106 Types

t; or ty, and that it is really unnecessary to convert it to a natural number
for the standard sort of recursion variant that you have already seen. But to
make this idea clearer we shall first go through the unstreamlined reasoning.
We shall define a function treesize of type tree * -> num, with no
pre-conditions, satisfying the properties
treesize t; < treesize (Node #; x 1)
treesize t; < treesize (Node #; x 1)

Then treesize ¢ is a recursion variant for insertT n .

treesize::(tree *) -> num
treesize Emptytree = 1
treesize (Node t1 x t2)
= (treesize t1) + 1 + (treesize t2)

But how do we know that treesize t always terminates? Well, it does
not! You can define infinite trees just as easily as infinite lists (for example,
t =Node t 0 t), and for them treesize does not terminate. So we have only
actually shown that insertT n t works for finite trees t, those for which
treesize t gives a result. Strictly speaking, we should state the finiteness as
a pre-condition for insertT, but just as for lists we will leave it implicit.

Now it is important not to see treesize as a clever trick cooked up
specially for insertT. It works equally well for any function of trees whose
recursive calls are on the left or right subtrees of the main argument, and
this is by far the most common pattern.

What is more, the numerical value of treesize t is not in itself very
important — there are many other functions satistying the specification of
treesize, all serving just as well. What you should see in the specification is
the idea of the tree itself ‘decreasing’ to a subtree, and hence serving as a
recursion variant:

11° < 'Node t; = t; and
1y < 'Node 417 19

This kind of ‘<’ is explored more mathematically in Appendix A, which in
particular looks at what properties of ‘<’ are needed; but for the present it
is enough to remember that it gives a more general kind of recursion variant.
If you are unsure about this you could always use treesize, but we prefer
you to use the structural induction that is described in the following section.

7.8 Structural induction

The real purpose of this section is to show how to introduce new induction
principles for recursively defined datatypes (such as tree %), although we are
going to start off with non-recursive types that do not lead to induction. The
key idea is to see a direct link between the type definition and the box proof

Structural induction 107

structure of induction (and also, though we are not going to discuss it so
much in this section, function definitions).

Type definition Induction proofs Function definitions
constructors boxes cases

arguments of constructor new constants in box variables matched in pattern
recursion induction hypotheses recursion

This should become clearer with the examples. We start off with a couple of
non-inductive ones.

e The first example illustrates the first line only of the above table: it has
four constructors (without arguments) and four corresponding boxes.

direction ::= North | South | East | West

P(North) P(South) P(East) P(West)
Vd : direction.P(d)

This is really nothing more than V-introduction (see Chapter 17) and
V-elimination (Chapter 16) based on an axiom

Vd : direction.(d = North V d = SouthV d = East V d = West)

The boxes given above are a streamlined version setting out what is
needed to complete the proof (exercise — show how this works).

e The second example moves on to the second line of the table, bringing
in constructors with arguments:

distance ::= Mile num | Km num | NautMile num

T num T num T num

P(Mile z) P(Km) P(NautMile x)
Vd : distance. P(d)

Again (exercise) this is no more than you would obtain from logic, using
V-introduction, V- and J-elimination Chapters 16 and 17, and an axiom

Vd: distance. ((Jz :num. d =Mile z)
V(d2 :num. d =Km 2)V (32 : num. d = NautMile z))

e Natural numbers (and simple induction):

108 Types

diynat ::= Zero | Suc diynat

N :diynat P(N)
P(Zero) :

P(Suc N)

Vn : diynat.P(n)

This is exactly the simple induction you know already, but translated
into the notation for the do-it-yourself natural numbers.

Now because there is recursion in the definition of diynat, we have the
inductive hypothesis P(N), and that takes this example beyond mere
logic. You could not justify the induction hypothesis solely from an
axiom such as

Vn :diynat. (n = ZeroV 3m : diynat. n = Suc m)

so the induction hypothesis is a free gift. (It is not completely free. The
cost is the restriction to finite natural numbers, even though Miranda
can cope with some infinite ones.)
o Lists:
diylist * ::= Emptylist | Cons * (diylist *)

X
P(Emptylist) [[XS :diylist * P(XS)

P(Cons X XY9)

Vas:diylist *.P(xs)

Again, this is just a familiar (list) induction translated into the
do-it-yourself notation.
Notice how because cons has two arguments, there are two new constants
X and XS in the proof box. But only its second argument is recursively
of type diylist * so there is only one induction hypothesis, P(XS5).

e Finally, we come to tree induction:
tree * ::= Emptytree | Node (tree *) * (tree *)

11 :tree x P(t)
P(Emptytree) Tk
ty :tree x P(fy)

P(Node #; x 13)

Vt:tree *.P(1)

Structural induction 109

This is an entirely new induction principle! It says that to prove
Vt:tree* [P(t)], it suffices to prove

e a base case, P(Emptytree);
e an induction step, P(Node t; = t3), assuming that P(t1) and P(t3) both
hold (two induction hypotheses).

(All this is subject to the usual proviso, that it only works for finite trees —
in Miranda, infinite trees are just as easy to define as infinite lists.)

Is this induction principle really valid? As it happens, it is, and it is
justified in Exercise 25. But it is not so important to understand the
justification as the pattern of turning a datatype definition into an induction
principle.

The following is an application. (The specifications are not given formally,
but you can give informal proofs that the definitions satisfy the informal
specifications.)

flatten :: (tree *) -> [*]

| |lpre: mnone

| |lpost: the elements of flatten t are exactly the node values of t
flatten Emptytree = []

flatten (Node t1 x t2) = (flatten t1) ++ (x:(flatten t2))

revtree :: (tree *) -> (tree *)

| |pre: none

| |[post: revtree t is t "seen in a mirror"

|| (with left and right reversed)

revtree Emptytree = Emptytree

revtree (Node t1 x t2) = Node (revtree t2) x (revtree t1)

We can use tree induction to prove that
Vt:tree *. flatten (revtree t) = reverse(flatten ?)

base case: Emptytree

flatten (revtree Emptytree) =flatten Emptytree
=[]
= reverse []
= reverse (flatten Emptytree)

induction step: Node ¢ = i,
flatten (revtree (Node t; x 13))
= flatten (Node (revtree f3) = (revtree t))
= (flatten (revtree ty))++(z : (flatten (revtree t1)))
= (reverse(flatten ty))++[z]++(reverse(flatten #;)) induction

110 Types

= reverse((flatten t;)++[z]++(flatten ty))
= reverse(flatten (Node #; z t3))

The pattern works for any datatype newtype that is defined using
constructors. The key points to remember are

e There is a box for each constructor.

o Within a box, there is a new constant introduced for each argument of
the corresponding constructor.

o There is an induction hypothesis for each argument whose type is
newtype used recursively.

e The property proved inductively is proved only for finite values of
newtype.

e Base cases are those boxes with no induction hypotheses; induction steps
are those with at least one induction hypothesis.

e The method can be extended to mutually recursive types, each defined
using the others. Then you need separate properties for the different
types and you prove them all together, using induction hypotheses where
there is any kind of recursion.

We will describe the general principles, though to be honest you may see
these more clearly from the examples already given.

Each alternative in a type definition corresponds to a box in the proof, so
let us concentrate on one alternative:

thing ::= ... | A sl ... sn |
A is a constructor, it has n arguments, and they are of types sq,...,s,. Some
of these types may be thing again, using recursion. They will give induction
hypotheses:
1 .51
Ty Sy
P(ai)
P(x)
PA xq---2,)

Va :thing. P(x)

Summary 111
Recursion variants

Whenever a type newtype is defined using constructors, there is a natural
format for recursively defined functions on newtype, using pattern matching:
for each constructor you have a separate case with a pattern to extract the
arguments of the constructor, and the arguments of type newtype will be used
as arguments for the recursive calls of the function.

As long as you keep to this format, and also as long as you restrict yourself
to finite elements of newtype, the ‘circular reasoning’ will be valid and you
will not need to define a recursion variant.

What is happening in effect is that the argument of type newtype is itself
being used as a recursion variant, ‘decreasing’ to one of its components.
This can be justified by defining a numerical recursion variant of type
newtype -> num that counts the number of constructors used for values of
newtype. It can also be justified using the structural induction just described.

7.9 Summary

e One way of combining types to form new ones is to form a tuple-type
(for example, a pair, or a triple or a quadruple). Tuple-values are formed
by using the constructor (,...,).

e Using tuples, functions can return more than one result by packaging
their results into a single tuple.

o A pattern serves two purposes. Firstly it specifies the form that arguments
must take before the rule can be applied; secondly it decomposes the
arguments and names their components.

e Multi-argument functions (also called curried functions) are functions
which take more than one argument (as opposed to those functions
which operate on a single argument such as a tuple).

e An advantage of currying is that a curried function does not have to
be applied to all of its arguments at once. Curried functions can be
partially applied, yielding a function which is of fewer arguments.

e Every expression has a type associated with it and each type has
associated with it a set of operations which are meaningful for that type.

e Functional languages are strongly-typed, that is, every well-formed
expression can be assigned a type that can be deduced from its
subexpressions alone. Any expression which cannot be assigned a sensible
type (that is, is not well-typed) has no value and is rejected before
evaluation.

e Gleneric or polymorphic (many-formed) types are represented using type
variables *, xx, xxx etc., each of which stands for an arbitrary type.

112 Types

Within a given type expression, all occurrences of the same type variable
refer to the same unknown type.

e You can define a type by listing the alternative forms of its values
(separated by |). Each alternative form is a constructor (whose name
begins with a capital letter) applied to some number of arguments. It
represents ‘the arguments packaged together in a wrapper that is clearly
marked with the constructor’s name’.

e This method subsumes the ideas of enumerated types, union types and
recursively defined types (such as trees).

e The type definition determines both a natural format for recursive
definitions of functions taking arguments from the type, and an induction
principle for proving properties of values of the type.

o If you restrict yourself to using the ‘natural format of recursive definitions’
then you can use ‘circular reasoning’ just as though you had a recursion
variant.

e Miranda allows infinite values of the new types. The methods here apply
only to the finite values.

7.10 Exercises

1. What are the types of +, ->, -

2. Prove by induction on ws; that zip satisfies

, ++, #, ' >= = hd and t17

Vasy, xsy : [+ 1.Vys;, ys, 0 [#*].(#asy = #ys, A #asy = #ys, —
zip (asp++asy) (ys;++ysy) = (zip xs1 ys,)++(zip sy ys,))

3. Prove by induction on zs that unzip satisfies its specification, namely
that

Vas: [« 1.Vys: [**].(#xs = #ys — unzip(zip as ys) = (ws, ys))
4. (a) Explain why the expression zip (unzip ps) is not well-typed. Can
you make it well-typed by redefining zip?
(b) Prove by induction on ps that
Vps: [(*,%%)].Vas: [« IVys: [**].
(unzip ps = (ws, ys) — zip s ys = ps)

(NOTE: box proofs will help you, but you will need to use a little
extra thought to deal with the pattern matching.)
5. Let P be a property of elements of type *, and consider a function
separate P specified as follows. (How it is defined will depend on P.)

6.

7.

10.

11.

FEzrercises 113

separate_P :: [x] -> ([x], [*])

| |]pre: nomne

| lpost: (A)x:* ((isin(x,Ps) -> P(x))

|| & (isin(x,notPs) -> not P(x)))
|| & Merge(Ps,notPs,zs)

|| where (Ps,notPs) = separate_P zs

separate P is supposed to ‘demerge’ the elements of zs into those

satisfying P and those not.

Prove that this specification specifies the result uniquely.

(a) Recall the function scrub of Exercise 10, Chapter 6. Show that
scrub satisfies the following specification:

scrub :: * => [*] -> [x]

| |lpre: mnone

| lpost: (E)xs:[*] (xs, scrub x ys) = separate_P ys

|| where (given x) P(u) is the property u = x.

(b) Specify count in a similar way.

(c) Use the uniqueness property of the specification of separateP to
prove some of the properties of scrub and count given in the
exercises in Chapter 6.

Suppose that the names of the employees of a Department of Computing

are stored as a list of pairs, for example

[("Broda","Krysia"), ("Eisenbach","Susan"),
("Khoshnevisan',"Hessam"), ("Vickers","Steve")]

Declare and define a function display which, given the current staff list,
will return a string in the following format:

K. Broda

S. Eisenbach

H. Khoshnevisan
S. Vickers

Assume that everyone has exactly one forename.

Define and declare the type of a function that, given any triple whose
first component is a pair, returns the second component of that pair.
Give an example of an expression (that is, just one expression) that
contains two occurrences of the empty list, the first occurrence having
type [num] and the second type [char].

Discuss whether the expression smaller (quotrem (7,3)) is well-formed
or not. If not explain why.

Given the data type tree num write a function tmax which finds the
maximum element stored in a non-empty tree. (HINT: you may use a

114

12.

13.

Types

function largest which returns the largest of three numbers.)

Define a data type tree2_3 in which a value is either Empty or is a
node which holds an item and has left and right subtrees, or is a node
which holds two items and has a left, middle and a right subtree. All
subtrees are of type tree2_3 and all items stored in the tree have the
same type.

For the sake of this question, take an expression in the variable x to be
either

e a number, for example 1
e a variable (any character),

e or the sum, difference or product of two expressions.

Below is the definition of a type expression in Miranda using data
constructors. It is recursive in that an expression can contain other
expressions:
expr::= Number num | Variable char |

Sum expr expr |

Difference expr expr |

Product expr expr
The rules for partial differentiation of simple expressions with respect to

T are

Z_Z =0 — where n is a number
dz __
dx 1
g—?; =0 — it y is different from =z
H(E1+E
% = % + % — where Ky, Fy are any exprs
AE1—-FE3) _ 8E; _ 9F,
Az - oz Az
O(E1 x Ey _ 0F; oF>
Az _axXE2+E1><8x

Define a function differentiate of type char -> expr -> expr that

will perform these differentiation rules, differentiate x e representing
e

7. For example,

differentiate x (Sum el e2) =
Sum (differentiate x el) (differentiate x e2)

differentiate x (Number n) = Number O

14. Show that any application of your function differentiate will terminate.

15.

16.

17.

18.

FEzrercises 115

How might you write a simplify function to reduce such expressions to
a simpler form? For example, simplifying a multiplication by 0 would
result in replacing 0 x z and = x 0 by 0.

Give specifications (pre-conditions and post-conditions) in logic for the
following programs.

(a) last :: [*] -> x ; returns the last element of a list.

(b) front :: num -> [*] -> [*] ; front n xs returns the list of the
first n elements of xs if n < #xs, otherwise it returns xs.

(c) makeunique :: [*¥] -> [*]; make unique xs removes the duplicates
in zs. The elements need not be in the same order as in xs.

Define a function

sub :: expr -> char -> expr -> expr

| |lpre: mnone

| |lpost: sub el v e2 = e2 with el substituted for every
Il occurrence of var v

and use structural induction on e; to prove

Vey, ez, €3 : expr Vv : char (sub e3 v (sub ey v)
= sub(sub e3 v €3) v €1)

This exercise requires you to implement a series of Miranda functions
which manage dictionarys stored as ordered binary trees. We define

word == [char]
dictionary ::= Empty | Node dictionary word dictionary

Show that dictionary is equivalent to tree word. Write the following
functions:

(a) createmnew dictionary, which creates an empty dictionary.

(b
(c
(

) add_word, which adds a word to a dictionary.
)

d) count_words, which returns the number of words in a dictionary.
)
)

lookup, which returns whether a word is in the dictionary.

delete_word, which deletes a word from a dictionary.

(e
(f

find word, which returns the nth word in a dictionary, or returns
an empty word if there is no nth word.

(g) listdictionary, which produces a list of all the words in a
dictionary, one to a line. (Use a function such as flatten.)

Write coding and decoding functions for translating between diynat and
ordinary natural numbers:

numtonat :: num -> diynat
nattonum :: diynat -> num

116

19.
20.
21.

22.
23.

24.

25.

Types

Prove that

YV : numnattonum(numtonat) = x
and

Vn : diynat.numtonat(nattonum n) = n.

Also, write equivalents for diynat of the ordinary arithmetic operations
and prove that they satisty their specifications, for example,

add :: diynat -> diynat -> diynat

| |lpre: mnone

| lpost: (nattonum (add m n))=(nattonum m)+ (nattonum n)

add Zero n=n || represents O+n=n

add (Suc m)n= Suc (add m n) || represents (m+1)+n=(m+n)+1

Do something similar for diylist *.

Define a Miranda program to test whether a tree is ordered.

Specity and define a Miranda function to count how many times a given
value occurs in a given ordered tree. Prove (informally but rigourously)
that the definition satisfies the specification.

Use recursion to define some infinite trees.

Use insertT to define a function build to the following specification:
build :: [*] -> (tree *)

| |pre: none

| |lpost: build xs is ordered, and its node values are exactly
Il the elements of xs.

Show (you can use the method of ‘trees as recursion variants’) that if t
is an ordered tree then flatten t is an ordered list.

Hence show that the following definition satisfies the specification for
sort (Chapter 6):

treesort :: [*] -> [*]

treesort xs = flatten (build xs)

Suppose P(1) is a property of trees, and consider the following sentences:
Q Ly (tree *).P(t)
R X Wn:natvt: (tree «).(treesize t =n — P(t))

Remember, as always, that we are talking only about finite trees.

(a) Use a box proof to show that @ < R.

(b) Suppose you have a proof by tree induction of (. Show how
you can use its ingredients to create a proof by course of values
induction of R. (Use the specification of treesize.)

Chapter 8

Higher-order functions

You have already seen examples of functions delivering functions as results,
namely the curried functions. These were easy to understand as functions with
more than one argument. Much more subtle are functions that take other
functions as arguments — some examples from mathematics are differentiation
and integration. These are called higher-order tfunctions. The argument and
result types of functions are not restricted to being values.

Differentiation takes one function, f, say, of type num -> num, and returns
another, usually written f’. So there is a higher-order function diff of type
(num -> num) -> num -> num such that

diff [x = f'(z) = derivative of [at z

8.1 Higher-order programming

Consider the definitions in Figure 8.1. Although they define different functions,
their pattern of recursion is the same. In all definitions a function f is applied
to every element of a list, where f is £ x = x*x, £ x = factorial x and
f x = x mod 2 = 0 respectively.

It is possible to express such common patterns of recursion by a few
higher-order functions. We begin by defining a higher-order function
corresponding to the above three definitions and then discuss other patterns.

8.2 The higher-order function map

If £ is a function of type * => **, then the idea is to define a function
map £ of type [*] -> [*x] that works by applying £ one by one to all the
elements of a list. This can be specified in an obvious way using indices.
Since the first argument of map is a function f, map itself is a higher-order

117

118 Higher-order functions

squares :: [num] -> [num]
| lpre: none
| lpost: #ys = #xs

|| & (A) i:nat.(0 <= i< #xs->ys!i = (xs'i)"2)
'l where ys = squares xs

squares [] =[]

squares (x:xs) = (x * x) : (squares xs)
factlist :: [num] -> [num]

| lpre: none

| lpost: #ys = #xs

|| & (A) i:nat. (0 <= i < #xs -> ys'i
|| = factorial(xs'i))
Il where ys = factlist xs

factlist [] = []

factlist (x:xs8) = (factorial x) : (factlist xs)
iseven :: [num] -> [bool]

| lpre: none

| lpost: #ys = #xs

| & (A) i:nat. (0 <= 1i < #xs ->
|l ys'i = (xs'i mod 2 = 0))
Il where ys = iseven xs

(]

(x mod 2 =0) : (iseven xs)

iseven []
iseven (x:xs8)

Figure 8.1 Pattern of recursion

function.

In fact, the pattern of recursion expressed by map is so common in
list-manipulating programs that map is predefined in many evaluators or is
included in a library, for example as in Miranda.

map sr Gk => kk) => [k] => [kk]

| |lpre: mnone

| lpost: #ys = #xs

|| & (A) i:nat. (0 <= 1 < #xs -> ys!i = f(xs!'i))
Il where ys = map f xs

map f[] = [1]

map f(x:xs) = (f x):(map £ xs)

The higher-order function map 119

The definitions of Figure 8.1 can now be more concisely defined in terms of

map:

squares = map ("2)
factlist = map factorial
iseven = map f

where f x = (x mod 2 = 0)
For example,
squares[1,3,2] = map(~2)[1,3,2] = [1,9,4]
Note that partial application is especially convenient when used in conjunction
with higher-order functions, as can be seen from the new definition for
squares.

Example

Integration (we mean definite integration) takes a function f and two limits,
a and b, and returns a number. One way of calculating the definite integral is
by cutting the domain of integration into equal-sized slices, and guessing the
average height of the function in each slice. For example, if the function is to
be integrated from 0 to 5 in 10 slices, the slices are: 0 to 0.5, 0.5 to 1, and
so on up to 4.5 to 5. The guessed height for each slice is simply the value
of the function in the centre of each slice, such as f(4.75) for the last slice
in the example above. This assumes that the slices are rectangular-shaped,
rather than whatever curved shape the function actually has.

The guessed area of a slice is then the width (0.5 each, in the example)
times the guessed average height. The final answer is the sum of the areas
of all the slices. The type of a function integrate which calculates the area
under a curve could be declared as follows:

function == num -> num

integrate :: function -> num -> num -> num -> num

| largs are <function> <start> <finish> <no. of slices>

| |lpre: nat(n) & n>0

| |Ipost: (integrate f start finish n) is an estimate of the
Il integral of f from start to finish

This function is higher-order because it takes a function as one of its

arguments. The following is a definition of integrate:

integrate f start finish n
= sum (map area [1..n])

where
width = (finish - start) / n
area 1 = width * f(start + width * (i-0.5))

120 Higher-order functions

8.3 The higher-order function fold

Consider the following function again:

sum :: [num] -> num
| |lpre: mnone
| |lpost: sum xs = xs!'0 + ... + xs!(#xs-1)

In other words, sum xs adds together the elements of xs:

sum [] =0

sum (x:xs) = x + (sum xs)

You can imagine an exactly similar function for finding the product of the
elements, replacing + by *. You also have to replace the base case result 0
by 1 — otherwise you obtain the wrong answer for singleton lists, and so by
the recursion for longer lists.

These are so similar that you could imagine both specification and definition
being constructed automatically once you have supplied the operator (+ or *
or other possibilities) and the base case result (0 or 1). Higher-order functions
allow you to do just that. We shall write fold f e for the function that ‘folds
together’ the elements of a list using the operator £ and base case result e.

The infix notation is very convenient, so in what follows we shall often use
the Miranda convention that if £ is a 2-argument function then $f is the same
function treated notationally as an infix operator. For example, = $gcd y is
the same as ged = .

Let us first look at the type of fold. It has three arguments, namely the
function £, e for the base case and the list zs. We do not care what list
type xs has. It is [*] for some type *, and then £ must have matching types
* => x => * and e must have the type *. (For sum, * was num.)

fold :: (k => % => %) => x => [*] -> %

For the post-condition, we require

| |lpost: fold £ e xs = xs!0 $f ... $f xs!(#xs-1)

This is a little imprecise. It does not make it at all clear what should happen
when zs is empty, and the ‘..." is slightly fuzzy. We will look at these issues
more closely later. For the moment, what is more important is that certain
pre-conditions are implied.

First, we wrote =xs!0 $f ... $f xs!(#xs-1) without any parentheses to
show the evaluation order of the different $fs. We could have chosen an
evaluation order and put parentheses in, for instance
(...(xs'0 $f xs'1)... $f xs!'(#xs-1))
or
(xs'0 $f ... (xs!'(#xs-2) $f xs!'(#xs-1))...)

But rather than make such a choice, let us keep to the simple case where, as
with + and *, parentheses are unnecessary.

Applications 121

A particular case of this is when operating on three elements: we require
Va,y,z « $F (y $f 2) = (¢ $f y) $f =
In fact, this particular case (the ‘associativity’ law) is enough to show also
that parentheses are unnecessary in longer expressions — we mentioned this
with ++ in Chapter 6.

Here, then, is one pre-condition: $f must be associative.

The other pre-condition concerns the interaction between $f and e. The
key properties (they will appear at various points of the reasoning) of 0 and
1 in relation to + and * are that they are ‘identities”: z+0=x, zx1 = z.
We shall assume a general identity law for e:

Ve.z $f e=ax=¢ $f =z

Finally, let us try to improve the post-condition by removing the dots.
We shall use the same trick as we did with reverse, namely to give strong
and useful properties (not, strictly speaking, a post-condition) of the way
fold f e works, trying to relate it to ++:

fold :: (¥ => % => %) => % => [*] -> %

| lpre: (&) x,y,z:*. x $£ (y $f z)

|| = (x $f y) $f =z ($f is associative)

|| & (A) x:*%. x $f e = x = e $f x (e is an identity for $£f)
| lpost: fold £ e [] = e

|| & (A) x:*%. fold f e [x] = x

|| & (A) xs,ys:[*]. fold £ e (xs++ys)

|| = (fold £ e xs) $f (fold f e ys)

Let us note straight away that the specification specifies fold uniquely. In
other words, if f1 and f2 both satisfy the specification, $f is associative, e is
an identity for $f and xs is a (finite!) list, then

fl fewxs=f2 f e xs

This is easily proved by induction on zs, the induction step coming from

fl fe(zras)=(f1 fel[a]l) $f (f1 f e as)=a $F (f1 f e xs)

8.4 Applications

We shall implement fold later. For the moment, let us look at some
applications. sum can be defined as fold (+) 0. (Notice how a built-in
infix operator can be passed as an argument to a higher-order function by
placing it in parentheses.) Once you have checked that + is associative (that
is, x+(y+z) = (x+y)+z) and 0 is an identity (z+0 = = 0+x), then you know
immediately that sum (as++ys) = (sum as)+(sum ys). You do not need to
prove it by induction; the induction will be done once and for all when we
implement fold and show that the specification is satisfied.

122 Higher-order functions

The analogous function product can be defined as fold (*) 1. Note that
subtraction and division are not associative, and it is less obvious what one
would mean by ‘the elements of a list folded together by subtraction’. The
function concat is defined as fold (++) [1. It takes a list of lists and
appends (or concatenates) them all together.

By combining fold and map, quite a wide range of functions can be defined.
For instance, count of Exercise 7 in Chapter 6 can be defined by

count x xs = fold (+) 0 (map f xs)
where f y = 1, ify=x
= 0. otherwise

Then we can prove the properties of count without using induction. For

instance,
count x (zs++ys) = fold (+) 0 (map f (zs++ys))
= fold (+) 0 (map [ws)++(map [ys)
= fold (+) 0 (map f ws)+fold (+) 0 (map f ys)
= (count x xs)+(count x ys)

8.5 Implementing fold — foldr

There are two common implementations of fold. They have different names,
foldr and foldl, and this is because they can also be used when $f and
e do not satisfy the pre-conditions of fold, but they give different answers
— actually, they correspond to different bracketings. (In fact, they even have
more general types than fold, as you can see if you ask the Miranda system
what it thinks their types are.) foldr and foldl are rather different. We
shall show foldr here — it uses the same idea as sum — and leave the
discussion of foldl to Exercise 6. foldr f e xs calculates

(xs10 $£...$F (ws!(F#Fas—1) $f ¢)...)

foldr £ e [] = e
foldr f e (x:x8) = x $f (foldr f e xs)

Proposition 8.1 foldr satisfies its specification. We fix an associative
operator $f with an identity e, and prove the three equations of the
post-condition. The first is immediate and the second is easy. For the third
we use induction on xs to prove Vas: [*]. P(as), where

P(as) &
Vys: [+ 1foldr [e (wst+ys) = (foldr [e xs) $f (foldr f e ys)

Summary 123

base case: P([])

LHS = foldr f e ([1++ys)
= foldr f e ys
= e $f(foldr f e ys) (identity law)
= (foldr f e [1) $f (foldr f e ys) = RHS

induction step: assume P(zs) and prove P(x:us):

LHS = foldr f e (x:as++ys)=a $f (foldr [e (ws++ys))
= a $f (foldr f e zs) $f (foldr f e ys)
= (foldr f e (x:xs)) $f (foldr f e ys) = RHS

O

Although the reasoning is more complicated, foldr can also be used in

more general cases (for example, non-associative); note also that the definition
of foldr has a more liberal type than fold:

foldr :: (k% => % => %) => % => [x*x] -> x

length x = foldr fun 0 x where fun a acc = 1 + acc

Notice that built-in infix operators can be passed as arguments to higher-order
functions by placing them in parentheses. Recall the function for building an
ordered tree from a list:

build i [*¥] -> (tree %)

build []
build (x:xs)
A more concise and preferred definition uses fold:
build x = foldr insertT Emptytree x

Emptytree
insertT x (build xs)

The evaluation sequence for an application of the new definition of build
illustrates the reduction sequence:

build[6,2,4]

= foldr insertT Emptytree [6, 2, 4]

= insertT 6 (insertT 2 (insertT 4 Emptytree))

= Node (Node Emptytree 2 Emptytree) 4 (Node Emptytree 6 Emptytree)

8.6 Summary

o Most list-processing functions can be described wusing higher-order
functions such as map and fold (which capture the two most common
patterns of recursion over lists). The same approach can also be applied
to other patterns of recursion and for user-defined types.

e A small suite of higher-order functions to iterate over each data type
can be used to avoid writing many explicit recursive functions on that

124

8.7

Higher-order functions

type. Then an appropriately parameterized higher-order function is used
to define the required function.

The technique can be compared with polymorphism where structures
(including functions, of course) of similar shape are described by a single
polymorphic definition. Higher-order functions are used to describe other
recursive functions with the same overall structure.

The functional programming ‘style’ is to use higher-order functions since
they lead to concise and abstract programs.

It is usually easier to understand programs that avoid excessive use of
explicit recursion and to use library and higher-order functions whenever
possible.

Induction proofs can be done once and for all on the higher-order
functions.

Exercises

. Prove that integrate terminates, assuming that the supplied function

terminates.

Define a function sigma, which, given a function, say f, and two integers
corresponding to the lower and the upper limits of a range of integers,
say n and m, will capture the common mathematical notation of

G

In the imperative programming language C there is a library function
called ctoi which converts a string to an integer. For example, ctoi
"123" gives 123. Declare and define ctoi in Miranda. Ensure that your
definition is not recursive.

Give type declarations and definitions of functions curry and uncurry,
for example, uncurry f (v,y) = f = y.

This question is about writing a function to sort lists using what is
called a merging algorithm:

(a) Recall smerge, which, given two sorted lists, merged them into a
single sorted list. Show that smerge is associative and [] is an
identity for it.

(b) Write a function mergesort which sorts a list by converting it to a
list of singletons and then applying fold smerge [].

The other implementation of fold is foldl, which calculates
(...(e $F 2s'0) $F...$f as!(#as— 1))

foldl f a [] = a
foldl f a (x:xs8) = foldl f (a $f x) xs

FEzercises 125

Note that we have replaced e¢ by a. This is because the parameter
is passed through the recursive calls of foldl, so even if it starts
off as an identity for $f it will not remain as $f’s identity. In
general, still assuming that $f is associative and e is an identity for
it, foldl f a xs=a $f (foldl f e xs). This can be proved easily
by induction on s; but since we would still need another induction to
prove the equations of the specification, it is possible to combine both
induction proofs.

(a) Use induction on xs to prove that

Va:*. Yas,ys: [+]1. foldl f a (xs++ys)
= foldl f (a $f (foldl f e us)) ys

(HINT: In the induction step you use the induction hypothesis twice,
with different values substituted for a and ys. The unexpected one
has ys= []. To avoid confusion, introduce new constants for your
V-introductions.)

(b) Deduce from (a) that
Va:x Vas: [+]. foldl f a zs = a $f (foldl f e us)
(c¢) Deduce from (a) and (b) that

Vas,ys: [*]1. foldl f e (as++ys)
= (foldl f e xs) $f (foldl [e ys)

and hence that foldl implements the specification for fold.
(d) Deduce that

foldr f e xs = foldl f e xs

provided that $f is associative, e is an identity for it (and s is
finite).

(e) Give examples to show that foldr and foldl can compute different
results is $f is not associative or e is not an identity for it.

7. Consider the following specification:

filter :: (*=>bool)->[*]->[x]
| |filter p xs is the list xs except that the
| |elements x for which p x is False have all been removed.
| |lpre: mnone
| lpost: (A)x:*. (Isin(x,ys) -> p x)
& (E)ws:[x]. (Merge(ys,ws,xs)
& (M)x:*. (Isin(x,ws) -> “(p x)))
where ys = filter p xs
(ws contains the elements that were filtered out)

