
� Introduction

lies closer to the original vague intentions� not the code� So the �rst step
should always be to think carefully about your intentions and try to re�ne
them to a more precise speci�cation�
After that� the next step is to convert globality �speci�cation� into locality

�code�� and this is much easier after the initial thought� In fact� there are
speci�c mathematical techniques� which we shall discuss later� that make much
of this process automatic� At the same time� they tie the speci�cation and
code carefully together so you know as part of the coding process that the
link between them is made� Figure ��� illustrates the progression from vague
intention to precise code via precise speci�cation�

typingthinking

vague requirements
global properties
expressed in English
and gestures

precise execution
individual steps

code

how the algorithm does it

expressed in a programming language

precise requirements
global properties
what the algorithm does
comments or speci�cation
expressed in logic

Figure ���

��� Modules

This distinction that we have made between speci�cation and code�
corresponding to users and computer� also makes sense inside a program� It
is common to �nd that part of the program� with a well�de�ned task� can
be made fairly self�contained and it is then called � in various contexts �
a subprogram� or subroutine� or procedure or function� or� for larger� more
structured pieces of program� a module� The idea is that the overall program
is a composite thing� made up using components
 so it takes on the role of
user�
A module can be speci�ed� and this describes how its environment� the rest

of the program� can call on it and what that achieves� The speci�cation

Programming in the large �

describes all that the rest of the program needs to know about the module�
The implementation of the module� the code that it contains� its inner
workings� is hidden and can be ignored by the rest of the program�

Modularization is crucial when you want to write a large program because
it divides the overall coding problem into independent subproblems� Once you
have speci�ed a module� you can code up the inside while forgetting the
outside� and vice versa� The speci�cations of the modules also act as bulkheads�
like the partitions in the hold of a ship that stop water from a hole spreading
everywhere and sinking the ship� The speci�cations compartmentalize the
program so that if an error is discovered in one module you can easily check
whether or not correcting it has any consequences for the others� This helps
to avoid the �Hydra� problem� in which correcting one error introduces ten
new ones�

��	 Programming in the large

This book makes a signi�cant simplifying assumption� namely that speci�cations
can be got right �rst time� This is usually �though not always� realistic for
small programs� and so the techniques that we shall present are called those
of programming in the small� The underlying idea� of understanding the users�
point of view through a speci�cation� is still important in large�scale programs�
but the techniques cannot be applied in such a pure form �specify �rst� then
code�� To understand why� you must understand what could possibly be
wrong with a speci�cation�

The ultimate test � in fact the de�nition � of quality of software is that
it is �t for its purpose� To be sure� the speci�cation is supposed to capture
formally this idea of �tness� and if that has been done well then a correct
program� one for which the code satis�es the speci�cation� will indeed be a
quality one� But� conversely� speci�cations can have mistakes in them� and
this will manifest itself in unexpected and unwanted features in a formally
correct program� Hence correctness is only an approximation to quality�

Now there are many advantages to forgetting quality and working for
correctness� For instance� we have precise objectives �write the code to
satisfy the speci�cation� that are susceptible to mathematical analysis� and
we can modularize the program and work for correctness of small� easy parts�
forgetting the wider issues� The widget manufacturer who takes an order for
���� blue� size �� widgets will �nd life easier if he does not ask himself
whether they are really the right colour� let alone whether or not their end
use is to help train dolphins to run suicide missions smuggling cocaine�

However� the true proof of the program is� despite all we have said� its
behaviour in real life� and ultimately no programmer should forget that� The
speci�cation and reasoning are merely a means to an end� Never forget the

	 Introduction

possibility that the speci�cation is faulty� This will be obvious if correct code
plainly gives undesirable behaviour� but earlier warning signs are when the
coding is unexpectedly complicated or perhaps even impossible�
If the speci�cation is faulty� then it can be revised� which will involve

checking existing code against the revised speci�cations� Alternatively� the
speci�cation can be left as it is for the time being� with the intention of
revising it for future versions or in the light of future experience� This is often
quite reasonable� and provides some stability to the project� but it should be
chosen after consideration and not out of inertia� The universal experience is
that the later corrections are left� the more expensive it is to make them �A
Stitch in Time Saves Nine�� and large software projects have been destroyed
by the accumulation of uncorrected errors�
For programming in the large� many of the practical techniques that people

use can be seen as being there to help to correct speci�cational faults as
early as possible� while they are still cheap to �x� For instance� requirements
elicitation is about how to communicate as e�ectively as possible with the
users� to �nd out what they really do need and want� then a number of
design methodologies help to obtain a good speci�cation before coding starts�
and prototyping produces some quick� cheap code in order to �nd those faults
�such as di�culty of use in practice� that are best exposed by a working
version� All of these are important issues but they are ignored in the rest of
this book�

��
 Logical notation

English is not always precise and unambiguous � that is why computer
programming languages were invented� In general� the fewer things that a
language needs to talk about� the more precise it can be�
In our speci�cations� we are going to make use of logic to make precise one

particular aspect of what we want to say� namely how di�erent properties
connect together� In English there are connecting words such as �and�� �or��
�but�� �not�� �all�� �some�� and so on� and in logic these are systematized and
given individual symbols� The reason for the importance of these connectives
is that it is the logical connections between the given properties that allow us
to deduce new ones�
For instance� suppose an instruction manual tells you

�If anyone envelops the distal pinch�screw parascopically� then the
pangolin will unbundle��

Suppose you also know that the anterior proctor has just enveloped the distal
pinch�screw parascopically� You do not need to be an expert on pangolins to
realize that it is likely to unbundle� The reason is that you have spotted

Logical notation

the underlying logical structure of these facts� and it does not depend on the
nature of pinch�screws� pangolins or proctors�
This logical structure shows up best if we introduce some abbreviations

E�x� �where x stands for any person or thing� stands for �x
envelops the distal pinch�screw parascopically��
A stands for �the anterior proctor��
P stands for �the pangolin unbundles��

As a special case of this notation� if we substitute A for x then

E�A� stands for �the anterior proctor envelops the distal pinch�screw
parascopically��

These abbreviations are not in themselves logical notation� that comes in
when we connect these statements together� Logic writes �

� for �and�
� for �for all� �re�ecting �anyone��
� for �implies� �re�ecting �if � � � then � � � ��

Now our known facts appear as

�x� �E�x�� P � � E�A�
and just from this logical structure we can deduce P �
Much of logic is about making such deductions based on the logical structure

of statements� The general pattern is that we start from some statements A
called the premisses� and then deduce a conclusion B� The argument from A
to B is valid if in any situation where A is true� it follows inevitably that B
is true� too� Logic gives formal rules � that is to say� rules that depend just
on the form of the statements and not on their content or meaning � for
making valid deductions� and if these rules give us an argument from A to B
then we write A � B �A entails B��
For example�

If I have loads of money� then I buy lots of goods�
I have loads of money�
� I buy lots of goods�

is a valid argument There are situations where the premisses are false �for
instance� if� as it happens� I am a miser then the �rst premiss is false�� but
that does not a�ect the validity of the argument� So long as the premisses
are true� the conclusion ��I buy lots of goods�� will be� too� However�

If I have loads of money� then I buy lots of goods�
I go on a spending spree�

�� Introduction

� I have loads of money�

is not a valid argument� Even if the premisses are true� the conclusion need
not be since I might be making imprudent use of my credit card�
In this book we shall use logic to help us with� broadly speaking� two kinds

of deduction related to a given speci�cation of a program
 �rst� deducing
new facts about how the program will behave when we come to use it� and�
second� deducing that the program code� or implementation� really does meet
the speci�cation� Part II of this book is entirely devoted to logic itself�

���� The need for formality

English� and natural language in general� is tremendously rich and can express
not only straightforward assertions and commands but also aspects of emotion�
time� possibility and probability� meaning of life� and so on� But there is a
cost� Much of it relies on common understanding and experience� and on
the context� Look at the following three examples� and see how they contain
progressively more that is unspoken

�� �She sang like her sister��

�� �She sang like a nightingale��

�� �He sang like a canary��

��� is fairly literal� but ��� is not � the comparison is not of the songs
themselves but of their beauty� and the compliment works only because
everyone knows �even if only by repute� that nightingales sing beautifully� As
for ���� in a gangster �lm �He� might well be a criminal who� on arrest� told
the police all about his accomplices� But it is extremely inexplicit� and would
be hard to understand out of context�
Di�erent people lead di�erent lives� so these unspoken background
assumptions of experience and understanding are imprecise� and this leads to
an imprecision in English� To say anything precisely and unambiguously you
must drastically restrict the range of what can be said� to the point where
any background assumptions can also be made explicit� Then there is a direct
correspondence between the language and its meaning� and you can treat the
language �formally�� that is� as symbols to be manipulated �which� after all� is
what a computer has to do�� and be con�dent that such manipulations are
re�ected validly in the meaning�
An important example of a formal language that you must already know
is algebra� the formal language of numbers� Problems can often be solved
symbolically by algebraic manipulations without thinking about the numbers
behind the symbols� and you still obtain correct answers� An extension of
this is calculus� Again the symbolic manipulations � the various rules for

Can programs be proved correct� ��

di�erentiating and integrating � can be carried through without you having
to remember what the derivatives and integrals really mean�
In fact� this is only a particular application of the word �calculus�� which is

Latin for �little stone�� In ancient times� one method of calculating was by
using little stones roughly like an abacus� and the idea is that you can obtain
correct answers about unmanipulable things through surrogate manipulations
of the little stones� We now use formal symbols instead of little stones�
but the word �calculus� is still often used for such a formal language � for
instance� one part of logic is often called the �predicate calculus��
The other formal languages that you will see in this book are as follows

logic This is the language of logical connections between statements� This is
a very narrow aspect of the statements and so the logical notation will
usually need to be combined with other notations� but once we have the
logical symbols expressing the logical structure� we can describe what are
logically correct arguments� Another point is that the logical symbols
are more precisely de�ned than English words� For instance� there is
a logical connective ��� that� by and large� means �or�
 �A or B� has
the logical structure �A �B�� But sometimes the English �or� carries an
implicit restriction �but not both� �the so�called exclusive or�� and then
the logic must take care to express this� as �A �B� � ��A �B��

programming languages These are the languages of computer actions
�roughly � this is more true for the imperative language Modula�� than
for the functional language Miranda�� Once they are made formal then
one can work with them by symbolic manipulation and this is exactly
what computers do when they compile and interpret programs�

���� Can programs be proved correct�

We have already distinguished between quality and correctness� and explained
how �correctness�� conformance to the speci�cation� is only relative
 if the
speci�cation is wrong �that is� not what the user wanted� then so� too� will be
the code� however �correct� it is� But at least the speci�cation and code are
both formal� so there is the possibility of giving formal proofs of this relative
correctness � one might say that this is the objective of formal methods in
computer software�
It is worth pointing out that what you will see in this book are really only

�informal formal methods�� There are two main reasons for this�
The �rst is that to give a formal correctness proof you need a formal

semantics of your programming language� a mathematical account of what the
programs actually mean in relation to the speci�cations� We shall not attempt
to do this at all� but instead will rely on your informal understanding of
what the programming constructs mean�

�� Introduction

The second is that true formal reasoning has to include every last detail�
This might be �ne if it is a computer �via a software tool� that is checking
the reasoning� but for humans such reasoning is tedious to the point of
impracticability� and hides the overall shape of the argument � you cannot
see the wood for the trees� Even in pure mathematics� proofs are �rigorous�
� to a high standard that resolves doubts � but not formal� Our aim is to
introduce you to rigorous reasoning�
Now even rigorous reasoning runs the risk of containing errors� so if in
this book we cannot claim unshakable mathematical correctness you might
wonder what the point is� We do not seem to be working to a Reasoned
Program as an error�free structure� Nevertheless� the structure of the Reasoned
Program� with its speci�cation and reasoning included� is much more stable
than an Unreasoned Program� that is� code on its own� We have a clearer
understanding of its working� and this helps us both to avoid errors in the
�rst place and� when errors do slip through� to understand why we made
them and how to correct them�

���� Summary

� The code is directed towards the computer� giving it its instructions�
� The speci�cation is directed towards the users� describing what they will
get out of the program� It is concerned with quality ��tness for purpose��

� By reasoning that the code satis�es the speci�cation� you link them
together into a reasoned program�

� By putting the speci�cation �rst� as objectives to be achieved by the
code� you engage in reasoned programming� Coding is then concerned
with correctness �conformance with speci�cation��

� This separation also underlies modularization� The speci�cation of a
module or subroutine is its interface with the rest of the program� the
coding is its �hidden� internal workings�

� This book is about programming in the small� It makes the simplifying
assumption that speci�cations can be got right �rst time�

� In practice� speci�cations can be faulty � so that correctness does not
necessarily produce quality� Be on your guard against this�

� The earlier faults are corrected� the better and cheaper�
� There are numerous practices aimed at obtaining good speci�cations
early rather than late� for instance talking to the customer� thinking
hard about the design and prototyping� but this book is not concerned
with these�

� To match the formality of the programming language� we use formal
logical notation for speci�cations� It is also possible to use formal
semantics to link the two� but we will not do this here�

Part I

Programming

Chapter �

Functions and expressions

��� Functions

From the speci�cation point of view a function is a black box which converts
input to output� �Black box� means you cannot see � or are not interested in
� its internal workings� the implementing code� Mathematically speaking� the
input and output represent the argument to the function and the computed
result �Figure �����

�Give me input�

�I�ll give you output�

function

Figure ���

In Figure ��� the function add� simply produces a result which is one
more than its given argument� The number �� is called an argument or an
actual parameter and the process of supplying a function with a parameter
is called function application� We say that the function add� is applied to
��� Similarly� the function capital takes arguments which are countries and
returns the capital city corresponding to the given country�

��

�� Functions and expressions

capital

�� Denmark

�� Copenhagen

argument type
number

result type
number

argument type
Countries

result type
Cities

add�

Figure ���

From mathematics we are all familiar with functions which take more than
one argument� For example� functions � and � require two numbers as
arguments� Figure ��� gives some examples of applications of multi�argument
functions�

power power smallestsmaller

� 	 �

 � � � 	

� 	� �
 �

Figure ���

When we �rst de�ne a function we need to pay attention both to the
way it works as a rule for calculation �the code� and also to its overall
global� external behaviour �the speci�cation�� But� when a function comes to
be used� only its external behaviour is signi�cant and the local rule used in
calculations and evaluations becomes invisible �a black box�� For example�
whenever double is used the same external behaviour will result whether
double n is de�ned as ��n or as n�n�

��� Describing functions

We can describe functions in a number of ways� We can specify the function
value explicitly by giving one equation for each individual input element� or

Describing functions ��

double

	

��

Figure ���

we can draw a diagram � a mapping diagram showing for each input element
its corresponding result �Figure ����� However� often there will be many� even
in�nitely many� individual elements to consider and such methods will clearly
be inconvenient�

.

.

.

.

.

.

add� x � x��

a few
general equations

argument

argument�

�

�

�

�

�

an equation
for each possible
argument

showing individual mappings

natural
positive

numbers
numbers

add� � � �

add� � � �

Figure ���

An alternative method is to describe the function using a few general
equations �Figure ����� Here we can make use of formal parameters� which are
names that we give to represent any argument to which the function will be
applied� For example� the formal parameter x in the de�nition of add� stands
for any number� The right hand side of the rule �or equation� describes
the result computed in terms of the formal parameter� In the functional
language Miranda� add� is described in a notation which is very close to the
mathematical notation used above

add�

 num �� num

add� x � x��

�	 Functions and expressions

The �rst line declares the function by indicating the function�s argument
and result types� The argument type� which precedes the arrow� states the
expected type of the argument to which the function will be applied� The
result type� which follows the arrow� states the type of the value returned by
the function� A function is said to map a value from an argument type to
another value of a result type� The second line is an equation which de�nes
the function�
Now let us look at some more programs
 for example� consider the problems
of �nding the area and circumference of a circle given its radius� We need
the constant value �� which is built�in to the Miranda evaluator under the
name pi� but note that even if pi were not built�in we could de�ne our own
constant as shown for mypi

mypi

 num

mypi � ���
���

circumference� areaofcircle

 num �� num

areaofcircle radius � pi � radius � radius

circumference r � � � pi � r

�This also illustrates how a formal parameter is not restricted to a single
letter such as n�� Similarly� we can de�ne a function to convert a temperature
given in degrees Fahrenheit to degrees Celsius by

fahr�to�celsius

 num �� num

fahr�to�celsius temp � �temp � ��� � ��	

Multi�argument functions can be de�ned similarly� For example� see the
function below� which� given the base area and the height of a uniform object�
computes the volume of the object

volume

 num �� num �� num

volume hgt area � hgt � area

The declaration is read as follows
 volume is a function which takes two
numbers as arguments and returns a number as its result� The reason for
using �� to separate the two number arguments will become clear later when
we discuss typing in more detail� Each �� marks the type preceding it as an
argument type�

Joining functions together

More complex functions can be de�ned by functional composition� making the
result of one function application an argument of another function application�
This can be viewed pictorially as joining the output wire of one black box onto
an input wire of another black box �Figure ����� In this way several functions
can be combined� for example double �
 � �� combines the functions double
and �� This combination can be pictured by connecting up the wires

Describing functions �

double

�

	

 �

Figure ���

There is no restriction on the number of times this principle may be
employed as long as the result and argument types of the various pairs of
functions match�
If we use functional composition without explicit �that is� actual� arguments

then the combination can be regarded as a new function �a composition of
double and ��� which we will call doubleprod �Figure ����� This new function

4 6

4 6

double

�

	

	

doubleprod

glass box new black box
you can see how it works inside

Figure ���

has the property that� for all numbers x and y�

doubleprod

 num �� num �� num

doubleprod x y � double�x�y�

�� Functions and expressions

As another example consider the following function� which computes the volume
of a cylinder of height h and radius r �Figure ��	�� A cylinder is a particular
kind of �uniform object� whose volume we calculate by multiplying its height�
which is h� by its base area� which we calculate using areaofcircle� Hence�
assuming that volume and areaofcircle compute correctly �conform to their
speci�cations�� our function for the volume of a cylinder can be computed by

cylinderV

 num �� num �� num

cylinderV h r � volume h�areaofcircle r�

This is an example of top�down design� Ultimately� we want to implement

volume

h r

cylinderV h r

rh

cylinderV h r

areaofcircle

cylinderV

Figure ��	

the high�level functions� the ones we really want� by building them up from
the low�level� primitive functions� that are built�in to Miranda� But we can
do this step by step from the top down� for instance by de�ning cylinderV

using functions volume and areaofcircle that do not need to have been
implemented yet� but do need to have been speci�ed�
It can therefore be seen that black boxes �that is� functions� can be plugged

together to build even bigger black boxes� and so on� The external� black
box view of functions� which allows us to encapsulate the complicated internal
plugging and concentrate on the speci�cation� has an important impact on
the cohesion of large programs� To see an example of this� suppose we had
mistakenly de�ned

areaofcircle radius � pi�pi�radius

Of course� cylinderV will then give wrong answers� But we are none the less
convinced that the de�nition of cylinderV is correct� and that is because our
use of areaofcircle in it is based on the speci�cation of areaofcircle� not
on the erroneous de�nition� �volume asks for the base area� and areaofcircle

is supposed to compute this��

Some properties of functions ��

There may be lots of parts of a large program� all using areaofcircle

correctly� and all giving wrong answers� As soon as areaofcircle has been
corrected� all these problems will vanish�

On the other hand� someone might have been tempted to correct for the
error by de�ning

cylinderV h r � volume h ��areaofcircle r��r�pi�

This is a perfect recipe for writing code that is di�cult to understand and
debug
 as soon as areaofcircle is corrected� cylinderV goes wrong� The
rule is

When you use a function� rely on its speci�cation� not its de�nition�

��� Some properties of functions

Functions map each combination of elements of the argument types to at
most one element of the result type
 when there is a result at all� then it
is a well�de�ned� unique result� There may be argument combinations for
which the result is not de�ned� and then we call the function partial� An
example is bitNegate� which is unde�ned for all numbers other than � and �
�Figure ��
�

bitNegate

 num �� num

bitNegate x � �� if x��

� �� if x��

bitNegate

�

�

bitNegate

�

�

bitNegate

unde�ned

�

Figure ��

Similarly� division is a partial function and is said to be unde�ned for cases
where its second argument is zero� A function that is not partial� one for
which the result is always de�ned �at least for arguments of the right type��
is called total�

�� Functions and expressions

Just as an illustration of some di�erent possible behaviours of functions�
here are two more kinds

�� A function is onto if every value of the result type is a possible result
of the function�

�� A function is one�to�one if two di�erent combinations of arguments must
lead to two di�erent results�

For instance� double is one�to�one �if x 	� y then double x 	� double y� but
not onto �for example� � is not a possible result because the results are all
even�� On the other hand� volume is onto �for example� any number z is
a possible result because z � volume z �� but not one�to�one �for example�
volume � � � � � volume � � � di�erent argument combinations ����� and
����� lead to the same result��

��� Using a functional language evaluator

In order to construct a program in a functional language to solve a given
problem one must de�ne a function which solves the problem� If this
de�nition involves other functions� then those must also be de�ned� Thus a
functional program is just a collection of function de�nitions supplied by the
programmer� To run a program one simply presents the functional language
evaluator with an expression and it will do the rest� This expression can
contain references to functions de�ned in the program as well as to built�in
functions and constant values�
The functional language evaluator will have a number of built�in �or

primitive� functions� together with their de�nitions
 for example� the basic
arithmetic functions �� �� �� � etc� The computer will evaluate your expression
using your function de�nitions and those of its primitive functions and then
print the result� Therefore� the computer just acts as a giant calculator�
Expressions that do not involve user�de�ned functions can be evaluated

without using any program �just like a calculator�� The evaluator� however�
is more powerful than an ordinary calculator since you can introduce new
function de�nitions in addition to those already built�in� Expressions can
involve the name of these functions and are evaluated by using their de�nitions�
This view of a functional language evaluator is illustrated in Figure �����

��� Evaluation of expressions

When you present a functional evaluator with an expression� you can imagine
it reducing the expression through a sequence of equivalent expressions to
its �simplest equivalent form� �or normal form�� with no functions left to be

Evaluation of expressions ��

0

C = / *

7 8 9

4 5 6

1 2 3

0 .

f

g

-

+

=

primitive functions and values

can add your own
function de�nitions

Figure ���� One view of a functional language evaluator

applied� This is the answer� which is then displayed� You can mimic this by
�hand evaluation�� as in

double�� � ��

� double � by built�in rules for �
� � � � by the rule for double
� �� by built�in rules for �

�
 will be printed by the evaluator� �At each stage we have underlined the
part that gets reduced next�� Other reduction sequences are possible� though
of course they lead to the same answer in the end� Here is another one

double �� � ��
� �� � �� ��� � �� by the rule for double

� � ��� � �� by built�in rules for �

� � � � by built�in rules for �
� �� by built�in rules for �

Thus evaluation is a simple process of substitution and simpli�cation� using
both primitive rules and rules �that is� de�nitions� supplied by the programmer�
In order to simplify a function application� a new copy of the right�hand
side of the function de�nition is created with each occurrence of the formal
parameter replaced by a copy of the actual parameter� Function applications
of the resulting expression are then simpli�ed in the same manner until a
normal form is reached�
It should be noted that in the above discussion there has been no mention

of how the evaluation mechanism is implemented� Indeed� functional languages

�� Functions and expressions

o�er the considerable advantage that programmers need not pay much �if any�
attention to the underlying implementation�
Some expressions do not represent well�de�ned values in the normal
mathematical sense� for example any partial function applied to an argument
for which it is unde�ned �for example� ����� When confronted with such
expressions �that is� whose values are unde�ned�� the computer may give an
error message� or it may go into an in�nitely long sequence of reductions and
remain perpetually silent�

��� Notations for functions

So far we have seen functions in pre�x and in�x notations� In pre�x notation
the function symbol precedes its argument� as in double � or smaller x y�
In�x notation should also be familiar from school mathematics� where the
function �also called operator� symbol appears between its arguments �also
called operands�� as in ��� or x�y�
In mathematics� f�x� y� is written for the result of applying f to x and y�

In Miranda� we can omit the parentheses and comma� and in fact it would be
wrong to include them� Instead� we write f x y �with spaces� �Figure ������

f

f x y

x y

Figure ����

However� we cannot do without parentheses altogether� for we need them
to package f x y as a single unit �f x y� when it is used within a larger
expression� You can see this in

cylinderV h r � volume h�areaofcircle r�

Precedence

In expressions such as �����
�� where there are several in�x operators� it
is ambiguous whether the expression is meant to represent �������
� or
������
��� Such ambiguities are resolved by a set of simple precedence

Meaning of expressions ��

�priority� rules� For example� the above expression really means ������
��

because� by long�standing convention� multiplication has a higher precedence
relative to addition�
The purpose of precedence rules is to resolve possible ambiguity and to allow

us to use fewer parentheses in expressions� Such rules of precedence will also
be built�in to the evaluator to enable it to recognize the intended ordering�
A hand evaluation example illustrating this is shown in Figure ����� Where
necessary� the programmer can use extra parentheses to force a di�erent order
of grouping� For instance� �����
��� � ����� � ���

+

� has higher precedence than �

��

��� ���

���

��
��

��

����

Figure ���� �
 � � �
 � � � � �� � ��

��� Meaning of expressions

The meaning of an expression is the value which it represents� This value
cannot be changed by any part of the computation� Evaluating an expression
only alters its form� never its value� For example� in the following evaluation
sequence all expressions have the same value � the abstract integer value ��

doubleprod � � � double ����� � double �� � ��

Note that an expression �in whatever form� even in its normal form� is not a
value but� rather� a representation of it� There are many representations for

