266 Models

I o -
adé 3 P(a)

5 {cannot complete proof}

6 P(b)
7 P(b) 3€(1)
8 Vz. P(x) VI

Figure 18.3 Failure to show Jx. P(x)F Va. P(x)

v dz T

2 VYz. Jy. Plz,y)
c3€ 3 T

4 3Jy. P(e,y) VE(2)
di& 5 P(e,d)
eVI 6

8 {cannot fill gap}

0 P(c)

o P(c,v) I
o Ju. Yo. Plu,v) 37
1= Ju. Yo. Plu,v) 3E(4)
15 Ju. Yo. Plu,v) 3¢(1)

Figure 18.4 Failure to show {3z. T,Vz. Jy. P(x,y)} F Ju. Yo. P(u,v)

Y

at least two elements — say {c¢,d} with P(c¢,d) and P(d,c¢) both true and
P(ec,¢) and P(d,d) both false. Then the premisses are true but the conclusion
is false.

On the other hand, after line 5 has introduced d we can use it to deduce
dy. P(d,y), which leads to another 3 to eliminate and so on. The alternative

Intended structures 267

proof attempt is shown in Figure 18.5. We can write down the constants that

1 Jdz. T

Ag 5 T
. 3y. Ple,y) VE(2)
dIE 5 Plc,d)
¢ Jy. P(d,y) VE(2)
A€ . P(d.e)

1o Ju. Voo P(u,v)

1 Ju. Voo P(u,v) 3€(6)
12 Ju. Voo P(u,v) 3€(4)
13 Ju. Voo P(u,v) 3€(1)

Figure 18.5 Failure to show {3z. T,Vzx. Jy. P(x,y)} F Ju. Yo. P(u,v)

arise in Figure 18.5, with an arrow from = to y whenever P(z,y):
c—d—e—---

This suggests an infinite model:

Domain = set of natural numbers {0,1,2,3,---}
P(x,y) means that y =a 41

It is indeed a counter-example. You cannot possibly choose u so that
Yv. P(u,v), for you never obtain P(u,0).

18.3 Intended structures

There is often, implicitly, an intended interpretation for the extralogical
symbols. For example, the writer of ‘Va : nat. less(zero, s(x))’ quite probably
had in mind the interpretation in which the domain is the set of natural
numbers, less is <, s is the successor function and zero is the number
0. Intended interpretations allow the possibility of domain-specific deductions
that go beyond logic. In Part I of this book most of the arguments were not
pure logic — they had intended structures (for example, numbers, lists, etc.)

268 Models

in mind and freely used known properties of those structures. For instance,
in the specific domain of lists we can reason that if ¢ € (h:t) and ¢ # h then
¢ € t. Now, this deduction could be made by making the particular facts
about lists explicit, such as

Vu,v s VE:[x]. [u€(vit) s u=vVué€l
Or, we may think of the fact as being part of our stock of information
about lists and quote it as the ‘reason’ for our deduction. The restricted
interpretation gives us more powerful deductions.

In the case of program specifications, the pre- and post-conditions usually
make clear what is the intended domain and interpretation. So if our
specification indicated that the domain was integers, say, we might make use
of sentences such as Va:num. [t =0V <0Va>0].

We could in principle axiomitize (add extra premisses to constrain the
structures to be sufficiently like the intended one) so that the arguments are
pure logic, and this is often a good thing to do — it lays bare the logical
structure of the mathematics — but we are not so formal. Hence we have
used a ‘mixture of logic and mathematics’. Natural deduction still helps one
to get through the purely logical aspects of the argument.

Of course, any proof we make in pure logic is correct for any interpretation
that satisfies the various sentences we have used, not just the particular one
we had in mind. And this is really all we can expect, for when trying to
show S ET by showing S+ T, the natural deduction rules know nothing of
interpretations and so cannot be specific about any particular one.

18.4 Equivalences

In Chapter 15 we defined two sentences S and T to be equivalent (S =T)
if they had the same truth-value as each other in every situation. What we
meant, was that

S=T iff

in each structure for {S,7} S and T are either both true or both false

that is, S < T is true in every structure (it is a tautology)

that is, ST and T =5

The last property holds, since, if it is not possible to have S true in any
structure of {S,7} and T false, or T true and S false, then in any structure
which makes S true T must be true, too, and in any structure which makes
T true then S must be true, too. Hence S =T and T |= S.

We now take a second look at some quantifier equivalences and see how the
important property of equivalent sentences, that they can be substituted for
each other in any context, is affected.

In many cases, the same principles as before apply. A constituent of a
sentence can be replaced by any other equivalent sentence. For example,

Equivalences 269

=Y. P(z) = Jx. —=P(x) and any occurrence of the first sentence can be
replaced by the second, or vice versa. So from SV =Va. P(x) we can obtain
SV dz. =P(x). This applies as long as there is no nested reuse of variables,
for example, Vz. dz - -, but remember we said we would not allow such forms.
(They can always be avoided by renaming variables.)

If you cannot remember a useful equivalence it does not matter, for you can
always derive it each time you need it. The only disadvantage is the extra
time taken! Several useful quantifier equivalences are given in Appendix B
and although most of the equivalences were stated for unqualified quantifiers,
qualified quantifiers present no problem and behave quite well. For example,
the equivalence above also holds in the form —Va: N. P(x) = Jdz: N. =P(x).

In any quantifier-free sentence S any subsentence may be replaced by an
equivalent sentence without affecting the meaning of S. This is very useful as
one form of a sentence may be more convenient than another. For example,
=(PV Q) may not be as useful a sentence form in a natural deduction proof
as the equivalent —P A =), which can be broken into two smaller pieces,
-P and —Q, and Y&. —=P(x) is almost always more useful than —3z. P(z).
Many equivalences, such as those given in Appendix B, once instantiated by
replacing F', G etc., by particular sentences, can be used as they stand to
replace one side of the equivalence by the other.

The quantifiers V and 3 also respect equivalences:

if F'(a)=G(a) then
Vo, F(x) = V. G(x), and
Jde. F(x) = dJe. G(x)
(Exercise 9 asks you to prove this.)

For example, since (F(a)A G(b)) = (G(b) A F(a)), Jy. [F(a)NG(y)] =
dy. [G(y) A F(a)] and Va. Jy. [F(2) AG(y)] = V. Jy. [Gy) A F(x)].

In Sections 18.6 and 18.7 we show that A E B iff AF B and hence we
have A= B iff AF B and BF A. An equivalence proof is therefore a good
way to show AF B — show instead the stronger A = B using equivalences.
Reasoning using equivalences can also be a useful way of making progress in
a proof. That is, from

S=5 and S =55 and --- and S,_1 =95,
you can deduce S =5, and hence that S+ S5, and S5, F S.

Example 18.3 As an example of the use of equivalences we show
dy. Ya. [F(x)ANG(y)] =Va. Jy. [Fx) A G(y)]
and
V. 3y. [F(y) A (G(x) — Hp)] = 3y. Ye. [F(y) A (G(2) — H(y))]
In the proofs the particular equivalences used are left to the reader to supply
as an exercise.

dy. V. [F(x)NG(y)] = Jy. [Va. Fz) A NG(y)] =Va. F(a)ATJy. G(y)
=Vo. [F(z)AJy. Gly)] =Va. Jy. [Fx) AG(y)]

~—

270 Models

Equivalence proofs are very helpful within natural deduction proofs for they
allow premisses and conclusions to be rewritten to more useful forms. There
are many useful ‘half-equivalences’, that is, true sentences of the form A | B,
and some are shown in Figure 18.6.

I Fa. Vy. F(a,y) EVy. Jz. F(x,y)

2 Va. Flx)VVy. Gly) EVa. [F(x)V G(x)]

3 da. [F(x)ANG(2)] EJe. F(x)AJze. Ga)

4 VY. [F(z)— Go)] EVa. F(z) = Va. G(x)
b Va. [F(x) — G(z)] E Jv. F(x) — Jz. G(x)
6 Va. [F(x) < Gz)] EVe. F(x) o Ve G(x)
T V. [F(x) < Go)] E Jz. F(x) < Jz. G(x)

Figure 18.6 Useful implications

In particular, if the data contains ¢, and ¢ |= ¢, then ¢ can be added to
the data. Using half-equivalences to replace subsentences is possible but there
are some dangers. Exercise 10 considers this.

A natural deduction view of equivalence

Natural deduction gives another view of equivalences. For example, the proof
obligations of the two sentences Va. [F(x) — S] and Jx. [F(x) — S|, which are
shown in Figure 18.7, are essentially the same. Here, the proof obligation is
to show S from the data F'(c¢), where ¢ is a new constant in the proof. Hence
either of the original sentences behaves as a conclusion in a proof essentially
in the same way. If you try a similar exercise for other equivalences you will
often see that they exhibit the same kind of pattern — the proof obligation
for a pair of equivalent sentences is rather similar.

Equivalent sentences, however, also operate in essentially the same way
when used as data. For example, if the two sentences Va. [F(x) — S] and
Jdx. [F(x) — S] were part of the data their use would lead to the fragments
shown in Figure 18.8. Here, the proof obligations amount to showing F(a) for
some a in the current context. These examples, although not a proof, should
help to convince you that equivalent sentences often ‘behave in a natural
deduction proof in the same kind of way’.

Soundness and completeness of natural deduction 271

vl
F(e)
S
F(e)— S —1
Va. [F(z) — 5] VI
Jz. F(x)
A€ F(c)
S
S €
Jz. F(z) — S —7
Figure 18.7
Va. [F(z) — 9]
F(a)
S V=&
Jz. F(z)— S
F(a)
Jz. F(x) 3z
S =&
Figure 18.8

18.5 Soundness and completeness of natural deduction

In this section we consider the two important properties of natural deduction,
soundness and completeness.

272 Models

One of the uses of natural deduction is as a technique for showing that
S E T for sentences S and T. It is successful mainly because natural
deduction is sound:

If SET then SET

This is obviously a necessary property, otherwise all manner of sentences T
might be shown to be proven from S regardless of any semantic relationship,
and natural deduction would be useless.

At least, therefore, we can be sure that natural deduction proofs are correct.
But there could still be a problem. Perhaps, for a particular pair of sentences
S1 and S2, we cannot seem to find a proof. We may ask whether we have
enough natural deduction rules to make a deduction. Well, in fact we do,
because of completeness:

If SE=T then SET

So we know there should be a proof.

Since we probably do not happen to know whether or not S1 | S2, and
hence whether or not a deduction should be possible or not, then it might
be worth looking for a counter-example model if our proof attempts were
floundering. Completeness is not such a crucial property as soundness — for
it might be good enough in practice to be able to find a proof in most of
the cases for which we expect to find one.

Natural deduction is just one method that can be used to answer the
problem ‘does P |=C’; and there are other methods which are not considered
in this book. But natural deduction cannot be used to answer the question

‘does P E (.

We say that a problem with the property that there is some method which
can always decide correctly between ‘yes’ and ‘no’ answers is decidable. In our
problem is there some method that, given P and (', always tells you ‘yes’
when P |=C and ‘no” when P F C7 In this case, there is no method that will
always give the correct answer. Some methods may, like natural deduction,
always answer yes correctly, and may even be able to answer no correctly for
some cases, but no method can answer correctly in all cases. The problem,
then, of checking whether P |= C is called semi-decidable. A decidable problem
would be one for which a method existed which correctly ‘answered’ both yes
and no type questions.

The problem of checking whether P = C when P and C are propositional
is decidable, for then a method that checks all interpretations for the symbols
in {P,C} is possible and is essentially the method of truth tables.

Proof of the soundness of natural deduction 273
18.6 Proof of the soundness of natural deduction

In this section the important soundness property of Natural Deduction is
proved:

if AF B then AEB soundness

that is, if a conclusion B is derivable from premisses A then it should be —
the argument is valid.

The underlying idea is quite simple: when you read a proof from top
to bottom (not jumping backwards and forwards in the way that it was
constructed) you see a steady accumulation of true sentences. Each new one
is justified on the basis that the preceding ones used as premisses by the
rule you are applying have themselves already been proved and so are true.
(This is an induction hypothesis! It uses induction on the length of the
proof, because the earlier sentences were proved using shorter proofs. Also,
disregard the fact that some parts of the proof are written out side by side
— rearrange them one after the other.)

For instance: consider AE. If you have already proved A A B, by induction
you know that it is true (given the premisses) and it follows — check the
truth tables if you are really in doubt — that the A delivered by AE is also
true.

This is the basic idea, but it is all made much more complicated by the
boxes. The problem is that ‘true’ here means ‘true in every model of the
premisses’, but the class of models varies throughout the proof. Each sentence
A appearing in the proof is proved in a context of constants and premisses:
the constants are not only those posed in the question (by being mentioned
in the overall premisses and conclusion), but are also those introduced by VZ
or J& at the tops of boxes containing A; and the premisses are not only the
overall premisses but are also the assumptions introduced for V&, —Z, =7 or
3€ at the tops of boxes containing A.

What you introduce as a new constant or a new assumption at the top of
a box is part of the context of everything inside the box.

To take proper account of both premisses and context, we shall, for the
time being, use more refined notions of models and semantic entailment ().
A model for a context (S, P) (S the set of constants, P the set of premisses;
the constants in sentences in P must all be in 5) is a model for P with
interpretations given for all constants in S. Then we write P =5 C' to mean
that C is true in every model of (5, P).

Note the following: if (', P’) is a bigger context than (S,P) — all the
constants and premisses from (S5, P) and possibly some more — then any
model of (87, P') is also a model of (S5, P). (EXERCISE: prove this.) It follows
that if P =g C then P’ =g C. This is a technical explanation of why in
a proof we are allowed to import sentences into boxes (smaller context to
bigger), but not to export them out of boxes.

274 Models

The basic result, proved by induction on the length of the proof, is this:
if natural deduction proves C' in context (S, P), then P =5 C.

A proof of length 0 is one that simply repeats an assumption (that is, the
conclusion €' is in P) and we have shown that this is always allowed from a
smaller context into a larger one. Clearly, P =5 C in that case.

Let us see first how the AZ rule works, as it is typical of the rules that do
not involve boxes (the boxes used for it are purely decorative, because they
do not introduce new assumptions or constants). Suppose A A B is proved in
the context (5, P). The rule relies on having proved A and B earlier, possibly
in smaller contexts (and imported), so by induction we have P =g A and
P s B. We want to prove P =g AA B, so consider any model of (S5, P). In
it we know that both A and B are true, so AA B must be as well (again,
use the truth tables if you do not believe this).

The reasoning is really just the same for AE, VI, —&, =&, LE, -, VE
and 7. We can safely leave most of these as exercises, but let us look at a
few of the more subtle ones.

1& Suppose A is proved in the context (S5,P) by L&, so we already have
P =s L. This means that in any model of (5, P), false is true — but
that is impossible, so we conclude that there are no models of (5, P).
Hence in all of them A is true, so P =5 A.

VE We have Va. A(x) in the context (S, P), and also ¢ is a term in the context
— that is to say it is built up from the function symbols provided
and the constants in S. In any model of (5, P), those ingredients are
all interpreted, and so t¢ is interpreted as a value of the model. But
Va. A(x) is true in the model, that is, A(v) is true for all possible
values v, and in particular the A(t) delivered by the rule is true.

47 This case is rather similar to V& and is left as an exercise.

We now turn to those rules that really do use boxes.

VE The rule gives C' in a context (S5, P), and we have already proved AV B
so we know P |Eg AV B. We have also already proved C twice but in
larger contexts: once in a box headed by the assumption A — so the
context is (5, PU{A}) — and once with B. From these what we know
is that P,A s C and P,B s C. We want P g C, so consider a
model of (S,P). AV B is true in it, so we have either A true or B
true. It follows that the model is also a model either of (S, PU{A}) or
of (S,PU{B}), and in either case we can deduce that C is true. (Of
course, this argument is just a formalization of the idea of case analysis
by which we originally justified the rule.)

—7 The rule gives A — B in a context (5, P) when we have already proved B
in the larger context (S, PU{A}) and hence know P, A =5 B. Consider

Proof of the completeness of natural deduction 275

a model of (S,P). If A is false in it, then A — B is certainly true,
whilst if A is true then it is also a model of (S5, P U{A}) so that B,
and hence also A — B, are true.

=7 The rule gives =A in context (5, P) when we have already proved L in a
context (S, PU{A}) and hence know P, A s L; in other words, there
are no models of (5, P U{A}). A model of (S, P) cannot be a model of
(S,PU{A}), so A must be false — —A is true.

VI The rule gives Y. A(x) in a context (5, P) when we have already proved
A(e) in a context (SU{c},P) and hence know that P Egupy Alc).
Consider a model of (S,P): we want to know that A(v) is true for
every possible v. But for any particular value v we can make the model
into one for (SU{c}, P) by interpreting ¢ as v (note that ¢ had to be a
new constant, for otherwise ¢ would already be interpreted as something
else): then we know that A(c), that is, A(v), is true.

1€ The rule gives B in a context (S5,FP) when we have already proved
Jdx. A(x) in the same context and have proved B in the context
(SU{c}, PU{A(¢)}). In any model of (S5, P) we know that there is at
least one value v such that A(v) is true; if we pick one, then we can
make the model into one of (SU {c}, PU{A(c)}) by interpreting ¢ as v
(again, ¢ must be new); but then we deduce that B is true.

18.7 Proof of the completeness of natural deduction

In this section we give a proof of the completeness property for propositional
sentences and outline the changes needed for quantifier sentences.

Our method is a traditional one but, as you will see, it does not seem
to be fully in the spirit of Natural Deduction, for although it shows that a
deduction of B from A exists when A | B, the method does not show how
to construct such a proof. Moreover, the proof that is guaranteed to exist is
also rather contrived. There are other, constructive, methods, but they are
beyond the scope of this book.

Theorem 18.4 completeness If A= B then AF B, that is, if an argument is
valid then the conclusion can be derived from the premisses.

Proof : First some definitions:

A set of sentences A is inconsistent ifT AF L.
A set of sentences A is consistent iff it is not inconsistent.

To show AF B, we have to show Proposition 18.5:

if A is a consistent set of sentences then A has a model.

276 Models

We can then argue:

If AE B then AU {=B} has no models. (Why?)

Hence AU {—=B} cannot be consistent (by Proposition 18.5).
Hence AU {=B} is inconsistent.

Hence {A,-B} F L.

Hence AF B by =1 and ——.

O

Notice that in the penultimate step the existence of a natural deduction
proof is asserted but there are no means given to help you to find it.

We will first deal with a simple case in which the only logical symbols
allowed in A are A,V and — (called A-V-= form) and all negations are
immediately before a proposition symbol or another negation. In the case
when the sentences in AU {-B} are in A-V-— form the natural deduction
proof of L will be one in which V&, AE and —& are used exclusively. In
Exercise 3 you have a chance to find such a proof. This does not mean that
the other rules are unnecessary, for, as Fxercise 8 shows, they are all used in
deriving the A-V-— form of a sentence by natural deduction.

Proposition 18.5 If A is a consistent set of sentences then there is some
model for it.

Proof : The idea is to construct a larger set of consistent sentences, called
AT, that includes A and for which we can give a model. This model will be
a model for A as well.

The construction of AT from A uses the rules given below:

1. At DA
2. if AT A A2 € AT then Al € AT and A2 € AT
3. if A1V A2 € AT then Al € AT or A2 € AT

4. if == Al € AT then Al € AT

Nothing else belongs to AT apart from the sentences forced to do so by
(1)~—(4). A% is constructed by applying the rules above to A until they can
be applied no more, choosing in step (3) whichever of Al or A2 will maintain
consistency.

At is consistent

Rule (2) obviously preserves consistency: if you could prove L using Al and
A2 then you could also prove it without them using A1 A A2 and AE. And
what about rule (3)? The point is that you have at least one option that
preserves consistency. For if you can deduce L using Al and you can also

Proof of the completeness of natural deduction 277

deduce it using A2 then by V& you could also deduce L using Al V A2. Rule
(4) is left for you to deal with.

An example
A= {((~PV Q) A P) v ~P}
AT D {((=PVQ)AP)V P} (rule 1
AF 2 {((=PV Q) A P)V =P, (<P Q
AF D {((~PV Q) APV =P, (~PV Q
AF (=P V QYA P)V =P, (<P Q

A P} (rule 3)
NP, P,-PVQ} (rule 2)
NP, P,-PVQ,Q} (rule 3)

R N

All the sentences have now been dealt with and to find a model of AT just
look at the atoms or their negations in A%t, in this case P and Q. The
assignment () = tt, P =tt is a model, as you can check.

This is not the only consistent set that can be constructed by applying the
rules. Another one is

A={((~PVQ)A P)V P}
A* D {((=PV Q) A P)V =P} (rule 1)
A* D {((=PV Q) A P)V ~P,~P} (rule 3)

This time, =P was chosen from ((=PV Q)A P)V =P to satisfy the third rule.
You can check that the assignment P = ff and @ = ff is also a model of A*
and A.

(Since AT is consistent it cannot contain €' and —C' for any C. Why?)

AT has a model
We now show that A" has a model I (say). For each proposition symbol X
used in sentences in A™:

If X € At then X is assigned # in I.
If =X € At then X = ff in [.
If X ¢ At and =X € At then X is assigned ff in I.

I is a model of AT:

Suppose not, and that Y in AT is the smallest sentence in AT that is not
true in 1.

(Use the ordering: a proposition symbol and its negation are the smallest
sentences; the constituents of a sentence are smaller than it; so A is smaller

than A A B, etc.)

Y could be an atom? No, as Y would have been assigned tt.

Y could be =Y’ Y’ an atom? No, as Y’ would have been assigned
false in [and so =Y’ is true in [I.

Y could be Al A Bl or AlV B1? No, as either Al or Bl (or
both) would be false in I and both are smaller than Y, the
supposed smallest false sentence.

278 Models

Y could be =—A1? No, as Al would have been in AT, too, and
also false in [.

Since I is a model for AT it is a model for A. O

It A and B are general propositional sentences then Proposition 18.5 can
still be used. It does not matter if you replace A by an equivalent set of
sentences A’: A is consistent iff A’ is consistent. Any propositional sentence
A is equivalent to one in the A-V-— form used in Proposition 18.5 and the
A-V-= form can be deduced by natural deduction from A and vice versa (see
Exercise 8). So every sentence in AU {—=B} can be replaced by an equivalent
sentence in A-V -— form before applying Proposition 18.5.

What has been proved here is often called weak completeness. That is, it
simply shows that a natural deduction proof exists. But suppose you are
trying to derive a sequent and do mnot follow this ‘correct’ path (as given
by the theorem), whatever it is. You want to know that under reasonable
circumstances, the conclusion can still be derived. This is indeed the case,
but showing it is belongs to the realm of automated deduction.

Completeness for quantifier sentences

The proof method for propositional sentences can be extended to quantifier
sentences as outlined next. Suppose that the problem is to show Ak B. The
construction of A% has to be extended so that it includes sentences prefixed
by a quantifier. Initially, the context of AT is just the context of A, S say.
The rule for dealing with 3 will increase this context and so the final context
of AT will not, in general, be the same as the context of A. We have to take
this into consideration when showing that the 3 rule maintains consistency of
AT,

The rules for constructing AT now include

5. If V. Pz] € AT then Pla] € A, for all a formed from symbols in the
current context S of A%,

6. If Jz. Plz] € AT then Ple] € AT, for a new constant ¢ ¢ S. The context
is updated to S U {e}.

We can show that rules (5) and (6) maintain consistency:

5. A’ is the result of the construction so far, V. Blx] € A" and A’ is
consistent. A’U{B[t/x]} is consistent, where ¢ is a term constructed from
symbols in the context S” of A’. If not, a proof of A’U{B[t/z]}F L
could be converted to a proof of A’ L by an additional use of V&,
giving a contradiction.

6. A’ is the result of the construction so far, 5" is the context so far and
Jdx. Blz] € A" and A’ is consistent. A’ U {Ble/x]} is consistent, where

Summary 279

e is a new constant ¢ S’. If not, a proof of A’U{Ble/x]} F L could
be converted to a proof of A’k L by using 3€, which would then be
contradictory.

The construction of AT will be an infinite process unless there are no
function symbols in A (because of step (5)).

Finally, we have to show that the model formed by considering atoms and
their negations in AT is still a model of A*. The atoms we consider are
all atoms formed from predicates in A and terms using symbols in the final
context ST of AT. The domain of the interpretation I is just the set of terms
formed from symbols in ST and each term is interpreted by itself.

The additional cases cover Y being either of the form Jx. P[x] or Va. Plx]:

Y could be of the form Va. P[x]? No, as then some sentence of
the form P[t/x] would also be false and this is smaller than Y.

Y could be of the form dz. P[x]? No, as then every sentence
of the form P[d/x] would be false, where d € domain of I.
In particular, Ple/x] would be false, a contradiction as this is
smaller than Y.

18.8 Summary

A signature is a collection of extralogical symbols (predicates, functions
and constants) with their arities.

e A structure (for a signature or for some sentences) gives concrete
interpretations for those symbols as relations, functions or elements from
some particular set, the domain.

Once this is done, any sentence using those symbols is interpreted and
it can be determined whether it is true or false.

o A model for a sentence is a structure in which the sentence is true.

e The ‘failed natural deduction by counter-example’ technique can be used

to show that P ¥ C.
o Intended interpretations correspond to extralogical deductions.
e Quantifier equivalences can be applied to transform sentences.

e Natural deduction is sound:

If PFC then PEC

e Natural deduction is complete:

If PEC then PFC

280 Models

18.9 Exercises

. (a) If AF B then A E B (soundness of natural deduction). Hence, if
AFE B then ...7

(b) If AF B does A —B?
(¢) If AEB does AF —-B?
(d) If A¥ B what about AF —=B?
(e) If AF —-B does At B?
(f) If {S1,52,....5,} T is valid does {S2,...,59,} ET?
(g) If S is true in no situations then =S5 is true in every situation.
True or false?
2. Complete the missing cases in the proof of soundness of Natural
Deduction given in Section 18.5.
3. (a) Apply the method used in the completeness proof to derive a model
of the sentences {C AN — T, HA-S,(HA=(SVC(C))— P,N,-P}.
First convert the sentences to the restricted form using equivalences
and then apply the method.

[§

(b) Find a natural deduction proof of L from the converted sentences.
4. Show that the following arguments are not valid, that is, the premisses F
the conclusion. Find two structures in each case in which the premisses
are true but the conclusion false. Try the ‘failed natural deduction by
counter-example’ technique in order to help you to find the structures:
(a) likes(Mary, John),Vx. [likes(John,x)] B —3Jy. —(likes(Mary,y)).
(b) =Va. Vy. [Difflz,y)\NR(x,y) — R(y,x)] ¥ Yu. Yo. [Difflu,v)AR(u,v) —
- R(v,u)].
(¢) Va. [F(a)V G(x)] EVa. F(x)VYy. Gy).
(d) Fv. F(v) A Ju. G(u) ¥ Jz. [F(x) A G(x)].
(e) VYa. Jy. M(x,y)F Jv. Yu. M(u,v).
5. For each structure and each set of sentences decide the truth/falsity of
the sentences in the structure:
(a) {Va. R(x,2),Vo. Vy. [R(x,y) — R(y,x)]} Structures:
i. D =Ha, b ¢}, R(a,b) = R(a,c¢) = R(b,c) = R(c,b) = t,
R(a,a) = R(b,b) = R(c,c) = R(b,a) = R(e,a) = ff
. D=A{1, 2, 3, 4, ...}, R is the relation <
D=A1, 2, 3, ...}, R is the relation divides(x,y)
(b) (Ve Fy. [P(e) = Qery)l, 3o P(2), 3. [Qb =) — Y. P(u)])
Structures:
i. D=A1, 2, 3, ...}, bis the number 2, P(z) is the relation x
is even, Q(x,y) is the relation divides(x,y)

FEzercises 281

ii. D = {Fred, Susan, Mary}, bis Mary, P(Fred) = Q(Mary, Fred) =
Q(SusanFred) = #t, P(Susan) = P(Mary) = ff, all other pairs for
Q=1
(¢) {3z. Yu. P(f(u),z)} Structures:

i. D={0, 1, =1, 2, =2, ...}, P is the relation <, f is the
function: f(u)=| u |

. D=A{1, 2, 3, ...}, P is the relation <, f is the successor
function.

6. Find as many different models as you can for the sentences:
{Va. Vy. Vz. [P(a,y,2) — P(s(x),y,s(z))],Va. Pla,x,x)}

7. Decide on the truth values of the sentences of Example 18.2 in the
structure with domain= {0, +1, #+2, ---} and in which A means 0,
P(n) means n > 0, and Q(m,n) means m* = n.

8. The completeness proof for propositional sentences given in the text can
be extended to include all logical operators by using the fact that the

following (ND) equivalences can be found:

“(AANB)=-AV-B —-(AVB)=-AAN-B
~(A—-B)=AAN-B A—-B=-AvV-B —A=A

That is (for example), A —- BF—-AV B and ~AVBFA— B.
(a) Prove each of the above (ND) equivalences.

(b) Once you have proofs of the equivalences they can be used to
rewrite any sentence into A-V -— form. The A and B can be any
sentences. In particular, prove that if AF B, BF A, A+ B and
B A’ then

-AF =B and ~BF-A
ANAFBAB and BAB'FAANA
AVAEFBVB and BVB' FAVA
A—-AFB—-B and B— B'+A— A

9. Show that quantifiers respect equivalences. That is, if A(a) = B(a) for
sentences A and B and some constant a, then Va. A(x) =Va. B(z) and
Jdx. A(x) = Jx. B(x). (HINT: use induction on the structure of A and
B.)

10. We say that A occurs positively in a sentence [if it is within an even
number (or zero) of negations. It occurs negatively otherwise. Show that,
if A occurs positively in a sentence F' and A | B and replacing A by
B in F gives GG, then F' = G. Also, show that if A occurs negatively in
F then G = F.

Appendix A

Well-founded induction

Find a simplest counter-example

One justification for induction arguments is that they say

1. Find a simplest possible counter-example: in other words, all simpler
possibilities work correctly.

2. But then from that we manage to deduce that the counter-example, too,
works correctly — it is not a counter-example at all.

3. Contradiction: so there are no counter-examples.

(3) is just logic, and (2) depends entirely on the problem to hand (what we
are trying to prove). It is the induction step. But (1) depends not so much
on what we are trying to prove, as on the things we are proving something
about: it says that there is some notion of ‘simplicity’, and that we can
indeed find a simplest. For instance, for numbers, ‘simpler’ might be ‘less
than’. Then finding a smallest number is something you can always do with
sets of natural numbers but not necessarily with sets of integers or reals.

Well-founded orderings

Suppose we are interested in proving ‘by induction’, that is, using (1)—(3)
above, statements of the form Va: A. P(x), where A is some set such as nat.
We formalize the idea of simplicity with the notion of well-founded ordering.

Definition A.1 Let A be a set, and < a binary relation on A. < is
a well-founded ordering iff every non-empty subset X of A has a minimal
element, that is, some z € X such that if y < then y & X.

282

Well-founded induction 283

Note that although < is called an ordering, there is no requirement for it
to be transitive or to have any other of the usual properties of orderings.

Theorem A.2 Let A be a set and < a binary relation on A. Then the
following are equivalent:

1. < is a well-founded ordering.

2. A contains no infinite descending chains a; > ag > az > ...
(Of course, a > b means b < a.)

3. (Principle of well-founded induction) Let P(x) be a property of elements
of A such that for any a € A, if P holds for every b < a then P also
holds for a. Then P holds for every a.

Proof

1 = 3 (This is really an abstraction of the induction idea presented
informally above. The condition on P is the formalization of the step
finding that the counter-example is not a counter-example.) Let P be a
property as stated, and let X be the set {z € A: -P(x)}. If X £ 02
then by well-foundedness there is a minimal element a in X (‘a simplest
counter-example’). For any b < a we have b ¢ X, so P(b) holds; hence
by the conditions on P we have P(a), which contradicts « € X. The
only way out is that X = @, that is, P(a) for all «.

2 = 1 Choose a; € X (possible, because X # @). If a; is minimal in X,
then we are done; otherwise, we can find a; > ay € X. Again, either a;
is minimal or we can find ay > as € X. We can iterate this, and it
must eventually give us an element minimal in X, because otherwise we
would obtain an infinite descending chain, contradicting (2).

3 = 2 Let P(x) be the property ‘there is no infinite descending chain
starting with «’. Then P satisfies the condition of (3), and so P holds
for every a. Hence there are no infinite descending chains at all. O

These three equivalent conditions play different conceptual roles. (1), as
in the definition of well-foundedness, is the direct formalization of the ability
to ‘find simplest counter-examples’. (2) is usually the most useful way of
checking that some relation < is well-founded, and (3) is the logical principle.

Box proofs

We can put the induction principles into natural deduction boxes. This is
not so much because we want to formalize everything, as to show the proof
obligations, the assumptions and goals when we use induction.

The general principle of well-founded induction, given a set A and a
well-founded ordering <, is shown in Figure A.l.

284 Well-founded induction

a:A Vy:A (y<a— Py)) IH
Pla)
Va: A P(z) induction
Figure A.1

The box, with the piece of proof that you have to supply, is the induction
step. The formula labelled (IH) is the induction hypothesis, and it is
a valuable free gift. If it weren’t there, then the proof would just be
ordinary VZ introduction and the goal in the box would be more difficult (or
impossible). We shall now look at examples of well-founded orderings, with
their corresponding induction principles.

nat

This is the most basic example. You cannot have an infinite descending
sequence of natural numbers, so the ordinary numeric ordering < is
well-founded. Figure A.2 gives the principle of course of values induction:

n:nat Ym:nat. m <n— P(m)

P(n)

Va : nat.P(x) induction

Figure A.2

A variant on this is obtained by taking < to be not the ordinary numeric
order, but a different relation defined by m ‘<'n if n =m+ 1. Then the
induction hypothesis is Vm : nat(n = m +1 — P(m)), which works out in two
different ways according to the value of n. If n =0, it is vacuously true —
there are no natural numbers m for which 0 =m +1. If n > 1, the only
possible m is n — 1, and so it tells us P(n —1). Separating these two cases
out, and in the second case replacing m by n — 1, we obtain in Figure A.3
the principle of simple induction.

It is no coincidence that these two boxes (the base case and the induction
step) correspond to the two alternatives in the datatype definition for natural

Well-founded induction 285

n:nat P(n)
P(0)
P(n+1)
Vn i nat. P(n) induction
Figure A.3
numbers:
num ::= 0 | suc num

Note two non-examples of well-founded orderings.

1. The integers under numeric <: for there are infinite descending chains

such as
0>—-1>-2>-3>...
2. The positive rationals under numeric <:

1>1/2>1/3>1/4>1/5> ...

Recursion variants

Let A be any set, and v : A — nat any function.

well-founded ordering < on A by
r <y iff v(z)<o(y) (numerically)

The induction principle is given in Figure A.4.

Then we can define a

a:A Vy:A (v(y)<wv(a)— P(y))

P(a)

Va: A, P(z)

Figure A.4

induction

This is course of values induction ‘on v’. Plainly nat here could be replaced

by any other set with a well-founded ordering. The programming examples

