
��� Types

t� or t�� and that it is really unnecessary to convert it to a natural number
for the standard sort of recursion variant that you have already seen� But to
make this idea clearer we shall �rst go through the unstreamlined reasoning�

We shall de�ne a function treesize of type tree � �� num� with no
pre�conditions� satisfying the properties

treesize t� � treesize �Node t� x t��
treesize t� � treesize �Node t� x t��

Then treesize t is a recursion variant for insertT n t�

treesize�tree �� �� num

treesize Emptytree � �

treesize �Node t� x t��

� �treesize t�� � � � �treesize t��

But how do we know that treesize t always terminates� Well� it does
not� You can de�ne in�nite trees just as easily as in�nite lists �for example�
t � Node t � t�� and for them treesize does not terminate� So we have only
actually shown that insertT n t works for �nite trees t� those for which
treesize t gives a result� Strictly speaking� we should state the �niteness as
a pre�condition for insertT� but just as for lists we will leave it implicit�

Now it is important not to see treesize as a clever trick cooked up
specially for insertT� It works equally well for any function of trees whose
recursive calls are on the left or right subtrees of the main argument� and
this is by far the most common pattern�

What is more� the numerical value of treesize t is not in itself very
important � there are many other functions satisfying the speci�cation of
treesize� all serving just as well� What you should see in the speci�cation is
the idea of the tree itself �decreasing� to a subtree� and hence serving as a
recursion variant

t�� � �Node t� x t� and
t�� � �Node t�x t�

This kind of ��� is explored more mathematically in Appendix A� which in
particular looks at what properties of ��� are needed� but for the present it
is enough to remember that it gives a more general kind of recursion variant�
If you are unsure about this you could always use treesize� but we prefer
you to use the structural induction that is described in the following section�

��	 Structural induction

The real purpose of this section is to show how to introduce new induction
principles for recursively de�ned datatypes �such as tree ��� although we are
going to start o� with non�recursive types that do not lead to induction� The
key idea is to see a direct link between the type de�nition and the box proof

Structural induction ���

structure of induction �and also� though we are not going to discuss it so
much in this section� function de�nitions��

Type de�nition Induction proofs Function de�nitions
constructors boxes cases
arguments of constructor new constants in box variables matched in pattern
recursion induction hypotheses recursion

This should become clearer with the examples� We start o� with a couple of
non�inductive ones�

� The �rst example illustrates the �rst line only of the above table it has
four constructors �without arguments� and four corresponding boxes�

direction � North � South � East � West

���

P �North�

���

P �South�

���

P �East�

���

P �West�

�d direction�P �d�

This is really nothing more than ��introduction �see Chapter ��� and
��elimination �Chapter ��� based on an axiom

�d direction��d � North � d � South� d � East � d � West�

The boxes given above are a streamlined version setting out what is
needed to complete the proof �exercise � show how this works��

� The second example moves on to the second line of the table� bringing
in constructors with arguments

distance � Mile num � Km num � NautMile num

x num
���

P �Mile x�

x num
���

P �Km x�

x num
���

P �NautMile x�

�d distance� P �d�

Again �exercise� this is no more than you would obtain from logic� using
��introduction� �� and ��elimination Chapters �� and ��� and an axiom

�d distance� ���x num� d � Mile x�
���x num� d � Km x� � ��x num� d � NautMile x��

� Natural numbers �and simple induction�

��	 Types

diynat � Zero � Suc diynat

���

P �Zero�

N diynat P �N�
���

P �Suc N�

�n diynat�P �n�
This is exactly the simple induction you know already� but translated
into the notation for the do�it�yourself natural numbers�
Now because there is recursion in the de�nition of diynat� we have the
inductive hypothesis P �N�� and that takes this example beyond mere
logic� You could not justify the induction hypothesis solely from an
axiom such as

�n diynat� �n � Zero � �m diynat� n � Suc m�

so the induction hypothesis is a free gift� �It is not completely free� The
cost is the restriction to �nite natural numbers� even though Miranda
can cope with some in�nite ones��

� Lists
diylist � � Emptylist � Cons � �diylist ��

���

P �Emptylist�

X

XS diylist
 P �XS�

���

P �Cons X XS�

�xs diylist
 �P �xs�
Again� this is just a familiar �list� induction translated into the
do�it�yourself notation�
Notice how because cons has two arguments� there are two new constants
X and XS in the proof box� But only its second argument is recursively
of type diylist "� so there is only one induction hypothesis� P �XS��

� Finally� we come to tree induction
tree � � Emptytree � Node �tree �� � �tree ��

���

P �Emptytree�

t� tree
 P �t��

x

t� tree
 P �t��

���

P �Node t� x t��

�t tree
 �P �t�

Structural induction ��

This is an entirely new induction principle� It says that to prove
�t tree
 �P �t��� it su�ces to prove

� a base case� P �Emptytree��
� an induction step� P �Node t� x t��� assuming that P �t�� and P �t�� both
hold �two induction hypotheses��

�All this is subject to the usual proviso� that it only works for �nite trees �
in Miranda� in�nite trees are just as easy to de�ne as in�nite lists��
Is this induction principle really valid� As it happens� it is� and it is
justi�ed in Exercise ��� But it is not so important to understand the
justi�cation as the pattern of turning a datatype de�nition into an induction
principle�
The following is an application� �The speci�cations are not given formally�

but you can give informal proofs that the de�nitions satisfy the informal
speci�cations��

flatten �tree �� �� !�"

��pre none

��post the elements of flatten t are exactly the node values of t

flatten Emptytree � !"

flatten �Node t� x t�� � �flatten t�� �� �x�flatten t���

revtree �tree �� �� �tree ��

��pre none

��post revtree t is t �seen in a mirror�

�� �with left and right reversed�

revtree Emptytree � Emptytree

revtree �Node t� x t�� � Node �revtree t�� x �revtree t��

We can use tree induction to prove that

�t tree
 � flatten �revtree t� � reverse�flatten t�

base case Emptytree

flatten �revtree Emptytree� �flatten Emptytree

� !"

� reverse !"

� reverse �flatten Emptytree�

induction step Node t� x t�
flatten �revtree �Node t� x t���
� flatten �Node �revtree t�� x �revtree t���
� �flatten �revtree t������x �flatten �revtree t����
� �reverse�flatten t�����!x"���reverse�flatten t��� induction

��� Types

� reverse��flatten t����!x"���flatten t���
� reverse�flatten �Node t� x t���

The pattern works for any datatype newtype that is de�ned using
constructors� The key points to remember are

� There is a box for each constructor�
� Within a box� there is a new constant introduced for each argument of
the corresponding constructor�

� There is an induction hypothesis for each argument whose type is
newtype used recursively�

� The property proved inductively is proved only for �nite values of
newtype�

� Base cases are those boxes with no induction hypotheses� induction steps
are those with at least one induction hypothesis�

� The method can be extended to mutually recursive types� each de�ned
using the others� Then you need separate properties for the di�erent
types and you prove them all together� using induction hypotheses where
there is any kind of recursion�

We will describe the general principles� though to be honest you may see
these more clearly from the examples already given�
Each alternative in a type de�nition corresponds to a box in the proof� so
let us concentrate on one alternative
thing � ��� � A s� ��� sn � ���

A is a constructor� it has n arguments� and they are of types s�� � � � � sn� Some
of these types may be thing again� using recursion� They will give induction
hypotheses

x� s�
���

xn sn

P �xi�

P �xj�
���

P �A x� � � �xn�
�x thing� P �x�

Summary ���

Recursion variants

Whenever a type newtype is de�ned using constructors� there is a natural
format for recursively de�ned functions on newtype� using pattern matching
for each constructor you have a separate case with a pattern to extract the
arguments of the constructor� and the arguments of type newtype will be used
as arguments for the recursive calls of the function�

As long as you keep to this format� and also as long as you restrict yourself
to �nite elements of newtype� the �circular reasoning� will be valid and you
will not need to de�ne a recursion variant�

What is happening in e�ect is that the argument of type newtype is itself
being used as a recursion variant� �decreasing� to one of its components�
This can be justi�ed by de�ning a numerical recursion variant of type
newtype �� num that counts the number of constructors used for values of
newtype� It can also be justi�ed using the structural induction just described�

��
 Summary

� One way of combining types to form new ones is to form a tuple�type
�for example� a pair� or a triple or a quadruple�� Tuple�values are formed
by using the constructor ��� � ����

� Using tuples� functions can return more than one result by packaging
their results into a single tuple�

� A pattern serves two purposes� Firstly it speci�es the form that arguments
must take before the rule can be applied� secondly it decomposes the
arguments and names their components�

� Multi�argument functions �also called curried functions� are functions
which take more than one argument �as opposed to those functions
which operate on a single argument such as a tuple��

� An advantage of currying is that a curried function does not have to
be applied to all of its arguments at once� Curried functions can be
partially applied� yielding a function which is of fewer arguments�

� Every expression has a type associated with it and each type has
associated with it a set of operations which are meaningful for that type�

� Functional languages are strongly�typed� that is� every well�formed
expression can be assigned a type that can be deduced from its
subexpressions alone� Any expression which cannot be assigned a sensible
type �that is� is not well�typed� has no value and is rejected before
evaluation�

� Generic or polymorphic �many�formed� types are represented using type
variables �� ��� ��� etc�� each of which stands for an arbitrary type�

��� Types

Within a given type expression� all occurrences of the same type variable
refer to the same unknown type�

� You can de�ne a type by listing the alternative forms of its values
�separated by ��� Each alternative form is a constructor �whose name
begins with a capital letter� applied to some number of arguments� It
represents �the arguments packaged together in a wrapper that is clearly
marked with the constructor�s name��

� This method subsumes the ideas of enumerated types� union types and
recursively de�ned types �such as trees��

� The type de�nition determines both a natural format for recursive
de�nitions of functions taking arguments from the type� and an induction
principle for proving properties of values of the type�

� If you restrict yourself to using the �natural format of recursive de�nitions�
then you can use �circular reasoning� just as though you had a recursion
variant�

� Miranda allows in�nite values of the new types� The methods here apply
only to the �nite values�

���� Exercises

�� What are the types of �� ��� �� ��� $� #� ��� �� hd and tl�

�� Prove by induction on xs� that zip satis�es

�xs�� xs� !
 "��ys�� ys� !

"��$xs� � $ys� � $xs� � $ys� �
zip �xs���xs�� �ys���ys�� � �zip xs� ys�����zip xs� ys���

�� Prove by induction on xs that unzip satis�es its speci�cation� namely
that

�xs !
 "��ys !

"��$xs � $ys� unzip�zip xs ys� � �xs� ys��

�� �a� Explain why the expression zip �unzip ps� is not well�typed� Can
you make it well�typed by rede�ning zip�

�b� Prove by induction on ps that

�ps !�
�

�"��xs !
 "�ys !

"�
�unzip ps � �xs� ys�� zip xs ys � ps�

�Note� box proofs will help you� but you will need to use a little
extra thought to deal with the pattern matching��

�� Let P be a property of elements of type �� and consider a function
separate P speci�ed as follows� �How it is de�ned will depend on P ��

Exercises ���

separate�P !�" �� �!�"� !�"�

��pre none

��post �A�x� ��isin�x�Ps� �� P�x��

�� � �isin�x�notPs� �� not P�x���

�� � Merge�Ps�notPs�zs�

�� where �Ps�notPs� � separate�P zs

separate P is supposed to �demerge� the elements of zs into those
satisfying P and those not�
Prove that this speci�cation speci�es the result uniquely�

�� �a� Recall the function scrub of Exercise ��� Chapter �� Show that
scrub satis�es the following speci�cation

scrub � �� !�" �� !�"

��pre none

��post �E�xs!�" �xs� scrub x ys� � separate�P ys

�� where �given x� P�u� is the property u � x�

�b� Specify count in a similar way�

�c� Use the uniqueness property of the speci�cation of separate P to
prove some of the properties of scrub and count given in the
exercises in Chapter ��

�� Suppose that the names of the employees of a Department of Computing
are stored as a list of pairs� for example

!��Broda���Krysia�����Eisenbach���Susan���

��Khoshnevisan���Hessam�����Vickers���Steve��"

Declare and de�ne a function display which� given the current sta� list�
will return a string in the following format

K� Broda

S� Eisenbach

H� Khoshnevisan

S� Vickers

Assume that everyone has exactly one forename�
	� De�ne and declare the type of a function that� given any triple whose
�rst component is a pair� returns the second component of that pair�

� Give an example of an expression �that is� just one expression� that
contains two occurrences of the empty list� the �rst occurrence having
type !num" and the second type !char"�

��� Discuss whether the expression smaller �quotrem ������ is well�formed
or not� If not explain why�

��� Given the data type tree num write a function tmax which �nds the
maximum element stored in a non�empty tree� �Hint� you may use a

��� Types

function largest which returns the largest of three numbers��

��� De�ne a data type tree��� in which a value is either Empty or is a
node which holds an item and has left and right subtrees� or is a node
which holds two items and has a left� middle and a right subtree� All
subtrees are of type tree��� and all items stored in the tree have the
same type�

��� For the sake of this question� take an expression in the variable x to be
either

� a number� for example �
� a variable �any character��
� or the sum� di�erence or product of two expressions�

Below is the de�nition of a type expression in Miranda using data
constructors� It is recursive in that an expression can contain other
expressions
expr� Number num � Variable char �

Sum expr expr �

Difference expr expr �

Product expr expr
The rules for partial di�erentiation of simple expressions with respect to
x are

n

x
� � � where n is a number

x

x
� �

y

x
� � � if y is di�erent from x

�E��E��

x

�
E�

x
�
E�

x
� where E�� E� are any exprs

�E��E��

x

�
E�

x
�
E�

x

�E��E��

x

�
E�

x
�E� � E� �
E�

x

De�ne a function differentiate of type char �� expr �� expr that
will perform these di�erentiation rules� differentiate x e representing

e

x
� For example�

differentiate x �Sum e� e�� �

Sum �differentiate x e�� �differentiate x e��

differentiate x �Number n� � Number �

��� Show that any application of your function differentiate will terminate�

Exercises ���

How might you write a simplify function to reduce such expressions to
a simpler form� For example� simplifying a multiplication by � would
result in replacing �� x and x� � by ��

��� Give speci�cations �pre�conditions and post�conditions� in logic for the
following programs�

�a� last !�" �� � � returns the last element of a list�

�b� front num �� !�" �� !�" � front n xs returns the list of the
�rst n elements of xs if n � $xs� otherwise it returns xs�

�c� make unique !�" �� !�"� make unique xs removes the duplicates
in xs� The elements need not be in the same order as in xs�

��� De�ne a function

sub expr �� char �� expr �� expr

��pre none

��post sub e� v e� � e� with e� substituted for every

�� occurrence of var v

and use structural induction on e� to prove

�e�� e�� e	 expr �v char �sub e	 v �sub e� v e��
� sub�sub e	 v e�� v e��

��� This exercise requires you to implement a series of Miranda functions
which manage dictionarys stored as ordered binary trees� We de�ne

word �� !char"

dictionary � Empty � Node dictionary word dictionary

Show that dictionary is equivalent to tree word� Write the following
functions

�a� create new dictionary� which creates an empty dictionary�

�b� add word� which adds a word to a dictionary�

�c� lookup� which returns whether a word is in the dictionary�

�d� count words� which returns the number of words in a dictionary�

�e� delete word� which deletes a word from a dictionary�

�f� find word� which returns the nth word in a dictionary� or returns
an empty word if there is no nth word�

�g� list dictionary� which produces a list of all the words in a
dictionary� one to a line� �Use a function such as flatten��

�	� Write coding and decoding functions for translating between diynat and
ordinary natural numbers

numtonat num �� diynat

nattonum diynat �� num

��� Types

Prove that

�x num�nattonum�numtonat x� � x

and

�n diynat�numtonat�nattonum n� � n�

Also� write equivalents for diynat of the ordinary arithmetic operations
and prove that they satisfy their speci�cations� for example�

add diynat �� diynat �� diynat

��pre none

��post �nattonum �add m n����nattonum m�� �nattonum n�

add Zero n�n �� represents ��n�n

add �Suc m�n� Suc �add m n� �� represents �m����n��m�n���

�
� Do something similar for diylist ��
��� De�ne a Miranda program to test whether a tree is ordered�
��� Specify and de�ne a Miranda function to count how many times a given
value occurs in a given ordered tree� Prove �informally but rigourously�
that the de�nition satis�es the speci�cation�

��� Use recursion to de�ne some in�nite trees�
��� Use insertT to de�ne a function build to the following speci�cation

build !�" �� �tree ��

��pre none

��post build xs is ordered� and its node values are exactly

�� the elements of xs�

��� Show �you can use the method of �trees as recursion variants�� that if t
is an ordered tree then flatten t is an ordered list�
Hence show that the following de�nition satis�es the speci�cation for
sort �Chapter ��

treesort !�" �� !�"

treesort xs � flatten �build xs�

��� Suppose P �t� is a property of trees� and consider the following sentences

Q
def
� �t �tree
��P �t�

R
def
� �n nat��t �tree
���treesize t � n� P �t��

Remember� as always� that we are talking only about �nite trees�

�a� Use a box proof to show that Q� R�

�b� Suppose you have a proof by tree induction of Q� Show how
you can use its ingredients to create a proof by course of values
induction of R� �Use the speci�cation of treesize��

Chapter �

Higher�order functions

You have already seen examples of functions delivering functions as results�
namely the curried functions� These were easy to understand as functions with
more than one argument� Much more subtle are functions that take other
functions as arguments � some examples from mathematics are di�erentiation
and integration� These are called higher�order functions� The argument and
result types of functions are not restricted to being values�
Di�erentiation takes one function� f � say� of type num �� num� and returns

another� usually written f �� So there is a higher�order function diff of type
�num �� num� �� num �� num such that

diff f x � f ��x� � derivative of f at x

	�� Higher�order programming

Consider the de�nitions in Figure 	��� Although they de�ne di�erent functions�
their pattern of recursion is the same� In all de�nitions a function f is applied
to every element of a list� where f is f x � x�x� f x � factorial x and
f x � x mod � � � respectively�
It is possible to express such common patterns of recursion by a few

higher�order functions� We begin by de�ning a higher�order function
corresponding to the above three de�nitions and then discuss other patterns�

	�� The higher�order function map

If f is a function of type � �� ��� then the idea is to de�ne a function
map f of type !�" �� !��" that works by applying f one by one to all the
elements of a list� This can be speci�ed in an obvious way using indices�
Since the �rst argument of map is a function f� map itself is a higher�order

���

��	 Higher�order functions

squares !num" �� !num"

��pre none

��post $ys � $xs

�� � �A� inat��� �� i� $xs��ys#i � �xs#i����

�� where ys � squares xs

squares !" � !"

squares �xxs� � �x � x� �squares xs�

factlist !num" �� !num"

��pre none

��post $ys � $xs

�� � �A� inat� �� �� i � $xs �� ys#i

�� � factorial�xs#i��

�� where ys � factlist xs

factlist !" � !"

factlist �xxs� � �factorial x� �factlist xs�

iseven !num" �� !bool"

��pre none

��post $ys � $xs

�� � �A� inat� �� �� i � $xs ��

�� ys#i � �xs#i mod � � �� �

�� where ys � iseven xs

iseven !" � !"

iseven �xxs� � �x mod � � �� �iseven xs�

Figure 	�� Pattern of recursion

function�

In fact� the pattern of recursion expressed by map is so common in
list�manipulating programs that map is prede�ned in many evaluators or is
included in a library� for example as in Miranda�

map �� �� ��� �� !�" �� !��"

��pre none

��post $ys � $xs

�� � �A� inat� �� �� i � $xs �� ys#i � f�xs#i��

�� where ys � map f xs

map f!" � !"

map f�xxs� � �f x��map f xs�

The higher�order function map ��

The de�nitions of Figure 	�� can now be more concisely de�ned in terms of
map

squares � map ����

factlist � map factorial

iseven � map f

where f x � �x mod � � ��

For example�

squares!�����" � map����!�����" � !����
"

Note that partial application is especially convenient when used in conjunction
with higher�order functions� as can be seen from the new de�nition for
squares�

Example

Integration �we mean de�nite integration� takes a function f and two limits�
a and b� and returns a number� One way of calculating the de�nite integral is
by cutting the domain of integration into equal�sized slices� and guessing the
average height of the function in each slice� For example� if the function is to
be integrated from � to � in �� slices� the slices are � to ���� ��� to �� and
so on up to ��� to �� The guessed height for each slice is simply the value
of the function in the centre of each slice� such as f������ for the last slice
in the example above� This assumes that the slices are rectangular�shaped�
rather than whatever curved shape the function actually has�
The guessed area of a slice is then the width ���� each� in the example�

times the guessed average height� The �nal answer is the sum of the areas
of all the slices� The type of a function integrate which calculates the area
under a curve could be declared as follows

function �� num �� num

integrate function �� num �� num �� num �� num

��args are �function� �start� �finish� �no� of slices�

��pre nat�n� � n��

��post �integrate f start finish n� is an estimate of the

�� integral of f from start to finish

This function is higher�order because it takes a function as one of its
arguments� The following is a de�nition of integrate

integrate f start finish n

� sum �map area !���n"�

where

width � �finish � start� � n

area i � width � f�start � width � �i������

��� Higher�order functions

	�� The higher�order function fold

Consider the following function again

sum !num" �� num

��pre none

��post sum xs � xs#� � ��� � xs#�$xs���

In other words� sum xs adds together the elements of xs

sum !" � �

sum �xxs� � x � �sum xs�

You can imagine an exactly similar function for �nding the product of the
elements� replacing � by �� You also have to replace the base case result �
by � � otherwise you obtain the wrong answer for singleton lists� and so by
the recursion for longer lists�
These are so similar that you could imagine both speci�cation and de�nition
being constructed automatically once you have supplied the operator �� or �

or other possibilities� and the base case result �� or ��� Higher�order functions
allow you to do just that� We shall write fold f e for the function that �folds
together� the elements of a list using the operator f and base case result e�
The in�x notation is very convenient� so in what follows we shall often use
the Miranda convention that if f is a ��argument function then f is the same
function treated notationally as an in�x operator� For example� x gcd y is
the same as gcd x y�
Let us �rst look at the type of fold� It has three arguments� namely the
function f� e for the base case and the list xs� We do not care what list
type xs has� It is !�" for some type �� and then f must have matching types
� �� � �� � and e must have the type �� �For sum� � was num��

fold �� �� � �� �� �� � �� !�" �� �

For the post�condition� we require

��post fold f e xs � xs#� f ��� f xs#�$xs���

This is a little imprecise� It does not make it at all clear what should happen
when xs is empty� and the �� � �� is slightly fuzzy� We will look at these issues
more closely later� For the moment� what is more important is that certain
pre�conditions are implied�
First� we wrote xs#� f ��� f xs#�$xs��� without any parentheses to
show the evaluation order of the di�erent fs� We could have chosen an
evaluation order and put parentheses in� for instance

�����xs#� f xs#����� f xs#�$xs����
or

�xs#� f ��� �xs#�$xs��� f xs#�$xs��������
But rather than make such a choice� let us keep to the simple case where� as
with � and �� parentheses are unnecessary�

Applications ���

A particular case of this is when operating on three elements we require

�x� y� z� x f �y f z� � �x f y� f z

In fact� this particular case �the �associativity� law� is enough to show also
that parentheses are unnecessary in longer expressions � we mentioned this
with �� in Chapter ��
Here� then� is one pre�condition f must be associative�
The other pre�condition concerns the interaction between f and e� The

key properties �they will appear at various points of the reasoning� of � and
� in relation to � and � are that they are �identities� x� � � x� x
 � � x�
We shall assume a general identity law for e

�x� x f e � x � e f x

Finally� let us try to improve the post�condition by removing the dots�
We shall use the same trick as we did with reverse� namely to give strong
and useful properties �not� strictly speaking� a post�condition� of the way
fold f e works� trying to relate it to ��

fold �� �� � �� �� �� � �� !�" �� �

��pre �A� x�y�z�� x f �y f z�

�� � �x f y� f z � f is associative�

�� � �A� x�� x f e � x � e f x �e is an identity for f�

��post fold f e !" � e

�� � �A� x�� fold f e !x" � x

�� � �A� xs�ys!�"� fold f e �xs��ys�

�� � �fold f e xs� f �fold f e ys�

Let us note straight away that the speci�cation speci�es fold uniquely� In
other words� if f� and f� both satisfy the speci�cation� f is associative� e is
an identity for f and xs is a ��nite�� list� then

f� f e xs � f� f e xs

This is easily proved by induction on xs� the induction step coming from

f� f e �x xs� � �f� f e !x"� f �f� f e xs� � x f �f� f e xs�

	�� Applications

We shall implement fold later� For the moment� let us look at some
applications� sum can be de�ned as fold ��� �� �Notice how a built�in
in�x operator can be passed as an argument to a higher�order function by
placing it in parentheses�� Once you have checked that � is associative �that
is� x��y�z� � �x�y��z� and � is an identity �x�� � x � ��x�� then you know
immediately that sum �xs��ys� � �sum xs���sum ys�� You do not need to
prove it by induction� the induction will be done once and for all when we
implement fold and show that the speci�cation is satis�ed�

��� Higher�order functions

The analogous function product can be de�ned as fold ��� �� Note that
subtraction and division are not associative� and it is less obvious what one
would mean by �the elements of a list folded together by subtraction�� The
function concat is de�ned as fold ���� !"� It takes a list of lists and
appends �or concatenates� them all together�

By combining fold and map� quite a wide range of functions can be de�ned�
For instance� count of Exercise � in Chapter � can be de�ned by

count x xs � fold ��� � �map f xs�

where f y � �� if y � x

� �� otherwise

Then we can prove the properties of count without using induction� For
instance�

count x �xs��ys� � fold ��� � �map f �xs��ys��
� fold ��� � �map f xs����map f ys�
� fold ��� � �map f xs��fold ��� � �map f ys�
� �count x xs���count x ys�

	�� Implementing fold � foldr

There are two common implementations of fold� They have di�erent names�
foldr and foldl� and this is because they can also be used when f and
e do not satisfy the pre�conditions of fold� but they give di�erent answers
� actually� they correspond to di�erent bracketings� �In fact� they even have
more general types than fold� as you can see if you ask the Miranda system
what it thinks their types are�� foldr and foldl are rather di�erent� We
shall show foldr here � it uses the same idea as sum � and leave the
discussion of foldl to Exercise �� foldr f e xs calculates

�xs�� f � � � f �xs��#xs� �� f e� � � ��

foldr f e !" � e

foldr f e �xxs� � x f �foldr f e xs�

Proposition 	�� foldr satis�es its speci�cation� We �x an associative
operator f with an identity e� and prove the three equations of the
post�condition� The �rst is immediate and the second is easy� For the third
we use induction on xs to prove �xs !
 "� P �xs�� where

P �xs�
def
�
�ys !
 "foldr f e �xs��ys� � �foldr f e xs� f �foldr f e ys�

Summary ���

base case P �!"�

LHS � foldr f e �!"��ys�
� foldr f e ys
� e f�foldr f e ys� �identity law�
� �foldr f e !"� f �foldr f e ys� � RHS

induction step assume P �xs� and prove P �xxs�

LHS � foldr f e �xxs��ys� � x f �foldr f e �xs��ys��
� x f �foldr f e xs� f �foldr f e ys�
� �foldr f e �xxs�� f �foldr f e ys� � RHS

�

Although the reasoning is more complicated� foldr can also be used in
more general cases �for example� non�associative�� note also that the de�nition
of foldr has a more liberal type than fold

foldr ��� �� � �� �� �� � �� !��" �� �

length x � foldr fun � x where fun a acc � � � acc

Notice that built�in in�x operators can be passed as arguments to higher�order
functions by placing them in parentheses� Recall the function for building an
ordered tree from a list

build !�" �� �tree ��

build !" � Emptytree

build �xxs� � insertT x �build xs�

A more concise and preferred de�nition uses fold
build x � foldr insertT Emptytree x

The evaluation sequence for an application of the new de�nition of build

illustrates the reduction sequence

build!����
"

� foldr insertT Emptytree ! �� ��
 "

� insertT � �insertT � �insertT
 Emptytree� �

� Node �Node Emptytree � Emptytree�
 �Node Emptytree � Emptytree�

	�� Summary

� Most list�processing functions can be described using higher�order
functions such as map and fold �which capture the two most common
patterns of recursion over lists�� The same approach can also be applied
to other patterns of recursion and for user�de�ned types�

� A small suite of higher�order functions to iterate over each data type
can be used to avoid writing many explicit recursive functions on that

��� Higher�order functions

type� Then an appropriately parameterized higher�order function is used
to de�ne the required function�

� The technique can be compared with polymorphism where structures
�including functions� of course� of similar shape are described by a single
polymorphic de�nition� Higher�order functions are used to describe other
recursive functions with the same overall structure�

� The functional programming �style� is to use higher�order functions since
they lead to concise and abstract programs�

� It is usually easier to understand programs that avoid excessive use of
explicit recursion and to use library and higher�order functions whenever
possible�

� Induction proofs can be done once and for all on the higher�order
functions�

	�� Exercises

�� Prove that integrate terminates� assuming that the supplied function
terminates�

�� De�ne a function sigma� which� given a function� say f� and two integers
corresponding to the lower and the upper limits of a range of integers�
say n and m� will capture the common mathematical notation of

mX
x�n

fx

�� In the imperative programming language C there is a library function
called ctoi which converts a string to an integer� For example� ctoi
����� gives ���� Declare and de�ne ctoi in Miranda� Ensure that your
de�nition is not recursive�

�� Give type declarations and de�nitions of functions curry and uncurry�
for example� uncurry f �x�y� � f x y�

�� This question is about writing a function to sort lists using what is
called a merging algorithm

�a� Recall smerge� which� given two sorted lists� merged them into a
single sorted list� Show that smerge is associative and !" is an
identity for it�

�b� Write a function mergesort which sorts a list by converting it to a
list of singletons and then applying fold smerge !"�

�� The other implementation of fold is foldl� which calculates

�� � � �e f xs#�� f � � � f xs#�$xs� ���

foldl f a !" � a

foldl f a �xxs� � foldl f �a f x� xs

Exercises ���

Note that we have replaced e by a� This is because the parameter
is passed through the recursive calls of foldl� so even if it starts
o� as an identity for f it will not remain as f�s identity� In
general� still assuming that f is associative and e is an identity for
it� foldl f a xs � a f �foldl f e xs�� This can be proved easily
by induction on xs� but since we would still need another induction to
prove the equations of the speci�cation� it is possible to combine both
induction proofs�

�a� Use induction on xs to prove that

�a
� �xs� ys !
 "� foldl f a �xs��ys�
� foldl f �a f �foldl f e xs�� ys

�Hint� In the induction step you use the induction hypothesis twice�
with di�erent values substituted for a and ys� The unexpected one
has ys � !"� To avoid confusion� introduce new constants for your
��introductions��

�b� Deduce from �a� that

�a
� �xs !
 "� foldl f a xs � a f �foldl f e xs�

�c� Deduce from �a� and �b� that

�xs� ys !
 "� foldl f e �xs��ys�
� �foldl f e xs� f �foldl f e ys�

and hence that foldl implements the speci�cation for fold�

�d� Deduce that

foldr f e xs � foldl f e xs

provided that f is associative� e is an identity for it �and xs is
�nite��

�e� Give examples to show that foldr and foldl can compute di�erent
results is f is not associative or e is not an identity for it�

�� Consider the following speci�cation

filter ����bool���!�"��!�"

��filter p xs is the list xs except that the

��elements x for which p x is False have all been removed�

��pre none

��post �A�x�� �Isin�x�ys� �� p x�

�� � �E�ws!�"� �Merge�ys�ws�xs�

�� � �A�x�� �Isin�x�ws� �� ��p x���

�� where ys � filter p xs

�� �ws contains the elements that were filtered out�

