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at least two elements � say fc� dg with P �c� d� and P �d� c� both true and
P �c� c� and P �d� d� both false� Then the premisses are true but the conclusion
is false�

On the other hand� after line � has introduced d we can use it to deduce
�y� P �d� y�� which leads to another � to eliminate and so on� The alternative
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proof attempt is shown in Figure �	��� We can write down the constants that
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arise in Figure �	��� with an arrow from x to y whenever P �x� y�

c� d� e� � � �
This suggests an in�nite model

Domain � set of natural numbers f�� �� �� �� � � �g
P �x� y� means that y � x� �

It is indeed a counter�example� You cannot possibly choose u so that
�v� P �u� v�� for you never obtain P �u� ���

�	�� Intended structures

There is often� implicitly� an intended interpretation for the extralogical
symbols� For example� the writer of ��x  nat� less�zero� s�x��� quite probably
had in mind the interpretation in which the domain is the set of natural
numbers� less is �� s is the successor function and zero is the number
�� Intended interpretations allow the possibility of domain�speci�c deductions
that go beyond logic� In Part I of this book most of the arguments were not
pure logic � they had intended structures �for example� numbers� lists� etc��
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in mind and freely used known properties of those structures� For instance�
in the speci�c domain of lists we can reason that if c � �ht� and c 	� h then
c � t� Now� this deduction could be made by making the particular facts
about lists explicit� such as

�u� v  
� �t  �
�� �u � �vt�� u � v � u � t�

Or� we may think of the fact as being part of our stock of information
about lists and quote it as the �reason� for our deduction� The restricted
interpretation gives us more powerful deductions�
In the case of program speci�cations� the pre� and post�conditions usually

make clear what is the intended domain and interpretation� So if our
speci�cation indicated that the domain was integers� say� we might make use
of sentences such as �x  num� �x � � � x � � � x � ���
We could in principle axiomitize �add extra premisses to constrain the

structures to be su�ciently like the intended one� so that the arguments are
pure logic� and this is often a good thing to do � it lays bare the logical
structure of the mathematics � but we are not so formal� Hence we have
used a �mixture of logic and mathematics�� Natural deduction still helps one
to get through the purely logical aspects of the argument�
Of course� any proof we make in pure logic is correct for any interpretation
that satis�es the various sentences we have used� not just the particular one
we had in mind� And this is really all we can expect� for when trying to
show S j� T by showing S � T � the natural deduction rules know nothing of
interpretations and so cannot be speci�c about any particular one�

�	�� Equivalences

In Chapter �� we de�ned two sentences S and T to be equivalent �S � T �
if they had the same truth�value as each other in every situation� What we
meant� was that

S � T i�
in each structure for fS� Tg S and T are either both true or both false
that is� S � T is true in every structure �it is a tautology�
that is� S j� T and T j� S

The last property holds� since� if it is not possible to have S true in any
structure of fS� Tg and T false� or T true and S false� then in any structure
which makes S true T must be true� too� and in any structure which makes
T true then S must be true� too� Hence S j� T and T j� S�

We now take a second look at some quanti�er equivalences and see how the
important property of equivalent sentences� that they can be substituted for
each other in any context� is a�ected�
In many cases� the same principles as before apply� A constituent of a
sentence can be replaced by any other equivalent sentence� For example�
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��x� P �x� � �x� �P �x� and any occurrence of the �rst sentence can be
replaced by the second� or vice versa� So from S � ��x� P �x� we can obtain
S � �x� �P �x�� This applies as long as there is no nested reuse of variables�
for example� �x� �x � � �� but remember we said we would not allow such forms�
�They can always be avoided by renaming variables��
If you cannot remember a useful equivalence it does not matter� for you can

always derive it each time you need it� The only disadvantage is the extra
time taken� Several useful quanti�er equivalences are given in Appendix B
and although most of the equivalences were stated for unquali�ed quanti�ers�
quali�ed quanti�ers present no problem and behave quite well� For example�
the equivalence above also holds in the form ��x  N� P �x� � �x  N� �P �x��
In any quanti�er�free sentence S any subsentence may be replaced by an

equivalent sentence without a�ecting the meaning of S� This is very useful as
one form of a sentence may be more convenient than another� For example�
��P �Q� may not be as useful a sentence form in a natural deduction proof
as the equivalent �P � �Q� which can be broken into two smaller pieces�
�P and �Q� and �x� �P �x� is almost always more useful than ��x� P �x��
Many equivalences� such as those given in Appendix B� once instantiated by
replacing F � G etc�� by particular sentences� can be used as they stand to
replace one side of the equivalence by the other�
The quanti�ers � and � also respect equivalences
if F �a� � G�a� then

�x� F �x� � �x� G�x�� and
�x� F �x� � �x� G�x�

�Exercise 
 asks you to prove this��
For example� since �F �a� � G�b�� � �G�b� � F �a��� �y� �F �a� � G�y�� �

�y� �G�y� � F �a�� and �x� �y� �F �x� �G�y�� � �x� �y� �G�y� � F �x���
In Sections �	�� and �	�� we show that A j� B i� A � B and hence we

have A � B i� A � B and B � A� An equivalence proof is therefore a good
way to show A � B � show instead the stronger A � B using equivalences�
Reasoning using equivalences can also be a useful way of making progress in
a proof� That is� from

S � S� and S� � S� and � � � and Sn�� � Sn
you can deduce S � Sn and hence that S � Sn and Sn � S�
Example �	�� As an example of the use of equivalences we show

�y� �x� �F �x� �G�y�� � �x� �y� �F �x�� G�y��
and

�x� �y� �F �y� � �G�x�� H�y��� � �y� �x� �F �y�� �G�x�� H�y���

In the proofs the particular equivalences used are left to the reader to supply
as an exercise�

�y� �x� �F �x��G�y�� � �y� ��x� F �x��G�y�� � �x� F �x���y� G�y�
� �x� �F �x�� �y� G�y�� � �x� �y� �F �x� �G�y��
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�x��y��F �y�� �G�x�� H�y��� � �x��y��F �y�� ��G�x� �H�y���
� �x��y���F �y�� �G�x�� � ��F �y��H�y���
� �x���y��F �y�� �G�x�� � �y��F �y��H�y���
� �x��y��F �y�� �G�x�� � �y��F �y��H�y���
� �y��x��F �y�� �G�x�� � �y��F �y��H�y��
� �y���x��F �y�� �G�x�� � �F �y� �H�y���
� �y��x���F �y�� �G�x�� � �F �y� �H�y���
� �y��x��F �y�� �G�x�� H�y���

Equivalence proofs are very helpful within natural deduction proofs for they
allow premisses and conclusions to be rewritten to more useful forms� There
are many useful �half�equivalences�� that is� true sentences of the form A j� B�
and some are shown in Figure �	���

� �x� �y� F �x� y� j� �y� �x� F �x� y�
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Figure �	�� Useful implications

In particular� if the data contains �� and � j� �� then � can be added to
the data� Using half�equivalences to replace subsentences is possible but there
are some dangers� Exercise �� considers this�

A natural deduction view of equivalence
Natural deduction gives another view of equivalences� For example� the proof
obligations of the two sentences �x� �F �x�� S� and �x� �F �x�� S�� which are
shown in Figure �	��� are essentially the same� Here� the proof obligation is
to show S from the data F �c�� where c is a new constant in the proof� Hence
either of the original sentences behaves as a conclusion in a proof essentially
in the same way� If you try a similar exercise for other equivalences you will
often see that they exhibit the same kind of pattern � the proof obligation
for a pair of equivalent sentences is rather similar�
Equivalent sentences� however� also operate in essentially the same way
when used as data� For example� if the two sentences �x� �F �x�� S� and
�x� �F �x�� S� were part of the data their use would lead to the fragments
shown in Figure �	�	� Here� the proof obligations amount to showing F �a� for
some a in the current context� These examples� although not a proof� should
help to convince you that equivalent sentences often �behave in a natural
deduction proof in the same kind of way��
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�	�� Soundness and completeness of natural deduction

In this section we consider the two important properties of natural deduction�
soundness and completeness�
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One of the uses of natural deduction is as a technique for showing that
S j� T for sentences S and T � It is successful mainly because natural
deduction is sound

If S � T then S j� T

This is obviously a necessary property� otherwise all manner of sentences T
might be shown to be proven from S regardless of any semantic relationship�
and natural deduction would be useless�

At least� therefore� we can be sure that natural deduction proofs are correct�
But there could still be a problem� Perhaps� for a particular pair of sentences
S� and S�� we cannot seem to �nd a proof� We may ask whether we have
enough natural deduction rules to make a deduction� Well� in fact we do�
because of completeness

If S j� T then S � T

So we know there should be a proof�

Since we probably do not happen to know whether or not S� j� S�� and
hence whether or not a deduction should be possible or not� then it might
be worth looking for a counter�example model if our proof attempts were
�oundering� Completeness is not such a crucial property as soundness � for
it might be good enough in practice to be able to �nd a proof in most of
the cases for which we expect to �nd one�

Natural deduction is just one method that can be used to answer the
problem �does P j� C�� and there are other methods which are not considered
in this book� But natural deduction cannot be used to answer the question
�does P � C��

We say that a problem with the property that there is some method which
can always decide correctly between �yes� and �no� answers is decidable� In our
problem is there some method that� given P and C� always tells you �yes�
when P j� C and �no� when P � C� In this case� there is no method that will
always give the correct answer� Some methods may� like natural deduction�
always answer yes correctly� and may even be able to answer no correctly for
some cases� but no method can answer correctly in all cases� The problem�
then� of checking whether P j� C is called semi�decidable� A decidable problem
would be one for which a method existed which correctly �answered� both yes
and no type questions�

The problem of checking whether P j� C when P and C are propositional
is decidable� for then a method that checks all interpretations for the symbols
in fP�Cg is possible and is essentially the method of truth tables�
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�	�� Proof of the soundness of natural deduction

In this section the important soundness property of Natural Deduction is
proved

if A � B then A j� B soundness

that is� if a conclusion B is derivable from premisses A then it should be �
the argument is valid�
The underlying idea is quite simple when you read a proof from top

to bottom �not jumping backwards and forwards in the way that it was
constructed� you see a steady accumulation of true sentences� Each new one
is justi�ed on the basis that the preceding ones used as premisses by the
rule you are applying have themselves already been proved and so are true�
�This is an induction hypothesis� It uses induction on the length of the
proof� because the earlier sentences were proved using shorter proofs� Also�
disregard the fact that some parts of the proof are written out side by side
� rearrange them one after the other��
For instance consider �E � If you have already proved A � B� by induction

you know that it is true �given the premisses� and it follows � check the
truth tables if you are really in doubt � that the A delivered by �E is also
true�
This is the basic idea� but it is all made much more complicated by the

boxes� The problem is that �true� here means �true in every model of the
premisses�� but the class of models varies throughout the proof� Each sentence
A appearing in the proof is proved in a context of constants and premisses
the constants are not only those posed in the question �by being mentioned
in the overall premisses and conclusion�� but are also those introduced by �I
or �E at the tops of boxes containing A� and the premisses are not only the
overall premisses but are also the assumptions introduced for �E � �I� �I or
�E at the tops of boxes containing A�
What you introduce as a new constant or a new assumption at the top of
a box is part of the context of everything inside the box�
To take proper account of both premisses and context� we shall� for the
time being� use more re�ned notions of models and semantic entailment �j���
A model for a context �S� P � �S the set of constants� P the set of premisses�
the constants in sentences in P must all be in S� is a model for P with
interpretations given for all constants in S� Then we write P j�S C to mean
that C is true in every model of �S� P ��
Note the following if �S�� P �� is a bigger context than �S� P � � all the
constants and premisses from �S� P � and possibly some more � then any
model of �S�� P �� is also a model of �S� P �� �Exercise� prove this�� It follows
that if P j�S C then P � j�S� C� This is a technical explanation of why in
a proof we are allowed to import sentences into boxes �smaller context to
bigger�� but not to export them out of boxes�
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The basic result� proved by induction on the length of the proof� is this

if natural deduction proves C in context �S� P �� then P j�S C�

A proof of length � is one that simply repeats an assumption �that is� the
conclusion C is in P � and we have shown that this is always allowed from a
smaller context into a larger one� Clearly� P j�S C in that case�
Let us see �rst how the �I rule works� as it is typical of the rules that do

not involve boxes �the boxes used for it are purely decorative� because they
do not introduce new assumptions or constants�� Suppose A �B is proved in
the context �S� P �� The rule relies on having proved A and B earlier� possibly
in smaller contexts �and imported�� so by induction we have P j�S A and
P j�S B� We want to prove P j�S A �B� so consider any model of �S� P �� In
it we know that both A and B are true� so A � B must be as well �again�
use the truth tables if you do not believe this��
The reasoning is really just the same for �E � �I� �E � �E � �E� ��� �E

and �I� We can safely leave most of these as exercises� but let us look at a
few of the more subtle ones�

�E Suppose A is proved in the context �S� P � by �E � so we already have
P j�S �� This means that in any model of �S� P �� false is true � but
that is impossible� so we conclude that there are no models of �S� P ��
Hence in all of them A is true� so P j�S A�

�E We have �x� A�x� in the context �S� P �� and also t is a term in the context
� that is to say it is built up from the function symbols provided
and the constants in S� In any model of �S� P �� those ingredients are
all interpreted� and so t is interpreted as a value of the model� But
�x� A�x� is true in the model� that is� A�v� is true for all possible
values v� and in particular the A�t� delivered by the rule is true�

�I This case is rather similar to �E and is left as an exercise�

We now turn to those rules that really do use boxes�

�E The rule gives C in a context �S� P �� and we have already proved A �B
so we know P j�S A � B� We have also already proved C twice but in
larger contexts once in a box headed by the assumption A � so the
context is �S� P � fAg� � and once with B� From these what we know
is that P�A j�S C and P�B j�S C� We want P j�S C� so consider a
model of �S� P �� A � B is true in it� so we have either A true or B
true� It follows that the model is also a model either of �S� P � fAg� or
of �S� P � fBg�� and in either case we can deduce that C is true� �Of
course� this argument is just a formalization of the idea of case analysis
by which we originally justi�ed the rule��

�I The rule gives A� B in a context �S� P � when we have already proved B
in the larger context �S� P � fAg� and hence know P�A j�S B� Consider
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a model of �S� P �� If A is false in it� then A � B is certainly true�
whilst if A is true then it is also a model of �S� P � fAg� so that B�
and hence also A� B� are true�

�I The rule gives �A in context �S� P � when we have already proved � in a
context �S� P � fAg� and hence know P�A j�S �� in other words� there
are no models of �S� P � fAg�� A model of �S� P � cannot be a model of
�S� P � fAg�� so A must be false � �A is true�

�I The rule gives �x� A�x� in a context �S� P � when we have already proved
A�c� in a context �S � fcg� P � and hence know that P j�S�fcg A�c��
Consider a model of �S� P � we want to know that A�v� is true for
every possible v� But for any particular value v we can make the model
into one for �S � fcg� P � by interpreting c as v �note that c had to be a
new constant� for otherwise c would already be interpreted as something
else� then we know that A�c�� that is� A�v�� is true�

�E The rule gives B in a context �S� P � when we have already proved
�x� A�x� in the same context and have proved B in the context
�S � fcg� P � fA�c�g�� In any model of �S� P � we know that there is at
least one value v such that A�v� is true� if we pick one� then we can
make the model into one of �S � fcg� P � fA�c�g� by interpreting c as v
�again� c must be new�� but then we deduce that B is true�

�

�	�� Proof of the completeness of natural deduction

In this section we give a proof of the completeness property for propositional
sentences and outline the changes needed for quanti�er sentences�
Our method is a traditional one but� as you will see� it does not seem

to be fully in the spirit of Natural Deduction� for although it shows that a
deduction of B from A exists when A j� B� the method does not show how
to construct such a proof� Moreover� the proof that is guaranteed to exist is
also rather contrived� There are other� constructive� methods� but they are
beyond the scope of this book�

Theorem �	�� completeness If A j� B then A � B� that is� if an argument is
valid then the conclusion can be derived from the premisses�

Proof  First some de�nitions

A set of sentences A is inconsistent i� A � ��
A set of sentences A is consistent i� it is not inconsistent�

To show A � B� we have to show Proposition �	��
if A is a consistent set of sentences then A has a model�
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We can then argue

If A j� B then A � f�Bg has no models� �Why��
Hence A � f�Bg cannot be consistent �by Proposition �	����
Hence A � f�Bg is inconsistent�
Hence fA��Bg � ��
Hence A � B by �I and ���

�

Notice that in the penultimate step the existence of a natural deduction
proof is asserted but there are no means given to help you to �nd it�
We will �rst deal with a simple case in which the only logical symbols

allowed in A are ��� and � �called �� � �� form� and all negations are
immediately before a proposition symbol or another negation� In the case
when the sentences in A � f�Bg are in �� � �� form the natural deduction
proof of � will be one in which �E � �E and �E are used exclusively� In
Exercise � you have a chance to �nd such a proof� This does not mean that
the other rules are unnecessary� for� as Exercise 	 shows� they are all used in
deriving the �� � �� form of a sentence by natural deduction�
Proposition �	�� If A is a consistent set of sentences then there is some
model for it�

Proof  The idea is to construct a larger set of consistent sentences� called
A�� that includes A and for which we can give a model� This model will be
a model for A as well�
The construction of A� from A uses the rules given below

�� A� � A

�� if A� �A� � A� then A� � A� and A� � A�

�� if A� �A� � A� then A� � A� or A� � A�

�� if ��A� � A� then A� � A�

Nothing else belongs to A� apart from the sentences forced to do so by
�������� A� is constructed by applying the rules above to A until they can
be applied no more� choosing in step ��� whichever of A� or A� will maintain
consistency�

A� is consistent
Rule ��� obviously preserves consistency if you could prove � using A� and
A� then you could also prove it without them using A� � A� and �E � And
what about rule ���� The point is that you have at least one option that
preserves consistency� For if you can deduce � using A� and you can also
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deduce it using A� then by �E you could also deduce � using A� �A�� Rule
��� is left for you to deal with�

An example
A � f���P � Q� � P � � �Pg
A� � f���P �Q� � P � � �Pg �rule ��
A� � f���P �Q� � P � � �P� ��P �Q� � Pg �rule ��
A� � f���P �Q� � P � � �P� ��P �Q� � P�P��P �Qg �rule ��
A� � f���P �Q� � P � � �P� ��P �Q� � P�P��P �Q�Qg �rule ��

All the sentences have now been dealt with and to �nd a model of A� just
look at the atoms or their negations in A�� in this case P and Q� The
assignment Q � tt� P � tt is a model� as you can check�
This is not the only consistent set that can be constructed by applying the

rules� Another one is

A � f���P � Q� � P � � �Pg
A� � f���P �Q� � P � � �Pg �rule ��
A� � f���P �Q� � P � � �P��Pg �rule ��

This time� �P was chosen from ���P �Q��P � � �P to satisfy the third rule�
You can check that the assignment P � ff and Q � ff is also a model of A�

and A�
�Since A� is consistent it cannot contain C and �C for any C� Why��

A� has a model
We now show that A� has a model I �say�� For each proposition symbol X
used in sentences in A�

If X � A� then X is assigned tt in I�
If �X � A� then X � ff in I�
If X �� A� and �X 	� A� then X is assigned ff in I�

I is a model of A�
Suppose not� and that Y in A� is the smallest sentence in A� that is not

true in I�
�Use the ordering a proposition symbol and its negation are the smallest

sentences� the constituents of a sentence are smaller than it� so A is smaller
than A �B� etc��

Y could be an atom� No� as Y would have been assigned tt�
Y could be �Y �� Y � an atom� No� as Y � would have been assigned
false in I and so �Y � is true in I�

Y could be A� � B� or A� � B�� No� as either A� or B� �or
both� would be false in I and both are smaller than Y � the
supposed smallest false sentence�
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Y could be ��A�� No� as A� would have been in A�� too� and
also false in I�

Since I is a model for A� it is a model for A� �

If A and B are general propositional sentences then Proposition �	�� can
still be used� It does not matter if you replace A by an equivalent set of
sentences A� A is consistent i� A� is consistent� Any propositional sentence
A is equivalent to one in the �� � �� form used in Proposition �	�� and the
�� � �� form can be deduced by natural deduction from A and vice versa �see
Exercise 	�� So every sentence in A � f�Bg can be replaced by an equivalent
sentence in �� � �� form before applying Proposition �	���
What has been proved here is often called weak completeness� That is� it

simply shows that a natural deduction proof exists� But suppose you are
trying to derive a sequent and do not follow this �correct� path �as given
by the theorem�� whatever it is� You want to know that under reasonable
circumstances� the conclusion can still be derived� This is indeed the case�
but showing it is belongs to the realm of automated deduction�

Completeness for quanti�er sentences

The proof method for propositional sentences can be extended to quanti�er
sentences as outlined next� Suppose that the problem is to show A � B� The
construction of A� has to be extended so that it includes sentences pre�xed
by a quanti�er� Initially� the context of A� is just the context of A� S say�
The rule for dealing with � will increase this context and so the �nal context
of A� will not� in general� be the same as the context of A� We have to take
this into consideration when showing that the � rule maintains consistency of
A��
The rules for constructing A� now include

�� If �x� P �x� � A� then P �a� � A�� for all a formed from symbols in the
current context S of A��

�� If �x� P �x� � A� then P �e� � A�� for a new constant e �� S� The context
is updated to S � feg�

We can show that rules ��� and ��� maintain consistency

�� A� is the result of the construction so far� �x� B�x� � A� and A� is
consistent� A��fB�t�x�g is consistent� where t is a term constructed from
symbols in the context S� of A�� If not� a proof of A� � fB�t�x�g � �
could be converted to a proof of A� � � by an additional use of �E�
giving a contradiction�

�� A� is the result of the construction so far� S� is the context so far and
�x� B�x� � A� and A� is consistent� A� � fB�e�x�g is consistent� where
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e is a new constant �� S�� If not� a proof of A� � fB�e�x�g � � could
be converted to a proof of A� � � by using �E � which would then be
contradictory�

The construction of A� will be an in�nite process unless there are no
function symbols in A �because of step �����

Finally� we have to show that the model formed by considering atoms and
their negations in A� is still a model of A�� The atoms we consider are
all atoms formed from predicates in A and terms using symbols in the �nal
context S� of A�� The domain of the interpretation I is just the set of terms
formed from symbols in S� and each term is interpreted by itself�

The additional cases cover Y being either of the form �x� P �x� or �x� P �x�

Y could be of the form �x� P �x�� No� as then some sentence of
the form P �t�x� would also be false and this is smaller than Y �

Y could be of the form �x� P �x�� No� as then every sentence
of the form P �d�x� would be false� where d � domain of I�
In particular� P �e�x� would be false� a contradiction as this is
smaller than Y �

�	�	 Summary

� A signature is a collection of extralogical symbols �predicates� functions
and constants� with their arities�

� A structure �for a signature or for some sentences� gives concrete
interpretations for those symbols as relations� functions or elements from
some particular set� the domain�
Once this is done� any sentence using those symbols is interpreted and
it can be determined whether it is true or false�

� A model for a sentence is a structure in which the sentence is true�

� The �failed natural deduction by counter�example� technique can be used
to show that P � C�

� Intended interpretations correspond to extralogical deductions�
� Quanti�er equivalences can be applied to transform sentences�
� Natural deduction is sound

If P � C then P j� C

� Natural deduction is complete

If P j� C then P � C
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�	�
 Exercises

�� �a� If A � B then A j� B �soundness of natural deduction�� Hence� if
A � B then � � ��

�b� If A � B does A j� �B�
�c� If A j� B does A � �B�
�d� If A � B what about A � �B�
�e� If A � �B does A � B�
�f� If fS�� S�� � � � � Sng j� T is valid does fS�� � � � � Sng � T �
�g� If S is true in no situations then �S is true in every situation�
True or false�

�� Complete the missing cases in the proof of soundness of Natural
Deduction given in Section �	���

�� �a� Apply the method used in the completeness proof to derive a model
of the sentences fC � N � T�H � �S� �H � ��S � C��� P�N��Pg�
First convert the sentences to the restricted form using equivalences
and then apply the method�

�b� Find a natural deduction proof of � from the converted sentences�
�� Show that the following arguments are not valid� that is� the premisses �
the conclusion� Find two structures in each case in which the premisses
are true but the conclusion false� Try the �failed natural deduction by
counter�example� technique in order to help you to �nd the structures

�a� likes�Mary� John���x� �likes�John� x�� � ��y� ��likes�Mary� y���

�b� ��x� �y� �Di��x� y��R�x� y�� R�y� x�� � �u� �v� �Di��u� v��R�u� v��
�R�v� u���

�c� �x� �F �x��G�x�� � �x� F �x� � �y� G�y��
�d� �v� F �v� � �u� G�u� � �x� �F �x� �G�x���
�e� �x� �y� M�x� y� � �v� �u� M�u� v��

�� For each structure and each set of sentences decide the truth�falsity of
the sentences in the structure

�a� f�x� R�x� x���x� �y� �R�x� y�� R�y� x��g Structures
i� D � fa� b� cg� R�a� b� � R�a� c� � R�b� c� � R�c� b� � tt�
R�a� a� � R�b� b� � R�c� c� � R�b� a� � R�c� a� � ff

ii� D � f�� �� �� �� � � �g� R is the relation �

iii� D � f�� �� �� � � �g� R is the relation divides�x� y�

�b� f�x� �y� �P �x� � Q�x� y��� �z� P �z�� �z� �Q�b� z� � �u� P �u��g
Structures

i� D � f�� �� �� � � �g� b is the number �� P �x� is the relation x
is even� Q�x� y� is the relation divides�x� y�
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ii� D � fFred� Susan� Maryg� b is Mary� P �Fred� � Q�Mary�Fred� �
Q�SusanFred� � tt� P �Susan� � P �Mary� � ff � all other pairs for
Q � ff

�c� f�z� �u� P �f	u
� z�g Structures
i� D � f�� �� ��� �� ��� � � �g� P is the relation �� f is the
function f	u
 �j u j

ii� D � f�� �� �� � � �g� P is the relation �� f is the successor
function�

�� Find as many di�erent models as you can for the sentences
f�x� �y� �z� �P �x� y� z�� P �s	x
� y� s	z
����x� P �a� x� x�g

�� Decide on the truth values of the sentences of Example �	�� in the
structure with domain� f�� �� �� � � �g and in which A means ��
P �n� means n � �� and Q�m�n� means m� � n�

	� The completeness proof for propositional sentences given in the text can
be extended to include all logical operators by using the fact that the
following �ND� equivalences can be found

��A �B� � �A � �B ��A �B� � �A � �B
��A� B� � A � �B A� B � �A � �B ��A � A

That is �for example�� A� B � �A �B and �A �B � A� B�

�a� Prove each of the above �ND� equivalences�

�b� Once you have proofs of the equivalences they can be used to
rewrite any sentence into �� � �� form� The A and B can be any
sentences� In particular� prove that if A � B� B � A� A� � B� and
B� � A� then

�A � �B and �B � �A
A �A� � B � B� and B �B� � A �A�

A �A� � B � B� and B �B� � A �A�

A� A� � B � B� and B � B� � A� A�


� Show that quanti�ers respect equivalences� That is� if A�a� � B�a� for
sentences A and B and some constant a� then �x� A�x� � �x� B�x� and
�x� A�x� � �x� B�x�� �Hint� use induction on the structure of A and
B��

��� We say that A occurs positively in a sentence F if it is within an even
number �or zero� of negations� It occurs negatively otherwise� Show that�
if A occurs positively in a sentence F and A j� B and replacing A by
B in F gives G� then F j� G� Also� show that if A occurs negatively in
F then G j� F �



Appendix A

Well�founded induction

Find a simplest counter�example

One justi�cation for induction arguments is that they say

�� Find a simplest possible counter�example in other words� all simpler
possibilities work correctly�

�� But then from that we manage to deduce that the counter�example� too�
works correctly � it is not a counter�example at all�

�� Contradiction so there are no counter�examples�

��� is just logic� and ��� depends entirely on the problem to hand �what we
are trying to prove�� It is the induction step� But ��� depends not so much
on what we are trying to prove� as on the things we are proving something
about it says that there is some notion of �simplicity�� and that we can
indeed �nd a simplest� For instance� for numbers� �simpler� might be �less
than�� Then �nding a smallest number is something you can always do with
sets of natural numbers but not necessarily with sets of integers or reals�

Well�founded orderings

Suppose we are interested in proving �by induction�� that is� using �������
above� statements of the form �x  A� P �x�� where A is some set such as nat�
We formalize the idea of simplicity with the notion of well�founded ordering�

De�nition A�� Let A be a set� and � a binary relation on A� � is
a well�founded ordering i� every non�empty subset X of A has a minimal
element� that is� some x � X such that if y � x then y 	� X�

�	�
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Note that although � is called an ordering� there is no requirement for it
to be transitive or to have any other of the usual properties of orderings�

Theorem A�� Let A be a set and � a binary relation on A� Then the
following are equivalent

�� � is a well�founded ordering�

�� A contains no in�nite descending chains a� � a� � a	 � � � �

�Of course� a � b means b � a��

�� �Principle of well�founded induction� Let P �x� be a property of elements
of A such that for any a � A� if P holds for every b � a then P also
holds for a� Then P holds for every a�

Proof

� �� � �This is really an abstraction of the induction idea presented
informally above� The condition on P is the formalization of the step
�nding that the counter�example is not a counter�example�� Let P be a
property as stated� and let X be the set fx � A  �P �x�g� If X 	� �

then by well�foundedness there is a minimal element a in X ��a simplest
counter�example��� For any b � a we have b 	� X� so P �b� holds� hence
by the conditions on P we have P �a�� which contradicts a � X� The
only way out is that X � �� that is� P �a� for all a�

� �� � Choose a� � X �possible� because X 	� ��� If a� is minimal in X�
then we are done� otherwise� we can �nd a� � a� � X� Again� either a�
is minimal or we can �nd a� � a	 � X� We can iterate this� and it
must eventually give us an element minimal in X� because otherwise we
would obtain an in�nite descending chain� contradicting ����

� �� � Let P �x� be the property �there is no in�nite descending chain
starting with x�� Then P satis�es the condition of ���� and so P holds
for every a� Hence there are no in�nite descending chains at all� �

These three equivalent conditions play di�erent conceptual roles� ���� as
in the de�nition of well�foundedness� is the direct formalization of the ability
to ��nd simplest counter�examples�� ��� is usually the most useful way of
checking that some relation � is well�founded� and ��� is the logical principle�

Box proofs

We can put the induction principles into natural deduction boxes� This is
not so much because we want to formalize everything� as to show the proof
obligations� the assumptions and goals when we use induction�
The general principle of well�founded induction� given a set A and a

well�founded ordering �� is shown in Figure A���
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a � A �y � A� �y � a� P �y�� IH
���

P �a�

�x � A� P �x� induction

Figure A��

The box� with the piece of proof that you have to supply� is the induction
step� The formula labelled �IH� is the induction hypothesis� and it is
a valuable free gift� If it weren�t there� then the proof would just be
ordinary �I introduction and the goal in the box would be more di�cult �or
impossible�� We shall now look at examples of well�founded orderings� with
their corresponding induction principles�

nat

This is the most basic example� You cannot have an in�nite descending
sequence of natural numbers� so the ordinary numeric ordering � is
well�founded� Figure A�� gives the principle of course of values induction

n � nat �m � nat� m � n� P �m�
���

P �n�

�x � nat�P �x� induction

Figure A��

A variant on this is obtained by taking � to be not the ordinary numeric
order� but a di�erent relation de�ned by m ���n if n � m � �� Then the
induction hypothesis is �m  nat�n � m� �� P �m��� which works out in two
di�erent ways according to the value of n� If n � �� it is vacuously true �
there are no natural numbers m for which � � m � �� If n � �� the only
possible m is n � �� and so it tells us P �n � ��� Separating these two cases
out� and in the second case replacing m by n � �� we obtain in Figure A��
the principle of simple induction�
It is no coincidence that these two boxes �the base case and the induction

step� correspond to the two alternatives in the datatype de�nition for natural
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���

P ���

n � nat P �n�
���

P �n 	 ��

�n � nat� P �n� induction

Figure A��

numbers

num � � � suc num

Note two non�examples of well�founded orderings�

�� The integers under numeric � for there are in�nite descending chains
such as

� � �� � �� � �� � � � �

�� The positive rationals under numeric �

� � ��� � ��� � ��� � ��� � � � �

Recursion variants

Let A be any set� and v  A � nat any function� Then we can de�ne a
well�founded ordering � on A by

x � y i� v�x� � v�y� �numerically�

The induction principle is given in Figure A���

a � A �y � A� �v�y� � v�a�� P �y��
���

P �a�

�x � A� P �x� induction

Figure A��

This is course of values induction �on v�� Plainly nat here could be replaced
by any other set with a well�founded ordering� The programming examples


