
�	� Well�founded induction

had P expressing the correct working of some function f � and it could be put
into the form

P �x� � pre�x�� post�x� f�x��

where pre and post together give the speci�cation� v is now the recursion
variant� and the �principle of circular reasoning� comes out �after incorporating
some �I� in Figure A���

a � A �y � A� �pre�y� � v�y� � v�a�� post�y� f�y���

pre�a�
���

post�a� f�a��

pre�a�� post�a� f�a�� �I

�x � A� �pre�x�� post�x� f�x��� induction

Figure A��

Lists

For lists xs� ys !�"� we can de�ne a well�founded order easily enough by
using the length� $ �for example� as a recursion variant�

xs � ys i� $ xs � $ ys

However� an interesting alternative is to de�ne

xs � ys i� xs is the tail of ys

This gives the principle of list induction�

���

P ����

h � �� t � ��� P �t�
���

P �h � t�

�xs � ���� P �xs� induction

Figure A��

Figure A�� contains an example of structural induction�



Exercises �	�

Pairs and tuples

Theorem A�� Let A and B be two sets with well�founded orderings� We
shall �naughtily� write the same symbol ��� for both the orderings� Then
A�B can be given a well�founded ordering by

�a� b� � �a�� b�� i� a � a� � �a � a� � b � b��

Proof Suppose there is an in�nite descending chain �a�� b�� � �a�� b�� �
�a	� b	� � � � � � We have a� � a� � a	 � � � � and it follows from the
well�foundedness of a that the ais take only �nitely many values as they go
down� Suppose an is the last one� then eventually an � an�� � an�� � � � � and
bn � bn�� � bn�� � � � � � But this is impossible by well�foundedness on B� �

This can be extended to well�founded orderings on tuples� and it is really
the same idea as lexicographic �alphabetical� ordering� but note that this
depends critically on the �xed length of the tuples� For strings of arbitrary
�though �nite� length� lexicographic ordering is not well�founded� For example�

�taxis�� �a�taxis� � �aa�taxis� � �aaa�taxis�� �aaaa�taxis�� � � �

There is a reasoning principle associated with the well�founded orderings on
tuples �see Exercise ��� but perhaps the most common way to exploit the
ordering is by choosing a recursion variant whose value is a tuple instead of
a natural number�

A�� Exercises

�� Another variant of the principle of course of values induction� shown in
Figure A��� is obtained by using a well�founded ordering on any subset
of the natural numbers �for example� � on the set of even natural
numbers�� Write down the proof obligations using proof boxes for such
a variant�

�� Write down the proof obligations using proof boxes for a reasoning
principle based on a well�founded ordering on tuples�



Appendix B

Summary of equivalences

Equivalent propositional forms

zero law P � ff � �P
complement laws P � �P � ff P � �P � tt
idempotence P � P � P P � P � P
commutativity P �Q � Q � P P �Q � Q � P
associativity P � �Q �R� � �P � Q� �R P � �Q � R� � �P �Q� �R
De Morgan�s laws ��P �Q� � �P � �Q ��P � Q� � �P � �Q
distributivity P � �Q �R� � �P � Q� � �P �R�

R� P �Q � �R� P � � �R� Q�
P � �Q� R� � �P �Q�� R
P � �Q �R� � �P � Q� � �P �R�
�P �Q�� R � �P � R� � �Q� R�

others ��P � Q� � P � �Q
��P � Q� � �P � �Q� � ��P �Q�
P � Q � �P �Q � ��P � �Q� � �Q� �P
P � Q � �P �Q� � ��P � �Q� � �P � Q� � �Q� P �

Equivalent predicate forms

�x� �y� G�x� y� � �y� �x� G�x� y�
�x� �y� F �x� y� � �y� �x� F �x� y�
��x� F �x� � �x� �F �x�
��x� F �x� � �x� �F �x�
Qx� �S � F �x�� � S �Qx� F �x� fQ can be � or �g
Qx� �S � F �x�� � S �Qx� F �x�
�x� �S � F �x�� � S � �x� F �x�
�x� �F �x�� S� � �x� F �x�� S
�x� �F �x� �G�x�� � �x� F �x� � �x� G�x�for � �u� F �u� � �v� G�v�g
�x� �F �x� �G�x�� � �x� F �x� � �x� G�x�

�		



Appendix C

Summary of natural deduction rules

�E � �I� �E � and �I rules

� �E
P� � � � � � Pn

Pi ��E�
for each of Pi� i � �� � � � � n�

� �I

���

P�

� � �
���

Pn

P� � � � � � Pn ��I�
� �E

P� � � � � � Pn

P�

���

C

� � � Pn

���

C

C ��E�
� �I

Pi

P� � � � � � Pn ��I�
for each of Pi� i � �� � � � � n

�	




�
� Summary of natural deduction rules

�I� �E � �I� �E and �� rules

� �I
P
���

Q

P � Q ��I�
� �E

P P � Q

Q ��E�
� �I

P
���

�
�P ��I�

� �E
P �P
� ��E�

� ��
��Q

Q ����

Equality rules

� eqsub

a � b S�a�

S�b� �eqsub�

where S�a� means a sentence S with one or more occurrences of a
identi�ed and S�b� means those occurrences replaced by b�

� re�ex

a � a �re�ex�



Summary of natural deduction rules �
�

Universal quanti�er rules

� �E
�x� P �x�

P �t� ��E�
where t occurs in the current context�

� typed �E
is�type�t� �x  type� P �x�

P �t� ��E�
� �I

c�I
���

P �c�

�x� P �x� ��I�
where c must be new to the current context�

� typed �I

c�I is�t�c�
���

P �c�

�x  t� P �x� ��I�
� ��E and ��E

�x� �P �x�� Q�x�� P �c�

Q�c� ���E� and
�x� �P �x� P �c�

� ���E�



�
� Summary of natural deduction rules

Existential quanti�er rules

� �I
P �b�

�x� P �x� ��I�
where b occurs in the current context�

� typed �I
is�type�b� P �b�

�x  type� P �x� ��I�
� �E

�x� P �x�
c�E P �c�

���

Q

Q ��E�
where c is new to the current context�

� typed �E
�x  t� P �x�

c�E P �c�

is�t�c�
���

Q

Q ��E�



Further reading

R�C� Backhouse� Program Construction and Veri�cation� Prentice Hall� �
	��

R� Bird and P� Wadler� Introduction to Functional Programming� Prentice
Hall� �
		�

R� Bornat� Programming from First Principles� Prentice Hall� �
	��

O� Dahl� Veri�able Programming� Prentice Hall� �

��

E� W� Dijkstra� A Discipline of Programming� Addison�Wesley� �
���

E� W� Dijkstra and W�H�J� Feijen� A Method of Programming� Addison�Wesley�
�
		�

S� Eisenbach and C� Sadler� Program Design with Modula�� Addison�Wesley�
�
	
�

D� Gries� The Science of Programming� Springer Verlag� �
	��

C� Morgan� Programming from Speci�cations� Prentice Hall� �

��

S� Reeve and M� Clarke� Logic for Computer Science� Addison�Wesley� �

��

J� C� Reynolds� The Craft of Programming� Prentice Hall� �
	��

R� Smullyan� What is the Name of this Book� Prentice Hall� �
�	�

V� Sperschneider and G� Antoniou� Logic� A Foundation for Computer
Science� Addison�Wesley� �

��

N� Wirth� Programming in Modula�� Springer Verlag� �
	��

�
�



Index

accumulating parameter� �
�
actual parameter� ��
adjacency matrix� ���
aggregate type� �	
and� 
� �
	
append� �
� 	�
argument� ��� ���
arithmetic� ��
arity� ���� ���� ���
assertion� ���
associative� �
� ��

atom� �


axiomatic approach� 	�

base case� ��� ��� 	�
bind� ���
black box� ��
bottom� ���
box proof� 	�
built�in functions� ��� ��

characters� ��
Church�Rosser property� ��
circular reasoning� �	
code� �
comparison operators� ��� ��
completeness� ���� ���� ���
complexity� �	�
components� 
�
composition� �


compound types� 
�
concatenate� �

conclusion� 

conjunction� �
	� ���
connectives� 	
cons� �
� ��
consistency� ���
constant� ���
construct� ��
context� ���
contract� ��
contradiction� ��
� ���
correct� �� ���
course of values induction� ��
curried functions� 
�
currying� 
�

data structures� �	
data types� ��
decidable� ���
declaration� �	
deduction� �
�
defensive speci�cation� �

de�ning functions� ��
de�ning values� ��
de�nition� �	� ��� �	
derived rules� ���
disjunction� �
	
domain� ���� ��

double induction� ��

�
�



Index �
�

Dutch national �ag algorithm� ���

edge� ���
elimination rules� ���
eqsub rule� ��

equality� ���
equation� ��� ��� ���
equivalent� ��	
errors� �
Euclid�s algorithm� ��� ��
exclusive or� ��� ���
expression evaluation� ��

falsehood� ��

forall� 

formal� 

formal methods� ��
formal parameter� ��
formal parameters� ��� ��	
formality� ��
formula� ���
function� �� ��
function application� ��
functional composition� �	
functional language evaluator� ��
functional term� ���

generic� 


global� �
graph� ���
ground term� ��	
guard� �	

head� �
� 	�
higher�order function� ���

identi�er� ��
implication� 
� �
	
inconsistency� ���
induction hypothesis� ��� 	�
induction step� 	�
in�nite lists� ��
in�x� ��� ���
insertion sort� ��
instantiation� ��

interpretation� ���� ��

introduction rules� ���
invariant� ���
iteration� �	�

layout� ��
lazy evaluation� ��� ��
length� ���
lists� �	
local� �� ��
local de�nitions� ��
logic� 	
logic operators� ��
logical constants� ���
logical entailment� ���
logical implication� ���
logical notation� 	
loop invariant� ���� ���
loop test� ���
loop variant� ���
looping� ��� �	�

map� �	
mapping diagram� ��
mathematical induction� ��
mathematical logic� �
�
meaning� ��
mid�condition� ���� ���
model� ���� ���� ��

module� �
Modus Ponens� ���
mutually exclusive� �	

node� ���� ���
nullary constructor� ���

o�side rule� ��� ��
or� �
	

partial application� 
�
partition� ���
path� ���
pattern� �	� �
� ���
pattern matching� �	
patterns of recursion� ���



�
� Index

PC� ���
polymorphic type� ��
polymorphism� 
�
post�condition� �	� �

pre�condition� �	� �

precedence� ��
predicates� ��� �


pre�x� ��
premiss� 

preparation� ��	
primitive functions� ��
primitive types� 
�
Principle of course of values

induction� ��
Principle of list induction� 	�
Principle of mathematical induction�

��
procedure� �
procedure call� ���
proof by contradiction� ���
propositional logic� �



quali�er� ���
quality� �
quanti�cation� ���
quanti�er� ���

reasoned program� �
recurrence relationship� ��
recursion� ��� �	�
recursion variant� ��
recursive� ��� ��
redex� ��
reduction strategy� ��
re�ex rule� ��

relation� ���
relational operators� ��
reserved words� ��
result� ��� ��

rule� ��� ��
rule of substitution� ��


scheme� ���
semantics� ��
semi�decidable� ���

sentences� �


sequent� ���
signature� ���� ��

simple induction� ��
simpli�cation� ��
soundness� ���� ���� ���
speci�cation� �� ��� ��� ��� �	
string� ��� 	�
strong typing� 
�
structural induction� ���
structure� ���� ��

substitution� ��
symmetry law of equality� ���
syntax analysis� 
�

tail� �
� 	�
tail recursion� �	�
tautology� ��

terms� �

� ���
theorem� ���
theorem tactics� ���
top�down design� ��
transitive closure� ���� ���
truth table� ���� ���
tuple� 
�� ���
type checking� 
�
type variables� 
	
typed quanti�ers� ���
types� �	� �	

union types� ���
unit law� �

universal quanti�er� ���
user�de�ned constructors� ���
user�de�ned functions� ��

valid� 
� ���� ���
values� ��
variable� ���� ���
variant� ���

weak completeness� ��	
well�founded induction� ��� �	�


