
�� Functional programming in Miranda

Thus entering a function�s name without any parameters is the equivalent
of entering a value� However� the major di�erence between a function value
and other values is that two functions may not be tested for equality� This is
the case even if they both have precisely the same code or precisely the same
mappings for all possible input values� Thus the expression �dd � double�

will result in an error�

De�ning functions

In Miranda� new functions are introduced in three steps

�� Declare the function name and its type �its argument and result types�
square num �� num

�� Provide the appropriate pre� and post�conditions

��pre none

��post square n � n��

�� Describe the function using one or more equations

square n � n�n

Although type declarations are not mandatory for functions� it is good
programming practice to include them with de�nitions in all programs� Type
declarations act as a design aid since the programmer is forced to consider
the nature of the input and output of functions before de�ning them� They
also document the program and make it more readable since any programmer
can immediately see what types of objects are mapped by the function� Of
course� the second step is also optional in that the evaluator won�t even notice
if you miss it out� But we hope by now you are beginning to understand
why it is essential�
Consider quadratic equations of the form ax� � bx � c � �� where x is a

variable and a� b and c are constants� Now the solutions for such a quadratic
equation are given by

�bpb� � �ac
�a

We can de�ne a function hasSolutions which given a� b and c returns True
or False indicating whether there will be any solution for x

hasSolutions num �� num �� num �� bool

��pre none

��post hasSolutions a b c iff a�x�x � b�x �c � � for some real x

hasSolutions a b c � ��a���� � �b�b��
�a�c�� ��

��a��� � ��b�������c�����

More constructions ��

This uses the fact that the roots of the quadratic equation are given by the
formula above�
Note�

� The speci�cation is quite di�erent from the de�nition� and it takes some
mathematical reasoning to relate the two�

� �a��� � b�b��
�a�c� �� ��a��� � ��b���� �� �c������ the right�hand
side of the de�nition� has type bool and its value is exactly the Boolean
result you want for the function application�

In the above de�nition a b c are called the formal parameters� We talk about
the left�hand or the right�hand side of an equation or rule� The right�hand
side describes how the result is constructed using the parameters�

Layout � the o�side rule

Miranda assumes that the entire right�hand side of an equation lies directly
below or to the right of the �rst symbol of the right�hand side� This enables
the evaluator to spot automatically when the right�hand side of a rule has
�nished� An advantage of this is that no special character or symbol such as
a semi�colon is required to indicate the end of de�nition � less typing for
the programmer� This is possible because as soon as the evaluator comes
across a symbol that violates the o�side rule it will take the violation to
mean that the right�hand side of the de�nition has been completed� On the
negative side� however� care must be taken by the programmer to use safe
layout� For long de�nitions leave a blank line before starting the right�hand
side and indent a small standard amount� For example�

functionWithALongName �

xxxx

or

functionWithALongName

� xxxx

Remember that the boundary is set by the �rst symbol of the right�hand side
and not by the preceding ��

��� More constructions

Case analysis

Often� we want to de�ne a function by case analysis� For example�

�	 Functional programming in Miranda

pdifference num �� num �� num

��pre none

��post pdifference x y � abs �x�y�

pdifference x y � x�y� if x��y

� y�x� if y�x

This de�nition is a single equation consisting of two expressions� each of which
is distinguished by a Boolean�valued expressions called a guard� The �rst
alternative says that the value of �pdifference x y� is x�y provided that the
expression x��y evaluates to True� pdifference is de�ned for all numbers
since the two guards exhaust all possibilities� In the above the order in
which the alternatives are written is not signi�cant because the two cases are
disjoint �that is� the guards are mutually exclusive�� they can�t both succeed�
However� if cases are not disjoint then the order in which the alternatives are
written is signi�cant�

Thus guards allow us to choose between two or more alternative values of
the same type and only one alternative will be selected and evaluated� If
there is a possibility of more than one guard evaluating to True� then the
alternative selected will be the �rst whose guard evaluates to True� Actually�
it is good programming practice to write order�independent code� so it is
better if guards are mutually exclusive� Also� writing order�independent code
aids in the portability of your program then your program is more like a
set of equations� For example� if your guards are mutually exclusive then
porting your Miranda program to a parallel machine in which guards may be
evaluated simultaneously will not require any alterations to your code�

An equivalent de�nition for pdifference is

pdifference x y � x�y� if x �� y

� y�x� otherwise

The reserved word otherwise can be regarded as a convenient abbreviation
for the condition which returns True when all previous guards return False�

Pattern matching on basic types

Pattern matching is one of the more powerful features of functional languages�
As we shall see in Chapter �� it is most powerful when used with composite
structures such as lists because it lets you delve into the structure� With the
basic types it can still be used� though it tends to appear much like case
analysis� The idea is that the formal parameters are not just variables� but
�patterns� to be matched against the actual parameter� For example�

More constructions �

bitNegate num �� num

��pre x � � �� x � �

��post �x � � � b � �� �� �x � � � b � ��

�� where b� bitNegate x

bitNegate � � �

bitNegate � � �

Thus pattern matching can be used to select amongst alternative de�ning
equations of a function based on the format of the actual parameter� This
facility has a number of advantages� including enhancing program readability
and providing an alternative to the use of guards� which are in�exible at times�
Furthermore� pattern matching often helps the programmer when considering
all possible inputs to a function� For example� it is clear from the above
equations that bitNegate is currently only de�ned for the values � and ��
The notions of disjointedness and exhaustiveness apply to patterns just as

for guards� similarly� for non�disjoint patterns� it is the �rst match that is
used� The otherwise guard corresponds to a �nal pattern that is simply a
variable �and so matches everything�� Note that pattern matching and guards
can be used together
sign num �� num

��pre none

��post �n�� � sign n��� ��

�� �n�� � sign n��� �� �n�� � sign n � ���

sign � � �

sign n � �� if n��

� ��� if n��

Special facilities for pattern matching on natural numbers

Patterns can be used to de�ne functions which operate on natural numbers
�that is� non�negative integers�� The operator � is special as it can be used
in patterns of the form p�k where p is a pattern and k is a positive integer
constant� A number x will match the pattern only if x is an integer and x �
k� For example� y�� matches any positive integer� and y gets bound to that
integer�minus�one� So�

pred num �� num

��pre nat�x�

��post �pred x � � � x � �� �� �x � � � pred x � x���

pred � � �

pred �n � �� � n

�nat�x� means that n is a natural number int�x� � x � ��� Notice that
patterns can contain variables� This de�nition describes a version of the
predecessor function� The pattern n�� can only be �matched� by a value if

�� Functional programming in Miranda

n matches a natural number forcing pred to be de�ned for natural numbers
only� Here the patterns are exhaustive and hence cover all natural numbers�
Furthermore� we know that the order of equations will not be important in
this example since the patterns are disjoint as no natural number can match
more than one pattern�

Pre�x and in�x functions

In Miranda� enclosing an in�x operator in parentheses converts it to an
ordinary pre�x function� which can be applied to its arguments like any other
function� This can be useful in the context of Chapter 	� where functions are
used as arguments of other functions

Miranda ��� 	 �

��

Miranda ��� 	 �

False

Conversely� user�de�ned binary functions can also be applied in an in�x form
by pre�xing their name with the special character

Miranda � smaller 	

	

One simple way of determining whether it is a good idea to have an
operator as an in�x one is to see if it is associative � �x f y� f z � x

 f�y f z� This is because x f y f z is then unambiguous�

Local de�nitions

In mathematical descriptions one often �nds expressions that are quali�ed by
a phrase of the form �where � � � �� The same device can also be used in
function de�nitions� For example� balance�i where i � interestRate�����
In fact� we have already used where in the de�nition of fourthroot in
Chapter �� The special reserved word where can be used to introduce local
de�nitions whose context �or scope� is the expression on the entire right�hand
side of the de�nition which contains it� For example�

f x y � x � a� if x � ��

� x � a� otherwise

where a � square �y���

In any one equation the where clause is written after the last alternative�

Summary ��

Its local de�nitions govern the whole of the right�hand side of that equation�
including the guards� but do not apply to any other equation�
Furthermore� following a where there can be any number of de�nitions�

These de�nitions are just like ordinary de�nitions and may therefore contain
nested wheres or be recursive de�nitions�
Note that the whole of the where clause must be indented� to show that it

is part of the right�hand side of the equation� The evaluator determines the
scopes of nested wheres by looking at their indentation levels� In the next
example it is clear that the de�nition of g is not local to the right�hand side
of the de�nition of f� but those of y and z are

f x � g y z

where y � �x��� �

z � �x��� � x

g x z � �x � �� � �z���

Let us consider some uses of local de�nitions� Firstly� as in fourthroot� they
can be used to avoid repeated evaluation� In an expression a subexpression
may appear several times� for example

z��smaller x y���smaller x y�

Here the subexpression �smaller x y� appears twice� and will be evaluated
twice� which is rather wasteful� By using a local de�nition we can give a
name to an expression and then use the name in the same way that we use
a formal parameter

z�w�w where w � smaller x y

If you like� you can view this use of local de�nitions as a mechanism for
extending the existing set of formal parameters�
Local de�nitions can also be used to decompose compound structures or

user�de�ned data types by providing names for components �as will be seen
later� in Chapter ���
It is good programming practice to avoid unnecessary nesting of de�nitions�

In particular� use local de�nitions only if logically necessary� Furthermore�
a third level of de�nition should be used only very occasionally� Failure to
follow these simple programming guidelines will result in de�nitions that are
di�cult to read� understand and reason about�

��� Summary

� Miranda has three primitive data types numbers� truth�values and
characters �num� bool and char respectively��

�� Functional programming in Miranda

� Miranda also provides many built�in operators and functions�
� A new function is de�ned in three stages� The function�s type is
declared� the function is speci�ed in a comment and then it is de�ned
using one or more equations�

� Although type declarations and speci�cations are not mandatory for
functions� it is good programming practice to include them with all
de�nitions�

� Miranda is layout�sensitive in that it assumes that the entire right�hand
side of an equation lies directly below or to the right of the �rst symbol
of the right�hand side �excluding the initial ��� This is the o�side rule�

� To aid in the portability of programs try� wherever possible� to write
order�independent code� This means writing mutually exclusive guards
or patterns�

� Functions �or other values� can also be de�ned locally to a de�nition�
Such local de�nitions can be used to avoid repeated evaluation or to
decompose compound structures� as will be seen in Chapter ��

��� Exercises

�� Write de�nitions for the functions speci�ed in the exercises at the end
of Chapter ��

�� De�ne istriple� which returns whether the sum of the squares of two
numbers is equal to the square of a third number� A Pythagorean triple
is a triple of whole numbers x� y and z that satisfy x� � y� � z�� The
Miranda function istriple should be declared as follows

istriple num �� num �� num �� bool

��pre none

��post �istriple a b c� ��� a�b�c are the lengths of the

�� sides of a right angle triangle

The function takes as arguments three numbers and returns true if they
form such a triple� Evaluate the function on the triples

�
 �

� �� ��

�� �
 ��

and check that the �rst two are Pythagorean triples and the third is
not� Do this exercise twice �rst assume that c is the hypotenuse and
then rewrite it so that any of the parameters could be the hypotenuse�

Chapter �

Recursion and induction

��� Recursion

Suppose we want to write a function sum n which gives us the sum of the
natural numbers up to n� that is�

Pn
i�� i

sum n � � � � � � � � � � � �� �n� �� � n
Inspecting the above expression we see that if we remove ��n� we obtain an
expression which is equivalent to sum�n � ��� at least if n � ��
This suggests that

sum n � sum �n� �� � n �����

We say that the equation exhibits a recurrence relationship� To complete
the de�nition we must de�ne a base case which speci�es where the recursion
process should end� For sum this is when the argument is �� Thus the
required de�nition is

sum num �� num

��pre nat�n�

��post sum n � sum�i�� to n� i

sum n � �� if n � �

� sum �n��� � n� if n � �

�sum�i�� to n� i� is intended to be a typewriter version of �
Pn

i�� i�� If we
just used the recurrence relation ������ forgetting the base case� then we would
obtain non�terminating computations as illustrated in Figure ���� Function
de�nitions� like that of sum� that call themselves are said to be recursive�
Obviously� the computation of sum involves repetition of an action�
Often when describing a function � such as sum � there are in�nitely

many cases to consider� In conventional imperative programming languages
this is solved by using a loop� but in functional languages there are no
explicit looping constructs� Instead� solutions to such problems are expressed

��

�� Recursion and induction

:
:

sum �

�sum �� � �

�sum �� � � � �

�sum �� � � � � � �

�sum ��� � � � � � � � �

a black hole

Figure ���

by de�ning a recursive function� Clearly� the recursive call must be in terms
of a simpler problem � otherwise the recursion will proceed forever�
The example given above illustrated the technique of writing recursive

functions� which can be summarised as follows

�� De�ne the base case�s��

�� De�ne the recursive case�s�

�a� reduce the problem to simpler cases of the same problem�

�b� write the code to solve the simpler cases�

�c� combine the results to give required answer�

��� Evaluation strategy of Miranda

We have seen that evaluation is a simple process of substitution and
simpli�cation� using primitive and user�de�ned function de�nitions� More
precisely� a function application is rewritten �reduced� in two steps� First the
actual parameters are substituted for the formal parameters in the de�ning
equation of the function this is called instantiation� Then the application is
replaced by the instantiated right�hand side expression �see Figure �����
During evaluation an expression may contain more than one redex � place
where reduction is possible� But in functional languages if an expression has
a well�de�ned value then the �nal result is independent of the reduction route
�this is known as the Church�Rosser property�� However� an evaluator selects

Euclid�s algorithm ��

square �

thus we get

square n � n"n

square � � �"�

Figure ���

the next reduction �from the set of possible ones� in a consistent way� This
is called the evaluator�s reduction strategy� We will not discuss reduction
strategies here except to mention that Miranda�s reduction strategy is called
lazy evaluation� Lazy evaluation works as follows

Reduce a particular part only if its result is needed�

Therefore� because of lazy evaluation you can write function de�nitions such
as

f n � �� if n � �

� n � y� otherwise

where y � f�n���

Although the scope of the local de�nition of y is the entire right�hand side of
the equation for f� we know that by lazy evaluation y will only be evaluated
if it is needed �that is� if and only if the �rst guard fails��

��� Euclid�s algorithm

Consider the problem of �nding the greatest common divisor� gcd� of two
natural numbers

gcd num �� num �� num

��pre nat�x� � nat�y�

��post nat�z� � z�x � z�y �ie z is a common divisor�

�� ��A�nnat�n�x � n�y �� n�z�

�� �ie any other common divisor divides it�

�� where z � �gcd x y�

We have introduced some notation in the pre� and post�conditions

� �A� just means �� that is� �for all�� written in standard keyboard
characters� � would be �E�� Chapter �� contains more detailed

�� Recursion and induction

descriptions of logical symbols�

� ��� means �divides�� or �is a factor of�� �Note that it is not the same
symbol as the division sign �� ���

zjx� �y nat� �x � z � y�

� When we write �y nat�� we are using the predicate nat as though it were
a Miranda type� though it is not� You can think of �nat�y�� and �y nat�
as meaning exactly the same� namely that y is a natural number� But
the type�style notation is particularly useful with quanti�ers

�y nat� P means �y� �nat�y� � P �
��there is a natural number y for which P holds��

�y nat� P means �y� �nat�y�� P �
��for all natural numbers y� P holds��

Be sure to understand these� and in particular why it is that � goes naturally
with �� and � with �� They are patterns that arise very frequently when
you are translating from English into logic �see Chapter ����

There is a small unexpected feature� You might expect the post�condition
to say that any other common divisor is less than z� rather than dividing it
in other words that z is indeed the greatest common divisor� There is just a
single case where this makes a di�erence� namely when x and y are both ��
All numbers divide �� so amongst the common divisors of x and y there is
no greatest one� The speci�cation as given has the e�ect of specifying

gcd � � � �

Proposition ��� For any two natural numbers x and y� there is at most one
z satisfying the speci�cation for �gcd x y��

Proof Let z� and z� be two values satisfying the speci�cation for �gcd x y��
we must show that they are equal� All common divisors of x and y divide z��
so� in particular� z� does� Similarly� z� divides z�� Hence for some positive
natural numbers p and q� we have z� � z�� p� z� � z�� q� so z� � z�� p� q
It follows that either z� � �� in which case also z� � �� or p� q � �� in which
case p � q � �� In either case� z� � z�� �

Note that we have not actually proved that there is any value z satisfying
the speci�cation� only that there cannot be more than one� But we shall soon
have an implementation showing how to �nd a suitable z� so then we shall
know that there is exactly one possible result�

Euclid�s algorithm relies on the following fact�

Proposition ��� Let x and y be natural numbers� y 	� �� Then the common
divisors of x and y are the same as those of y and �x mod y��

Recursion variants ��

Proof For natural numbers x and y there are two fundamental properties of
integer division� which in fact are enough to specify it uniquely if y 	� �
�pre�condition�� then �post�condition�

x � y � �x div y� � �x mod y�

� � �x mod y� � y

Suppose n is a common divisor of y and �x mod y�� That is� there is a p
such that y � n� p and a q such that �x mod y� � n� q� Then

x � y � �x div y� � �x mod y� � n� �p � �x div y� � q�

so n also divides x� Hence every common divisor of y and �x mod y� is also a
common divisor of x and y� The converse is also true� by a similar proof� �
It follows that� provided y 	� �� �gcd x y� must equal �gcd y �x mod y���

�Exercise� show this�� On the other hand� �gcd x �� must be x� This is
because x j x and x j �� and any common divisor of x and � obviously divides
x� so x satis�es the speci�cation for �gcd x ��� We can therefore write the
following function de�nition

gcd x y � x� if y��

� gcd y �x mod y�� otherwise

Question� does this de�nition satisfy the speci�cation�
Let us follow through the techniques that we discussed in Chapter �� Let

x and y be natural numbers� and let z � �gcd x y�� We must show that
z has the properties given by the post�condition� and there are two cases
corresponding to the two clauses in the de�nition

y � � z � x We have already noted that this satis�es the speci�cation�
y 	� � z � �gcd y �x mod y�� What we have seen shows that provided that z

satis�es the speci�cation for �gcd y �x mod y��� then it also satis�es the
speci�cation for �gcd x y�� as required�

�

But how do we know that the recursive call gives the right answer� How do
we know that it gives any answer at all� �Conceivably� the recursion might
never bottom out�� Apparently� we are having to assume that gcd satis�es its
speci�cation in order to prove that it satis�es its speci�cation�

��� Recursion variants

The answer is that we are allowed to assume it� But there is a catch� This
apparently miraculous circular reasoning must be justi�ed� and the key is to
notice that the recursive call uses simpler arguments the pair of arguments
y with x mod y is �simpler� than the pair x with y� in the sense that the
second argument is smaller x mod y � y�

�	 Recursion and induction

As we go down the recursion� the second argument� always a natural
number� becomes smaller and smaller� but never negative� This cannot go on
for ever� so the recursion must eventually terminate� This at least proves
termination� but it also justi�es the circular reasoning� For suppose that
gcd does not always work correctly� What might be the smallest bad y for
which gcd x y may go wrong �for some x�� Not � � gcd x � always works
correctly� Suppose Y is the smallest bad y� and gcd X Y goes wrong� Then
Y � �� so

gcd X Y � gcd Y �X mod Y �

But X mod Y is good �since X mod Y � Y �� so the recursive call works
correctly� so �we have already reasoned� gcd X Y does also � a contradiction�
We call the value y in gcd x y a recursion variant for our de�nition of

gcd� It is a rough measure of the depth of recursion needed� and always
decreases in the recursive calls�
Let us now state this as a reasoning principle

In proving that a recursive function satis�es its speci�cation� you
are allowed to assume that the recursive calls work correctly �
provided that you can de�ne a recursion variant for the function�

A recursion variant for a function must obey the following rules

� It is calculated from the arguments of the function�
� It is a natural number �at least when the pre�conditions of the function
hold�� For instance� in gcd the recursion variant is y�

� It is calculated �trivially� from the function�s arguments �x and y��

� It always decreases in the recursive calls� For the recursive call
gcd y �x mod y�� the recursion variant x mod y is less than y� the
variant for gcd x y�

Though these rules may look complicated when stated in the abstract like
this� the underlying intuitions are very basic� Although we did not mention
this explicitly when deriving gcd� the driving force behind recursive de�nitions
is usually to reduce the computation to simpler cases� If you can quantify
this notion of simplicity� �nd an approximate numerical measure for it� then
that is probably the basic idea for your recursion invariant�

Another example � multiplication without multiplying

Some processor chips can add and subtract� but do not have hardware
instructions to multiply or divide� These operations have to be programmed�
Here� in Miranda� is one method for doing this� It uses multiplication and
integer division by �� but these are easy in binary arithmetic�

Recursion variants �

A similar method can be used for exponentiation � computing xn by using
xn div � �Exercise ��

mult num �� num �� num

��pre nat�n�

��post mult x n � x�n

��recursion variant � n

mult x n � �� if n��

� y� if n�� � n mod ���

� y�x� otherwise

where y����mult x�n div ���

The recursion variant is n� The recursive call� used to calculate y� has
variant n div �� It is used when y is used� that is� the second and third
alternatives� and in both of these we have n � � and so n div � � n � the
variant has decreased�

Proposition ��� mult satis�es its speci�cation

Proof There are three cases� corresponding to the three alternatives in the
de�nition

n � � mult x n � � � x� n�

n � �� n even mult x n� � � �mult x�n����
� � � x� �n���
� x� n

n � �� n odd mult x n� � � �mult x��n� ������ � x
� � � x� ��n� ����� � x
� x� �n� �� � x � x� n

�

More general properties of functions

The reasoning principle stated above concerned a particular property of a
function� namely whether it satis�ed its speci�cation� But actually� the
argument applied to any property of the function that you are interested
in proving as long as you have a recursion variant� then you can reason
circularly by assuming that the property holds for recursive calls�

For example� consider the sum function of Section ���� The recursion variant
in sum n is easy � it is just n itself� Having found a recursion variant�
we can now prove the properties of sum� such as the following well�known
equation

Proposition ��� �n� �sum n � �
�n�n� ���

�� Recursion and induction

Proof In the non�recursive case� n � �� this is obvious both sides of the
equation evaluate to �� In the recursive case we have

sum n� sum�n� �� � n
� �

�
�n� ����n� �� � �� � n because we assume the equation holds

for the recursive call
� �

�
n�n� �� by a little algebra�

�

��� Mathematical induction

The reasoning principle given in the preceding section was really a packaged
form of mathematical induction� There are two basic forms of induction and
they are equivalent to each other �see Exercise �� simple induction and
course of values induction� Both should be familiar from school mathematics�
but let us review them here� Both are used for proving properties of the
natural numbers� that is� non�negative whole numbers� and both have the same
underlying idea� You give a general method that shows how you can prove a
property for the natural numbers one by one� starting at � and working up�

Simple induction

The ingredients of a simple induction proof are as follows

� a predicate P or property on the natural numbers for which you wish
to prove �n nat� P �n� �P holds for all natural numbers n��

� the base case a proof of P ����

� the induction step a proof of �n nat� �P �n� � P �n � ���� in other
words a general method that shows for all natural numbers n how� if
you had a proof of P �n� �the induction hypothesis�� you could prove
P �n� ���

Given these� you can indeed deduce �n nat� P �n�� This is the Principle
of Mathematical Induction� The separate parts can be put in the box
proof format� as can be seen in Figure ���� If you were using ordinary
�forall�arrow�introduction�� as in Chapter ��� you would produce a box proof
such as that given in Figure ���� You could then consider two cases� M � �
and M � N � � for some N � and so you end up more or less as in induction�
proving P ��� and P �N � ��� However� in induction� you have a free gift� the
induction hypothesis P �N�� as an extra assumption� Without it� the proof
would be di�cult or even impossible�

Mathematical induction ��

���

P ��� base case

N � nat P �N�
��� induction step

P �N 	 ��

�n � nat� P �n� simple induction

Figure ��� Box proof for simple induction

M � nat
���

P �M�

�n � nat� P �n� �I

Figure ���

To show how this works� suppose� for instance� you want to prove P ��

����
The ingredients of the induction show that you can �rst prove P ���� from
this you can obtain a proof of P ���� from this a proof of P ���� and so on up
to P ��

���� Of course� you never need to go through all these steps� It is
su�cient to know that it can be done� and then you know that P does hold
for �

���

Another way of justifying the induction principle is by contradiction if
�n nat� P �n� is false� then there is a smallest n for which P �n� is false�
What is n� Certainly not �� for you have proved the base case� So taking
N � n� �� which is still a natural number� we have P �N� because n was the
smallest counter�example� But now the induction step shows how to prove
P �N � ��� that is� P �n�� a contradiction� The following is a simple example�

Proposition ��� For all n�

nX
i��

i� �
n

�
�n� ����n � ��

Proof Let P �n� be the above equation� considered as a property of n� We
prove �n nat� P �n� by simple induction�

base case n � � and both sides of the equation are ��

�� Recursion and induction

induction step Suppose that P holds for N � then in the equation for N ���

LHS �
PN��

i�� i�

�
PN

i�� i
� � �N � ���

� N

�
�N � ����N � �� � �N � ��� by the induct� hyp�

� N��
�
�N � ����N � ��

� RHS

�

Course of values induction

Think of how P ��

��� was to be proved under simple induction you work
up to P ��

���� and then use the induction step� But in working up to
P ��

���� you actually proved P for all natural numbers less than �

��� and
it might be helpful in the induction step to use this additional information�
This idea leads to a revised� course of values induction step �with n playing
the role of what before was n� ��

a general proof that shows how� if you already know that P holds
for all m � n� you can show that P also holds for n� In logical
notation�

�n nat� ��m nat� �m � n� P �m��� P �n��

Curiously enough� this also replaces the base case� When you put n � �� the
induction step says if you know P �m� for all m � �� then you can deduce
P ���� but there are no m � � �remember that we are dealing with natural
numbers�� so of course you know P �m� for all m � �� When proving the
induction step� the e�ect is that for n � � there is no special assumption that
can be used and P ��� has to be proved just as before�
The Principle of Course of Values Induction says that if you prove the
course of values induction step� then you can deduce �n nat� P �n�� In box
proof form� a course of values induction proof has the form seen in Figure ����
The following is an example�

Proposition ��� Every positive natural number is a product of primes�
�Recall that n is prime i� it cannot be written as p � q unless either
p � �� q � n� or the other way round��

Proof Let P �n� be the property �n is a product of primes� for positive
natural numbers n�
Let n be a positive natural number� and suppose �course of values induction

hypothesis� that every m � n is a product of primes� We show that n is� too�

Double induction Euclid�s algorithm without division ��

N � nat

�m � nat� �m � N � P �m�� induction hypothesis
���

P �N�

�n � nat� P �n� course of values induction

Figure ���

If n is itself prime� then we are done� �This also deals with the special
case n � � for which there are no positive natural numbers � n�� If n is not
prime� then we can write n � p� q for some natural numbers p and q� neither
of them equal to �� Then p and q are both less than n� so by induction each
is a product of primes� Hence n is� too� �

We have actually cheated here in order to illustrate the technique in an
uncomplicated way� The proof does not illustrate course of values induction on
the natural numbers� but a similar principle on the positive natural numbers�
The correct proof proves the property P �n� de�ned by

P �n�
def
� �n � �� n is a product of primes�

Then there are two cases� If n � �� then P �n� is trivially true
��false � anything� is always true�� Otherwise� n � �� when we use the proof
as given� When we reach n � p � q� p and q must both be positive� so that
from P �p� and P �q� we deduce that p and q are both products of primes� �
This example shows a common feature of course of values induction� It

proves P for n by reducing to simpler cases �p and q� both smaller than n��
which we assume have already been done�

��� Double induction � Euclid�s algorithm without division

Consider the problem of �nding the greatest common divisor again but this
time replace the division in Euclid�s algorithm by repeated subtraction

gcd x y � gcd y x� if x�y

� x� if y��

� gcd �x�y� y� otherwise

y is no longer a recursion variant� because in the third clause y does not
decrease x does instead� It is still possible to concoct a recursion variant in
this case� namely�

r�x� y� � �� �x� y�� if x � y

�� Recursion and induction

� �� �x� y� � �� if x � y

However� this is somewhat arti�cial� The reasoning is that our notion of
simplicity is not based simply on a numerical measure� but on the idea of
lexicographic order

�x�� y�� is simpler than �x� y� i�
y� � y or
y� � y and x� � x

You could say that y is almost a recursion variant� certainly it never increases
in recursive calls �unlike x�� But in the case where y remains unchanged as a
variant� it must be helped by x decreasing�

There is a quite general principle of well�founded induction �see Appendix A�
that uses this idea� but� rather than going into the generalities� here we shall
show how to use a double induction�

Proposition ��� This de�nition of gcd satis�es the speci�cation�

Proof We use course of values induction to prove �y nat� P �y�� where
P �y�

def
� �x nat� ��gcd x y� terminates and satis�es its post�condition�

Therefore let us take a natural number Y � and assume that P �y� holds for
all y � Y � Having �xed our Y � we now use course of values induction again
to prove P �Y �� that is� �x nat� Q�x�� where
Q�x�

def
� �gcd x Y � terminates and satis�es the post�condition�

Therefore� let us now take a natural number X� and assume that Q�x�
holds for all x � X� We prove Q�X�� There are three cases� as follows� for
the three alternatives in the de�nition of gcd

X � Y gcd X Y � gcd Y X� By the induction hypothesis for y� P �X�
holds� so �gcd Y X� terminates and satis�es its post�condition� But the
result z in the post�condition for �gcd Y X� is also good for �gcd X Y ��
so that is OK�

X � Y and Y � � �gcd X Y � terminates immediately with value X� and we
have argued before that X is the greatest common divisor for X and ��

X � Y and Y � � �gcd X Y � � �gcd �X � Y � Y �

X � Y is a natural number less than X �because Y � ��� so by the
induction hypothesis on x we know Q�X � Y �� Hence �gcd �X � Y � Y �
terminates giving the greatest common divisor for �X � Y � and Y � and
this is also the greatest common divisor for X and Y since X and Y
have the same common divisors as do �X � Y � and Y �

By induction on x� we now know �x nat� Q�x�� that is� P �Y �� Hence by
induction on y we have �y nat� P �y�� as required� �

Summary ��

��� Summary

� A recursive function is a function which calls itself� Functions that
require the consideration of a very large number of cases �possibly
in�nitely many� are typically de�ned as recursive functions�

� Generally� a recursive function de�nition has a base case which speci�es
where the recursion process should end�

� When you write a recursive de�nition� also de�ne a recursion variant for
it�

� The existence of a recursion variant proves termination and allows you
to reason inductively about the function�

� The circular reasoning is justi�ed by mathematical induction�
� Simple induction in box proof form�

���

P ��� base case

N nat P �N� induction hypothesis
���

P �N � �� induction step

�n nat� P �n� simple induction

� Course�of�values induction
N nat �m nat� �m � N � P �m�� induction hypothesis

���

P �N� induction step

�n nat� P �n� course of values induction

� You usually hide the induction by using the �circular� reasoning principle
for recursive de�nitions �once you obtain the recursion variant��

� Sometimes you need to make the induction explicit� for example� in
double induction�

� Miranda�s reduction strategy is called lazy evaluation� In lazy evaluation
the evaluator evaluates an expression only if its result is needed�

��	 Exercises

�� The factorial of a non�negative integer n is denoted as n� and de�ned as

factorial n
def
� ��n� ��� �n� ��� �n� �� � � �� �� �

�� is de�ned to be �� Write a function factorial to de�ne the factorial
of a non�negative integer� Ignore the possibility of integer over�ow�

