46 Functional programming in Miranda

Thus entering a function’s name without any parameters is the equivalent
of entering a value. However, the major difference between a function value
and other values is that two functions may not be tested for equality. This is
the case even if they both have precisely the same code or precisely the same
mappings for all possible input values. Thus the expression (dd = double)
will result in an error.

Defining functions

In Miranda, new functions are introduced in three steps:

1. Declare the function name and its type (its argument and result types):
square :: num -> num

2. Provide the appropriate pre- and post-conditions:

| |lpre: mnone
| |lpost: squaren = n"2

3. Describe the function using one or more equations:

square n = n*n

Although type declarations are not mandatory for functions, it is good
programming practice to include them with definitions in all programs. Type
declarations act as a design aid since the programmer is forced to consider
the nature of the input and output of functions before defining them. They
also document the program and make it more readable since any programmer
can immediately see what types of objects are mapped by the function. Of
course, the second step is also optional in that the evaluator won’t even notice
if you miss it out. But we hope by now you are beginning to understand
why it is essential.

Consider quadratic equations of the form ax?+ bx + ¢ =0, where z is a
variable and a, b and ¢ are constants. Now the solutions for such a quadratic
equation are given by

—b4+ V6?2 — 4ac

a
We can define a function hasSolutions which given a, b and ¢ returns True
or False indicating whether there will be any solution for x:

hasSolutions:: num -> num -> num -> bool
| |pre: none
| lpost: hasSolutions a b ¢ iff a*x*x + b*x +c = 0 for some real x
hasSolutions a b ¢ = ((a~=0) & (b*b>=4x*xaxc)) \/
((a=0) & ((7=0)\/(c=0)))

More constructions 47

This uses the fact that the roots of the quadratic equation are given by the
formula above.
NOTE:

e The specification is quite different from the definition, and it takes some
mathematical reasoning to relate the two.

o (a”=0 & bxb>=4xax*xc) \/ ((a=0) & ((b"=0) \/ (c=0))), the right-hand
side of the definition, has type bool and its value is exactly the Boolean
result you want for the function application.

In the above definition a b ¢ are called the formal parameters. We talk about
the left-hand or the right-hand side of an equation or rule. The right-hand
side describes how the result is constructed using the parameters.

Layout — the offside rule

Miranda assumes that the entire right-hand side of an equation lies directly
below or to the right of the first symbol of the right-hand side. This enables
the evaluator to spot automatically when the right-hand side of a rule has
finished. An advantage of this is that no special character or symbol such as
a semi-colon is required to indicate the end of definition — less typing for
the programmer! This is possible because as soon as the evaluator comes
across a symbol that violates the offside rule it will take the violation to
mean that the right-hand side of the definition has been completed. On the
negative side, however, care must be taken by the programmer to use safe
layout. For long definitions leave a blank line before starting the right-hand
side and indent a small standard amount. For example,

functionWithALongName =
XXXX
or

functionWithALongName
= XXXX

Remember that the boundary is set by the first symbol of the right-hand side
and not by the preceding =.

4.4 More constructions

Case analysis

Often, we want to define a function by case analysis. For example,

48 Functional programming in Miranda

pdifference :: num -> num -> num
| |lpre: none
| |lpost: pdifference x y = abs (x-y)
pdifference x y = x-y, if x>=y
= y-x, if y>x

This definition is a single equation consisting of two expressions, each of which
is distinguished by a Boolean-valued expressions called a guard. The first
alternative says that the value of (pdifference x y) is x-y provided that the
expression x>=y evaluates to True; pdifference is defined for all numbers
since the two guards ezhaust all possibilities. In the above the order in
which the alternatives are written is not significant because the two cases are
disjoint (that is, the guards are mutually exclusive), they can’t both succeed.
However, if cases are not disjoint then the order in which the alternatives are
written is significant.

Thus guards allow us to choose between two or more alternative values of
the same type and only one alternative will be selected and evaluated. If
there is a possibility of more than one guard evaluating to True, then the
alternative selected will be the first whose guard evaluates to True. Actually,
it is good programming practice to write order-independent code, so it is
better if guards are mutually exclusive. Also, writing order-independent code
aids in the portability of your program: then your program is more like a
set of equations. For example, if your guards are mutually exclusive then
porting your Miranda program to a parallel machine in which guards may be
evaluated simultaneously will not require any alterations to your code.

An equivalent definition for pdifference is

pdifference x y = x-y, 1f x >=y
y-x, otherwise

The reserved word otherwise can be regarded as a convenient abbreviation
for the condition which returns True when all previous guards return False.

Pattern matching on basic types

Pattern matching is one of the more powerful features of functional languages.
As we shall see in Chapter 6, it is most powerful when used with composite
structures such as lists because it lets you delve into the structure. With the
basic types it can still be used, though it tends to appear much like case
analysis. The idea is that the formal parameters are not just variables, but
‘patterns’ to be matched against the actual parameter. For example,

More constructions 49

bitNegate :: num -> num

| lpre: x=0\/x=1

[lpost: (x=0&b=1)\/ (x=1&b=0)
Il where b= bitNegate x

bitNegate 0 = 1

bitNegate 1 = 0

Thus pattern matching can be used to select amongst alternative defining

equations of a function based on the format of the actual parameter. This

facility has a number of advantages, including enhancing program readability

and providing an alternative to the use of guards, which are inflexible at times

Furthermore, pattern matching often helps the programmer when considering

all possible inputs to a function. For example, it is clear from the above

equations that bitNegate is currently only defined for the values 0 and 1.
The notions of disjointedness and exhaustiveness apply to patterns just as

for guards; similarly, for non-disjoint patterns, it is the first match that is

used. The otherwise guard corresponds to a final pattern that is simply a

variable (and so matches everything). Note that pattern matching and guards

can be used together:

sign :: num -> num

| |l]pre: none

| lpost: (n=0 & sign n=0) \/

| (n>0 & sign n=1) \/ (n<0 & sign n = -1)

sign 0 =0

signn =1, 1if n>0

-1, 1if n<o0

Special facilities for pattern matching on natural numbers

Patterns can be used to define functions which operate on natural numbers
(that is, non-negative integers). The operator + is special as it can be used
in patterns of the form p+k where p is a pattern and k is a positive integer
constant. A number x will match the pattern only if x is an integer and x >
k. For example, y+1 matches any positive integer, and y gets bound to that
integer-minus-one. So,

pred :: num -> num

| lpre: nat(x)

| lpost: (pred x = 0 & x =0) \/ (x>0 & pred x = x-1)

pred 0 = 0

pred (n + 1) = n

(nat(x) means that n is a natural number: int(x) Aax > 0.) Notice that

patterns can contain variables. This definition describes a version of the
predecessor function. The pattern n+1 can only be ‘matched’ by a value if

50 Functional programming in Miranda

n matches a natural number forcing pred to be defined for natural numbers
only. Here the patterns are exhaustive and hence cover all natural numbers.
Furthermore, we know that the order of equations will not be important in
this example since the patterns are disjoint as no natural number can match
more than one pattern.

Prefix and infix functions

In Miranda, enclosing an infix operator in parentheses converts it to an
ordinary prefix function, which can be applied to its arguments like any other
function. This can be useful in the context of Chapter 8, where functions are
used as arguments of other functions:

Miranda (+) 8 9
17

Miranda (>) 8 9

False

Conversely, user-defined binary functions can also be applied in an infix form
by prefixing their name with the special character $:

Miranda 9 $smaller 8
8

One simple way of determining whether it is a good idea to have an
operator as an infix one is to see if it is associative — (x $f y) $f z = x
$£(y $£ z) This is because x $f y $f z is then unambiguous.

Local definitions

In mathematical descriptions one often finds expressions that are qualified by

a phrase of the form ‘where ...".

function definitions. For example, balance*i where i = interestRate/100.

The same device can also be used in

In fact, we have already used where in the definition of fourthroot in
Chapter 3. The special reserved word where can be used to introduce local
definitions whose context (or scope) is the expression on the entire right-hand
side of the definition which contains it. For example,

fxy=x+a, if x > 10

X - a, otherwise
where a = square (y+1)

In any one equation the where clause is written after the last alternative.

Summary 51

Its local definitions govern the whole of the right-hand side of that equation,
including the guards, but do not apply to any other equation.

Furthermore, following a where there can be any number of definitions.
These definitions are just like ordinary definitions and may therefore contain
nested wheres or be recursive definitions.

Note that the whole of the where clause must be indented, to show that it
is part of the right-hand side of the equation. The evaluator determines the
scopes of nested wheres by looking at their indentation levels. In the next
example it is clear that the definition of g is not local to the right-hand side
of the definition of £, but those of y and z are

fx =gyaz
where y = (x+1) * 4
z = (x-1) * x
gxz=(x+1)* (z-1)

Let us consider some uses of local definitions. Firstly, as in fourthroot, they
can be used to avoid repeated evaluation. In an expression a subexpression
may appear several times, for example

z+(smaller x y)*(smaller x y)

Here the subexpression (smaller x y) appears twice, and will be evaluated
twice, which is rather wasteful. By using a local definition we can give a
name to an expression and then use the name in the same way that we use
a formal parameter:

z+w*w where w = smaller x y

If you like, you can view this use of local definitions as a mechanism for
extending the existing set of formal parameters.

Local definitions can also be used to decompose compound structures or
user-defined data types by providing names for components (as will be seen
later, in Chapter 7).

It is good programming practice to avoid unnecessary nesting of definitions.
In particular, use local definitions only if logically necessary. Furthermore,
a third level of definition should be used only very occasionally. Failure to
follow these simple programming guidelines will result in definitions that are
difficult to read, understand and reason about.

4.5 Summary

e Miranda has three primitive data types: numbers, truth-values and
characters (num, bool and char respectively).

52

4.6

Functional programming in Miranda

Miranda also provides many built-in operators and functions.

A new function is defined in three stages. The function’s type 1is
declared, the function is specified in a comment and then it is defined
using one or more equations.

Although type declarations and specifications are not mandatory for
functions, it is good programming practice to include them with all
definitions.

Miranda is layout-sensitive in that it assumes that the entire right-hand
side of an equation lies directly below or to the right of the first symbol
of the right-hand side (excluding the initial =). This is the offside rule.
To aid in the portability of programs try, wherever possible, to write
order-independent code. This means writing mutually exclusive guards
or patterns.

Functions (or other values) can also be defined locally to a definition.
Such local definitions can be used to avoid repeated evaluation or to
decompose compound structures, as will be seen in Chapter 7.

Exercises

. Write definitions for the functions specified in the exercises at the end

of Chapter 3.

Define istriple, which returns whether the sum of the squares of two
numbers is equal to the square of a third number. A Pythagorean triple
is a triple of whole numbers z,y and z that satisfy z? + y% = z2. The

Miranda function istriple should be declared as follows:

istriple :: num -> num -> num -> bool

| |lpre: mnone

| |lpost: (istriple a b ¢) <-> a,b,c are the lengths of the
Il sides of a right angle triangle

The function takes as arguments three numbers and returns true if they
form such a triple. Evaluate the function on the triples

345
512 13
12 14 15

and check that the first two are Pythagorean triples and the third is
not. Do this exercise twice: first assume that ¢ is the hypotenuse and
then rewrite it so that any of the parameters could be the hypotenuse.

Chapter 5

Recursion and induction

5.1 Recursion

Suppose we want to write a function sum n which gives us the sum of the
natural numbers up to n, that is, >0 ;e

sumn=04+14+243+...4(n—1)+n

Inspecting the above expression we see that if we remove ‘+n’ we obtain an
expression which is equivalent to sum(n — 1), at least if n > 1.
This suggests that
sum n =sum (n—1)+n (5.1)
We say that the equation exhibits a recurrence relationship. To complete
the definition we must define a base case which specifies where the recursion
process should end. For sum this is when the argument is 0. Thus the
required definition is

sum :: num -> num

| lIpre: mnat(n)

| lpost: sum n = sum(i=0 to n) 1
sum n =0, ifn=20
sum (n-1) + n, ifn > 0

‘sum(i=0 to n) i’ is intended to be a typewriter version of ‘3" ¢’. If we
just used the recurrence relation (5.1), forgetting the base case, then we would
obtain non-terminating computations as illustrated in Figure 5.1. Function
definitions, like that of sum, that call themselves are said to be recursive.
Obviously, the computation of sum involves repetition of an action.

Often when describing a function — such as sum — there are infinitely
many cases to consider. In conventional imperative programming languages
this is solved by using a loop, but in functional languages there are no
explicit looping constructs. Instead, solutions to such problems are expressed

33

54 Recursion and induction

sum 3
i)
(sum 2) + 3
i)
(sum 1) + 2 + 3
i)
(sum 0) + 1 + 2 + 3
i)
(sum -1) + 0 + 1 + 2 + 3
)

i\ — a black hole

Figure 5.1

by defining a recursive function. Clearly, the recursive call must be in terms
of a simpler problem — otherwise the recursion will proceed forever.

The example given above illustrated the technique of writing recursive
functions, which can be summarised as follows:

1. Define the base case(s).
2. Define the recursive case(s):

a) reduce (& roblem TO Ssimpler cases O € Ssalne roblem
duce the problem to simpl f th problem,
write € code 1o solve € slmpler cases
b) write the code to solve the simpl :

(c) combine the results to give required answer.

5.2 Evaluation strategy of Miranda

We have seen that evaluation is a simple process of substitution and
simplification, using primitive and user-defined function definitions. More
precisely, a function application is rewritten (reduced) in two steps. First the
actual parameters are substituted for the formal parameters in the defining
equation of the function: this is called instantiation. Then the application is
replaced by the instantiated right-hand side expression (see Figure 5.2).
During evaluation an expression may contain more than one redex — place
where reduction is possible. But in functional languages if an expression has
a well-defined value then the final result is independent of the reduction route
(this is known as the Church-Rosser property). However, an evaluator selects

Fuclid’s algorithm 55

square @\‘

square n = n

thus we get: square 4 = 4%4

Figure 5.2

the next reduction (from the set of possible ones) in a consistent way. This
is called the evaluator’s reduction strategy. We will not discuss reduction
strategies here except to mention that Miranda’s reduction strategy is called
lazy evaluation. Lazy evaluation works as follows:

Reduce a particular part only if its result is needed.

Therefore, because of lazy evaluation you can write function definitions such
as

fn=1, ifn=20
=n * y, otherwise
where y = f(n-1)

Although the scope of the local definition of y is the entire right-hand side of
the equation for f, we know that by lazy evaluation y will only be evaluated
if it is needed (that is, if and only if the first guard fails).

5.3 Euclid’s algorithm

Consider the problem of finding the greatest common divisor, gecd, of two
natural numbers:

gcd :: num -> num -> num

| lpre: nat(x) & nat(y)

| lpost: nat(z) & zlx & zly (ie z is a common divisor)
|| &(A)n:nat(nlx & nly -> nlz)

|| (ie any other common divisor divides it)
|| where z = (gcd x y)

We have introduced some notation in the pre- and post-conditions:

o (A) just means V, that is, ‘for all’, written in standard keyboard
characters. 34 would be (E). Chapter 15 contains more detailed

56 Recursion and induction

descriptions of logical symbols.
‘I” means ‘divides’, or ‘is a factor of’. (Note that it is not the same
symbol as the division sign ‘/ ’.)

zle & Jy i nat. (x =2z X y)

o When we write ‘y : nat’, we are using the predicate nat as though it were
a Miranda type, though it is not. You can think of ‘nat(y)’ and ‘y : nat’
as meaning exactly the same, namely that y is a natural number. But
the type-style notation is particularly useful with quantifiers:

dy :nat. P means Jy. (nat(y) A P)

(‘there is a natural number y for which P holds’)
Yy :nat. P means Vy. (nat(y) — P)

(“for all natural numbers y, P holds’)

Be sure to understand these, and in particular why it is that 3 goes naturally
with A, and V with —. They are patterns that arise very frequently when
you are translating from English into logic (see Chapter 15).

There is a small unexpected feature. You might expect the post-condition
to say that any other common divisor is less than z, rather than dividing it:
in other words that z is indeed the greatest common divisor. There is just a
single case where this makes a difference, namely when x and y are both 0.
All numbers divide 0, so amongst the common divisors of x and y there is
no greatest one. The specification as given has the effect of specifying

gcd 00 = 0

Proposition 5.1 For any two natural numbers x and y, there is at most one
z satisfying the specification for (gecd = y).

Proof Let z1 and 22 be two values satisfying the specification for (gecd = y);
we must show that they are equal. All common divisors of # and y divide 22,
so, in particular, z1 does. Similarly, z2 divides z1. Hence for some positive
natural numbers p and ¢, we have z1 = 22 xp, 22 =21 xg¢q, so z1 =zl X p X ¢
It follows that either z1 =0, in which case also 22 =0, or p x ¢ =1, in which
case p=¢ = 1. In either case, z1 = z2. a

Note that we have not actually proved that there is any value z satistying
the specification; only that there cannot be more than one. But we shall soon
have an implementation showing how to find a suitable z, so then we shall
know that there is exactly one possible result.

Fuclid’s algorithm relies on the following fact.

Proposition 5.2 Let and y be natural numbers, y # 0. Then the common
divisors of x and y are the same as those of y and (x mod y).

Recursion variants 57

Proof For natural numbers « and y there are two fundamental properties of
integer division, which in fact are enough to specify it uniquely: if y # 0
(pre-condition), then (post-condition)

=y X (x div y) 4 (x mod y)

0<(xrmod y)<y

Suppose n is a common divisor of y and (x mod y). That is, there is a p
such that y =n x p and a ¢ such that (x mod y) =n x ¢. Then
r=y X (x div y) 4+ (x mod y) =n x (p X (¢ div y)+q)

so n also divides x. Hence every common divisor of y and (z mod y) is also a
common divisor of x and y. The converse is also true, by a similar proof. O

It follows that, provided y # 0, (gcd x y) must equal (gecd y (x mod y)).
(EXERCISE: show this.) On the other hand, (gcd « 0) must be x. This is
because z | x and z |0, and any common divisor of # and 0 obviously divides
x, so x satisfies the specification for (gcd x 0). We can therefore write the
following function definition:

ged x y = X, if y=0
gcd y (x mod y), otherwise

QUESTION: does this definition satisfy the specification?

Let us follow through the techniques that we discussed in Chapter 3. Let
x and y be natural numbers, and let z = (gcd = y). We must show that
z has the properties given by the post-condition, and there are two cases
corresponding to the two clauses in the definition:

y=0:2z=1x We have already noted that this satisfies the specification.

y#0:z=(ged y (¢ mod y)) What we have seen shows that provided that =z
satisfies the specification for (ged y (x mod y)), then it also satisfies the
specification for (gecd x y), as required.

O
But how do we know that the recursive call gives the right answer? How do
we know that it gives any answer at all? (Conceivably, the recursion might
never bottom out.) Apparently, we are having to assume that gcd satisfies its
specification in order to prove that it satisfies its specification.

5.4 Recursion variants

The answer is that we are allowed to assume it! But there is a catch. This
apparently miraculous circular reasoning must be justified, and the key is to
notice that the recursive call uses simpler arguments: the pair of arguments
y with mod y is ‘simpler’ than the pair = with y, in the sense that the
second argument is smaller: x mod y < y.

H& Recursion and induction

As we go down the recursion, the second argument, always a natural
number, becomes smaller and smaller, but never negative. This cannot go on
for ever, so the recursion must eventually terminate. This at least proves
termination, but it also justifies the circular reasoning. For suppose that
gcd does not always work correctly. What might be the smallest bad y for
which ged = y may go wrong (for some x)? Not 0 — ged = 0 always works
correctly. Suppose Y is the smallest bad y, and gecd X Y goes wrong. Then
Y >0, so

ged X YV =gcd V (X mod V)
But X mod Y is good (since X mod Y <Y), so the recursive call works
correctly, so (we have already reasoned) gcd X Y does also — a contradiction.

We call the value y in ged = y a recursion variant for our definition of
ged. It is a rough measure of the depth of recursion needed, and always
decreases in the recursive calls.

Let us now state this as a reasoning principle:

In proving that a recursive function satisfies its specification, you
are allowed to assume that the recursive calls work correctly —

provided that you can define a recursion variant for the function.

A recursion variant for a function must obey the following rules:

o [t is calculated from the arguments of the function.

e It is a natural number (at least when the pre-conditions of the function
hold). For instance, in gcd the recursion variant is y.

o [t is calculated (trivially) from the function’s arguments (z and y).

o It always decreases in the recursive calls. For the recursive call
ged y (v mod y), the recursion variant x mod y is less than y, the
variant for ged x y.

Though these rules may look complicated when stated in the abstract like
this, the underlying intuitions are very basic. Although we did not mention
this explicitly when deriving ged, the driving force behind recursive definitions
is usually to reduce the computation to simpler cases. If you can quantify
this notion of simplicity, find an approximate numerical measure for it, then
that is probably the basic idea for your recursion invariant.

Another example — multiplication without multiplying

Some processor chips can add and subtract, but do not have hardware
instructions to multiply or divide. These operations have to be programmed.
Here, in Miranda, is one method for doing this. It uses multiplication and
integer division by 2, but these are easy in binary arithmetic.

Recursion variants 59

A similar method can be used for exponentiation — computing =" by using
" 4 2 (Exercise 5):

mult :: num -> num -> num
| lpre: nat(n)
| lpost: mult x n = x*n
| |[Irecursion variant = n
mult x n = 0, if n=0
v, 1f n>0 & n mod 2=0
y+x, otherwise
where y=2*(mult x(n div 2))

The recursion variant is n. The recursive call, used to calculate y, has
variant n div 2. It is used when y is used, that is, the second and third
alternatives, and in both of these we have n >0 and so n div 2 <n — the
variant has decreased.

Proposition 5.3 mult satisfies its specification

Proof There are three cases, corresponding to the three alternatives in the
definition:

n=20: mult r n=0=2x Xxn.

n>0,n even: mult x n=2 X (mult x(n/2))
=2xax(n/2)
=z Xn

n>0,n odd: mult © n=2 X (mult z((n—1)/2)) +«
=2xax((n-1)/2)+«
=xx(n—1)+x=xxn

More general properties of functions

The reasoning principle stated above concerned a particular property of a
function, namely whether it satisfied its specification. But actually, the
argument applied to any property of the function that you are interested
in proving: as long as you have a recursion variant, then you can reason
circularly by assuming that the property holds for recursive calls.

For example, consider the sum function of Section 5.1. The recursion variant
in sum n is easy — 1t is just n itself. Having found a recursion variant,
we can now prove the properties of sum, such as the following well-known
equation:

Proposition 5.4 Vn. (sum n = in(n +1))

60 Recursion and induction

Proof In the non-recursive case, n = 0, this is obvious: both sides of the
equation evaluate to 0. In the recursive case we have

sum n=sum(n — 1) +n
= %(n —Dn=1)4+1)+n because we assume the equation holds
for the recursive call

= %n(n +1) by a little algebra.

5.5 Mathematical induction

The reasoning principle given in the preceding section was really a packaged
form of mathematical induction. There are two basic forms of induction and
they are equivalent to each other (see Exercise 7). simple induction and
course of values induction. Both should be familiar from school mathematics,
but let us review them here. Both are used for proving properties of the
natural numbers, that is, non-negative whole numbers, and both have the same
underlying idea. You give a general method that shows how you can prove a
property for the natural numbers one by one, starting at 0 and working up.

Simple induction

The ingredients of a simple induction proof are as follows:

e a predicate P or property on the natural numbers for which you wish
to prove Vn :nat. P(n) (P holds for all natural numbers n);

e the base case: a proof of P(0);

e the induction step: a proof of Vn:nat. (P(n) - P(n+1)), in other
words a general method that shows for all natural numbers n how, if
you had a proof of P(n) (the induction hypothesis), you could prove
P(n+1).

Given these, you can indeed deduce Vn :nat. P(n). This is the Principle
of Mathematical Induction. The separate parts can be put in the box
proof format, as can be seen in Figure 5.3. If you were using ordinary
‘forall-arrow-introduction’, as in Chapter 17, you would produce a box proof
such as that given in Figure 5.4. You could then consider two cases, M =0
and M = N 41 for some N, and so you end up more or less as in induction,
proving P(0) and P(N + 1). However, in induction, you have a free gift, the
induction hypothesis P(N), as an extra assumption. Without it, the proof
would be difficult or even impossible.

Mathematical induction 61

N :nat P(N)

P(0) base case : induction step

P(N +1)

Vn i nat. P(n) simple induction

Figure 5.3 Box proof for simple induction

M : nat

PM)
Vn i nat. P(n) VI

Figure 5.4

To show how this works, suppose, for instance, you want to prove P(39976).
The ingredients of the induction show that you can first prove P(0); from
this you can obtain a proof of P(1); from this a proof of P(2); and so on up
to P(39976). Of course, you never need to go through all these steps. It is
sufficient to know that it can be done, and then you know that P does hold
for 39976.

Another way of justifying the induction principle is by contradiction: if
Vn :nat. P(n) is false, then there is a smallest n for which P(n) is false.
What is n? Certainly not 0, for you have proved the base case. So taking
N =n —1, which is still a natural number, we have P(N) because n was the
smallest counter-example. But now the induction step shows how to prove
P(N 4 1), that is, P(n), a contradiction. The following is a simple example.

Proposition 5.5 For all n,

n
> 1=
=0

Proof Let P(n) be the above equation, considered as a property of n. We

(n+1)(2n+1)

|3

prove Vn :nat. P(n) by simple induction.

base case: n =0 and both sides of the equation are 0.

62 Recursion and induction

induction step: Suppose that P holds for N; then in the equation for N 41,

LHS = it
= YN 2+ (N +1)°
= N(N41)2N +1)+ (N +1)> by the induct. hyp.
= NEL(N 4+ 2)(2N +3)
— RHS

Course of values induction

Think of how P(39976) was to be proved under simple induction: you work
up to P(39975), and then use the induction step. But in working up to
P(39975), you actually proved P for all natural numbers less than 39976, and
it might be helpful in the induction step to use this additional information.
This idea leads to a revised, course of values induction step (with n playing
the role of what before was n + 1):

a general proof that shows how, if you already know that P holds
for all m < n, you can show that P also holds for n. In logical
notation,

Vn:nat. (Ym:nat. (m <n— P(m)) — P(n))

Curiously enough, this also replaces the base case. When you put n =0, the
induction step says if you know P(m) for all m < 0, then you can deduce
P(0); but there are no m < 0 (remember that we are dealing with natural
numbers), so of course you know P(m) for all m < 0. When proving the
induction step, the effect is that for n = 0 there is no special assumption that
can be used and P(0) has to be proved just as before.

The Principle of Course of Values Induction says that if you prove the
course of values induction step, then you can deduce Vn :nat. P(n). In box
proof form, a course of values induction proof has the form seen in Figure 5.5.
The following is an example.

Proposition 5.6 Every positive natural number is a product of primes.
(Recall that n is prime iff it cannot be written as p x ¢ unless either
p=1,¢=mn, or the other way round.)

Proof Let P(n) be the property ‘n is a product of primes’ for positive
natural numbers n.

Let n be a positive natural number, and suppose (course of values induction
hypothesis) that every m < n is a product of primes. We show that n is, too.

Double induction — Fuclid’s algorithm without division 63

N :nat
Vm :nat. (m < N — P(m)) induction hypothesis
P(N)
Vn :nat. P(n) course of values induction
Figure 5.5

If n is itself prime, then we are done. (This also deals with the special
case n =1 for which there are no positive natural numbers < n.) If n is not
prime, then we can write n = p X ¢ for some natural numbers p and ¢, neither
of them equal to 1. Then p and ¢ are both less than n, so by induction each
is a product of primes. Hence n is, too. a

We have actually cheated here in order to illustrate the technique in an
uncomplicated way. The proof does not illustrate course of values induction on
the natural numbers, but a similar principle on the positive natural numbers.
The correct proof proves the property P(n) defined by

P(n) dof (n>0—n is a product of primes)
Then there are two cases. If n=20, then P(n) is trivially true
(‘false — anything’ is always true). Otherwise, n > 0, when we use the proof
as given. When we reach n =p x ¢, p and ¢ must both be positive, so that
from P(p) and P(q) we deduce that p and ¢ are both products of primes. O

This example shows a common feature of course of values induction. It
proves P for n by reducing to simpler cases (p and ¢, both smaller than n),
which we assume have already been done.

5.6 Double induction — Euclid’s algorithm without division

Consider the problem of finding the greatest common divisor again but this
time replace the division in Euclid’s algorithm by repeated subtraction:

ged x y = ged v x, 1f x<y
= X, if y=0
gcd (x-y) y, otherwise

y is no longer a recursion variant, because in the third clause y does not
decrease: x does instead. It is still possible to concoct a recursion variant in
this case, namely,

rlx,y) =2 x (x+y), if 2>y

64 Recursion and induction

=2x(zx+y)+1, ifar<y
However, this is somewhat artificial. The reasoning is that our notion of
simplicity is not based simply on a numerical measure, but on the idea of
lexicographic order:

(«',y") is simpler than (z,y) iff
y <y or
y =y and 2/ < x

You could say that y is almost a recursion variant, certainly it never increases
in recursive calls (unlike). But in the case where y remains unchanged as a
variant, it must be helped by z decreasing.

There is a quite general principle of well-founded induction (see Appendix A)
that uses this idea, but, rather than going into the generalities, here we shall
show how to use a double induction.

Proposition 5.7 This definition of gcd satisfies the specification.

Proof We use course of values induction to prove Vy :nat. P(y), where

P(y) L v nat. ((gcd @ y) terminates and satisfies its post-condition)

Therefore let us take a natural number Y, and assume that P(y) holds for

all y <Y. Having fixed our Y, we now use course of values induction again
to prove P(Y), that is, V& : nat. Q(x), where

Qx) def (gcd 2 V) terminates and satisfies the post-condition.

Therefore, let us now take a natural number X, and assume that Q(z)
holds for all © < X. We prove Q(X). There are three cases, as follows, for
the three alternatives in the definition of ged:

X<Y:iged X YV =gcd YV X. By the induction hypothesis for y, P(X)
holds, so (gcd Y X) terminates and satisfies its post-condition. But the
result z in the post-condition for (ged Y X) is also good for (gecd X V),
so that is OK.

X>Y and Y =0: (gcd X Y) terminates immediately with value X, and we
have argued before that X is the greatest common divisor for X and 0.

X>Y and YV >0: (gcd X V)= (ged (X =Y) Y):

X —Y is a natural number less than X (because Y > 0), so by the
induction hypothesis on = we know Q(X —Y). Hence (gcd (X —Y) Y)
terminates giving the greatest common divisor for (X —Y) and Y, and
this is also the greatest common divisor for X and Y since X and YV
have the same common divisors as do (X —Y) and Y.

By induction on x, we now know Vz :nat. Q(x), that is, P(Y). Hence by
induction on y we have Yy :nat. P(y), as required. O

5.7

5.8

Summary 65
Summary

A recursive function is a function which calls itself. Functions that
require the consideration of a very large number of cases (possibly
infinitely many) are typically defined as recursive functions.

Generally, a recursive function definition has a base case which specifies
where the recursion process should end.

When you write a recursive definition, also define a recursion variant for
it.

The existence of a recursion variant proves termination and allows you
to reason inductively about the function.

The circular reasoning is justified by mathematical induction.

Simple induction in box proof form.

N :nat P(N) induction hypothesis
P(0) base case :

P(N 4+ 1) induction step

Vn :nat. P(n) simple induction

Course-of-values induction

N :nat ¥Ym:nat. (m < N — P(m)) induction hypothesis

P(N) induction step

Vn:nat. P(n) course of values induction

You usually hide the induction by using the ‘circular’ reasoning principle
for recursive definitions (once you obtain the recursion variant).
Sometimes you need to make the induction explicit, for example, in
double induction.

Miranda’s reduction strategy is called lazy evaluation. In lazy evaluation
the evaluator evaluates an expression only if its result is needed.

Exercises

. The factorial of a non-negative integer n is denoted as n! and defined as:

factorial n =& x(n—1)x(n—2)x(n—-3)...x2x1

0! is defined to be 1. Write a function factorial to define the factorial
of a non-negative integer. Ignore the possibility of integer overflow.

