
�� Recursion and induction

�� Write a function remainder which de�nes the remainder after integer
division using only subtraction� Ignore the possibility of division by zero�

�� Write a function divide which de�nes integer division using only addition
and subtraction� Ignore division by zero�

�� Here are some exercises with divisibility
 show for all natural numbers
x� y and z that

�a� � j y �b� x j y � x j z � y � z � x j �y � z�
�c� x j � �d� x j y � y j z� x j z
�e� x j x �f� x j y � x j z � x j �y � z�
�g� � j y � y � � �h� x j y � y j x� x � y

�� �a� Use the method of �multiplication without multiplying� to compute
exponentiation� power x n� xn� making use of the facts that

xn � xn div � � xn div � if n is even

and

xn � xn div � � xn div � � x if n is odd

�b� Write a Miranda function� multiplications� that computes the
number of multiplications performed by power�x� n� given the value
of n� How would this compare with the corresponding count of
multiplications for a more simple�minded recursive calculation of xn�
using xn�� � xn
 x�

�� �Tricky� Specify and de�ne a function middle to �nd the middle one of
three numbers� Prove that the de�nition satis�es its speci�cation�

�� Prove that the principles of simple induction and course of values
induction are equivalent� In other words� though course of values
induction looks stronger �can prove more things�� it is not�
First� show that any simple induction proof can easily be converted into
a course of values induction proof�
Second� show that if you have a course of values induction proof of
�n
 nat� P �n� then its ingredients can be used to make a simple
induction proof of �n
 nat� ��m
 nat� �m � n� P �m���� and that this
implies �n
 nat� P �n��

	� Newton�s method for calculating a square root
p
x works by producing

a sequence y�� y�� � � � of better and better approximations to the answer�
where

yn�� �
�

�
�yn �

x

yn
�

The starting approximation y� can be very crude � we shall use x� ��
We shall deem yn accurate enough when j y�n � x j� epsilon� epsilon
being some small number de�ned elsewhere in the program �for instance�
epsilon � ������ Here is a Miranda de�nition

Exercises ��

newtonsqrt

num �� num

��pre
 x �� � � epsilon � �

��post
 abs�r�r � x� � epsilon � r �� �

�� where r � newtonsqrt x

newtonsqrt x � ns� x �x���

ns�

num �� num �� num

��pre
 x �� � � epsilon � �

�� � a �� � � a�a �� x � �a � � �� x � ��

��post
 abs�r�r � a� � epsilon � r �� �

�� where r � ns� x a

ns� x a � a� if a�a � x � epsilon

� ns� x ��a � x�a����� otherwise

�The last three pre�conditions of ns� need some thought� a � � looks
reasonable enough� a � � � x � � avoids the risk of dividing by zero�
and a� � x is not strictly necessary but� as we shall see� it makes it
easier to �nd a recursion variant��

�a� Show that newtonsqrt and ns� satisfy their speci�cation� assuming
that the recursive call in ns� works correctly� This is easy� and the
proof is �nished once we have found a recursion variant� that is the
di�cult part�

�b� If x � �� a� � x and b � �
��a �

x

a
� �for instance� if a � yn and

b � yn���� show that

� � b� � x �
�

�
��� x

a�
��a� � x� � �

�
�a� � x�

�c� The basis for a recursion variant is a� � x� As this gets smaller�
the approximation gets better and we are making progress towards
the answer� However� as it stands it cannot be a recursion variant
because it is not a natural number� �Unlike the case with natural
numbers� a positive real number can decrease strictly in�nitely many
times� by smaller and smaller amounts�� Use �b� to show that a
suitable variant is

max��� � � entier�log�
a� � x

epsilon
��

�This gives a number that � by �b� � decreases by at least �
each time� entier turns it into an integer� and dividing a� � x by
epsilon ensures that this integer is a natural number except for the
last time round� which is coped with by max��� � � � � ����

Chapter �

Lists

��� Introduction

The various data types encountered so far� such as num and bool� are capable
of holding only one data value at a time� However� it is often necessary to
represent a number of related items of data in some way and then be able
to have a single name which refers to these related items� What is required
is an aggregate type� which is a data type that allows more than one item
of data to be referenced by a single name� Aggregate types are also called
data structures since they represent a collection of data in a structured and
orderly manner�
In this chapter we introduce the list aggregate type� together with the
various prede�ned operators and functions in Miranda that manipulate lists�
We shall also see how to use lists of characters to represent strings�

��� The list aggregate type

Lists are used to list values �the elements of the list� of the same type� and
they can be written in Miranda using square brackets and commas� The
following are examples of lists of numbers� Booleans� other lists� and functions
� notice how we also use square brackets for describing the list types� �In
mathematics square brackets are also used for bracketing expressions� but the
two uses are distinguishable by context��

!�����" is of type !num"

!False�False�True" � !bool"

!!���"�!"�!�"" � !!num""

!�������" � !num �� num �� num"

The third example is a valid list since the elements of the list have the

�	

The list aggregate type �

same type� they are all lists of numbers� The empty list !"� which has no
elements� is rather special because it could be of type !�"� where the symbol
� represents any type� �In fact� if you enter !"

 in Miranda� which asks for
the type of !"� the system will respond !�"�� Similarly� the fourth example
illustrates a valid list since all its elements have the same type� namely
functions that map two numbers to a number�
A list !x" with just one element is known as a singleton list� Two lists

are equal if and only if they have the same values with the same number of
occurrences in the same order� Otherwise they are di�erent� so the lists

!���" !���" !�����" !�����" !�����"

are all di�erent even though they have the same elements � and ��

Concatenation

The most important operator for lists is �� �called concatenate or append��
which joins together two lists of the same type to form a single composite
list� For example�

!�����"��!���" � !���������"

We shall see shortly that there is another method for building up lists� called
cons� none the less �� is usually conceptually more natural� and it is often
useful in speci�cations� We can formalize the condition that a value x is an
element of a list xs as

�us� vs� �xs � us��!x"��vs�

Note that� like � and �� �� is associative
 the equation

xs���ys��zs� � �xs��ys���zs

always holds� and so you might as well write xs��ys��zs� In fact� there is no
need for brackets for any number of lists appended together� Concatenating
any list xs with the empty list !" returns the given list� This is called the
unit law and !" is the unit �just like � for � or � for �� with respect to ��

xs��!" � !"��xs � xs

List deconstruction

The function hd �pronounced head� selects the �rst element of a list� and
tl �pronounced tail� selects the remaining portion

hd !�����" � �

tl !�����" � !���"

�� Lists

Notice the type di�erence � the result of hd is an element� that of tl is
another list� It is an error to apply either of these functions to an empty
list� and so appropriate tests must be carried out �using guards or pattern
matching� to avoid such errors�

Indexing and �nding lengths of lists

A list can be indexed by a natural number n in order to �nd the value
appearing at a given position using the # in�x operator

!��������" # � � ��

!�����������" # � � ��

Note that the �rst element of the list has index �
 xs#� � hd xs� Thus� one
would use the index n � � for the nth element of a list�
The pre�x operator $ returns the length of a list �that is� the number of

elements that it contains�

$!" � �

$!x" � �

$!�����������" � �

$�xs��ys� � �$xs� � �$ys�

Cons

The cons �for construct� operator
 is an inverse of hd and tl� It takes a
value and a list �of matching types� and puts the value in front to form a
new list� for example�

�
!����
" � !������
" � �
�
�

!"

x
xs � !x"��xs

hd �x
xs� � x

tl �x
xs� � xs

xs � �hd xs�
�tl xs�� if xs �� !"

Some convenient notations for lists

The special form !a��b"� where a and b are numbers� denotes the list of
numbers !a�a���a��� � � �b" in increasing order from a to b inclusive� This
will be !" if a � b�

The list aggregate type ��

Lists of characters �also called strings� can alternatively be denoted by using
double quotation marks� For example� �hello��

Miranda �cow� �� �boy�

cowboy

An important feature of strings is how they are printed�

Miranda �cowboy�

cowboy

Miranda !�c���o���w���b���o���y�"

cowboy

Miranda �this line has �none newline�

This line has

one newline
The double quotation marks do not appear in the output and special characters
are printed as the character they represent� This printing convention gives
programmer control over the layout of results�

Cons as constructor

From the human point of view� there is often nothing to indicate that one end
of a list should be given any preference over the other� However� functional
programming interpreters store the elements in a manner such that those
elements from one end are much more accessible than those from the other�
Imagine a list as having its elements all parcelled up together� but in a
nested way� If you unwrap the parcel you �nd just one element� the head�
and another parcel containing the tail� �The empty list is special� of course��
The further down the sequence a value is� the more di�cult it is to get out�
because you have to unwrap more parcels�
From this point of view� the most accessible element in a list is the �rst�

that is� the leftmost in the !� � �" notation�
Storing a list !x��x��x��� � ��xn" in this way corresponds notationally to

writing it� using cons� as x�
x�
x�
� � �
xn
!"� and the way the function cons
is applied in the computer� for example to evaluate x
xs� does not perform
any real calculations� but� rather� just puts x and xs together wrapped up
in a wrapper that is clearly marked �
�� �The empty list is just a wrapper�
marked �empty��� A function implemented in this way is called a �constructor�
function� and there are some more examples in Chapter �� Obviously� a
crucial aspect is that you can unwrap to regain the original arguments� so it
is important that
 is �one�to�one� � di�erent arguments give di�erent results
� or� more formally�

�x� y� xs� ys� �x
xs � y
 ys� x � y � xs � ys�

�� is not one�to�one and so could never be implemented as a constructor
function� but snoc� de�ned by

�� Lists

snoc !" � !"

snoc xs x � xs��!x"

is one�to�one and could have been implemented as a constructor function for
lists instead of
� but it is not�

Special facilities for pattern matching on lists

Because every list can be expressed in terms of !" and
 in exactly one
way� we can pattern match on lists using !" and
� For example� any of the
following will match a two�element list�

a
b
!" a
!b" !a�b"

Figure ��� shows the function isempty which uses pattern matching to
determine if a given list is empty or not� Of course� an easier de�nition is

patterns

isempty !"

isempty �x
xs�

� True

� False

the �rst component

or head

the rest of

the list or tail

Figure ���

just isempty x � x � !"� Similarly� we can formally de�ne hd and tl �not
that one would need to� by

hd �x
xs� � x

tl �x
xs� � xs

Notice how pattern matching does not just express implicit tests on the
actual arguments �Are they empty or non�empty� Is the wrapper marked
empty or cons�� as we saw in Section ���� it also provides the right�hand side
of the equation with names for the unwrapped contents of the arguments�

��� Recursive functions over lists

Because of the way in which lists are stored� recursion �and also induction�
on lists is usually based on two cases
 the empty list !"� and lists of the

Recursive functions over lists ��

form �x
xs�� As an example� consider the function which �nds the length of a
list �that is� the operator $�

length

 !num" �� num

��pre
 none

��post
 length xs � $xs

length !" � �

length �x
xs� � � � �length xs�

which can be evaluated as follows

length !��������"
� ���length !�����"� by the second equation

� ������length !��"�� �

� ���������length !"��� �

� ������������� by the �rst equation
� � by built�in rules for �

Of course� we should ask what the recursion variant of length xs is� it is
just $xs � in the recursive call� the length of the argument has gone down
by �� In fact� it is almost always the case for recursively de�ned list functions
that the recursion variant is the length of some list�
That is pretty silly in this example� Either we are assuming that the length

function $ already exists� in which case there is no point in rede�ning it as
length� or we are not� in which case we cannot use it for a recursion variant�
However� there is an important lesson to be drawn regarding in�nite lists�

In�nite lists

Some lists in Miranda can be in�nite� such as the following examples

zeros � �
zeros �� � !���������"

nandup n � n
�nandup �n���� �� � !n�n���n���� � �"
cards � nandup � �� � !��������� � �"

Some calculations using these will be potentially in�nite� and you will need
to press control�C when you have had enough� For instance� evaluating zeros

or cards will start to produce an in�nite quantity of output� and evaluating
$zeros or $cards will enter an in�nite loop�

However� the lazy evaluation of Miranda means that it will not go into
in�nite computations unnecessarily� For instance� hd �tl cards� gives � as its
result and stops�
Now the problem is that we thought we had proved that length xs always

terminates� because it has a recursion variant $xs� length zeros does not

�� Lists

terminate� and this is because the variant $zeros is unde�ned �or in�nite�
which is just as bad�� The moral is

Our reasoning principles using recursion variants only work for
�nite lists�

This is a shame because in�nite lists can be useful and well�behaved� in
fact research into �nding the most convenient ways of reasoning about in�nite
lists is ongoing� However� we shall only deal with �nite lists and shall make
the implicit assumption � usually amounting to an implicit pre�condition �
that our lists are �nite� Then we can use their lengths as recursion variants�
and the �circular reasoning� technique for recursion works exactly as before�

Another example

The following is a less trivial example� It tests whether a given number
occurs as an element of a given list of numbers� Note how this condition can
be expressed precisely using �� in the speci�cation� If x is an element of xs�
then xs can be split up as us��!x"��vs� where us and vs are the sublists of
xs coming before and after some occurrence of x

isin

 num �� !num" �� bool

��pre
 none

��post
 isin x xs ��� �E�us�vs
!num"� xs � us��!x"��vs

��recursion variant � $xs

isin x !" � False

isin x �y
ys� � True� if x � y

� isin x ys� otherwise

The recursion variant in isin x xs is $xs� and we can reason that isin x xs
works correctly as follows�

Proposition ��� isin x meets its speci�cation� If xs � !"� then we cannot
possibly have xs � us��!x"��vs� for that would have length at least �� Hence
the result False is correct�
If xs has the form �y
ys� then note that� from the de�nition� isin

x �y
ys� � �x � y� � isin x ys� Hence we must prove

�x � y� � isin x ys� �us� vs� ��y
ys� � us��!x"��vs�

assuming that the recursive call works correctly� For the � direction� we have
the following two cases

�� If x � y then �y
ys� � !"��!x"��ys�

�� If isin x ys then by induction ys � U��!x"��V for some U and V and
so y
ys � �y
U���!x"��V�

Trapping errors ��

For the � direction� we have �y
ys� � U��!x"��V for some U and V �not
necessarily the same as before�� If U � !" then y � x� while if U 	� !" then
ys � �tl U���!x"��V and so isin x ys by induction� �

Although this may look a little too much like hard work� something of
value has been achieved� The post�condition is very much a global property of
the function � a property of what has been calculated rather than how the
calculation was done� It is tempting to think of the function de�nition itself
as a formal description of what the intuition �x is an element of the list xs�
means� but actually the speci�cation comes closer to the intuitive idea� You
can see this if you think how you might prove such intuitively obvious facts
as �if x is in xs then it is also in xs��ys and ys��xs for any ys� � this is
immediate from the speci�cation� but less straightforward from the de�nition�
Let us note one point that will be dealt with properly in Chapter �� but is

useful already� You could replace num in isin by char or bool or !num" or
any other type at all to give other versions of isin� but the actual de�nition
would not su�er any changes whatsoever
 it is �polymorphic� �many formed��
and it is useful to give its type �polymorphically� as � �� !�" �� bool� leaving
� to be replaced by whatever type you actually want� Indeed� Miranda itself
understands these polymorphic types�

��� Trapping errors

The evaluator will generate a run�time error message for cases where no
matching equation has been found for a particular function application�
However� it is always a good idea not to rely on this� Either convince yourself
that your program cannot cause a run�time error� or � for a defensive
speci�cation � traps errors at the program level� In this way it is possible
to generate more meaningful error messages and to bring the execution to a
graceful halt� Such program generated information may then be more useful
for debugging purposes� The prede�ned function

error

 !char" �� �

can be used for this purpose� �The � means that the result of error �
actually not a result at all because the program has aborted � can be
considered formally to be of any type
 it will not cause type checking errors��
As examples� the following are defensive speci�cations for hd and divide�
Again� the �s represent any type

hd

 !�" �� �

��pre
 none

��post
 �E�ys
!�"� xs � !hd xs"��ys

�� �� xs � !" � error message generated

hd �x
ys� � x

hd !" � error �hd of !"�

�� Lists

divide

 num �� num �� num

��pre
 none

��post
 y �� � � x � �divide x y��y

�� �� y � � � error message generated

divide x � � error �Sorry# divide by ��

divide x y � x�y

It is good programming practice to ensure that a given function performs
just one activity� So it is better if a defensive function performs the validations
�the checks� and error responses itself� but calls on a separate non�defensive
function to perform the actual calculations�

��� An example � insertion sort

Here we will consider a slightly larger problem and use a top�down design
technique to arrive at a solution� We shall look at the problem of sorting
data items into ascending order� There are many algorithms for doing this�
and one of simplest methods � though not a very e�cient one � is the
insertion sort� which sorts a list by �rst sorting the tail and then inserting
the head in the correct place� We shall look at a more e�cient algorithm�
�quick sort�� in Chapter ���

Sortedness

Let us start by specifying when a list is sorted �in ascending order� � if
xs � !x�� x�� x�� � � � � xn" then we write Sorted	xs
 to mean that informally

x� � x� � x� � � � � � xn
This can be formalized quite straightforwardly using the subscripting
operator # but another way� using ��� is as follows

Sorted	xs

def
� �us� vs
 !
 "� �a� b

� xs � us��!a� b"��vs� a � b

In other words� whenever we have two adjacent elements a and b in xs �with
a �rst�� then a � b�
Note that we used a polymorphic type � we wrote � for the type of

the elements� !�" for that of the lists� Of course� it only makes sense to
call a list sorted if we know what � means for its elements� It is obvious
how to do this when their type is num� but Miranda understands � for
many other types� For instance� values of type char have a natural ordering
�by ascii code�� and this is extended to strings �values of type !char"� by
lexicographic ordering and to values of other list types by the same method�
The sorting algorithm works �polymorphically� � it does not depend on the

An example insertion sort ��

type� We shall therefore express its type using �� but remember �as implicit
pre�conditions� that � must represent a type for which � is understood�
Let us prove some useful properties about sortedness�

Proposition ���

�� The empty list !" and singleton !x" are sorted�

�� !x� y" is sorted i� x � y�

�� If xs is sorted� then so is any sublist ys �that is� such that we can write
xs � xs���ys��xs� for some lists xs� and xs���

�� Suppose xs��ys and ys��zs are both sorted� and ys is non�empty� Then
xs��ys��zs is sorted�

Proof

�� This is obvious� because the decomposition xs � us���a� b���vs can only
be done if $xs � ��

�� This is obvious� too�

�� If ys � us��!a� b"��vs� then xs � �xs���us���!a� b"���vs��xs��� and so
a � b because xs is sorted�

�� Suppose xs��ys��zs � us��!a� b"��vs� It is clear that a and b are either
both in xs ��ys or both in ys ��zs� and so a � b�

�

The third case� set out in full using box notation �Chapters �� and ����
can be seen in Figure ����

xs is sorted

�a� b� us� vs� �xs � us���a� b���vs� a � b�

xs � xs���ys��xs�
def of sublist
assumption

�I A�B�US�VS

ys � US���A�B���VS

xs � xs���US���A�B���VS��xs� def sublist

A � B assoc of �� and ��E

ys � US���A�B���VS� A � B �I

�a� b� us� vs� �ys � us���a� b���vs�� a � b �I

ys is sorted def

Figure ���

�	 Lists

When we sort a list� we obviously want the result to be sorted� and this will
be speci�ed in the post�condition� The other property that we need is that
the result has the same elements as the argument� but possibly rearranged �
the result is a permutation of the argument�
Let us write Perm	xs�ys
 for �ys is a permutation of xs�� We shall not
de�ne this explicitly in formal terms� but use the following facts

� Perm�xs�xs�
� Perm�xs�ys� � Perm�ys�xs�
� Perm�xs�ys� � Perm�ys�zs�� Perm�xs�zs�
� Perm�us��vs��ws��xs��ys� us��xs��ws��vs��ys�� that is� vs and xs are
swapped

In fact� any permutation can be produced by a sequence of swaps of adjacent
elements� We are now ready to specify the function sort

sort

 !�" �� !�"

��pre
 none �but� implicitly� there is an ordering over ��

��post
 Sorted�ys� � Perm�xs�ys�

�� where ys � sort xs

Recall that the method of insertion sort was to sort x
xs by �rst sorting xs

and then inserting x in the correct place� We therefore de�ne

sort !" � !"

sort �x
xs� � insert x �sort xs�

The following is an example of how we intend sort to evaluate

sort !�� ��
� �"
� insert � �sort !��
� �"�
� insert � �insert � �sort !
� �"��
� insert � �insert � �insert
 �sort !�"���
� insert � �insert � �insert
 �insert � �sort !"����
� insert � �insert � �insert
 �insert � !"���
� insert � �insert � �insert
 !�"��
� insert � �insert � !��
"�
� insert � !�� ��
"
� !�� �� ��
"

Specifying insert

insert will be de�ned later � this is �top�down programming�� However� we
must specify insert immediately�

An example insertion sort �

We want to say three things about insert a xs� First� it contains the
elements of xs� in the same order� with a inserted somewhere in the middle�
Imagine that xs is prised apart as xs � xs���xs�� and then a is inserted in
the gap to give the result xs���!a"��xs�� Next� we want to say that an a is
inserted in the correct place in the middle � in other words� the result is
sorted� Finally� when we use insert in sort� its second argument is always
sorted and we expect this fact to make it easier to implement insert� This
gives us a pre�condition

insert

 � �� !�" �� !�"

��pre
 Sorted�xs�

��post
 Sorted�ys� �

�� �E�x�s�x�s
!�"� �xs � x�s��x�s � ys � x�s��!a"��x�s�

�� where ys � �insert a xs�

sort is correctly implemented

That is to say� sort will work correctly provided that insert satis�es its
speci�cation� Of course� when we do get round to implementing insert it
may have any number of errors in it and they will lead sort astray also�
but that is not the point� We can regard sort now as correct and �nished
because our reasoning about it uses the speci�cation of insert� not the
implementation� The only thing that could thwart us is if we discover that
the speci�cation of insert as it stands cannot be implemented�

Let us now prove that sort is correct� First� and crucially� we have a
recursion variant $xs for sort xs� As usual� this proves termination� at least
when xs is �nite �we could not expect that sorting an in�nite list would
terminate�� and allows us to assume that the recursive calls all work correctly�
The two alternatives in the de�nition cover all possible cases� so we must just
check that they give correct answers�

Proposition ��� sort meets its speci�cation�

Proof First we must check that !" is sorted and a permutation of !"� This
is obvious�

Next we must check sort x
xs� Let ys � insert x �sort xs�� We
can assume that sort xs is sorted and a permutation of xs� we deduce in
particular that the pre�condition of insert is satis�ed� The post�condition of
insert tells us that ys is sorted� as required� and it remains to show that ys
is a permutation of x
xs� By the post�condition of insert� there are lists ys�
and ys� such that

sort xs � ys���ys�
ys � ys���!x"��ys�

	� Lists

Hence ys is a permutation of x
ys���ys� � x
�sort xs�� which is a
permutation of x
xs because the recursive call worked correctly� �

Implementing insert

The idea in insert a xs is that we must move past all the elements of xs
that are smaller than a �they will all come together at the start of xs� and
put a in front of the rest� Hence there are two cases for insert a �x
xs�

the head is either a or x� according to which is bigger� and if a is bigger then
it must be inserted into xs

��insert was specified above

insert a !" � !a"

insert a �x
xs� � a
x
xs� if a �� x

� x
�insert a xs�� otherwise

for example�

insert � !��
��" � �
�insert � !
��"� � �
�

!�" � !����
��"

insert is correctly implemented

The recursion variant for insert a xs is $xs� The three alternatives in the
de�nition cover all possible cases� so we must just check that each one gives
a satisfactory answer�

Proposition ��� insert meets its speci�cation�

Proof For insert a !"
 we must check that !a" is sorted �this is obvious��
and that we can �nd lists xs� and xs� such that !" � xs���xs� and !a"
� xs���!a"��xs�� This is easy � take xs� � xs� �!"�
For insert a �x
xs� when x
xs is sorted and a � x� the result a
x
xs

is sorted by Proposition ��� � for !a"��!x"and !x"��xs are both sorted� To
�nd xs� and xs� such that x
xs � xs���xs� and a
x
xs � xs���!a"��xs�� we
take xs� �!"and xs� � x
xs�
The �nal case is for insert a�x
xs� when x
xs is sorted �so xs is sorted and

the pre�condition for insert is satis�ed� and a � x� let ys � insert a xs� By
induction� ys is sorted and there are lists xs� and xs� such that xs � xs���xs�
and ys � xs���!a"��xs�� It follows immediately that x
xs � �x
xs����xs��
and the result� x
ys� is �x
xs����!a"��xs��
Proposition ��� tells us that x
ys is sorted� For either xs� � !"� in

which case x
ys � !x"��!a"��xs� with both !x"��!a" and !a"��xs� �that is�
ys� sorted� or xs� 	� !"� in which case x
ys � !x"��xs����a
xs�� with both
!x"��xs� �a sublist of x
xs� and xs����a
xs�� �that is� ys� sorted� �

Another example sorted merge 	�

This completes the development of sort and insert�

��� Another example � sorted merge

In the preceding example� insertion sort� we introduced the predicates Sorted
and Perm� These are very useful in their own right� and because �at least
for Perm� a direct formalization into logic is di�cult� we used an axiomatic
approach starting from useful properties� The example in this section uses a
similar method with another useful predicate� Merge�

Merge�xs� ys� zs� means that the list zs is made up of xs and ys merged
together� That is to say� the elements of xs and the elements of ys have been
kept in the same order but interleaved to give zs� For instance�

Merge��abcd�� ������ ��ab�c�d��
�Merge��abcd�� ������ ��ba�c�d�� a and b used in wrong order
�Merge��abcd�� ������� �a�ab�c�d�� a used twice�
 not used
Merge��abcd�� ������ �ab��cd���
Merge���abd�� ��c��� ��ab�c�d��

We shall use the following properties

�� Merge�xs� ys� !"� i� xs � ys � !"

�� Merge�xs� ys� !z"� i� �xs � !z"� ys � !"� � �xs � !" � ys � !z"�

�� Merge�xs� ys� zs���zs�� i� �xs�� xs�� ys�� ys��
�xs � xs���xs� � ys � ys���ys� �Merge�xs�� ys�� zs�� �Merge�xs�� ys�� zs���

Note that the right�to�left parts can be written more simply� as

�� Merge�!"� !"� !"�

�� Merge�!z"� !"� !z"�
Merge�!"� !z"� !z"�

�� Merge�xs�� ys�� zs�� �Merge�xs�� ys�� zs���
Merge�xs���xs�� ys���ys�� zs���zs��

If the left�to�right direction of ��� seems di�cult to understand� think of xs�
and ys� as the parts of xs and ys that go into zs�� and xs� and ys� as the
rest�

Let us now look at sorted merge� The idea is that if you have two sorted
lists� then it is quite easy to merge them into a sorted result� Imagine
merging two �les by reading from the inputs and writing to the output� At
each stage� the item to write is the smaller of the two front input items� The
following is a Miranda version

	� Lists

smerge

 !�" �� !�" �� !�"

��pre
 Sorted�xs� � Sorted�ys�

��post
 Sorted�zs� � Merge�xs�ys�zs�

�� where zs � smerge xs ys

��recursion variant � $xs � $ys

smerge !" ys � ys

smerge �x
xs� !" � x
xs

smerge �x
xs� �y
ys� � x
�smerge xs �y
ys��� if x �� y

� y
�smerge �x
xs� ys�� otherwise

It is easy enough to see that this works correctly in the �rst two cases� The
fourth is just like the third� so we shall concentrate on that� We must show
the following�

Suppose x
xs and y
ys are both sorted� and that x � y� Let
ws � �smerge xs �y
ys��� The pre�conditions for this are satis�ed �xs and y
ys
are both sorted�� so we know that ws is sorted and that Merge�xs� y
ys� ws��
We must show that Merge�x
xs� y
ys� x
ws� �this is almost immediate�� and
that x
ws is sorted� The intuitive reason why x
ws is sorted is easy enough
to see� ws is sorted� and x is less than all the elements of ws � these are
either from xs and are � x because x
xs is sorted� or they are from y
ys
and are bigger than x because y is the smallest and x � y� We could quite
reasonably be satis�ed with this argument� but let us also show it slightly
more formally by going back to the de�nition of sortedness�

Suppose x
ws � us��!a�b"��vs� If us � !" � then x � a and ws � b
vs�
Two possibilities arise because Merge�xs� y
ys� b
vs�� namely that b is either
hd xs or y� If b � hd xs� then x
xs� which is sorted� is !"��!x�b"�� �tl xs�
and so x � b giving a � b� If b � y� then x � b by assumption giving
a � b� If us is non�empty� then ws � �tl us���!a�b"��vs� and so a � b
because ws is sorted�

The formal version� written in box notation� appears in Figure ���

��� List induction

The reasoning techniques using recursion variants are usually all we need
for proving that functions satisfy their speci�cations� but for more general
properties they may break down� This is particularly the case when we want
to compare the results of di�erent calls of the same function� The following
is an example with a function to reverse a list�

reverse

The reverse function is de�ned as follows

List induction 	�

� x � y

� Merge�xs� y�ys� ws�

� ws is sorted x�xs is sorted assumptions

�I US�VS�A�B �

� x�ws�US���A�B���VS

� US � �� �US �� ��

� case � of �E

� US � ��

� x � A

�	 ws � B�VS

�� B � hd xs � B � y def Merge

�� B � hd xs

�� x�xs � �����x�B���tl xs

�� x � B �x�xs sorted�

�� A � B eqsub

B � y

x � y assumed

A � B eqsub

�� A � B �E����

�� case � of �E

�� US �� ��

�� ws � tl US���A�B���VS

�	 A � B �ws sorted�

�� A � B �E�
�

�� x�ws � US���A�B���VS� A � B �I

�� x�ws is sorted �I

Figure ���

reverse

 !�" �� !�"

��pre
 none

��post
 reverse xs is the reverse of xs

��recursion variant for reverse xs is $xs

reverse !" � !"

reverse �x
xs� � �reverse xs���!x"

It is not clear how this function ought to be speci�ed� But bearing in

	� Lists

mind that the speci�cation is supposed to say how we can make use of the
function� and bearing also in mind our idea that �� is more useful than cons
in speci�cations because it does not prefer one end of the list to the other�
let us try to elaborate the speci�cation by giving some useful properties of
the function

� �reverse !"� � !"

� �reverse !x"� � !x"
� �reverse �xs��ys�� � �reverse ys����reverse xs�

These are enough to force the given de�nition� for we must have

reverse �x
xs� � reverse �!x"��xs�
� �reverse xs����reverse !x"�
� �reverse xs���!x"

There still remains the question of whether the de�nition does indeed satisfy
these stronger properties� The �rst two are straightforward from the de�nition�
but the third is trickier� It is certainly not obvious whether the recursion
variant method gives a proof�

The principle of list induction

What we shall use is a new principle� the Principle of List Induction� It
is the exact analogue of simple mathematical induction� but applied to lists
instead of natural numbers�
Recall that each natural number is either � or N � � for some N � and so
simple induction requires us to prove a property P in the base case� P ����
and also in the other cases� P �N � ��� But that was not all� In the other
cases the principle gave us a valuable free gift� the induction hypothesis� by
allowing us to assume P �N�� Proving P �N � �� from P �N� was the induction
step� Using boxes� an induction proof is shown in Figure ��� List induction is

���

P ���

N � nat P �N� hypothesis
���

P �N 	 ��

�n � nat� P �n� simple induction

Figure ���

similar� but uses the fact that every list is either !" or x
xs for some x and
xs� It says

List induction 	�

Let P �xs� be a property of lists xs� To prove �xs
 !
 "� P �xs�� it is enough
to prove

base case
 P �!"��
induction step
 P �x
xs� on the assumption of the induction hypothesis� P �xs��

The box proof version of list induction appears in Figure ����

���

P ����

x � �� xs � � � � P �xs� hypothesis
���

P �x�xs�

�ys � � � �� P �ys� list induction

Figure ���

Remember� All lists here are assumed to be �nite� The induction principle
will not tell you anything about in�nite lists�
The principle can be justi�ed in the same way as the principle of simple

mathematical induction � if P does not hold for all lists xs� then what is
a shortest possible list for which it fails� Surely not !"� if we have proved
the base case� and if it is x
xs then xs is shorter� so P �xs� holds� and the
induction step tells us that P also holds for x
xs � a contradiction�
Alternatively� it can be justi�ed using simple induction � see Exercise ���

However� more important than the justi�cation is knowing how to use the
principle�

Application to reverse

Proposition ��� Let xs and ys be lists� Then
�reverse �xs��ys�� � �reverse ys����reverse xs�

Proof We use list induction on xs to prove �xs
 !
 "� P �xs�� where
P �xs�

def
� �ys
 !
 "� �reverse �xs��ys�� � �reverse ys����reverse xs�

base case
 xs� !"

LHS � �reverse �!"��ys�� � �reverse ys�
� �reverse ys���!" unit law
� �reverse ys����reverse !"� � RHS

induction step
 Assume P �xs�� then in the equation for P �x
xs�

LHS � reverse �x
xs��ys�

