66 Recursion and induction

2. Write a function remainder which defines the remainder after integer
division using only subtraction. Ignore the possibility of division by zero.

3. Write a function divide which defines integer division using only addition
and subtraction. Ignore division by zero.

4. Here are some exercises with divisibility: show for all natural numbers
x,y and z that

((b) zlyha|zhy>z—a]|(y—2)
(c) (d) xlynylz—a]=z

(e) x|) zlyrna|z—a|(y+2)
(g) (

h) alyAyla—a=y

5. (a) Use the method of ‘multiplication without multiplying’ to compute
exponentiation, power z n= 2", making use of the facts that

gt = g 41V 2 o dIV 2 5 e aven
and

gt = g 91V 2 0 dIV 2 e s 6dd

(b) Write a Miranda function, multiplications, that computes the
number of multiplications performed by power(z, n) given the value
of n. How would this compare with the corresponding count of
multiplications for a more simple-minded recursive calculation of ",
using 2"t = 2" * 27

6. (Tricky) Specify and define a function middle to find the middle one of
three numbers. Prove that the definition satisfies its specification.

7. Prove that the principles of simple induction and course of values
induction are equivalent. In other words, though course of values
induction looks stronger (can prove more things), it is not.

First, show that any simple induction proof can easily be converted into

a course of values induction proof.

Second, show that if you have a course of values induction proof of

Vn : nat. P(n) then its ingredients can be used to make a simple

induction proof of Vn :nat. (Ym: nat. (m <n — P(m))), and that this

implies Vn : nat. P(n).

8. Newton’s method for calculating a square root /x works by producing

a sequence g, Y1,... of better and better approximations to the answer,
where
1(n x)
Yn+1 = Z\Yn -
2 Yn
The starting approximation yo can be very crude — we shall use = 4+ 1.

We shall deem 1y, accurate enough when | y? —z |< epsilon, epsilon
being some small number defined elsewhere in the program (for instance,
epsilon = 0.01). Here is a Miranda definition:

FEzercises 67

newtonsqrt: :num -> num
| lpre: x >= 0 & epsilon > 0
| |lpost: abs(r*r - x) < epsilon & r >= 0

where r = newtonsqrt x

newtonsqrt x = nsl x (x+1)

nsi:

:num —-> num —-> num

| lpre: x >= 0 & epsilon > 0

Ea>0&a*a>x & (a=0->%x=0)

| |lpost: abs(r*r - a) < epsilon & r >= 0

where r = nsl x a

nsl x a = a, 1f a*a - x < epsilon

nsl x ((a + x/a)/2), otherwise

(The last three pre-conditions of nsl need some thought. « > 0 looks
reasonable enough, a =0 — = = 0 avoids the risk of dividing by zero,

and

a® > z is not strictly necessary but, as we shall see, it makes it

easier to find a recursion variant.)

(a)

Show that newtonsqrt and nsi satisfy their specification, assuming
that the recursive call in ns1 works correctly. This is easy, and the
proof is finished once we have found a recursion variant; that is the
difficult part!

If ©>0, ¢>> 2 and b= (a+2) (for instance, if a =y, and
b= ynt1), show that

Ong—x:i(l—i)(az—x)g

p (a® — z)

1
4
The basis for a recursion variant is a* — x. As this gets smaller,
the approximation gets better and we are making progress towards
the answer. However, as it stands it cannot be a recursion variant
because it is not a natural number. (Unlike the case with natural
numbers, a positive real number can decrease strictly infinitely many
times, by smaller and smaller amounts.) Use (b) to show that a
suitable variant is

Cl2—$

)

(This gives a number that — by (b) — decreases by at least 1

max(0,1 + entier(log, y
epsilon

each time, entier turns it into an integer, and dividing a* — 2 by
epsilon ensures that this integer is a natural number except for the
last time round, which is coped with by maz(0,14...).)

Chapter 6

Lists

6.1 Introduction

The various data types encountered so far, such as num and bool, are capable
of holding only one data value at a time. However, it is often necessary to
represent a number of related items of data in some way and then be able
to have a single name which refers to these related items. What is required
is an aggregate type, which is a data type that allows more than one item
of data to be referenced by a single name. Aggregate types are also called
data structures since they represent a collection of data in a structured and
orderly manner.

In this chapter we introduce the list aggregate type, together with the
various predefined operators and functions in Miranda that manipulate lists.
We shall also see how to use lists of characters to represent strings.

6.2 The list aggregate type

Lists are used to list values (the elements of the list) of the same type, and
they can be written in Miranda using square brackets and commas. The
following are examples of lists of numbers, Booleans, other lists, and functions
— notice how we also use square brackets for describing the list types. (In
mathematics square brackets are also used for bracketing expressions, but the
two uses are distinguishable by context.)

[1,2,3] is of type [num]
[False,False,Truel 7 [booll
([1,2],0]1,[3]] K [[num]]

[(+),(x)] 7 [num -> num -> num]

The third example is a valid list since the elements of the list have the

63

The list aggregate type 69

same type; they are all lists of numbers. The empty list [1, which has no
elements, is rather special because it could be of type [*], where the symbol
* represents any type. (In fact, if you enter [1:: in Miranda, which asks for
the type of [1, the system will respond [*].) Similarly, the fourth example
illustrates a wvalid list since all its elements have the same type, namely
functions that map two numbers to a number.

A list [x] with just one element is known as a singleton list. Two lists
are equal if and only if they have the same values with the same number of
occurrences in the same order. Otherwise they are different, so the lists

(1,21 [2,11 [1,1,21 [1,2,1] [2,1,1]

are all different even though they have the same elements 1 and 2.

Concatenation

The most important operator for lists is ++ (called concatenate or append),
which joins together two lists of the same type to form a single composite
list. For example,

[1,2,3]++[1,5] = [1,2,3,1,5]

We shall see shortly that there is another method for building up lists, called
cons; none the less ++ is usually conceptually more natural, and it is often
useful in specifications. We can formalize the condition that a value x is an
element of a list zs as

Jdus, vs. (xs = us++[x]++0vs)
Note that, like + and *, ++ is associative: the equation

rst+(yst+zs) = (ws+rys)++zs
always holds, and so you might as well write xs++ys++zs. In fact, there is no
need for brackets for any number of lists appended together. Concatenating
any list zs with the empty list [] returns the given list. This is called the
unit law and [1 is the unit (just like 0 for + or 1 for *) with respect to ++:

zs++[] = [J++zs = zs

List deconstruction

The function hd (pronounced head) selects the first element of a list, and
tl (pronounced tail) selects the remaining portion:

hd [1,2,3]
t1 [1,2,3]

1
[2,3]

70 Luists

Notice the type difference — the result of hd is an element, that of t1 is
another list. It is an error to apply either of these functions to an empty
list, and so appropriate tests must be carried out (using guards or pattern
matching) to avoid such errors.

Indexing and finding lengths of lists

A list can be indexed by a natural number n in order to find the value
appearing at a given position using the ! infix operator:

[11,22,33] ' 1 = 22
[10,200,3000] ' 0 = 10

Note that the first element of the list has index 0: zs'0 = hd zs. Thus, one
would use the index n —1 for the nth element of a list.

The prefix operator # returns the length of a list (that is, the number of
elements that it contains):

#[] =0

#x] =1

#[1,1,2,2,3,3] = 6
#(xs++ys) = (#xs) + (#ys)

Cons

The cons (for construct) operator : is an inverse of hd and tl. It takes a
value and a list (of matching types) and puts the value in front to form a
new list, for example,

1:[2,3,4] = [1,2,3,4] = 1:2:3:4:[]
x:x8 = [x]++xs

hd (x:xs) = x

tl (x:xs8) = x8

xs = (hd xs):(t1 xs), if xs "= [J

Some convenient notations for lists

The special form [a..b], where a and b are numbers, denotes the list of
numbers [a,a+1,a+2, ...b] in increasing order from a to b inclusive. This
will be [1 if a > b.

The list aggregate type T1

Lists of characters (also called strings) can alternatively be denoted by using
double quotation marks. For example, "hello".

Miranda ‘"cow" ++ "boy"
cowboy

An important feature of strings is how they are printed.

Miranda ‘'"cowboy"

cowboy

Miranda. [’c’,’o’,’w’,’b’,’o’,’y’]

cowboy

Miranda "this line has \none newline"

This line has

one newline

The double quotation marks do not appear in the output and special characters
are printed as the character they represent. This printing convention gives
programmer control over the layout of results.

Cons as constructor

From the human point of view, there is often nothing to indicate that one end
of a list should be given any preference over the other. However, functional
programming interpreters store the elements in a manner such that those
elements from one end are much more accessible than those from the other.

Imagine a list as having its elements all parcelled up together, but in a
nested way. If you unwrap the parcel you find just one element, the head,
and another parcel containing the tail. (The empty list is special, of course.)
The further down the sequence a value is, the more difficult it is to get out,
because you have to unwrap more parcels.

From this point of view, the most accessible element in a list is the first,
that is, the leftmost in the [...] notation.

Storing a list [x0,x1,x2,...,xn] in this way corresponds notationally to
writing it, using cons, as x0:x1:x2:...:xn:[]; and the way the function cons
is applied in the computer, for example to evaluate x:xs, does not perform
any real calculations, but, rather, just puts x and xs together wrapped up
in a wrapper that is clearly marked ‘:’. (The empty list is just a wrapper,
marked ‘empty’.) A function implemented in this way is called a ‘constructor’
function, and there are some more examples in Chapter 7. Obviously, a
crucial aspect is that you can unwrap to regain the original arguments, so it
is important that : is ‘one-to-one’ — different arguments give different results
— or, more formally,

Va,y,as,ys. (xias=y:ys— x =y A xs= ys)
++ is not one-to-one and so could never be implemented as a constructor
function, but snoc, defined by

72 Luists

snoc [] = []
snoc xs x = xs++[x]
is one-to-one and could have been implemented as a constructor function for

lists instead of :, but it is not.

Special facilities for pattern matching on lists

Because every list can be expressed in terms of [] and : in exactly one
way, we can pattern match on lists using [] and :. For example, any of the
following will match a two-element list.

a:b:[] a: [b] [a,b]

Figure 6.1 shows the function isempty which uses pattern matching to
determine if a given list is empty or not. Of course, an easier definition is

patterns
isempty [] = True
isempty (x:xs) = False

the first component the rest of

or head the list or tail

Figure 6.1

just isempty x = x = []. Similarly, we can formally define hd and t1 (not
that one would need to) by:

hd (x:xs) = x
tl (x:xs) = Xxs

Notice how pattern matching does not just express implicit tests on the
actual arguments (Are they empty or non-empty? Is the wrapper marked
empty or cons?!) as we saw in Section 4.4; it also provides the right-hand side
of the equation with names for the unwrapped contents of the arguments.

6.3 Recursive functions over lists

Because of the way in which lists are stored, recursion (and also induction)
on lists is usually based on two cases: the empty list [], and lists of the

Recursive functions over lists 73

form (z:xs). As an example, consider the function which finds the length of a
list (that is, the operator #):

length :: [num] -> num

| |pre: none

| |lpost: length xs = #xs

length [] =

length (x:xs) = 1 + (length xs)

which can be evaluated as follows:

length [10,20,30]
= 1+(length [20,301) by the second equation
14+(14(1length [30])) 7
1+(14+(1+(length [1))) ’
= 14+(14(1+(0))) by the first equation
=3 by built-in rules for +

Of course, we should ask what the recursion variant of length zs is; it is
just #xs — in the recursive call, the length of the argument has gone down
by 1. In fact, it is almost always the case for recursively defined list functions
that the recursion variant is the length of some list.

That is pretty silly in this example. Either we are assuming that the length
function # already exists, in which case there is no point in redefining it as
length, or we are not, in which case we cannot use it for a recursion variant.
However, there is an important lesson to be drawn regarding infinite lists.

Infinite lists

Some lists in Miranda can be infinite, such as the following examples:

[0,0,0,...]
[n,n+1,n+2,...]
[0,1,2,3,...]

zeros = O:zeros

|
nandup n = n: (nandup (n+1)) ||
cards = nandup 0 |l

Some calculations using these will be potentially infinite, and you will need
to press control-C' when you have had enough. For instance, evaluating zeros
or cards will start to produce an infinite quantity of output, and evaluating
#zeros or #cards will enter an infinite loop.

However, the lazy evaluation of Miranda means that it will not go into
infinite computations unnecessarily. For instance, hd (t1 cards) gives 1 as its
result and stops.

Now the problem is that we thought we had proved that length zs always
terminates, because it has a recursion variant #zs; length zeros does not

T4 Luists

terminate, and this is because the variant #zeros is undefined (or infinite,
which is just as bad). The moral is:

Our reasoning principles using recursion variants only work for
finite lists.

This is a shame because infinite lists can be useful and well-behaved; in
fact research into finding the most convenient ways of reasoning about infinite
lists is ongoing. However, we shall only deal with finite lists and shall make
the implicit assumption — usually amounting to an implicit pre-condition —
that our lists are finite. Then we can use their lengths as recursion variants,
and the ‘circular reasoning’ technique for recursion works exactly as before.

Another example

The following is a less trivial example. It tests whether a given number
occurs as an element of a given list of numbers. Note how this condition can
be expressed precisely using ++ in the specification. If z is an element of s,
then s can be split up as wus++[z]++vs, where us and wvs are the sublists of
zs coming before and after some occurrence of

isin :: num -> [num] -> bool
| |lpre: mnone
| lpost: isin x xs <-> (E)us,vs:[num]. xs = us++[x]++vs
| I[Irecursion variant = #xs
isin x [] = False
isin x (y:ys) = True, ifx=y
= isin x ys, otherwise

The recursion variant in isin x s is #xs, and we can reason that isin z s
works correctly as follows.
Proposition 6.1 isin = meets its specification. If xzs = [], then we cannot
possibly have zs = us++[z]++vs, for that would have length at least 1. Hence
the result False is correct.

If #s has the form (y:ys) then note that, from the definition, isin
¢ (y:ys) = (x=y) Visin = ys. Hence we must prove

(x=y)Visin @ ys < Jus,vs. ((y:ys) = us++[a]++vs)

assuming that the recursive call works correctly. For the — direction, we have
the following two cases:

L. If 2=y then (y:ys) = [1++[al++ys.
2. If isin = ys then by induction ys = U++[z]++V for some U and V and
so yrys = (y: U)++[ad++V.

Trapping errors 75

For the « direction, we have (y:ys) = U++[z]++V for some U and V (not
necessarily the same as before). If U= [] then y =, while if U= [] then
ys = (t1 U)++[a]++V and so isin « ys by induction. O

Although this may look a little too much like hard work, something of
value has been achieved. The post-condition is very much a global property of
the function — a property of what has been calculated rather than how the
calculation was done. It is tempting to think of the function definition itself
as a formal description of what the intuition ‘x is an element of the list s’
means, but actually the specification comes closer to the intuitive idea. You
can see this if you think how you might prove such intuitively obvious facts
as ‘if x is in s then it is also in ws++ys and ys++xs for any ys* — this is
immediate from the specification, but less straightforward from the definition.

Let us note one point that will be dealt with properly in Chapter 7, but is
useful already. You could replace num in isin by char or bool or [num] or
any other type at all to give other versions of isin, but the actual definition
would not suffer any changes whatsoever: it is ‘polymorphic’ (many formed),
and it i1s useful to give its type ‘polymorphically’” as * => [*] -> bool, leaving
* to be replaced by whatever type you actually want. Indeed, Miranda itself
understands these polymorphic types.

6.4 Trapping errors

The evaluator will generate a run-time error message for cases where no
matching equation has been found for a particular function application.
However, it is always a good idea not to rely on this. Either convince yourself
that your program cannot cause a run-time error, or — for a defensive
specification — traps errors at the program level. In this way it is possible
to generate more meaningful error messages and to bring the execution to a
graceful halt. Such program generated information may then be more useful
for debugging purposes. The predefined function

error :: [char] -> *

can be used for this purpose. (The * means that the result of error —

actually not a result at all because the program has aborted — can be

considered formally to be of any type: it will not cause type checking errors.)
As examples, the following are defensive specifications for hd and divide.

Again, the *s represent any type:

hd :: [*] -> *

| |lpre: mnone

| lpost: (E)ys:[*]. xs = [hd xs]++ys

Il \/ xs = [] & error message generated

hd (x:ys) = x

hd [] = error "hd of []"

76 Luists

divide :: num -> num -> num

| |lpre: mnone

| lpost: y "= 0 & x = (divide x y)*y

Il \/ y = 0 & error message generated

divide x 0 = error "Sorry! divide by 0"
divide x y = x/y

It is good programming practice to ensure that a given function performs
just one activity. So it is better if a defensive function performs the validations
(the checks) and error responses itself, but calls on a separate non-defensive
function to perform the actual calculations.

6.5 An example — insertion sort

Here we will consider a slightly larger problem and use a top-down design
technique to arrive at a solution. We shall look at the problem of sorting
data items into ascending order. There are many algorithms for doing this,
and one of simplest methods — though not a very efficient one — is the
insertion sort, which sorts a list by first sorting the tail and then inserting
the head in the correct place. We shall look at a more efficient algorithm,
‘quick sort’, in Chapter 12.

Sortedness
Let us start by specifying when a list is sorted (in ascending order) — if
xs = [wo, 21, 29,...,2,] then we write Sorted(xs) to mean that informally

To S S0 S ST,
This can be formalized quite straightforwardly wusing the subscripting
operator ! but another way, using ++, is as follows:

Sorted(xs) & Vus,vs: [*]. Va,b:x. xs= us++[a,b]++vs — a < b
In other words, whenever we have two adjacent elements a and b in as (with
a first), then a <b.

Note that we used a polymorphic type — we wrote * for the type of
the elements, [*] for that of the lists. Of course, it only makes sense to
call a list sorted if we know what < means for its elements. It is obvious
how to do this when their type is num, but Miranda understands < for
many other types. For instance, values of type char have a natural ordering
(by ASCIl code), and this is extended to strings (values of type [charl) by
lexicographic ordering and to values of other list types by the same method.
The sorting algorithm works ‘polymorphically’ — it does not depend on the

An example — insertion sort T7

type. We shall therefore express its type using *, but remember (as implicit
pre-conditions) that * must represent a type for which < is understood.
Let us prove some useful properties about sortedness.

Proposition 6.2

1. The empty list [] and singleton [x] are sorted.

2. [a,y] is sorted iff x <y.

3. If xs is sorted, then so is any sublist ys (that is, such that we can write
rs = sy ++yst+rsy for some lists sy and wsy).

4. Suppose zs++ys and ys++zs are both sorted, and ys is non-empty. Then
rs++ys++zs 1s sorted.

Proof

1. This is obvious, because the decomposition xs = us++[a,b]++vs can only
be done if #zs > 2.

2. This is obvious, too.

3. If ys = us++[a,bl++vs, then ws = (wsy++us)++[a, b]++(vs++xsz), and so
a < b because zs is sorted.

4. Suppose zs++yst+zs = us++[a, bl++vs. It is clear that @ and b are either
both in xs ++ys or both in ys ++zs, and so a <b.

O
The third case, set out in full using box notation (Chapters 16 and 17),
can be seen in Figure 6.2.

xs is sorted

Va,b, us, vs. (zs = ust+[a,bl++vs — a < b)

def of sublist

s = xsl++yst+zs?

assumption
VI A,B,US VS
ys = US++[A, B1++ VS
x5 = x5 ++ USH+[A, B]1++V5++1s, def sublist
A<B assoc of ++ and V—¢&
ys= US++[A, B]++VS— A< B —7

Va,b, us, vs. (ys= us++la,bl++vs) —a <b VI

ys is sorted def

Figure 6.2

78 Luists

When we sort a list, we obviously want the result to be sorted, and this will
be specified in the post-condition. The other property that we need is that
the result has the same elements as the argument, but possibly rearranged —
the result is a permutation of the argument.

Let us write Perm(ws,ys) for ‘ys is a permutation of xs’. We shall not
define this explicitly in formal terms, but use the following facts:

Perm(as,xs)

Perm(zs,ys) — Perm(ys,as)

Perm(as,ys) N Perm(ys,zs) — Perm(us,zs)

Perm(us++uvst+ws++as++ys, ust+ast+wst+ost+ys), that is, vs and as are

swapped

In fact, any permutation can be produced by a sequence of swaps of adjacent
elements. We are now ready to specify the function sort:

sort :: [x] -> [x]

| |Ipre: none (but, implicitly, there is an ordering over *)

| |lpost: Sorted(ys) & Perm(xs,ys)

Il where ys = sort xs

Recall that the method of insertion sort was to sort x:xs by first sorting xs
and then inserting x in the correct place. We therefore define

sort [] = []

sort (x:xs) insert x (sort xs)

The following is an example of how we intend sort to evaluate:

sort [4, 1, 9, 3]

= insert 4 (sort (1, 9, 31)
= insert 4 (insert 1 (sort [9, 31))
= insert 4 (insert | (insert 9 (sort [3]1)))
= insert 4 (insert | (insert 9 (insert 3 (sort [1))))
= insert 4 (insert | (insert 9 (insert 3 [])))
= insert 4 (insert 1 (insert 9 [3]))
= insert 4 (inmsert 1 [3, 9])
= insert 4 [1, 3, 9]
[1, 3, 4, 9]
Specifying insert
insert will be defined later — this is ‘top-down programming’. However, we

must specify insert immediately.

An example — insertion sort 79

We want to say three things about insert a zs. First, it contains the
elements of zs, in the same order, with a inserted somewhere in the middle.
Imagine that zs is prised apart as s = xs;++xsy, and then @ is inserted in
the gap to give the result xs;++[al++zsy. Next, we want to say that an a is
inserted in the correct place in the middle — in other words, the result is
sorted. Finally, when we use insert in sort, its second argument is always
sorted and we expect this fact to make it easier to implement insert. This
gives us a pre-condition:

insert :: * => [*] -> [x]

| lpre: Sorted(xs)

| lpost: Sorted(ys) &

|| (E)x1s,x2s:[*]. (xs = xls++x2s & ys = xls++[al++x2s)
|| where ys = (insert a xs)

sort is correctly implemented

That is to say, sort will work correctly provided that insert satisfies its
specification. Of course, when we do get round to implementing insert it
may have any number of errors in it and they will lead sort astray also,
but that is not the point. We can regard sort now as correct and finished
because our reasoning about it uses the specification of insert, not the
implementation. The only thing that could thwart us is if we discover that
the specification of insert as it stands cannot be implemented.

Let us now prove that sort is correct. First, and crucially, we have a
recursion variant #xs for sort xs. As usual, this proves termination, at least
when s is finite (we could not expect that sorting an infinite list would
terminate), and allows us to assume that the recursive calls all work correctly.
The two alternatives in the definition cover all possible cases, so we must just
check that they give correct answers.

Proposition 6.3 sort meets its specification.

Proof First we must check that [] is sorted and a permutation of []. This
is obvious.

Next we must check sort z:zs. Let ys = insert « (sort us). We
can assume that sort s is sorted and a permutation of zs; we deduce in
particular that the pre-condition of insert is satisfied. The post-condition of
insert tells us that ys is sorted, as required, and it remains to show that ys
is a permutation of x:xs. By the post-condition of insert, there are lists ys;
and ys, such that

sort xs = ys;++ysy
ys = y31++|:x:|++y52

80 Lists

Hence ys is a permutation of x:ysi++ysy = ax:(sort axs), which is a
permutation of z:xs because the recursive call worked correctly. a

Implementing insert

The idea in insert a s is that we must move past all the elements of xs
that are smaller than a (they will all come together at the start of xs) and
put a in front of the rest. Hence there are two cases for insert a (z :uxs):
the head is either @ or z, according to which is bigger, and if a is bigger then
it must be inserted into zs:

| |insert was specified above

insert a [] = [al

insert a (x:Xs) = a:x:Xs, if a <= x
= x:(insert a xs), otherwise

for example,

insert 3 [1,4,9] = 1:(insert 3 [4,9]) = 1:3:4:[9] = [1,3,4,9]

insert is correctly implemented

The recursion variant for insert a xs is #xs. The three alternatives in the
definition cover all possible cases, so we must just check that each one gives
a satisfactory answer.

Proposition 6.4 insert meets its specification.

Proof For insert a [1: we must check that [al is sorted (this is obvious),
and that we can find lists zs; and zsy; such that [] = xs;++xss and [al
= asy++[al++xsy. This is easy — take xsy = asy =[1.

For insert a (x :as) when z :as is sorted and a < x, the result a :2 :us
is sorted by Proposition 6.2 — for [a]l++[z]and [z]++zs are both sorted. To
find xs; and xsy such that z:xs = xsy++xsy and a:x:xs = xsy++Lal++xs,, we
take xsy =[Jand xsy = x:zs.

The final case is for insert a(x:zs) when x:xs is sorted (so s is sorted and
the pre-condition for insert is satisfied) and a > x; let ys = insert a zs. By
induction, ys is sorted and there are lists xs; and xsy such that xs = xs;++as,
and ys = xs++[al++xsy. It follows immediately that x:as = (2x:as)++ass,
and the result, x:ys, is (x:xsy)++[al++ass,.

Proposition 6.2 tells us that z:ys is sorted. For either zs; = [], in
which case x:ys= [a]++[al++xsy with both [i]++[a] and [al++xsy (that is,
ys) sorted, or xs; # [1, in which case x:ys = [al++zsi++(a:xsz) with both
[al++xsy (a sublist of x:xs) and ws;++(a:xsy) (that is, ys) sorted. O

Another example — sorted merge 81

This completes the development of sort and insert.

6.6 Another example — sorted merge

In the preceding example, insertion sort, we introduced the predicates Sorted
and Perm. These are very useful in their own right, and because (at least
for Perm) a direct formalization into logic is difficult, we used an axiomatic
approach starting from useful properties. The example in this section uses a
similar method with another useful predicate, Merge.

Merge(xs, ys, zs) means that the list zs is made up of zs and ys merged
together. That is to say, the elements of s and the elements of ys have been
kept in the same order but interleaved to give zs. For instance,

Merge(‘abed’, 123’ ‘1ab2¢3d’)

—Merge(‘abed’, ‘123°, ‘1ba2¢3d’) a and b used in wrong order
—Merge(‘abed’, ‘12347, ‘alab2c¢3d’) a used twice, 4 not used
Merge(‘abed’, 123’ ‘abl2¢d3’)

Merge(‘labd’, ‘2¢3’, ‘1ab2¢3d’)

We shall use the following properties:

1. Merge(zs, ys, [1) iff zs = ys = [1]
2. Merge(as, ys, [21) iff (xs = [zZIA ys = [0) VvV (as = [0 A ys = [2])
3. Merge(as, ys, zsy++zsy) iff Jasy, wsy, ysy, ys,.

(xs = asy++asy \ ys = ys;++ys, N Merge(xsy, ys;, zs1) N Merge(xsy, ys,, 252))

Note that the right-to-left parts can be written more simply, as

1. Merge

(01 [1)
2. Merge([Z] (1)
Merge([] [Z] (1)
3. Merge(:z:sl, ysy, zs1) A Merge(assy, ysy, 282) —
Merge(xs;++1sq, ys;++ys,, z51++25;)

If the left-to-right direction of (3) seems difficult to understand, think of ws
and ys; as the parts of zs and ys that go into zs;, and zs, and ysy as the
rest.

Let us now look at sorted merge. The idea is that if you have two sorted
lists, then it is quite easy to merge them into a sorted result. Imagine
merging two files by reading from the inputs and writing to the output. At
each stage, the item to write is the smaller of the two front input items. The
following is a Miranda version:

82 Lists

smerge :: [*] -> [x] -> [*]

| |lpre: Sorted(xs) & Sorted(ys)

| |lpost: Sorted(zs) & Merge(xs,ys,zs)

Il where zs = smerge xs ys

| |Irecursion variant = #xs + #ys

smerge [] ys = ys

smerge (x:xs) [] = x:xs

smerge (x:xs) (y:ys) = x:(smerge xs (y:ys)), if x <=y

y: (smerge (x:xs) ys), otherwise

It is easy enough to see that this works correctly in the first two cases. The
fourth is just like the third, so we shall concentrate on that. We must show
the following.

Suppose z:xs and y:ys are both sorted, and that z < y. Let
ws = (smerge zs (y:ys)). The pre-conditions for this are satisfied (s and y:ys
are both sorted), so we know that ws is sorted and that Merge(ws, y:ys, ws).
We must show that Merge(a:as, y:ys, x:ws) (this is almost immediate), and
that z:ws is sorted. The intuitive reason why z:ws is sorted is easy enough
to see; ws is sorted, and x is less than all the elements of ws — these are
either from xs and are > & because z:xs is sorted, or they are from y:ys
and are bigger than z because y is the smallest and z < y. We could quite
reasonably be satisfied with this argument, but let us also show it slightly
more formally by going back to the definition of sortedness.

Suppose z:ws = ust+[a,b]l++vs. If us = [] , then = a and ws = b:vs.
Two possibilities arise because Merge(as, y:ys, b:vs), namely that b is either
hd zs or y. If b = hd xs, then z:as, which is sorted, is [I++[2,b]++ (t1 xs)
and so ¢ < b giving a« < b If b =y, then =z < b by assumption giving
a < b If us is non-empty, then ws = (t1 us)++[a,b]++vs, and so a < b
because ws is sorted.

The formal version, written in box notation, appears in Figure 6.3

6.7 List induction

The reasoning techniques using recursion variants are usually all we need
for proving that functions satisfy their specifications, but for more general
properties they may break down. This is particularly the case when we want
to compare the results of different calls of the same function. The following
is an example with a function to reverse a list.

reverse

The reverse function is defined as follows:

r <y

Merge(zs, y:ys, ws)

List induction 83

3 ws is sorted z:xs is sorted assumptions
VI US,VS,A,B 4

5 rws=US++[A,Bl++VS

6 US=T[VUS#I]

7 case 1 of V&

s US=1T]

9 z=A

1w ws=B:VS

11 B=hd asVB=y def Merge

12

13

B =hd zs

zixs = [J++[x, B]l++tl zs

x <y assumed

u ¢<B (z:2s sorted)|A < B eqsub

15 A<B eqsub

16 A<D VvE(LL)

17 case 2 of V&

8 US# [

19 ws=tl US++[A, B]1++VS

20 A<B (ws sorted)
2 A<B VE(6)

22 x:iws= US++[A,B]++VS5—- A< B -7

23 x:ws is sorted VT

Figure 6.3

reverse :: [*] -> [*]

| |lpre: mnone

| |lpost: reverse xs is the reverse of xs

| |lrecursion variant for reverse xs is #xs
reverse [] = []
reverse (x:xs) = (reverse xs)++[x]

It is not clear how this function ought to be specified. But bearing in

84 Lists

mind that the specification is supposed to say how we can make use of the
function, and bearing also in mind our idea that ++ is more useful than cons
in specifications because it does not prefer one end of the list to the other,
let us try to elaborate the specification by giving some useful properties of
the function:

e (reverse [1) =[]
e (reverse [2]) = [«]
o (reverse (zs++ys)) = (reverse ys)++(reverse us)

These are enough to force the given definition, for we must have

reverse (x:1s) = reverse ([z]++xs)
= (reverse xs)++(reverse [z])
= (reverse xs)++[x]

There still remains the question of whether the definition does indeed satisfy
these stronger properties. The first two are straightforward from the definition,
but the third is trickier. It is certainly not obvious whether the recursion
variant method gives a proof.

The principle of list induction

What we shall use is a new principle, the Principle of List Induction. 1t
is the exact analogue of simple mathematical induction, but applied to lists
instead of natural numbers.

Recall that each natural number is either 0 or N 4+ 1 for some N, and so
simple induction requires us to prove a property P in the base case, P(0),
and also in the other cases, P(N 4+ 1). But that was not all. In the other
cases the principle gave us a valuable free gift, the induction hypothesis, by
allowing us to assume P(N). Proving P(N + 1) from P(N) was the induction

step. Using boxes, an induction proof is shown in Figure 6.4 List induction is

N :nat P(N) hypothesis
P(0)
P(N +1)
Vn i nat. P(n) simple induction
Figure 6.4

similar, but uses the fact that every list is either [] or x:xs for some x and
rs. It says:

List induction 85

Let P(xs) be a property of lists xs. To prove Vas: [+1. P(as), it is enough
to prove:

base case: P([]).
induction step: P(z:xs) on the assumption of the induction hypothesis, P(xs).

The box proof version of list induction appears in Figure 6.5.

zix,xs: [+] P(as) hypothesis
P(0) :

P(z:2s)

Vys: [x1. P(ys) list induction
Figure 6.5

REMEMBER! All lists here are assumed to be finite. The induction principle
will not tell you anything about infinite lists.

The principle can be justified in the same way as the principle of simple
mathematical induction — if P does not hold for all lists xs, then what is
a shortest possible list for which it fails? Surely not [], if we have proved
the base case; and if it is z:xs then ws is shorter, so P(xs) holds, and the
induction step tells us that P also holds for x:xs — a contradiction.

Alternatively, it can be justified using simple induction — see Exercise 17.
However, more important than the justification is knowing how to use the
principle.

Application to reverse

Proposition 6.5 Let xs and ys be lists. Then
(reverse (wst++ys)) = (reverse ys)++(reverse us)

Proof We use list induction on s to prove Vas: [*]1. P(xs), where
P(as) e Vys: [*]. (reverse (ws++ys)) = (reverse ys)++(reverse xs)
base case: zs= []

LHS = (reverse ([1++ys)) = (reverse ys)
= (reverse ys)++[] unit law
= (reverse ys)++(reverse [1) = RHS

induction step: Assume P(xs); then in the equation for P(x:xs):

LHS = reverse (x:as++ys)

