
�� Functions and expressions

one and the same value� For example� the above expressions are just four of
in�nitely many possible representations for the abstract integer value ���
Expressions in a functional language may contain names which stand for

unknown quantities� but� as in mathematics� di�erent occurrences of the same
name refer to the same unknown quantity� for example x in double�x� � x

�
�

Such names are usually called variables�

��	 Summary

� A functional program consists of a collection of function de�nitions� To
run a program one presents the evaluator with an expression and it will
evaluate it� This expression can contain references to functions de�ned
in the program� as well as to built�in functions and constant values�

� Functions are de�ned in a notation which is very close to mathematical
notation�

� Functional composition �that is� passing the output of one function as an
argument to another function� is used to de�ne more complex functions
in terms of simpler ones�

� Evaluation of an expression is by reduction� meaning simpli�cation� The
expression is repeatedly simpli�ed until it has no more functions left to
be applied�

� The meaning of an expression is the value which it represents� This
value cannot be changed by any part of the computation� Evaluating an
expression only alters its form� never its value�

��
 Exercises

�� De�ne a function hypotenuse which� given the lengths of the two shorter
sides of a right�angled triangle� returns the length of the third side�
�There is a built�in function sqrt that calculates square roots��

�� Write a function addDigit of two arguments which will concatenate a
single�digit integer onto the right�hand end of an arbitrary�sized integer�
For instance� addDigit ���
 should give ���
� Ignore the possibility of
the number becoming too large �called integer over�ow��

�� De�ne a function celsius to fahr that converts celsius temperatures to
Fahrenheit� Show for any value of temp that the following hold

celsius to fahr�fahr to celsius temp� � temp

fahr to celsius�celsius to fahr temp� � temp

Chapter �

Speci�cations

A conscientious programmer wants the customer to be entirely satis�ed with
the program� so their aims are the same overall they both want to see a
satisfactory and useful product at the end� None the less� there are certain
tensions between the programmer�s wish for an easy task� and the customer�s
desire for a powerful and comprehensive ��All singing� all dancing�� program�
This may boil down to money� A more powerful program will cost more to
produce� the customer must balance his needs against his budget and the
programmer must be able to make plain the di�erence between the more and
the less powerful speci�cations�
In this vague sense� the speci�cation represents part of a contract between

programmer and customer� The full contract says �Programmer will implement
software to this speci�cation� and customer will pay such�and�such amount
of money�� However� there is also a sense in which the speci�cation itself
represents a contract�

��� Speci�cation as contract

Punter �the customer� and Hacker �the programmer� have done business
together before� and usually �nd they understand each other�

Act �
Punter� Can you write me a program to calculate the square
root of a real number�

Hacker� Can I assume it is non�negative�
Punter� Yes�
Hacker� OK� I can do that�
�Shake hands and exeunt�

They now have a gentlemen�s agreement that Hacker will write a square
root program this is an oral contract between Punter as software purchaser�

��

�	 Speci�cations

and Hacker as software producer� But there is also a more subtle contract
involved� between Punter as software user� and Hacker �as software�� This
says that if Punter uses the program� then� provided that the input is a
non�negative number� the output will be a square root of it� This is a contract
because it embodies some interlocking rights and obligations governing the
way in which the program is to be used�
First� the input must be non�negative� This is an obligation on Punter�

but a right for Hacker� who is entitled to expect� for the sake of his
implementation� that the input is non�negative� But� then� he is obliged to
calculate a square root� and Punter has the right to expect that this is
what the output will be�
A speci�cation such as this can be divided into the following two parts

� The pre�condition is the condition on the input that the user guarantees
for example� the input is a non�negative real number�

� The post�condition is the condition on the output that the programmer
guarantees for example� the output is the square root of the input�

There is a certain asymmetry here �which is due to the fact that the input
comes �rst�� The pre�condition can only refer to the input� whereas the
post�condition will probably refer to both the input and the output�
Note also the underlying tension the customer would like weak pre�conditions

�so the program works for very general input� and strong post�conditions �so
it computes many� or very precise� answers�� The programmer� on the other
hand� would like the reverse�
Therefore� there must be some kind of dialogue in order to agree on the

terms of the contract� Figure ��� shows these tensions with springs� The
programmer would have the pre� and post�conditions the same� then he doesn�t
have to do anything at all� The customer�s spring pulls the conditions apart�
The strength of the springs depends on various factors� For instance� if

the customer is prepared to pay a lot of money for some software� or if the
software is a procedure that is called very often� then it is worth putting a
lot of work into programming it � �the customer�s spring is powerful��

��� Formalizing speci�cations

Let us introduce a very speci�c format for writing such speci�cations as part
of a Miranda program� It has three parts� namely typing information and the
pre� and post�conditions�
The typing information gives the types of the input �argument� and output

�result�� and also the name of the program �function�� and there is a standard
Miranda notation for this� In many programming languages this is an essential
part of the program de�nition� required by the compiler� In Miranda� it is

Defensive speci�cations what happens if the input is bad� �

pre�condition

post�condition

Weaken

Strengthen

Customer�s spring

Customer�s spring

Programmer�s spring

Figure ���

optional because the compiler can deduce the types from the rest of the
de�nition� However� they may not be the intended types so type declarations
should always be included in all programs�
The pre� and post�conditions are written using English and logical notation�

and made into comments �that is� they follow the symbols ������ Note that
in Miranda any part of your program which starts with ��� together with all
the text to its right �on the same line�� is regarded as being a comment and
hence is ignored by the evaluator�

The square root function could be speci�ed by

sqrt num �� num

��pre x �� �

��post �sqrt x��� � x

sqrt x� Hacker must �ll this in

��� Defensive speci�cations � what happens if the input is bad�

This is a relatively convenient speci�cation for Hacker because he doesn�t
have to worry about the possibility of negative input� That worry has been
passed over to Punter� who must therefore be careful� If� by mistake� he
gives a negative input� then the contract is o� and there is no knowing what

�� Speci�cations

might happen� He might obtain a sensible answer� or a nonsense answer� or
an apparently sensible but actually erroneous answer� or an error message� or
an in�nite loop� or a system crash� or World War III� or anything� ��Garbage
in� garbage out�� the contract itself is �Non�garbage in� non�garbage out���
This balance of worry is usually sensible if the only way in which Punter
uses Hacker�s square root program is by calling it from a program of his
own� He needs to look at every place where it is called� and convince himself
that he would never use a negative input� Thus in exchange for some care at
the programming stage� the sqrt function can run e�ciently without checking
inputs all the time�
On the other hand� Punter may intend to use the program at an exposed

place �for instance� in a calculator� where any input at all may conceivably
be provided� In that case� Punter would prefer a �defensive speci�cation� for
a function that defends itself against bad arguments� When Hacker asks if
he can assume that the input is non�negative� Punter replies �No� If it is
negative� stop and print an error message��

defensivesqrt num �� num

��pre none

��post �x � � � error reported� ��

�� �x �� � � �defensivesqrt x��� � x�

�We would like to use the logical notation � and � for �and� and �or� but for
a program comment� where it is impossible to type logical symbols we use the
notation � and �� instead� This matches Miranda�s own notation�� The point
is that di�erent ideas about how to handle erroneous input must be re�ected
in di�erent speci�cations�

��� How to use speci�cations fourthroot

Suppose Punter wants to write a Miranda function to calculate fourth roots

fourthroot num �� num

��pre x �� �

��post �fourthroot x��
 � x

Essentially� he wants to apply Hacker�s sqrt twice� but he also notices a
nuisance � the speci�cation of sqrt doesn�t specify the positive square root�
So he splits the function de�nition into two cases

fourthroot x � sqrt y� if y���

� sqrt��y�� otherwise

where y � sqrt x

��Would help if sqrt gave positive square roots�

Proof that fourthroot satis�es its speci�cation ��

Punter now wishes to show that this de�nition of fourthroot satis�es its
speci�cation� It is important to understand that he does not need to know
anything at all about how Hacker calculates square roots� He just assumes
that sqrt satis�es its speci�cation� The speci�cation is all that Punter

knows� or is entitled to assume� about the sqrt function�
Note there is something important for Punter to do� He uses sqrt in

three places� and at each one he must check that the pre�condition holds
that the argument of sqrt is non�negative�

��� Proof that fourthroot satis�es its speci�cation

We want to prove �or explain why� fourthroot works correctly� that is�

�x num� �x � �� �fourthroot x�� � x�

We do this on the assumption that sqrt works correctly� that is�

�x num� �x � �� �sqrt x�� � x�

�Of course� it is possible that it doesn�t� but fourthroot should not have to
worry about that� It is the responsibility of sqrt to get its answer right��
We shall put the reasoning in a framework where the assumptions go at the
top� the conclusion �what is to be proved� goes at the bottom and the proof
goes in the middle� as in Figure ���� What we want to end up with is a

�x � num� �x � �� �sqrt x�� � x� assumption
���

proof
���

�x � num� �x � �� �fourthroot x�� � x� conclusion

Figure ���

proof that� as you read down through it� steadily accumulates more and more
true consequences of the assumptions until it reaches the desired conclusion�
That is how the proof can be read� but we can see already that writing it
does not go straight down from top to bottom � we are going to have an
interplay between working forwards from the assumptions and backwards from
the desired conclusions�
The method is fully investigated in Chapter ��� In this example we give a

rather informal introduction to it�
Here is a typical backward step� To prove the conclusion� we must show

that if someone gives us a number � and we don�t care what number it is

�� Speci�cations

� as long as it is non�negative� fourthroot will calculate a fourth root of it�
Once we have the number it is �xed� so let us give it a di�erent name c to
indicate this� So we are now working in a hypothetical context where

�� we have been given our c
�� c is a number
�� c � �

and given all these assumptions we must prove �fourthroot c�� � c� Figure ���
shows a box drawn around the part of the proof where these temporary
assumptions are in force� For the �nal conclusion we have left c behind� so we

�x � num� �x � �� �sqrt x�� � x� assumption

c � num c � � temporary assumptions
���

proof
���

�fourthroot c�� � c to prove

�x � num� �x � �� �fourthroot x�� � x� conclusion

Figure ���

can come out of the box� What this purely logical� and automatic� analysis
has given us is a context �the box� where we can begin to come to grips
with the programming issues� Since c � �� we can use our original assumption
�that sqrt works� to deduce that sqrt c gives an answer y �with y� � c��
and either y � � or y � ��
We thus � again by automatic logic� but working forwards this time �

have two cases to work with� which again we put in boxes because each case
has a temporary assumption �y � � for one� y � � for the other�� In each
case� we must prove �fourthroot c�� � c� so this equation ends up by being
written down three times� This can be seen in Figure ���� The two cases may
then be argued by chains of equations as in the �nal box proof� Figure ����
Notice the following features of box proofs

�� Each box marks the scope� or region of validity� of some names or
assumptions� For instance� within the left�hand innermost box we are
working in a context where

� we have a number c
� c � �
� y � sqrt c � �

Proof that fourthroot satis�es its speci�cation ��

�x � num� �x � �� �sqrt x�� � x� assumption

c � num c � � assumption

�sqrt c�� � c spec of sqrt

y� � c write y for sqrt c

y � � � y � �

y � �
��� case �

�fourthroot c�� � c to prove

y � �
��� case �

�fourthroot c�� � c to prove

�fourthroot c�� � c

�x � num� �x � �� �fourthroot x�� � x� conclusion

Figure ��� Working forwards

F � fourthroot c

�x � num� �x � �� �sqrt x�� � x� assumption

c � num c � � assumption

�sqrt c�� � c spec of sqrt

y� � c y for sqrt c

y � � � y � �

y � �

�F �� � ��F ���� arithmetic

� ��sqrt y���� def F

� y� spec sqrt

� c as required

y � �

�F �� � ��F ���� arithmetic

� ��sqrt ��y����� def F

� ��y�� spec sqrt

� y� arithmetic

� c as required

�fourthroot c�� � c

�x � num� �x � �� �fourthroot x�� � x� conclusion

Figure ��� The �nal box proof for fourthroot

These are not permanent� for instance outside the boxes nothing is
known of c� and the right�hand innermost box does not know that y � ��

�� Speci�cations

�� When you read a box proof� you can read it straight down from the
top each new line is either a temporary hypothesis or is derived from
lines higher up� But when you construct a box proof you work both
forwards� from assumptions� and backwards� from your goal� Hence there
is a de�nite di�erence between proof and proving� �It is very similar to
that between the Reasoned Program and Reasoned Programming��

Box proofs can be translated into English as follows
Let c num with c � �� and let y � sqrt c� Since c � � �pre�condition of

sqrt�� we know y� � c�
There are two cases�

If y � �� then
�fourthroot c�� � �sqrt y�� � ��sqrt y����

� y� �because y � � and so satis�es the pre�condition of sqrt �
� c

If y � �� then
�fourthroot c�� � ��sqrt ��y�����
� ��y�� �because �y � ��
� y� � c

Either way� we obtain the required result� �

However� the virtue of box proofs for beginners is that certain steps are
automatic� and the box proofs give you a framework for making these steps�
They take you to a context where you have disentangled the logic and have
something to prove about concrete programs�

��� A little unpleasantness error tolerances

Act �
Hacker� I can�t calculate exact square roots� There has to be an
error tolerance�

Punter� But the programs I�ve just had rommed assume the
roots are exact� It�ll cost me ��m to have them changed�

Hacker� I�m sorry� you�ll just have to�
Punter� You shall hear from my solicitors�
�Exeunt scowling�

The story has a happy ending� Hacker�s legal department had prudently
included the following general disclaimer clause in his software

This software might do anything at all� but there again it might not�
Anything Hacker says about it is inoperative�

Punter stopped thinking in legal terms� and negotiated the following revised
speci�cation with Hacker

Other changes to the contract ��

sqrt num �� num

��pre x �� �

��post ��sqrt x����x� � tolerance

where tolerance was a number still to be negotiated�
This is a perfectly common occurrence� that speci�cations must be revised

in the light of attempts to implement them� It is a nuisance� but it happens�
and you must understand how to deal with it�
In this case� the post�condition has been weakened for Hacker�s bene�t�

and this makes extra work for Punter� He must look at every place where
he has called sqrt and check whether his reasoning still works with the
revised speci�cation� If it does still work� Punter is happy� If not� Punter
may yet be able to modify his program and his reasoning to cope� But in
this case� Punter realizes that he cannot compute exact fourth roots after
all� so he must go back apologetically to his customer and negotiate a revised
speci�cation for fourthroot�
The reasoning is the same if Hacker and Punter are collaborators� or

even the same person �a programmer calling his own procedures��

��� Other changes to the contract

The error tolerance was a weakened post�condition� Other possibilities are as
follows

� Strengthened pre�condition� Hacker might decide he needs to assume
more for his routine to work� Again� Punter must check every call to
ensure that the new pre�conditions are still set up properly�

� Weakened pre�condition or strengthened post�condition� Now the
speci�cation is better for Punter� so he has no checking to do� This
time it is Hacker who must check his routine to ensure that it still
satis�es the new conditions� He might �nd that it does� or that he can
modify it so that it does� or that he has to go to the people who wrote
the functions he calls and negotiate a revised speci�cation for them�

Either way� we see that when a speci�cation is changed� programs have to
be checked to make sure that they still �t the revised speci�cation� This
checking is boring� but routine because of the way the speci�cations have
given logical structure to the program� you know exactly which parts of the
program you need to examine� and exactly what you are checking for� If you
don�t bother� you are likely to run into the Hydra problem for every mistake
you correct� you make ten new ones�
There are also mixed changes to speci�cation� for instance if you strengthen

both pre� and post�conditions� This might happen if the customer wants
a strengthened post�condition but the programmer needs a strengthened

�� Speci�cations

pre�condition before he can deliver it� The customer may be happy with
that� Perhaps by chance his existing applications already set up the strong
pre�condition� On the other hand� he may �nd that the new pre�condition
requires too much work to be worth while� Thus the new speci�cation may
or may not be a good idea� The customer and programmer must negotiate
the best compromise�
Simultaneously weakened conditions are similar�

��	 A careless slip positive square roots

The story so far Punter and Hacker have agreed a speci�cation for
sqrt with error tolerances�

Act �� Scene �
Punter� The result of sqrt always seems to be non�negative� Is
that right�

Hacker� �looks at code� Yes�
Punter� Good� That�s useful to know�
�exeunt�

This is how� validly� coding may feed back into the speci�cation� If they
agree on a new� strengthened post�condition

j �sqrt x�� � x j� tolerance � �sqrt x� � �
then this is better for Punter� so he is happy� and Hacker is no worse
o� because his code does it anyway� Punter thinks they have agreed� but
unfortunately Hacker never wrote it into the comments for the sqrt function�

Act �� Scene �
�It is very late at night� Hacker sits in front of a computer

terminal��
Hacker� Eureka� I can make sqrt go ���! faster by making its
result negative�

�Erases old version of sqrt�

Act �� Scene �
Punter� My programs have suddenly stopped working�
Hacker� �looks at code� It�s not my fault� sqrt satis�es its
speci�cation�

�exeunt�

This kind of misunderstanding is just as common when you are your own
customer �that is� when you write your own procedure�� It is easy to assume
that you can understand a simple program just by looking at the code� but

Another example� min ��

this is dangerous� The code can only tell you what the computer does�
not what the result was meant to be� Avoid the problem with a strong
speci�cation discipline only assume what is speci�ed� Equivalently� everything
that is assumed must be in the speci�cation�

��
 Another example� min

The minimum function is easily enough de�ned as

min num �� num �� num

min x y � x� if x �� y

� y� otherwise

However� there is an unnatural asymmetry in the way the cases are divided
between x�y and x�y� when they could equally well have been x�y and x�y�
This case division is not part of what you need to know to be able to use
min� Perhaps a more natural speci�cation would be

min num �� num �� num

��pre none

��post ��min x y� � x �� �min x y� �y� �

�� ��min x y� �� x � �min x y� ��y�

Proposition ��� The de�nition of min satis�es the speci�cation�

Proof Suppose x and y are real numbers� There are two cases � either
x � y� or x � y�

case � x � y� then �min x y� � x� This immediately proves
��min x y� � x � �min x y� � y� and �min x y� � x� and
�min x y� � y because x � y�

case � x � y� then �min x y� � y� Immediately� ��min x y� � x
��min x y� � y� and �min x y� � y� and �min x y� � x because y � x��

We can now prove properties of min solely from the speci�cation�

Proposition ��� �min x y� is uniquely determined by the speci�cation�

Proof Let m� and m� be two possible values of �min x y� according to the
speci�cation �not the de�nition�� We wish to show that m� � m�� We know
that

�m� � x �m� � y� � �m� � x� � �m� � y� �
�m� � x �m� � y� � �m� � x� � �m� � y�

We �rst show that m� � m�� From �m� � x � m� � y�� there are two
cases� two possible values for m�� and� either way� m� � m�� By symmetry�
m� � m�� so m� � m�� �

�	 Speci�cations

Speci�cations do not have to specify uniquely� there may be several di�erent
possible answers� equally satisfactory� But uniqueness of speci�cation is a
useful property� as is illustrated by the next result�

Proposition ��� �Commutativity� �min x y� � �min y x��

Proof The speci�cation of �min x y� is symmetrical in x and y� so it is
also satis�ed by �min y x�� Hence� by uniqueness �the previous proposition��
�min y x� � �min x y�� �

���� Summary

� A speci�cation of a procedure can be expressed as typing information�
pre�condition and post�condition�

� You can write these down as part of a Miranda program using logical
notation�

� To show that a function de�nition satis�es the speci�cation you assume
that you are given arguments satisfying the pre�condition� and show that
the result satis�es the post�condition�

� When you use a function� you rely on its speci�cation� not its de�nition�
� Any change to a speci�cation requires a methodical examination of the
function de�nition� and all calls of the function� This may entail no
changes� or changes to the program only� or to other speci�cations� or
to both�

���� Exercises

�� Write pre� and post�conditions for the functions �both in the text and
the exercises� in Chapter �� Try to get to the heart of what each
function is meant to achieve�

�� Use pre� and post�conditions to write a speci�cation for calculating
square roots� Try to think of as many ideas as possible for what the
customer might want� Choosing one interpretation rather than another
may be a design decision� or it may call for clari�cation from the
customer�

�� Suppose you want a procedure to solve the quadratic equation
ax� � bx� c � �

solve num �� num �� num �� �num� num�

��pre �

��post x� and x� are the solutions of a�x���b�x�c � ��

where �x��x�� � �solve a b c�

Exercises �

Assume that you intend to use the formula

x �
�b

q
�b� � �ac�
�a

What are suitable pre� and post�conditions� Try to write them in logic�
�Note� the result type �num� num� is the type of pairs of numbers�
such as ���� ������

�� Using the uniqueness property of min prove the associative property�
that is�

�Associativity� �min x �min y z�� � �min�min x y� z�

�� Directly from the de�nition of min prove associativity�
�� Use pre� and post�conditions to write speci�cations for the standard
Miranda functions abs and entier� �Of course� these are already coded
unalterably� Your �speci�cation� expresses your understanding of what
the standard functions do��
abs takes a number and makes it non�negative by removing its sign for
instance� abs ���� � abs ��� � ����
entier takes a number x and returns an integer� the biggest that is no
bigger than x� For instance�

entier � � � entier ��
 � � entier �� � �� entier ���
 � ��

�� �a� Specify a function round num �� num that rounds its argument
to the nearest integer� Try to capture the idea that� of all the
integers� round x is as close as you can get to x�

�b� Show that the de�nition round� satis�es the speci�cation of round

round� x � e� if abs �e�x�� abs �e���x�

�� i�e� if e is closer to x than e��

� e��� otherwise

where e � entier x

�c� Show that this de�nition round� computes the same function as
round��

round� x � entier �x�����

�Hint� express the condition abs�e � x� � abs�e� � � x� without
using abs��

Chapter �

Functional programming in Miranda

In the preceding chapters� where we were illustrating rather general issues of
programming� we did not probe too deeply into the details of Miranda but
relied on its closeness to mathematical notation to make the meaning clear�
We now turn to a more careful description of Miranda itself�

��� Data types � bool� num and char

Every value in Miranda has a type� the simplest are num �which you have
already seen�� bool and char�

The data type num includes both whole numbers �or integers� and fractional
numbers �or reals� or �oating�point numbers�� A whole number is a number
whose fractional part is zero� Here are some data values of type num

�� ��	 � �	����� ����e��
��	e�� �����e�
 ���	��

Although there are in�nitely many numbers� computers have �nite capacity
and can only store a limited range� Similarly� within a �nite range� there are
in�nitely many fractional numbers� so not all of them can be stored exactly�
Although such practical limitations can be important when you are doing
numerical calculations� especially when you are trying to obtain a fractional
answer that is as accurate as possible� we shall largely ignore them here� The
theory of numerical analysis deals with these questions�

Booleans are the truth�values True and False and their Miranda type is
called bool� Truth�values are produced as a result of the application of the
comparison operators �for example� �� ��� �� ��� They can also be returned
by user�de�ned functions� for example the function even� Expressions of type
bool are really� rather� like logical formulas� and on this analogy functions
that return a bool as their result are often called predicates�

��

Built�in functions over basic types ��

If the evaluator is presented with an expression which is already in its
normal form� then it will simply echo back the same expression since it cannot
reduce the expression any further� For example�

Miranda False

False

char is the type of characters� the elements of the ASCII character set�
They include printable symbols such as letters ��a�� �A�� � � � �� digits ����
to ����� punctuation marks ����� � � � � and so on� as well as various layout
characters such as newline ��n�� Obviously� characters are most useful when
strung together into lists such as �Reasoned Programming� �note the double
quotes for strings� single quotes for individual characters�� so we shall defer
more detailed consideration until the chapter on lists �Chapter ���

��� Built�in functions over basic types

Values of the basic built�in types can be manipulated by a host of built�in
functions and operators� Most such built�in functions and operators are binary
�that is� operate on two arguments� and can be used in in�x form�

Arithmetic

These operations are on numbers� Each is used as a binary in�x operator�
The minus sign can also be used as a unary pre�x operator�

� addition
� subtraction
� multiplication
� division
� exponentiation
div integer division
mod integer remainder

All except � return exact integer results when arguments are integers� provided
that the integers are in the permitted range� Representation for �oating�point
numbers may not be exact� so operations on fractional numbers may not
produce the same results as ordinary arithmetic� For example� �x�y��y and x

may not be equal� div and mod can be speci�ed in tandem by

�� Functional programming in Miranda

div num �� num �� num

mod num �� num �� num

��pre int�x� � int�y� � y �� �

�� �where int�x� means x is a whole number and � means not�

��post x � �x div y� � y � �x mod y�

�� � y�� �� �� �� �x mod y� � y�

�� � y�� �� �y � �x mod y� �� ��

Arithmetic expressions can be entered directly into the evaluator� for example
after the computer has displayed the Miranda prompt

Miranda �
 div �

�

Miranda �
 mod �

Miranda ��

��

The relative precedence of these operators is as follows

� �

� � div mod � increasing precedence
�

Function application always binds more tightly than any other operator�
Parentheses are used when one is not sure of binding powers or when one
wishes to force a di�erent order of grouping� for example�

Miranda double � � 	 mod � � ����

��

Miranda double �� � 	� mod � � double �� mod � � �� mod �

�

Comparisons

� equals
�� not equals All have the same level of precedence�
� less than
� greater than
�� less than or equal Their precedence is lower
�� greater than or equal than that of the arithmetic operators�

Comparison operators are made up of relational operators � �� ��� �� ��� and
equality operators ��� ��� and their result is of type bool� The following are
some examples

Built�in functions over basic types ��

Miranda � � �

False

Miranda � �� ���

True

As the second example suggests� the precedence of comparison operators is
lower than that of the arithmetic operators� Note that comparison operators
cannot be combined so readily� for example� the expression �����
� would
give a type error since it would be interpreted as

�������
� � True�
�

When operating on numbers ��� may not return the correct result unless
the numbers are integers in the permitted range� This is because fractional
numbers should be compared up to a speci�c tolerance� For example�

Miranda sqrt����� � �

False

We can de�ne a function within as follows

within eps x y � abs�x�y� � eps

within can then be used instead of ��� when comparing fractional numbers to
a certain tolerance� For example� �within ����� a b� can be used to see if
a and b are closer than ����� apart�

Logical operators

Boolean values may be combined using the following logical operators

� conjunction �logical � �and�� in order of
�� disjunction �logical � �or�� � increasing precedence
� negation �logical � �not��

Their precedence is lower than that of comparisons� They can be de�ned in
Miranda itself �not that you will need to do this� as in Figure ���� De�ning
these primitives in Miranda not only gives their meaning but also illustrates
the use of pattern matching with Booleans� Exercise� we have used one
equation to de�ne and and two for or� Try writing and with two equations
and or with one�
It is always a good idea to use parentheses whenever � as is often the case
with logical connectives � there is the slightest doubt about the intended
meaning

Miranda
�� � ���� �� ����

False

�� Functional programming in Miranda

and bool �� bool �� bool

��pre none

��post and x y � x � y

or bool �� bool �� bool

��pre none

��post or x y � x �� y

not bool �� bool

��pre none

��post not x � �x

and x y � y� if x

� False� otherwise

or True x � True

or False x � x

not True � False

not False � True

Figure ���

��� User�de�ned functions

Identi�ers

Before introducing a new function the programmer must decide on an
appropriate name for it� Names� also called identi�ers� are subject to some
restrictions in all programming languages�

Throughout a program� identi�ers are used for variables� function names
and type names� In Miranda� identi�ers must start with a lower case letter�
The remaining characters in the identi�er can be letters� digits� � or �

�single quote�� However� not all such identi�ers are valid as there are a
number of special words �reserved words� which have a particular meaning to
the evaluator� for example where� if� otherwise� Clearly� the programmer
cannot use a reserved word for an identi�er as this would lead to ambiguities�
Furthermore� there are also a number of prede�ned names �for example� those
of built�in functions such as div� mod� which must be avoided�

Meaningful identi�ers for functions and variables will make a program easier
to read� Longer names are usually better than shorter names� although the
real criterion is clarity� For example� the identi�er record is probably a
better choice than r� But deciding whether it is better than� say� rec is
not as straightforward� In fact� in most cases modest abbreviations need not

User�de�ned functions ��

reduce the clarity of the program�

A good rule is that identi�ers should have long explanatory names if they
are used in many di�erent parts of the program� This is because it may
be di�cult to refer to the de�nition if it is a long way from the use� On
the other hand� identi�ers with purely local signi�cance can safely have short
names � such as x for a function argument� If the variable in question is
a general purpose one then nothing is gained by having a long name such
as theBiggestNumberNeeded� an identi�er such as n may be just as clear�
Finally� it is worth mentioning that it is best to avoid acronyms for identi�ers�
For example� tBNN is even worse than theBiggestNumberNeeded�

De�ning values

It is often useful to give a name to a value because the name can then be
used in other expressions� For example� we have already seen the de�nition of
mypi

mypi num

mypi � ���
���

As usual� the choice of meaningful names will make the program easier to
read� The following is a simple example of an expression which involves names
that have been previously de�ned using ���

hours�in�day � �

days � ���

hours�in�year � days � hours�in�day

If you are already familiar with imperative languages such as Pascal or Basic�
then it is important to understand that a de�nition like this is not like an
assignment to a variable� but� rather� like declaring a constant� The identi�er
days has the value ��� and this cannot be changed except by rewriting the
program� What is more� if you have con�icting de�nitions within a program�
then only the �rst will ever have any e�ect� At this point it may also appear
natural to be able to give names not only to values such as numbers or
truth�values but also to functions� for example

dd num �� num

dd � double

dd behaves identically to double in every respect� This indicates that functions
are not only �black boxes� that map values to other values� but are values in
themselves� Thus in functional languages functions are also �rst�class citizens
�just like numbers� Booleans� etc�� which can be passed to other functions
as parameters or returned as results of other functions� This is discussed in
much more detail in Chapter 	�

