Ya. Vy. [likes(z,y) — likes(y,)]
3 Yu. Vo. [Jw. [likes(u,w) A likes(w,v)] — likes(u,v)]

AV,
5 3Jy. likes(A,y)

B3¢ 6 likes(A, B)
7 likes(B, A) V—£(2)
8 lzk‘es(A B) A likes(B, A) NI(7,6)
o Jw. [likes(A,w) A likes(w, A)] iz
10 likes(A, A) V—£(3)
1 likes(A, A) 3€(5)
12 Va. likes(z, z) VI

Figure 17.8 Proof of Vx. likes(z,x)

v Yo,y num. [(3z:num. 27 =y) — R(z,y)]

AVI 2 is-num(A)
3 is-num(1) (arithmetic)
s Al=4 (arithmetic)
5 dz:num. A=A 37
6 R(A,A) V=&
7 Yw :num. R(w,w) VI

Figure 17.9 Proof of Vw: num. R(w,w)

2 that is-num(A) is part of the preparation for VZ. Since we only want to
show R(w,w) for all numbers, A can be an arbitrary number. In turn, to use
the sentence at line 1 requires a check that the terms substituted for =,y are
both numbers. They are, for both z,y are replaced by A. At line 5 a check
must be made that 1 is a number before applying 47. Finally, all the rules
of arithmetic apply.

Equality 247

Does Va. P(z)F Jz. P(x)? (Figure 17.10)

It you try to show this using natural deduction you will find that you cannot
get started because you have no knowledge that any individuals exist and so
cannot make any substitutions in the V& or 37 rules. In order to show the
conclusion you must add to the data the sentence dz. T, where T is the
sentence that is always true. If you think about it, it is no real surprise that

1 Va. P(z)
2 dz. T
3¢ 3 T I exists
4 P(I) Ve
5 Jy. Ply) iz
6 Jy. P(y) &

Figure 17.10 V. P(z), 3=. T F Jy. P(y)

the proof does not work without the extra sentence. For it could be that a

situation exists in which there are no individuals. In such a situation, certainly

Va. P(x) is true, for there is nothing to check, but, equally, Jy. P(y) is false.
dz. T is often taken for granted, but not in this book.

17.3 Equality
The equality relation ‘=’ is a predicate that is very commonly used and
everyone has a fairly good idea of what a = b is supposed to mean — that

a and b denote the same element or individual. This in turn means that
whatever properties are possessed by a will also be possessed by b. So, for
example, if

Dr Jekyll = Mr Hyde
Mr Hyde killed someone

then it can be deduced that Dr Jekyll killed someone. For, if the sentence
Jdx. killed(Mr Hyde,x) is satisfied by Mr Hyde, then it is also satisfied by
Dr Jekyll, that is, Ja. killed(Dr Jekyll,x). The example illustrates the main
rule for reasoning with equality — the rule of equality substitution — which
allows one side of an equation to be substituted for the other. An equality
atom such as Susan = Sue is often called an equation.

248 Natural deduction for predicate logic
Using equality in translation

Let us look first at how equality can be used in sentences to express sameness,
uniqueness and functionhood.
Consider the following short propositions:

1. Tig eats vegetables
2. Tig only eats vegetables
3. Tig dances with Jig
4. Tig only dances with Jig

The straightforward translations of the first two into logic are

1. Va. [vegetable(x) — eats(Tig,)]
2. Va. [eats(Tig, x) — vegetable(x)]

If the third and fourth sentences are paraphrased in a similar way then they
become
Va. [x = Jig — dances-with(Tig, ©)]
and
Va. [dances-with(Tig,x) — x = Jig
An equation is used to express the proposition that ‘z is Jig’, that is,
x = Jig. The third sentence can be rewritten equivalently and more naturally
as dances-with(Tig, Jig).
Equality is also used to express uniqueness. For example, suppose we
wanted to express in logic the sentence

There is exactly one green bottle.
This sentence says the following:

1. There is at least one green bottle.
2. There is at most one green bottle.

And in logic we have

Jx. greenbottle(x) A =Ju. Jv. [greenbottle(u) N greenbottle(v) A u # v]
An alternative and equivalent expression is obtained by paraphrasing the
sentence as

There is a greenbottle x and all greenbottles are the same as z

which in logic is
Jx. [greenbottle(x) A Yu. [greenbottle(u) — u = x] |
The first approach can be generalized for n > 1 greenbottles:
greenbottle(x1) A ... A greenbottle(x,,)
dzy ...z,
A&y #E 2o Ao AXy # Tpq
greenbottle(ug) A ... A greenbottle(u,,)\
“Jug, .Uy | Ug F U Aug F U A Aug Fug A
A N T T

Substitution of equality 249

The second approach can also be generalized:

greenbottle(x1) A ... A greenbottle(x,,)\
dry.oow, | w1 F 22 A AT, FE T A
YVu. [greenbottle(u) — v =a1 V...V u = x,]
It is not always necessary to use equality to express ‘sameness’. For
example, ‘a and b have the same parents’ might be written as

V. [parent-of(x,a) < parent-of(x, b)]
Actually, the logic only says that ‘if ¢ and b have any parents then they have

the same ones’, and to express that a and b have some parents (as implied
by the English) we must add

AJx. [parent-of(x, a)]

Equality is also used in expressing that a particular relation is a function.
For example, the relation mother-of(x,y) is a function of y — for each y
there is just one x that is related to it. This is expressed as

Vy. Ya. Vz. [mother-oflx,y) A mother-of(z,y) — z = y]
If, in addition, we state that ‘everyone has a mother’

Vy. Jx. mother-of(x,y)
then it is possible to simplify sentences such as

Yu. [mother-of(u, Ann) < mother-of(u, Jeremy)]
to

Ju. [mother-of(u, Ann) A mother-of(u, Jeremy)]

See Exercise 9.

17.4 Substitution of equality

Equality is such a frequently used predicate that there are built-in natural
deduction rules to deal with it. The main natural deduction rule for making
use of equations is the rule of substitution:

a=>b Slal
S[b] (egsub)

where S[a] means a sentence S with one or more occurrences of a identified
and S[b] means those occurrences replaced by b. (There is no need to identify
all occurrences of a in 5.)

Any ground equation of the form @ = a can be introduced into a proof by
the reflex rule

a=a (reflex)

The reflex rule is usually used in a backwards direction — a conclusion a = a

(say) can always be derived by using it.

250 Natural deduction for predicate logic

Any equation ¢ = b means the same as the equation b = a. This is a
consequence of the Symmetry law of equality which is derivable using the
two new rules egsub and reflez. See Figure 17.11. Line 3 is obtained by

a,bvI 1+ a=b

2 a=a reflex
3 b=a eqsub
4 Vo, Vy. [x=y—y=2] V—T

Figure 17.11 Proof of symmetry law

substituting b for the first a of line 2. The symmetry property means
that «a = b and b = a can be treated as the same equation, for although
eqgsub using a = b is defined as substituting b for an occurrence of a, the use
of symmetry allows b = a to be derived and hence a can be substituted for
an occurrence of b. The symmetry is not usually made explicit, equalities
being used in whichever direction is most appropriate. Transitivity of =
(Ve VyVz.Jt =y ANy =2z — a =z]) can similarly be shown.

The symmetry of equations enables the egsub rule to make sense whether it
is used forwards (as described already) or backwards. In that case, we can use
it to show S[b] if we are given b = a, which is the same as being given a = b,
and can show S[a]. The effect is to transform the current goal S[b] (say) into
a new goal S[a] as at line 4 in the fragment shown in Figure 17.12.

2 a=b

3

4 Sla]

5 S[0] eqsub

Figure 17.12

Show P(a) < Ya. [v = a — P(x)] (Figure 17.13)

This example illustrates the use of the egsub and reflex rules. The final line
of Figure 17.13 is derived by AZ followed by the use of the definition of
A~ B as A— BAB — A. The first half of this proof is very useful as it
shows how equality conditions of a particular kind can be eliminated. This is

Substitution of equality 251

1 Vo [z =a— P(z)] P(a)

2 a=a— Pla) VE(L) VI t=ua

3 a=a reflex P(t) eqsub

4 P(a) —&(2,3) Va. [= a — P(2)] V-1
Va. [v = a — P(z)] _ Pla) — _

s bty z Va. [v = a— P(2)] z

6 Pla) <= Vr. v =a— P(x)] (defn)

Figure 17.13

always the case for sentences of this sort which have conditions involving an
equation with at least one variable argument. For example,

Va,y. [e=aly=>bAPlr,y) = Qz,y)]
will yield the simpler P(a,b) — Q(a,b).

In a similar way, Jz. [x = a A P(a)] < P(a) is also true.

Rewrite proofs

A method of showing that an equation is true, familiar from school
mathematics, is to use rewriting. That is, to show ag = b, a¢ is rewritten into

1 Yas,ys. [rev xs++ys = rev ys++rev us]

V]

(z:2s) = [2]++zs

w

rev (z:zs)

4 =rev ([z]++zs) (2)
5 =rev zs++rev [z] VE(L)
6 =rev zs++[z] prop of rev

Figure 17.14 A rewrite proof

a1, and then aq is rewritten into a, and so on, until b is obtained. Each step
implicitly uses the egsub rule. A typical proof using this technique is used to
derive rev (z:zs) = rev zs++[z], shown in Figure 17.14.

A rewrite proof can be seen as a contraction of a more cumbersome
sequence of equations in which each follows from the next by the egsub rule.
The corresponding full proof of Figure 17.14 is given in Figure 17.15. The

252 Natural deduction for predicate logic

1 Yas,ys. [rev xs++ys = rev ys++rev us]

2 (z:2s) = [2]++zs defn of :

3 rev [2z] = [2] property of reverse
4 Tev zs++[z] =rev zs++[z] reflex

5 Trev zs++rev [z] = rev zs++[z] eqsub(3)

6 rev ([2]++2s) = rev zs++[z] VE(L), egsub

7 rev (z:zs)=rev zs++[z] eqsub(2)

Figure 17.15

proof uses some properties of rev, one occurrence of the reflex rule and
several applications of egsub. It has the general pattern shown in Figure 17.16,
where at each step egsub is used to rewrite either the left or right side of
an equation. (So either a; is identical to a;_q or b; is identical to b;_1.) The
proof given in Figure 17.16 is naturally formed by working backwards from
the conclusion, at each step applying egsub to some term until the two sides
are identical, when the reflex rule is used. It can quite naturally be contracted
into the rewrite proof given in Figure 17.17.

various equations

Ay = Ay reflex
ap—1 = by eqsub
a1 = by eqsub
ag = by eqsub

Figure 17.16

Delete

We will illustrate the various features of natural deduction by proving that
the del program meets its specification (that is, it deletes the first occurrence

Substitution of equality 253

various equations

Figure 17.17

of ¢ from [). First of all the program and specification:

del :: * => [*]-> [*]

| Ipre: ¢ belongs to 1

| lpost: (E)m,n:[*][z=m++n & l=m++[c]J++n &
|l not(c belongs to m)]

|| where z= del c 1

del ¢ (h:t) = t, c=h

= (h: delct), c#t

Now the proof — the outline structure is given in Figure 17.18 and the
two cases for the induction step are given in Figures 17.19 and 17.20. In the
proof we use the following abbreviations:

P(l)y=Ve:x [cel— Q)]
and
Q) =3m,n: [*x1[del ¢ [=m++n Al = m++[c]l++n A —c € m|
We also give the proof in English for comparison.
Proposition 17.1 del satisfies its specification. We have to show VI : [*]. P(l)
and we use induction on [and show P([]) and P(h:?).

The base case P([1) is vacuously true because ¢ € [] is always false. For
the induction step we can assume as hypothesis P(?):

Ve, [eet — dmyn: [x]1[del ¢ t = m++n At = m++[c]++n A =¢ € m]]

So, fix ¢ as a constant ' and suppose C' € h:t. There are two cases:
either C'=h or C # h. If C =h then [= [J++[C]++t with C ¢ [1, and
by definition del C' [=+¢= []++t. Hence we can take m=[1,n=1¢. If C
h then notice that because C' € h:t we must have ¢’ € ¢t and hence by
the hypothesis there is some ml and nl such that

[del C' t = ml++nl At = ml++[CI++nl A =C € ml]

254 Natural deduction for predicate logic

1 Base Case Induction step
VI 2 ¢l hos,t:[*]
3 clel] P(t) hypothesis
prop. -
s+ L of lists VI Cox
5 Q) L& C e (h:t)
Ve:x. [ee []
V—T7 C=hvC#h
© Q) .
7 P(L1J) defn C=h C#h
. . .
5 Q(h:t) Q(h:t)
10 Q(ht) \/5(5)
Ve . [c € (h:t)
11 V—>I
— Q(ht)]
12 P(h:t) defn
o Vi [x1. P() induction

Figure 17.18 Outline proof of delete

1 First part of V&

= C=h
del C (C:t) =1L J++A

P(Cit) = [1++[Cl++tA=C €[]
del C (h:t) = [J++tA

AT (del C' (C:t)=1)

4 (hit)=[J++[CT++A eqsub(2)
~Cel]
del C' (h:t) = m++nA
5 dAm,n: [x1| (h:t) = m++[Cl++nA IZ(m=1[,n=1)
-Cem

Figure 17.19

Since del C' (h:t) = (h:del C' t) = (h:ml)++nl and h:t = (h:ml)++[CI++nl

with C' ¢ h:ml, we can take m = h :ml,n = nl to satisfy the conclusion. O

In Exercise 10 you are asked to identify the corresponding steps in the
formal and informal proofs.

Summary 255

1 second part of V&

= C#h
3 Cet (C'# h and C € h:t)
del C t = m++nA
4 dmn:[*] | ¢t = m++[CI++nA —&(hypothesis)
| ~Cem
del C t =ml++nlA
ml,nl3E 5 t=ml++[CT++nlA
-Ceml
6 del (' t=ml++nl NE
7 (h:del C t) = (h:ml)++nl properties of lists
g8 del C (h:t) = (h:ml)++nl program
g t=ml++[C]++nl ANE
10 (h:t) = (h:ml)++[CI++nl properties of lists
11 0 eml NE
12 (€ (hml) (C 7£ h)
del C (h:t) = (h:ml)++nlA
13 (hit) = (h:ml)++[CT++nlA NI
-C € (h:ml)
u Q(h:t) 37 (m = (h:ml),n = nl)

Figure 17.20

17.5 Summary

e The natural deduction rules for quantifiers are collected in Appendix C.

o The rules VI and J& are automatic, whereas V& and 47 are not and
require some ingenuity in their use. A useful tactic for dealing with
quantifiers is

Apply the automatic VI and J& rules as soon as possible for
they will yield constants that can be used in 47 and V& steps
later.

e It can be helpful to apply equivalences to quantified sentences so
that the quantifiers qualify the smallest subsentences possible. For
example, Vz. [(Jy. Q(x,y)) — P(x)] might be easier to deal with than
Va. Yy. [Q(x,y) — P(x)].

o The egsub and reflex natural deduction rules are also listed in Appendix C.

256 Natural deduction for predicate logic

e Equality is used to express uniqueness and functionhood.
e The equality rules can be used to show the symmetry and transitivity

of =.

e The equality rules can be used to give a rewrite proof.

17.6 Exercises

1. Show:

(a) dragon(Puff), V. [dragon(x) — fly(x)] F Fx. fly(x)
(b) Va. =(man(x) A woman(x)),
man(tom), woman(jill), woman(sophia) F Jz. —man(x)
(c) Va,y. [ard(z,y)] = path(z,y),
Va,y. [3z. [ard(x, z) A path(z,y)] — path(x,y)],
arc(A, B), are(B,D), are(B,C), are(D,C)t Ju. path(u,C)
How many different proofs are there?
(d) Va,y,z. [R(z,y) AN R(y,z) — R(z,2)], Yw. R(w,w)
FVa,y. [R(x,y) — Ry,)]
(@ On(A B),On(B.C),
Va. =(Blue(x) A Green(x)), Green(A), Blue(C),
T

Va,y. [On(z,y) A Green(x) A = Green(y) — Ans(x,y)]
F e, Jy. Ans(x,y)

() Va,y. [Vi[z€ax—zeyl >yl
Ve, 2(x € @), Yy. y e U FVr. 3 CrAVs. sCUAVL tC

2. Show

Va,y,z. [less(x,z) A less(z,y) — between(x,y, z)],

V. less(:z; s(x)7), Va,y. [less(x,y) — less(x, s(y))]
F(a) A (b) A (c)
where

(a) =between(s(0),s(s(s(0))),s(s(0)))
(b) =3x. [between(0,x,s(0)) A between(s(s(0)),s(s(s(s(0)))), x)]
(¢) =3x. Jy. [between(0,x,y) A between(s(0), s(s(s(0))), z)]
3. Use Natural Deduction to show:
(a) Va. =P(x) F ~Jz. P(x)
(b) =Jx. P(x)F Ya. =P(x)
(¢) Va. [F(2)NG(x)] F Vo, F(z) AV, G(x)
(d) Va. F(x)VvVa. G(a) F V. [F(x)V G(z)]

]

v
v

FEzercises 257

[§

z. [Fx)ANG(x)] F e, F(a) A Je. G(x)

(
(f) Jz. F(x)Vvde. G(x) F Jo. [Fx) Vv G(2)]
(g) Va,y. F(a,y) - Yu,v. F(v,u)

(h) Jz. Jy. F(a,y)F Ju. Jo.)

) 3

)

)

) F(
(i) Jo. Yy. G(a,y) F Yu. Jv. G(v,u)
()

)V

)

j) Ya,y. [S(y) — F(x)]F Jy. S(y) — Va. F(x)
(k) Yo. =P(x) F =3z, P(x)

(1) -Va. P(x)F dz. = P(x)

(HINT: assume that —dz. —=P(x) and derive a contradiction; this
time the only way to use the negated premiss.)

Ja. [P(x) — Q) F (Va. Pz)) — Q
Ve, P(z) — @, 3z. TF Jx. [Plz) — Q]
v

. [F(2)VG(x)] F Ve, F(z)V3y. Gly).
(HINT: use Va.F(x)V —Va. F(x).)

(t) Va. Jy. [F(x)V G(y)], J=. TF Jy. Ya. [F(z)V G(y)]
(HINT: use the theorem X V =X where X is the conclusion
dy. Va. [F(x)V G(y)].)

4. Show by natural deduction

(a) V. Pla,z,2),Ve,y, 2. [P(z,y,2) = P(f(x),y,[(z))| = P(f(a),a [(a))

(b) Va. Pla,z,x),Yo,y, 2. [P(2,y,2) — P(f(z),y, f(2))]
=3z [P(fla), 2, f(f(a))]

(¢) Yy. L(b,y),Va,z. [L(x,y) — L(s(x),s(y)] F Jz. [L(b,z) A L(z,s(s(b)))]

5. One of the convenient ideas incorporated in Natural Deduction is that
it is possible to use ‘derivation patterns’ (or derivation schemes); for
example, the pattern —-A, AV BF B can be derived. Such schemes
enable larger steps to be taken in a proof than are possible using only
the basic rules. If the scheme is very common it is sometimes called
a derived rule and given a name. (The benefit lies in the fact that
any sentence can be substituted throughout the scheme for A or B (for
example) and the scheme remains true. For example, in (a) below we

could have Vz. [P(b,z) — Q(z,z)], P(b,a) F Q(a,a) .)

)
) 3
)
(p) (Fz. P() = QF Ve [P(z) = (]
)
)
)

258 Natural deduction for predicate logic

Some useful schemes are given below; in each case give a Natural
Deduction proof of the scheme. The notation Plz] means that = occurs
in the arguments of P it P is a predicate, or, more generally, in P if it
is a sentence:

(a) Va. [Plx] — Qlz]],Jx. Pla] F Jx. Q[z] or Va. [Plx] — Qlx]], Pla] -
Q[a], where @ is a constant

(b) Va. [Plz] A R[x] — Q[z]], Pla], R[a] - Qa], where @ is a constant.
Whi?doesn’t Va. [Plz] A R[] — Q[x]], Jx. Plx],Jz. R[z]F V. Qx]

Collecting lots of these schemes together enables more concise
derivations to be obtained that are still sure to be correct. There
are lots of schemes for arguing about arrays, too. For example,

(¢) If n >0 then Vi[0 <i<n+1— P[i|]FVi0<i<n— P[i]A Pn]
holds in both this direction and the opposite one and is useful for
dealing with situations when P[i] is a sentence about array values.

6. Use natural deduction to show the following:
(a) Va. [t =aVa =0, 2P(b), Qla)F V. [P(z) — Q(x)]
(HINT: Use the VE and LE rules.)
(b) (1) Va. =B(x,z) F Va. Yy. [B(x,y) — « # y]
(2) Va. Yy. [Blz,y) =« # y] F Va. =B(x,)

(c) KB is either at home or at college, KB is not at home
F home # college.

(d) Everyone likes John, John likes no-one but Jack F John = Jack.

(e) S is green, S is the only thing in the box
F Everything in the box is green.
(f) Va. Yy. Vz. [R(x,y) N R(z,z) — z =vy], R(a,b), b#c F =R(a,c).
(g) a=bVa=c a=bVe=b, Pla)V P(b)F P(a) A P(b)
(h) FVa. Jy. y = f(x)
() FVy. [y = fla) = V2. [z = fla) =y = 2]
i) Ve le=ave=6, gla)=b
V. Vy. [g(x) = g(y) = = =yl g(g(a)) = a
(HINT: You will need to use VE in the first sentence with ¢(b)
substituted for x.)

7. Express in logic:
(a) For each x there is at most one y such that y = f(x).
(b) For each x there is exactly one y such that y = f(x).

FEzercises 259

8. Show (a) (1) F (2), (b) (2) F (3) and (c) (3) F (1) by natural deduction:
(1) 3. [g(e) AV [g() — = = 2]
(2) da. Vz. [g(z) < z = 2]

(3) Fa. [g(x)] A V2 Vy. [9(2) Ag(y) — = =]
9. Show by natural deduction that

Vy. Ya. Vz. [mother-of(x,y) A mother-of(z,y) — z = y]
YVy. Jx. mother-of(x,y)

i Yu. [mother-of(u, Ann) < mother-of(u, Jeremy)]
Ju. [mother-of(u, Ann) A mother-of(u, Jeremy)]

10. Identify the corresponding steps between the English and box proofs in
Section 17.4, in which it was shown that del meets its specification.

11. Give Miranda programs for the functions given below and then use box
proofs to prove, using induction if appropriate, that the functions meet
their specifications. That is, show that the specification follows from
any assumed pre-conditions and the execution and termination of the
program. (Show that the program terminates as well.)

(a) last :: [char] -> char; last « is the last character of x

Voe:[*]. [x#[]—dy: [*]. 2 =y++[last 2]]

(b) odd:: num -> num; odd a is the least odd number larger than x
Vo - odd(odd x) A x < odd A
o nam =3y : num. [odd(y) Ny > x Ay < odd z]

(c) prime:: num — Bool; prime x is true iff = is prime
Vo :num. [prime x < =3z :num. [divisor(z,z) ANz > 1Az < z]]
(d) uni:: [char] -> Bool: uni x is true iff # has no duplicates

uni x < —dy : char.
Va : [char] | Im: [char]. In: [char]. Jp: [char].

L = m++[y]++n++[y]++p]

Chapter 18

Models

18.1 Validity of arguments

So far, we have used natural deduction to justify that a conclusion C' follows
from some premisses P and when we successtully derive ' from P we write

PrFC.

We justified the natural deduction rules from an informal idea of meaning:
P C is intended to capture the fact that in any situation where P holds, C
must hold, too. But the relation P F ' that we ended up defining — ‘C' can
be proved from P by natural deduction” makes no mention of ‘situations’ or of
sentences ‘holding’ and is purely formal: to apply the rules correctly (though
to do it successfully and reach the desired conclusion is another matter) you
just need to manipulate the syntactic structure of the sentences, the symbols
used to write them down. So how do we know that P F C means what we
intended? To give any kind of answer we need a more mathematical account
of the meanings of the symbols, and this will enable us to give a precise
definition of an independent relation P = C that more plainly says ‘in any
situation where P holds then C' holds, too’. Our question, then, is whether I
and | are equivalent:

o If we prove P+ C by natural deduction, do we really know P |= C7
(that is, is natural deduction sound?)

o If P|=C is it possible to prove P F C by natural deduction? (that is,
is natural deduction complete?)

We call the relationship = logical implication or logical entailment. When
P = C is true, we say that it is a valid statement or argument.

260

Validity of arguments 261
Informal predicate structures

When you write a set of sentences in logic, you usually have in mind some
interpretations which can be attached to the symbols used. For example,
in writing lives(John, Fort William) — likes(John,climbing) you might have in
mind that John referred to a particular person called John, Fort William
referred to the place in Scotland, climbing referred to a sport, and lives and
likes were predicates with their usual interpretations. But this need not be
so. Perhaps the sentence is secret code for something else, and John refers
to a place, Fort William and climbing to a time, lives to the predicate ‘good
weather at’ and likes to the predicate ‘will smuggle at’. Then the sentence
could be saying that if the weather at some place and time is predicted to
be good, that place and another time will be used for smuggling! The reader
of such a sentence can only understand it if a precise interpretation of the
symbols is given.

More usually, we indicate the particular interpretation we have in mind
by using standard notation. For instance, a constant called 0 would suggest
the number zero, a binary function called + and written infix (z + y) would
suggest numeric addition and a binary predicate called < and written infix
would suggest numeric comparison. Moreover, these implicitly introduce a
domain of objects (the numbers) that the sentences are about.

If you are writing your sentences about numbers, you would certainly expect
ordinary facts about numbers such as Vz. z <z to be available for use
without being explicitly written down. But for the moment we are going to
look at what pure logic can do on its own, without knowing any implicit
premisses. The idea behind logical implication is to be able to forget about
intended meanings and to focus on the logical structure instead.

Formal predicate structures

Logic itself provides us with connectives and quantifiers, but the predicates,
functions and constants used in sentences are ‘extralogical’ — outside logic.
Hence to know exactly what sentences we are allowing, we need to know
what extralogical symbols we are using and how they are used — whether
they are predicates, functions or constants, and (for predicates and functions)
what their arities are. A specification of this extralogical information is called
a signature. For instance, the sentence Va. [P(x) — Jy. Q(z, f(y))] uses a
signature that comprises (at least) a unary (unary means one argument — of
arity 1) function f() and two predicates, P() and Q(,).

To find the meaning of a sentence we need to know both the range
of possible values over which variables can vary, and the meanings, or
interpretations, of the extralogical symbols. We provide these through the idea

262 Models

of a structure for a signature: the structure comprises

e a set D, known as the domain;

o for each constant in the signature, a corresponding element of the
domain;

o for each function symbol in the signature, an actual function from D"
to D (where n is the arity of the function); and

o for each predicate P, an n-ary relation on D, that is, a subset of D"
(where n is the arity of P).

D™ here is the set of n-tuples of elements from D: so in Miranda notation,
D?, the set of pairs, is (D, D), D* is (D,D,D), and so on. Also, D' is D
and D° has only one element, the unique ‘O-tuple’ ().

The idea for the predicates is that P(u,v,...) should be true if and only if
the tuple (w,v,...) is in the corresponding subset of D". Note that if n =0
(the predicate has no arguments — it is a proposition) then P is interpreted
either as true (the subset is {()}) or false (the subset is { }).

Example 18.1 of Signatures

1. Suppose we have a signature with predicates P() and Q(,), no
functions, and a constant A. Two possible structures are

(a) The Domain is the set of authors of this book
P(v) means ‘v is female’
Q(u,v) means ‘u lives further away from College than v’
A is the first in alphabetical order (that is, hessam)

(b) Domain is the set of positive integers
P(v) means ‘v is even’
Q(u,v) means ‘u < v’
A is the number 1

2. Suppose the signature has predicate P(, ,), function s() and constant
a then two different structures are

(a) Domain is the set of positive or zero integers
P(x,y,z) means © +y =z
s(n) means n + 1
a is the number 0

(b) Domain is the set of integers > 1
P(x,y,z) means © Xy = z
s(n) means 2 X n
a is the number 1

Once we have a structure for a sentence S, that is to say a structure for
a signature that includes all the extralogical symbols used in S, then we
can determine the truth or falsity of S by using the rules given earlier and
repeated in Figure 18.1.

Validity of arguments 263

e Vu. S is true iff for each d in D, S(d/x) is true, where
S(d/x) means d replaces every occurrence of x in S that is
bound by V.

Jdx. S is true iff for some d in D, S(d/x) is true

AN B is true iff both A and B are true.

AV B is true iff at least one of A or B is true.

A — B is true iff A is false or both A and B are true.

—A is true iff A is false.

A« B is true if A and B are both true or both false.

t = u is true iff they are identified with the same element in

the domain.

Figure 18.1 Determining the truth value of a sentence

Example 18.2

1. Find the truth or falsity of P(A)AVx. Jy. [P(x) — Q(y,x)] using the

first pair of structures of Example 18.1.

(a) P(A) means ‘hessam is female’, which is false, hence the whole
sentence is false. But let us find the truth value of the
other constituent Va. Jy. [P(z) — Q(y,z)] anyway. It means
Va. Jy. [female(x) — lives-further-from-college(y,x)] and its truth
value will depend on the value for each x in the domain, that is,
for * = hessam, x=krysia, x=steve and r=susan.

& = hessam: Jy. [female(hessam) — lives-further-from-college(y, hessam)]
is true for any y as female(hessam) is false.
Similarly for x = steve.

& = krysia: y. [female(krysia) — lives-further-from-college(y, krysia)]
is true as female(krysia) — lives-further-from-college(steve, krysia)
is true, as lives-further-from-college(steve, krysia) is true.

Similarly for = = susan.

Thus Va. Jy. [P(x) — Q(y,x)] is true in this structure.
(b) After interpreting the symbols P, A, () we have

even(1l) AVa. Jy. [even(z) — y < x] is again false since 1 is
not an even integer.
However, Va. Jy. [even(z) — y < 2] is true:

even integers x > 2: Jy. [even(z) — y < x| is true, for y can
always be x — 1.

odd integers = > 1: Jy. [even(x) — y < x] is true for any choice
of y, for even(x) is false.

264 Models

2. Find a structure with Domain = {james,edward} that makes both (i)
and (ii) true.
(i) Dr Jekyll= Mr Hyde
(ii) Ja. killed(Mr Hyde, x)

Either both Dr Jekyll and Mr Hyde must be edward or both must
be james in order to satisfy (i). Say they are both interpreted as
edward. To make (ii) true, at least one of killed(edward, edward) or

killed(edward,james) must be true.

At last we come to the important notion of model: a model for a sentence S
is a structure in which S is true. We can now say that

A E B is true if each structure of {A, B} that is a model of A is
also a model of B.

and

A= B is false if some structure of {A, B} that is a model of A is
not a model of B.

In general, it is rather difficult to test directly whether A = B is true
for there are very many structures to check. Natural deduction allows us
to circumvent this difficulty. The two relations = and F between a set of
sentences S and a conclusion T are the same. That is, if you want to show
S ET you can show S F T instead, that is, if S+ T then S |ET. It is also
the case that if S =T then S+ T so that natural deduction is an adequate
alternative to checking models.

These properties are, respectively, called soundness and completeness of
natural deduction and their proofs are discussed in Sections 18.6 and 18.7.

18.2 Disproving arguments

By now you will have tried to prove all sorts of arguments by natural
deduction and may well be finding that sometimes it is just not possible
to find a proof. In other words, for some problem to show P F (. there
seems no way to derive (' from premisses P by natural deduction. In this
case, what can you conclude? Can you conclude that P ¥ C'7 Well, no, you
cannot. For in any proof that appears to be stuck you can, for example, go
on introducing theorems of the form X V =X for all kinds of exotic formulas
X and one of them just might lead to a proof of ' — you never can tell.
Instead, you might try to show that, after all, P ¥ C does not hold. You can
do that by finding a counter-example interpretation of {P,C} which makes
P true but C false. We might call this the ‘failed natural deduction by
counter-example’ technique.

Disproving arguments 265

Certainly, if P F C then it will not be possible to show P C, for if
it were, P = C would hold (by soundness, which we shall prove in Section
18.6). The next few examples show some typical situations in derivations that
cannot be completed successtully. Very often, the apparent impasse provides
some help as to what the counter-example interpretation might be.

Try to show Ya. P(x,z)F Yu. Yy. P(u,y)

1 Ve P(z,z)
avl = =
I o 5
4 {cannot show P(a,b)}
5 Pla,b)
6 Yy. Pla,y) VYT
7 Yu. Vy. P(u,y) VYT

Figure 18.2 Failure to prove Vi. P(x,z)F Yu. Yy. P(u,y)

The failure in Figure 18.2 occurs because no instances of Va. P(x,z) will
yield P(a,b). When b is introduced, it is in a context that now includes «a
and so b cannot be the same as a. In this case, from the failed derivation a
counter-example situation can be found:

Let the domain be the set of constants {a,b} and suppose P(a,a) and
P(b,b) are true and other atoms are false; then this is a situation in which

Va. P(x,z) is true but Yu. Yy. P(u,y) is false.

Try to show Jz. P(z)F Va. P(x)

Here, a is introduced in a context which includes 6 and so @ must be different
from b and no successful derivation can be found. If instead of using a VI
step first a 3 step using Jx. P(x) is made, a similar difficulty arises. A
counter-example situation can be found here as well — suppose that the

domain is again {a,b} and take P(a) to be true (as assumed in the proof
attempt) and P(b) to be false. Then Jx. P(x) is true but Ya. P(x) is not.

Try to show {3z. T,Va. Jy. P(x,y)} F Ju Yo. P(u,v)

(see Figures 18.4 and 18.5). In Figure 18.4, after ¢ has been introduced at
line 3 it is natural to use it in a V& step and then in a corresponding 37
step, in order to try and make P(e,d) and P(u,v) match. But the term used
in place of v in the VZ step has to be new and so cannot be the same as
d. It is easy to see that a counter-example situation must have a domain of

