
�	� Well�founded induction

had P expressing the correct working of some function f � and it could be put
into the form

P �x� � pre�x�� post�x� f�x��

where pre and post together give the speci�cation� v is now the recursion
variant� and the �principle of circular reasoning� comes out �after incorporating
some �I� in Figure A���

a � A �y � A� �pre�y� � v�y� � v�a�� post�y� f�y���

pre�a�
���

post�a� f�a��

pre�a�� post�a� f�a�� �I

�x � A� �pre�x�� post�x� f�x��� induction

Figure A��

Lists

For lists xs� ys !�"� we can de�ne a well�founded order easily enough by
using the length� $ �for example� as a recursion variant�

xs � ys i� $ xs � $ ys

However� an interesting alternative is to de�ne

xs � ys i� xs is the tail of ys

This gives the principle of list induction�

���

P ����

h � �� t � ��� P �t�
���

P �h � t�

�xs � ���� P �xs� induction

Figure A��

Figure A�� contains an example of structural induction�



Exercises �	�

Pairs and tuples

Theorem A�� Let A and B be two sets with well�founded orderings� We
shall �naughtily� write the same symbol ��� for both the orderings� Then
A�B can be given a well�founded ordering by

�a� b� � �a�� b�� i� a � a� � �a � a� � b � b��

Proof Suppose there is an in�nite descending chain �a�� b�� � �a�� b�� �
�a	� b	� � � � � � We have a� � a� � a	 � � � � and it follows from the
well�foundedness of a that the ais take only �nitely many values as they go
down� Suppose an is the last one� then eventually an � an�� � an�� � � � � and
bn � bn�� � bn�� � � � � � But this is impossible by well�foundedness on B� �

This can be extended to well�founded orderings on tuples� and it is really
the same idea as lexicographic �alphabetical� ordering� but note that this
depends critically on the �xed length of the tuples� For strings of arbitrary
�though �nite� length� lexicographic ordering is not well�founded� For example�

�taxis�� �a�taxis� � �aa�taxis� � �aaa�taxis�� �aaaa�taxis�� � � �

There is a reasoning principle associated with the well�founded orderings on
tuples �see Exercise ��� but perhaps the most common way to exploit the
ordering is by choosing a recursion variant whose value is a tuple instead of
a natural number�

A�� Exercises

�� Another variant of the principle of course of values induction� shown in
Figure A��� is obtained by using a well�founded ordering on any subset
of the natural numbers �for example� � on the set of even natural
numbers�� Write down the proof obligations using proof boxes for such
a variant�

�� Write down the proof obligations using proof boxes for a reasoning
principle based on a well�founded ordering on tuples�



Appendix B

Summary of equivalences

Equivalent propositional forms

zero law P � ff � �P
complement laws P � �P � ff P � �P � tt
idempotence P � P � P P � P � P
commutativity P �Q � Q � P P �Q � Q � P
associativity P � �Q �R� � �P � Q� �R P � �Q � R� � �P �Q� �R
De Morgan�s laws ��P �Q� � �P � �Q ��P � Q� � �P � �Q
distributivity P � �Q �R� � �P � Q� � �P �R�

R� P �Q � �R� P � � �R� Q�
P � �Q� R� � �P �Q�� R
P � �Q �R� � �P � Q� � �P �R�
�P �Q�� R � �P � R� � �Q� R�

others ��P � Q� � P � �Q
��P � Q� � �P � �Q� � ��P �Q�
P � Q � �P �Q � ��P � �Q� � �Q� �P
P � Q � �P �Q� � ��P � �Q� � �P � Q� � �Q� P �

Equivalent predicate forms

�x� �y� G�x� y� � �y� �x� G�x� y�
�x� �y� F �x� y� � �y� �x� F �x� y�
��x� F �x� � �x� �F �x�
��x� F �x� � �x� �F �x�
Qx� �S � F �x�� � S �Qx� F �x� fQ can be � or �g
Qx� �S � F �x�� � S �Qx� F �x�
�x� �S � F �x�� � S � �x� F �x�
�x� �F �x�� S� � �x� F �x�� S
�x� �F �x� �G�x�� � �x� F �x� � �x� G�x�for � �u� F �u� � �v� G�v�g
�x� �F �x� �G�x�� � �x� F �x� � �x� G�x�

�		



Appendix C

Summary of natural deduction rules

�E � �I� �E � and �I rules

� �E
P� � � � � � Pn

Pi ��E�
for each of Pi� i � �� � � � � n�

� �I

���

P�

� � �
���

Pn

P� � � � � � Pn ��I�
� �E

P� � � � � � Pn

P�

���

C

� � � Pn

���

C

C ��E�
� �I

Pi

P� � � � � � Pn ��I�
for each of Pi� i � �� � � � � n

�	




�
� Summary of natural deduction rules

�I� �E � �I� �E and �� rules

� �I
P
���

Q

P � Q ��I�
� �E

P P � Q

Q ��E�
� �I

P
���

�
�P ��I�

� �E
P �P
� ��E�

� ��
��Q

Q ����

Equality rules

� eqsub

a � b S�a�

S�b� �eqsub�

where S�a� means a sentence S with one or more occurrences of a
identi�ed and S�b� means those occurrences replaced by b�

� re�ex

a � a �re�ex�



Summary of natural deduction rules �
�

Universal quanti�er rules

� �E
�x� P �x�

P �t� ��E�
where t occurs in the current context�

� typed �E
is�type�t� �x  type� P �x�

P �t� ��E�
� �I

c�I
���

P �c�

�x� P �x� ��I�
where c must be new to the current context�

� typed �I

c�I is�t�c�
���

P �c�

�x  t� P �x� ��I�
� ��E and ��E

�x� �P �x�� Q�x�� P �c�

Q�c� ���E� and
�x� �P �x� P �c�

� ���E�



�
� Summary of natural deduction rules

Existential quanti�er rules

� �I
P �b�

�x� P �x� ��I�
where b occurs in the current context�

� typed �I
is�type�b� P �b�

�x  type� P �x� ��I�
� �E

�x� P �x�
c�E P �c�

���

Q

Q ��E�
where c is new to the current context�

� typed �E
�x  t� P �x�

c�E P �c�

is�t�c�
���

Q

Q ��E�
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