286 Well-founded induction

had P expressing the correct working of some function f, and it could be put
into the form

P(z) = pre(z) — post(z, f(z))
where pre and post together give the specification. v is now the recursion
variant, and the ‘principle of circular reasoning’ comes out (after incorporating

some YZ) in Figure A.5.

a:A Vy: A (pre(y) Av(y) < v(a) — post(y, f(y)))

pre(a)

posi(a, f(a))

pre(a) — post(a, f(a)) —7
Va : A. (pre(x) — post(x, f(x))) induction
Figure A.5
Lists
For lists xs, ys: [*], we can define a well-founded order easily enough by
using the length, # (for example, as a recursion variant):
rs< ys iff # xs<# ys
However, an interesting alternative is to define
xs < ys iff zs is the tail of ys
This gives the principle of list induction.
h:*t: [T P(t)
P(0) :
P(h:t)
Vas: [*]. P(zs) induction
Figure A.6

Figure A.6 contains an example of structural induction.

Erercises 287
Pairs and tuples

Theorem A.3 Let A and B be two sets with well-founded orderings. We
shall (naughtily) write the same symbol ‘<’ for both the orderings. Then
A x B can be given a well-founded ordering by
(a,b) < (a',0) iff a<d'V(ia=d Nb<])
Proof Suppose there is an infinite descending chain (ay,b1) > (az,b2) >
(as,bs) > We have a3 > az > a3 > ... and it follows from the
well-foundedness of a that the a;s take only finitely many values as they go
down. Suppose a, is the last one, then eventually a, = a,11 = a2 = ... and
b, > by11 > by > But this is impossible by well-foundedness on B. O
This can be extended to well-founded orderings on tuples, and it is really
the same idea as lexicographic (alphabetical) ordering. BUT note that this
depends critically on the fixed length of the tuples. For strings of arbitrary
(though finite) length, lexicographic ordering is not well-founded. For example,

“taxis’ > ‘altazis’ > ‘aaltazris’ > ‘aaaltazxis’ > ‘acaaltazris’ > ...

There is a reasoning principle associated with the well-founded orderings on
tuples (see Exercise 2), but perhaps the most common way to exploit the
ordering is by choosing a recursion variant whose value is a tuple instead of
a natural number.

A.1 Exercises

1. Another variant of the principle of course of values induction, shown in
Figure A.2, is obtained by using a well-founded ordering on any subset
of the natural numbers (for example, < on the set of even natural
numbers). Write down the proof obligations using proof boxes for such
a variant.

2. Write down the proof obligations using proof boxes for a reasoning
principle based on a well-founded ordering on tuples.

Appendix B

Summary of equivalences

Equivalent propositional forms:

zero law P— ff=-P

complement laws P AP = ff PVv-P=t

idempotence PANP=P PVP=P

commutativity PANQ=QANP PvQ=QVvFP

associativity PANQANR)=(PANQ)ANR PV (QVR)=(PVQ)VR
De Morgan’s laws —(PAQ)=-PV-Q (PVQ)=-PA-Q
distributivity PAQVR)=(PANQ)V(PAR)

R—PNQ=(R— P)N(R— Q)
P Qo R)=(PAQ) - R
PV QAR)=(PVQ)AN(PVR)
(PVQR)—R=(P—->RNQ—R)
others -(P—=Q)=PA—-Q
(P Q)= (PA-Q)V (~P AQ)
P—-Q=-PVQR=-(PAN-Q)=-Q — P
PoQ=(PANQV(-PA-Q)=(P—=Q)N(Q — P)
Equivalent predicate forms:
Vo, Yy, Glx,y) =Vy. Yo. G(a,y)
Jde. Jy. Fo,y) =3y, Jo. F(a,y)
Ve, F(z) = de. = F(x)
—Jx. F(z)=Va. = F(x)
Q:L'. [SAF(x)]=SANQx. F(x) {Q can be ¥ or 3}
z. [SVF(x) =5V Q. F(x)

‘V’:L' [S — F(z)] =5 — Va. F(x)

Vo. [F(x) — S] =32, F(z)— S

Va. [F(x) AN G(a)] =Va. F(a) AV, G(a){or =Vu. F(u) AVv. G(v)}
Jde. [F(z)V G(x)] = Je. F(x)V Iz, G(x)

288

Appendix C

Summary of natural deduction rules

NE, NI, VE, and VI rules

o NE
PiN...ANP,
P (NE)
for each of P, 1 =1,---,n.
o NI
Pl Pn
PLAN...ANP, (AT)
o VE
P P,
Piv...VP,
C C
C (VE)
o VI
P

PV...VP, (VI)

for each of P, t1=1,---,n

289

290 Summary of natural deduction rules

—7, =&, 77, =& and —— rules

o —7
P
Q
P—Q (—71)
o —¢&
P P—qQ
Q (=€)
o 7
P
1
—P (—7)
o &
P =P
L (=€)

Equality rules

o cqsub
a=>b Slal
S[b] (egsub)

where S[a] means a sentence S with one or more occurrences of «
identified and S[b] means those occurrences replaced by b.

o reflex

a=a (reflex)

Summary of natural deduction rules

Universal quantifier rules

o V&
Va. Plx]
Plt] (V€)
where 1 occurs in the current context.
o typed V&
is-type(t) Va : type. Plx]
Pl (V€)
o VT
VT
Pl
Va. Plx] (VI)
where ¢ must be new to the current context.
o typed VI
VI ist(c)
Plc]
Vot Plx] (VT)

o V=& and V&

Vae. =Plx] Pl
Qle] (V=£) L (V=€)

291

292 Summary of natural deduction rules

Existential quantifier rules

o 17
Plo]
dz. Pla] (37)
where b occurs in the current context.
o typed 17
is-type(b) Pb]
dz : type. Pla] (37)

o 1€
dz. Pla]
c3€ Pl

Q
Q (38

where ¢ is new to the current context.

o typed I€

dz . t. Pla]
c3€ Pl
is-1(c)

Q
Q (38

Further reading

R.C. Backhouse. Program Construction and Verification. Prentice Hall, 1986.

R. Bird and P. Wadler. [Introduction to Functional Programming. Prentice
Hall, 1988.

R. Bornat. Programming from First Principles. Prentice Hall, 1987.
O. Dahl. Verifiable Programming. Prentice Hall, 1992.
E. W. Dijkstra. A Discipline of Programming. Addison-Wesley, 1976.

E. W. Dijkstra and W.H.J. Feijen. A Method of Programming. Addison-Wesley,
1988.

S. Eisenbach and C. Sadler. Program Design with Modula-2. Addison-Wesley,
1989.

D. Gries. The Science of Programming. Springer Verlag, 1981.

C. Morgan. Programming from Specifications. Prentice Hall, 1990.

S. Reeve and M. Clarke. Logic for Computer Science. Addison-Wesley, 1990.
J. C. Reynolds. The Craft of Programming. Prentice Hall, 1981.

R. Smullyan. What is the Name of this Book? Prentice Hall, 1978.

V. Sperschneider and G. Antoniou. Logic: A Foundation for Computer
Science. Addison-Wesley, 1991.

N. Wirth. Programming in Modula-2. Springer Verlag, 1982.

293

Index

accumulating parameter, 191
actual parameter, 15
adjacency matrix, 177
aggregate type, 68
and, 9, 198

append, 69, 86
argument, 15, 214
arithmetic, 41

arity, 102, 200, 261
assertion, 143
associative, 69, 209
atom, 199

axiomatic approach, 81

base case, 53, 65, 84

bind, 204
black box, 15
bottom, 222

box proof, 84
built-in functions, 20, 41

characters, 41

Church-Rosser property, 54
circular reasoning, 58

code, 2

comparison operators, 40, 42
completeness, 260, 264, 271
complexity, 181

components, 91

composition, 19

294

compound types, 96
concatenate, 69
conclusion, 9
conjunction, 198, 206
connectives, 8

cons, 69, 70
consistency, 275
constant, 204
construct, 70

context, 273

contract, 27
contradiction, 209, 222
correct, 7, 214

course of values induction, 60
curried functions, 94
currying, 94

data structures, 68
data types, 40
decidable, 272
declaration, 18
deduction, 197
defensive specification, 29
defining functions, 46
defining values, 45
definition, 18, 21, 38
derived rules, 227
disjunction, 198
domain, 262, 279
double induction, 63

Dutch national flag algorithm, 164

edge, 176

elimination rules, 216
eqsub rule, 249

equality, 247

equation, 17, 47, 247
equivalent, 208

errors, 1

Euclid’s algorithm, 56, 63
exclusive or, 11, 202
expression evaluation, 22

falsehood, 209

forall, 9

formal, 9

formal methods, 11

formal parameter, 17
formal parameters, 47, 138
formality, 10

formula, 216

function, 6, 15

function application, 15
functional composition, 18
functional language evaluator, 22
functional term, 200

generic, 99
global, 3

graph, 176
ground term, 238
guard, 48

head, 69, 86
higher-order function, 117

identifier, 44

implication, 9, 198
inconsistency, 275

induction hypothesis, 60, 84
induction step, 84

infinite lists, 73

infix, 50, 200

insertion sort, 76
instantiation, 54

Index

interpretation, 261, 279
introduction rules, 216
invariant, 142
iteration, 186

layout, 47

lazy evaluation, 55, 65
length, 177

lists, 68

local, 3, 52

local definitions, 50
logic, 8

logic operators, 43
logical constants, 134
logical entailment, 260
logical implication, 260
logical notation, 8
loop invariant, 141, 144
loop test, 144

loop variant, 145

looping, 53, 186

map, 18

mapping diagram, 17
mathematical induction, 60
mathematical logic, 197
meaning, 25
mid-condition, 131, 143
model, 260, 264, 279
module, 6

Modus Ponens, 222
mutually exclusive, 48

node, 103, 176

nullary constructor, 102

offside rule, 47, 52
or, 198

partial application, 95
partition, 165

path, 176

pattern, 48, 49, 111
pattern matching, 48
patterns of recursion, 117

295

296 Index

PC, 227

polymorphic type, 76

polymorphism, 97

post-condition, 28, 29

pre-condition, 28, 29

precedence, 24

predicates, 40, 199

prefix, 50

premiss, 9

preparation, 218

primitive functions, 20

primitive types, 96

Principle of course of values
induction, 62

Principle of list induction, 84

Principle of mathematical induction,
60

procedure, 6

procedure call, 133

proof by contradiction, 227

propositional logic, 199

qualifier, 206
quality, 7
quantification, 204
quantifier, 204

reasoned program, 4
recurrence relationship, 53
recursion, H3, 186
recursion variant, 65
recursive, 53, 54

redex, 54

reduction strategy, 55
reflex rule, 249

relation, 176

relational operators, 42
reserved words, 44
result, 15, 139

rule, 17, 47

rule of substitution, 249

scheme, 227
semantics, 11
semi-decidable, 272

sentences, 199

sequent, 216

signature, 261, 279

simple induction, 60
simplification, 54

soundness, 260, 264, 271
specification, 5, 20, 21, 27, 38
string, 71, 87

strong typing, 97

structural induction, 106
structure, 262, 279
substitution, 54

symmetry law of equality, 250
syntax analysis, 97

tail, 69, 86

tail recursion, 186
tautology, 209

terms, 199, 200
theorem, 227
theorem tactics, 230
top-down design, 20
transitive closure, 176, 177
truth table, 201, 211
tuple, 91, 111

type checking, 97
type variables, 98
typed quantifiers, 206
types, 28, 68

union types, 101

unit law, 69

universal quantifier, 204
user-defined constructors, 100
user-defined functions, 44

valid, 9, 214, 260
values, 45
variable, 130, 204

variant, 143

weak completeness, 278
well-founded induction, 64, 282

