126 Higher-order functions

(a) Prove by induction on s that this specification specifies filter
uniquely.

(b) Show that filter is implemented by

filter p xs = fold (++) [] (map f xs)
where f x= [x], if p x
= [], otherwise
8. For each of the functions given below:

(a) Write down equations to show their values in the cases when

ys = []
ys = us+t+vs
ys = [yl

(b) Show (by list induction) that there is at most one function that
satisfies your answers to (a).

(c) Write a similar equation for the case when ys = y:zs, and show
how it is implied by the equations given in (a).

(d) Use (c) to write down a recursive Miranda definition of the function.

(e) Prove by induction that your definition satisfies the properties in
(a).

(f) Use map and fold to write a non-recursive definition of the function.

(g) Use standard properties of map and fold to show that your
definition in (f) satisfies the properties given in (a).

Here are the functions:

e length: [*] -> num, length ys is the length of ys.

e prod: [num] -> num, prod ys is the product of the elements of
ys. (NOTE: consider carefully what prod [] should be.)

e count: * -> [*] -> num, count x ys is the number of occurrences
of = in ys.

e split: (* ->bool) -> [*¥] -> ([*], [*]). If split p ys=(ys1,ys2),
then merge(ysi, ysy, ys), and for every y, if y is an element of ys,
then (p y), while if y is an element of ys, then = (p y).

e all: (* -> bool) -> [*] -> bool, (all p ys) iff for every element
y of ys we have (p y).

e some: (¥ -> bool) -> [*] -> bool, (some p ys) iff for some
element y of ys we have (p y).

e sum: [*] -> num, sum ys is the sum of the elements of ys.

9.

10.

11.

12.

13.

FEzercises 127

Consider fold (&) True :: [bool]l -> bool. (& is associative, and
True is its identity.) Remember that in Miranda it is possible to have
infinite lists, for instance trues where

trues = True:trues

(all its element are True).

Show that if bs is an infinite list of type [bool], then

foldr (&) True (False:bs) = False but
foldl (&) True (False:bs) goes into an infinite loop.

(a) Define the polymorphic function reverse using foldr.
(b) Define the polymorphic function reverse using foldl.

(¢c) Which is more efficient and why?

Define the higher-order function map without explicit recursion by using
the higher-order function foldr (with a non-associative argument).

In a version of the game Mastermind, one player thinks of a four-digit
number, while the other player repeatedly tries to guess it. After each
guess, player 1 scores the guess by stating the number of bulls and cows.
A bull is a correct digit in the correct place and a cow is a correct digit
in an incorrect place. No digit is scored more than once. For example,

if the secret code is 2113, then:

1234 scores 03
1111 scores 20
1212 scores 12

Construct a function score which takes a code and a guess and returns
the number of bulls and cows. (Your function score should be written
using higher-order functions.)

You may find it helpful to use the -- construct. -- is a list subtraction
operator. The value of xs--ys is the list which results when, for each
element y in ys, the first occurrence of y is removed from wxs. For
example,

[1,2,1,3,1,3]‘“[1,3] = [2:1:1:3]
||angle|l__|llll ++||1|| - angel
[l "xyz" is short for [’x’,’y’,’z’]

(Advanced) This is an exercise in using both polymorphism and
higher-order functions. The question investigates predicates on Miranda
types: a predicate on type * is understood as a function from * to
bool:

pred * == (* -> bool)

128 Higher-order functions

Suppose £ :: bool -> bool -> bool. Then f can be extended to a
function on predicates by applying it pointwise:

ptwise :: (bool->bool->bool)->(pred *)->(pred *)->(pred *)
ptwise £ p q x = £(p x)(q %)

(Experiment: define this in Miranda, and try ptwise ::. Miranda
realizes that this definition can be used much more widely than just
when £ :: bool -> bool -> bool. Also, why does the type of ptwise
seem to give it three arguments, whereas the definition gives it four?)
It p, ¢ :: pred *, let us write

p=q iff Vo x((p) = True — (¢ x) = True)

(a) Translate the following specifications into English, and write Miranda
definitions for functions to implement them:

all :: (pred *) -> (pred [*])

| |lpre: mnone

| lpost: (all p t)=True <->

|| (Mx. ((E)n. In-At(x,t,n)->(p x)=True)

some :: (pred *) -> (pred [*])

| |lpre: mnone

| lpost: (some p t)=True <->

|| (E)x. ((E)n. In-At(x,t,n) & (p x)=True)

(b) Prove that for all p,q:pred *,

all(ptwise (\/) p ¢) = ptwise (\/) (all p) (some ¢)
ptwise (&) (all p) (some ¢) = some (ptwise (&) p ¢)

Describe in English what these results mean.

Chapter 9

Specification for Modula-2 programs

We now move on to imperative programming, using the Modula-2 language.
(This material also applies to Pascal and Ada programs.) We will not describe
the features of Modula-2 here because there are already many books about it.

9.1 Writing specifications for Modula-2 procedures

The general idea is the same as for Miranda: a specification has some typing
information, a pre-condition and a post-condition. These can be conveniently
placed at the header of the procedure as follows:

PROCEDURE CardMin(X,y: CARDINAL) :CARDINAL;
(*pre: none
*xpost: (result = x \/ result = y) & (result <=x & result <=y)
*)
BEGIN
IF x<=y THEN RETURN x ELSE RETURN y END
END CardMin;

The principles here are exactly the same as in Miranda, with three minor
points of difference. First, the typing information, that is,

PROCEDURE CardMin(x,y: CARDINAL) :CARDINAL;

is compulsory in Modula-2. Second, comments look different: they are between
(x and *), instead of being after ||. Third, we are using the word result
in post-conditions to mean the value returned by the procedure. This means
that it would be inadvisable to have a wariable called result because of the
confusion that would arise.

result has a special meaning in post-conditions of functions:

it means the value returned.

129

130 Specification for Modula-2 programs
Variables changing

What is not apparent from this example is that there is a big difference
between Miranda and Modula-2: Modula-2 has variables that change their
values. Therefore, our reasoning must be able to cope with symbols that take
different values at different times. In general, because a variable may change
its value many times during the computation, there may be lots of different
times at which we may wish to put our finger on the value and talk about it.
There is a general technique for doing this. But in a procedure specification,
there are really only two values to talk about, before (on entry to) and after
(on return from) the procedure, and we use a special-purpose notation to
distinguish these.

A pre-condition must only talk about the values before the procedure is
executed, so when a variable is used in a pre-condition it means the value
before. A post-condition will usually want to compare the values before and
after, and this is where the special notation comes in. A variable with a
zero (for example, ¢ or x.0) means the value before; an unadorned variable
(for example, x or x) means the value after. We shall be consistent in using
unadorned variables to denote the value now (in the pre-condition, ‘now’ is
the time of entry; in the post-condition it is the time of return), and in using
various adornments such as the zero to show the value at some other time.

The following are two examples:

PROCEDURE Swap (VAR x,y: INTEGER);

(*pre: none

*post: x=y_0 & y=x_0

*)

PROCEDURE Sqrt (VAR x: REAL);

(* Replaces x by an approximation to its square root.

* epsilon is a global variable.

* pre: x>=0 & epsilon>0

* post: x>=0 & | x72-x_0|< epsilon & epsilon = epsilon_0

*)

Some variables are not expected to change

To specify that a variable does not change, you say so in the post-condition:
for example, epsilon = epsilon 0 says that epsilon does not change (value
on return = value on entry). But this could get out of hand, so let us adopt
the following two conventions.

First, if a global variable is not mentioned at all in the specification, then
we assume an implicit specification that it should not change.

Mid-conditions 131

Second, if a parameter is called by value, then, again, we assume an implicit
specification that it should not change. (That is why in CardMin we did not
bother to write x_0 or y.-0.) (If you think about it, this assumption will seem
pointless. Apparently, all the changes made to the parameter are local to the
procedure and the caller can never notice them.)

9.2 Mid-conditions

When we implement the specifications, there is a very simple technique
for reasoning. It generalizes the idea of pre- and post-conditions by using
logical assertions that are supposed to hold at points in the middle of the
computation, not just at the beginning or end. We call them mid-conditions.
They are written as comments in the middle of the code.

The following is an implementation of Swap, with a complete set of
mid-conditions:

PROCEDURE Swap (VAR x,y: INTEGER);
(* pre: nomne
*post: x=y_0 & y=x_0

*)

VAR z: INTEGER;

BEGIN (*x=x_0 & y=y_0%)
Z:1=X; (kz=x_0 & y=y_0%)
X:=y; (kz=x_0 & x=y_0%)
y:=2z; (ky=x_0 & x=y_0%)

END Swap;

You would not normally put in so many mid-conditions. There are just
certain key positions where they are important — you have already seen two,
namely entry and return (corresponding to pre- and post-conditions). With
most simple straight-line sections of code such as this it is easy to omit the
intermediate mid-conditions and fill them in mentally. But we can use the
example to illustrate the reasoning involved.

Each mid-condition is supposed to hold whenever program control passes
through that point — at least, provided that the procedure was called
correctly, with the pre-condition holding. (Note that unadorned variables still
denote the value ‘now’, that is, at the time when control passes through that
point; zeroed variables denote the value on entry.) Does this work here?

The first mid-condition, = = x9g A y = yo, holds by definition: we have only
just entered the procedure, so the value of = has to be its value on entry,
which is xg by definition.

Now look at the next mid-condition, z = 29 A y = yo. To have arrived here,
we must have started at the point where we had = = 29 Ay = yo, and then
done the assignment z:= x. It is not difficult to see that this is bound to

132 Specification for Modula-2 programs

set up the mid-condition we are looking at (though there are formal systems
in which this can be proved — in effect they define the meaning of the
assignment statement).

The next mid-condition is similar, and finally we reach the final mid-
condition, which is the post-condition. By this stage we know that by the
time the program returns it must have set up the post-condition.

Note the ‘stepping stone’ nature of the reasoning. To justify a mid-condition
we do not look at all the computation that has gone before, but, rather, at
the preceding program statement and the mid-condition just before that.

Conditionals

Here is an example with an IF statement.

PROCEDURE IntMax (X,y: INTEGER) : INTEGER;
(*pre: none
xpost: (result = x_0 \/ result = y_0) &
* (result >=x_0 & result >=y_0)
*)
BEGIN
IF x>=y
THEN (*x>=y*) RETURN x (* result
ELSE (*x<y*) RETURN y (* result
END
END IntMax;

x_0 & result >=y_0%)
y_0 & result >x_0%)

There are two branches of the code, the THEN and ELSE parts, and in each
we can write a mid-condition based on the condition ‘IF = > y’. For instance,
when we enter the THEN part, that can only be because the condition has
evaluated as TRUE: so we know at that point that x > y. (This is relying on
the fact that there are no side-effects when the condition x > y is evaluated.)
After RETURN x, we know that the result is = and also, because we knew
x >y, that result > y. The other branch, the ELSE part, is similar. On
entering it, we know that the condition evaluated as FALSE, so = < y.

Finally, we must show that the post-condition is set up. There are two
return points, each with a different mid-condition. But it is a matter of logic
(and properties of >) to show that

result = z Aresult >y

— (result = x V result = y) A result > & A result >y
result = y Aresult> =z

— (result = x V result = y) A result > & A result >y

Calling procedures 133
9.3 Calling procedures

When you specify a procedure, the zero convention is very convenient; and
throughout that procedure you use the zeroed variables for the values on
entry. But when you call the procedure, you must be careful about the zeroes
in its specification: because you now have two contexts, the called procedure
and the calling context, in which zero has different meanings.

The following is an example of a rather simple sorting algorithm. The first
procedure, Order2, sorts two variables, and the second, Order3, uses Order2
to sort three variables.

PROCEDURE Order2 (VAR x,y: INTEGER);
(*pre: none
xpost: ((x=x_0 & y=y_0) \/ (x=y_0 & y=x_0)) & x<=y

*)
BEGIN (kxx=x_0 & y=y_0%)
IF x>y
THEN (*x_0>y_0*) Swap(x,y); (kxx=y_0 & y=x_0 & x<y*)
(* ELSE x_0<=y_0%) (kxx=x_0 & y=y_0 & x<=y*)
END (*either way, x<=y*)
END Order2;

Before giving the definition of Order3, let us outline the idea. We are ordering
x, y and z. If we can arrange for z to be the greatest, that is, « <zAy < 2z,
then the rest is easy: just order = and y. So this condition becomes a key
objective in our computation strategy, dividing the task into two. It appears
as the second mid-condition. You can probably believe that this objective is
achievable using Order2(y,z) and Order2(zz), and we shall show this more
carefully.

On this analysis, the first two mid-conditions are slightly different in
character. The second is a computational objective, used to specify the task
of the first part of the code. As a condition it does not express everything
known at that point, but, rather, just something achievable that gives us
what we need to be able to finish off the problem. The first mid-condition,
on the other hand, is more to help us reason that our code, once written,
really does work:

PROCEDURE Order3 (VAR x,y,z: INTEGER);
(*pre: none
*post: x,y,z are a permutation of x_0,y_0,z_0 & x<=y<=z

*)

BEGIN
Order2(y,z); (*xy<=z%)
Order2(x,z); (ky<=z & x<=2%)
Order2(x,y) (*x<=y<=2%)

END Order3;

134 Specification for Modula-2 programs

How do we know that Order3 works? (Are you actually convinced at this
stage?) Let us dispose straight away of the specification that x,y and z are a
permutation of xg, yo and zo (that is, the same values, possibly rearranged).
Although it is actually quite difficult to express this in pure logic, it is quite
clear that each call of Order2 just permutes the variables, so that is all the
three consecutive calls can do. The real problem is knowing that the order is
correct in the end.

The first call certainly sets up the first mid-condition, y < z, but how
do we know that the second call does not spoil this? We must look at
the specification of Order2, which says (after we have substituted the actual
parameter z for the formal parameter y)

(x=aoNz=z2)V(r=20Nz=a0))Na <z

The zero here denotes the value on entry to the (second) call of Order2, but
we are reasoning about Order3, trying to prove it correct: so for us the zero
could also denote the value on entry to Order3. To avoid the conflict, you
have to invent some new names: say 1, y; and z; for the values of x, y and
z between the first two Order2s: At that point we have, by the mid-condition,
y1 < z1, and this is eternally true — because y; and z; are unchanging values
not computer variables.

Now what Order2 sees as zg and zg are — in our Order3 context — z; and
z1. Hence on return from the second Order2, we can use its post-condition to
write

(r=x1hNz=zn)V(e=xnAz=x) Ne<zAy=1y

So far, although we have said a lot by way of explanation, all that has
happened has been some notational manipulation and with practice you should
be able to do it automatically. What comes next is real logic; Figure 9.1
contains a box proof that shows y <z Az < 2.

More compactly, we want to show at this point that y <z, that is, 13 < z.
Since y; < zp, it is sufficient to show that z; < z (that is, Order2(z, z) cannot
decrease the value of z; you would expect this intuitively, but we can also
prove it). There are two cases. If (v = 21 A z = z), that is, Order2 did not
do a swap, then z; = z. In the other case, we have (v =z Az =21 Ax < z2),
so z1 =2 < z.

We have now proved that the second mid-condition, y <z Az <z, is set up
correctly. For the third mid-condition, the fact that z is greater than both =z
and y is unaffected whatever Order2(x,y) does, while it also ensures x < y.
Hence, finally, x <y < z.

You may invent new logical constants as names for intermediate
b

computed values. This is like Miranda ‘where ... notation.

Recursion 135

1o <z

2 (t=mAz=zn)V(e=2/Nz=1)

3 <z

4 Y=

5 Yy<=n eqsub in 1
6 r=21N2=2xn rT=xnNz=12

2= ANE T =1 ANE

g8 y<z eqsub in 5|z < z eqsub in 3
9 y <z trans <
w0 oy <z VE(2)

n o y<zAzx<z NZ(3,10)

Figure 9.1 y <zAzx <z

9.4 Recursion

To deal with recursion, you use recursion variants (or induction) just as
in Miranda. Recursively defined functions in Miranda translate readily into
recursively defined function procedures in Modula, and the reasoning is the
same in both cases. Actually, it is often more convenient to reason with the
Miranda definitions, because the notation is much more economical. Consider,
for instance, the Euclidean algorithm implemented recursively in Modula-2:

PROCEDURE gcd(x,y: CARDINAL):CARDINAL;
(*pre: none
*xpost: result | x & result | y &

* (A)z:Cardinal. (z | x & z | y-> z | result)
*recursion variant =y

*)

BEGIN

IF y=0 THEN RETURN x ELSE RETURN gcd(y,x MOD y) END
END gcd;

Proposition 9.1 The definition of gcd satisfies the specification.

Proof Both specification and definition are direct translations of those for
the Miranda function ged given in Chapter 5. (Note that the Miranda
pre-condition nat(x) A nat(y) has been translated into typing information in
Modula-2. Unlike Miranda, Modula-2 has special types CARDINAL and INTEGER,
with CARDINALs corresponding to nat.) We have already proved that the
Miranda definition satisfied the Miranda specification. a

136 Specification for Modula-2 programs

It is somewhat difficult at this stage to give sensible examples of recursion
that genuinely use the new imperative features. The following is a rather
artificial example:

PROCEDURE gcd1 (VAR x,y: CARDINAL);

(*¥Replaces x by the gcd of x and y.

*pre: nomne

xpost: x | x_0 & x | y_0 & (A)z:Cardinal. (z | x_0& z | y_0-> z | x)
*recursion variant=y

*)
VAR z: CARDINAL;
BEGIN
IF y # 0 THEN
z:=x MOD y;
X:=y;
y:=z; (*x=y_0 & y=x_0 MOD y_O0%*)
gcdl(x, y)
END
END gcdil;

Proposition 9.2 The definition of gcdl satisfies the specification.

Proof If y =0 then 2 = gecd(«,0) and so nothing has to be done. If y # 0,
then by the usual reasoning with recursion variants we can assume that the
recursive call gedi(x,y) replaces « by the ged of yo and xg MOD yo, which, by
the same argument as given in Chapter 5, is the gcd of x and y. O

9.5 Examples

The following procedure swaps the values of two variables without using any
extra variables as storage space. Mid-conditions show very clearly how the
sequence of assignments works:

PROCEDURE Swap (VAR x,y: INTEGER);
(* pre: nomne
*post: x=y_0 & y=x_0

*)

BEGIN (kxx=x_0 & y=y_0%)
X:=X-Y; (kx=x_0-y_0 & y=y_0%)
yi=X+y; (kx=x_0-y_0 & y=x_0%)
X:=y-X (kxx=y_0 & y=x_0%)

END Swap;

Examples 137

WALKIES SQUARE

Imagine a WALKIES package with position coordinates X and Y, and
procedures Up and Right for updating these:

VAR X,Y: INTEGER;

PROCEDURE Up(n: INTEGER) ;
(*pre: none

*post: X=X_0 & Y=Y_O+n

*)

PROCEDURE Right(n: INTEGER) ;
(*pre: none

*post: X=X_0+n & Y=Y_O

*)

We can use mid-conditions to show that the following procedure returns with

X and Y unchanged:

PROCEDURE Square(n: INTEGER);
(*pre: none

*post: ... & X=X_0 & Y=Y_O
*)

BEGIN (%X=X_0 & Y=Y_0x%)
Right(n); (xX=X_0+n & Y=Y_O0x*)
Up(n); (xX=X_0+n & Y=Y_O+nx*)
Right(-n); (xX=X_0 & Y=Y_O+nx)
Up(-n) (%X=X_0 & Y=Y_0x%)

END Square;

It is reasonably clear that these mid-conditions are correct. But to justify
this more formally you need to use the specifications of Right and Up. For
instance, consider the call ‘Right(—n)’. In the specification for Right, X, and
Yo mean the values of X and Yon entry to Right, and not, as we should
like to use them in the mid-conditions, on entry to Square. But we do know
(from the preceding mid-condition) that on entry to this call of Right X and
Y have the values Xo+n and Y+ n(where Xy and Y, are values on entry to
Square), so we can substitute these into the post-condition for Right. Also,
Right is called with actual parameter —n, so we must substitute this for the
formal parameter n in the post-condition. All in all, in X = Xg+n & Y =Y
substitute

e —n for n,
o Xg+n for Xg,
o Y5+ n for Yy,

giving X = Xo & Y =Y, 4+ n. This is the next mid-condition.

138 Specification for Modula-2 programs
9.6 Calling procedures in general

A typical step of reasoning round a procedure call looks as follows:
coemidl(x,y,z, .. Playbye,.) mid2(x,y,z,...)

Here z,y,z,... represent the relevant variables, and a,b,c,... , expressions
involving the variables, are the actual parameters in the call of P. We assume
for simplicity that evaluating these actual parameters does not call functions
that cause any side-effects. We have reasoned that mid! holds just before
entry to P (imagine freezing the computer and inspecting the variables: they
should satisfy the logical condition midl, and we now want to reason that
mid?2 will hold on return). We must do this by using the specification of P;
however, that is written using the formal parameters of P, and the first step
is to replace these by the actual parameters a,b,¢,... to obtain the properties
of z,y,z,...

pre: preP(x,y,z,...)
post: postP(x,x_0,y,y_0,z,z_0,...)

(But the zeros in postP show values of z, y, and z on entry to P, and we
shall have to allow for this.) Next we must show that mid! entails preP, in
other words that midl is sufficient to ensure that P works correctly. This is
pure logic.

Next, we must work out what exactly we know on return from P, at
the same time coping with possible notational clashes due to =z, and so
on, having different meanings in different places. Suppose zq, y1, 21, ...are
convenient names for the values of x,y,z,... before the call of P. Then the
post-condition tells us that on return we have postP(x,x1,y,y1,2,21,...). But
we also know, because x1, and so on, are just names of values, that we have
midl(x1,y1,z1,...). Hence, on return from P we know the following (and no
more):

postP(x, x1,y,y1,2, 21, .. .) A midl(x1,y1, 21, .. .)

Our final task is to prove that this entails mid2(x,y,z,...). Again, this is
pure logic.

To summarize, after manipulating the specification of P a little, we have
two tasks in pure logic: prove —

midl(x,y,z,...) = preP(z,y, z,...)
postP(x,x1,y,y1,2, 21, .. .) A midl(x1,y1, 21, ...) = mid2(x,y, z,...)
Thus the step between midl and mid2 (via P) really has the two logical

steps, above, and a computational step (P) in the middle. The specification
of P gets us from preP(x,y,z,...) to

postP(x,x1,y,y1, 2, 21, - . .) A midl(xy, 41, 21, .).

Keeping the reasoning simple 139
9.7 Keeping the reasoning simple

When all the features of imperative programming are taken together, some of
them can be quite complicated to reason about. There is a general useful
principle:

Keep the programming simple to keep the reasoning simple.
We have already seen some examples:

o It is simpler if you do not assign to ‘call by value’ parameters, even
though Modula-2 allows you to (hence our default assumption that they
do not change their values).

o It is simpler if functions, and hence expressions containing them, do
not have side-effects. We assumed this when we were discussing IF
statements — it is tricky if the condition has side-effects for the actual
parameters.

When we say that these features make the reasoning more difficult, this
applies even to the most superficial of reasoning. The effects they have are
easy to overlook when you glance over the program. A classic source of error
is careless use of global variables, because they tend to be updated in a
hidden way, as a side-effect of a procedure.

9.8 Summary

e For Modula-2 the essential ideas of pre- and post-conditions (also
recursion variants) are the same as for Miranda; result in a post-condition
means the result of the procedure.

e Variables change their values, so a logical condition must always carry
an idea of ‘now’, a particular moment in the computation. For pre-
and post-conditions, ‘now’ is, respectively, entry to and return from a
procedure.

e An unadorned variable always denotes its value ‘now’.

o A zero on a variable indicates its value ‘originally’, that is, on entry
to the procedure it appears in.

e Introduce new constant symbols (for example, variables adorned with 1s)
as necessary to indicate values at other times.

e There are implicit post-conditions: variables not mentioned, and local
variables, are not changed.

e Mid-conditions can be used as computational objectives (‘post-conditions
for parts of a procedure body’) and to help reason correctness.

e In an IF statement, the test gives pre-conditions for the THEN and ELSE
parts.

140 Specification for Modula-2 programs

e When reasoning about procedure calls, there are three parts:

1. notational manipulation to see what the pre- and post-conditions
say in the calling context;

2. logical deduction to prove the pre-condition;

3. logical deduction to prove the next mid-condition (what you wanted
to achieve by the procedure call).

9.9 Exercises

1. You have already seen the following problems for solution in Miranda:
e round: round a real number to the nearest integer.
e solve: solve the quadratic equation ax® 4 bx 4 ¢ = 0.
e middle: find the middle one of three numbers.
e newtonsqrt: calculate a square root by Newton’s method.

Translate the Miranda solutions (specifications and definitions) directly
into Modula-2.

2. The following standard procedures are defined in Niklaus Wirth’s
Programming in Modula-2: ABS, CAP, CHR, FLOAT, 0DD, TRUNC, DEC, INC.
Try to translate the explanations in the report into formal, logical
specifications.

3. Implement the middle function (see Exercise 1) in Modula-2 using the
SWAP procedure instead of recursion. Show that it works correctly.

4. Specify and define Modula-2 procedures Order4 and Order5 analogous
to Order3, and using the same method, a straight-line sequence of calls
of Order2. Prove that they work correctly. Can you show that you use
the minimum number of calls of Order2? Is there a general argument
that shows that this method works for ordering any given number of
variables?

Chapter 10

Loops

An important difference between functional and imperative programming is
the loop constructs (WHILE, UNTIL and FOR). They are essentially imperative
(that is what DO means), and to perform analogous computations in Miranda
you must use recursion. The techniques you need to reason about WHILE loops
are really just a use of mid-conditions; but the mid-conditions involved are so
important that they are given a special name of their own — they are loop
invariants. Fven in relatively unreasoned programming, experience shows that
there is a particularly crucial point at the top of the loop where it is useful
to put comments, and the method of loop invariants is a logical formalization
of this idea.

10.1 The coffee tin game

This game illustrates reasoning with loop invariants. It uses a tin full of two
kinds of coffee bean, Blue Mountain and Green Valley (Figure 10.1).

Rules:
WHILE at least two beans in tin DO
Take out any two beans;
IF they are the same colour
THEN
throw them both away;
put a Blue Mountain bean back in (*you may need spare blue beans™)
ELSE
throw away the blue one;
put the green one back
END
END:;

?

141

142 Loops

Very best blend:

Blue mountain

and

Green valley

~

Figure 10.1 Coffee beans

QUESTION: if you knew the original numbers of blue and green
beans, can you tell the colour of the final bean?

The contents of the tin at any given moment are described by the numbers
of blue and green beans. Let us write the state as mB + nG for m blue
beans, n green.

A transition (move) is determined by the colours of the two beans taken

out: BB, BG or GG (Figure 10.2).

More generally, we have

BB: mB + nG — (m —1)B+ nG
BG: mB + nG — (m —1)B+ nG
GG: mB + nG — (m+1)B+ (n—-2)¢

The important thing to notice is the way the number of green beans can
change. If it changes at all, it is decreased by 2, and this means that the
parity of the number of greens — whether it is odd or even — does not
change. The parity is invariant.

Suppose, then, there is originally an odd number of green beans. Then,
however the game progresses (and there are lots of different possibilities),
there will always be an odd number of greens. This holds true right up to
the end, when there is only one bean left. So what colour is that? It must
be green. Similarly, if there is originally an even number of green beans, then
the final bean must be blue. So we have answered our question.

The coffee tin game 143

® 38

Figure 10.2 Transition

Notice how the invariant, the parity, does not in itself tell us much about
the numbers of beans. It is only when we reach the end that the parity
combines with that fact to give very precise information about the numbers.

Another small point. How do we know that we ever reach a state with
only one bean? This is obvious, because the total number of beans always
decreases by one at each move. This total number is called a variant because
it varies and it works very like recursion variants.

Coffee tin game with comments

Here is a version with ‘mid-conditions’ written as comments. We talked before
about an invariant quantity, the green parity (odd or even). However, what
appears here is an invariant assertion, a logical formula, namely that the
current parity is the same as the original one. Our reasoning said that if this
assertion was true before the move, then it will be true afterwards as well;
hence if it was true at the beginning of the game (which it was, by definition)
then it will be true at the end as well.

This conversion of invariant quantity into invariant assertion might look
cumbersome in this case, but it gives a very general way of formulating
invariants. Henceforth, an invariant will always be a logical assertion.

The wvariant, on the other hand (the total number of beans, which we used
to prove that the game would end), is always a number:

144 Loops

(*pre: green parity p is p_0 & no. of beans > 0
*post: (p_O0 = Even & one blue left)
* \/ (p_0 = 0dd & one green left)
*loop invariant: green parity p_0 & no. of beans > 0
*loop variant = total number of beans
*)
WHILE at least two beans in tin DO
(* number of greens = n, say *)
Take out any two beans;
CASE two colours OF

BB: replace by B (* greens = nx)
| GG: replace by B (* greens = n-2x)
| BG,GB: replace by G (* greens = nx)
END
(* green parity = p_0 again, variant decreased *)
END;

(* green parity is still p_0O & just one bean left *)

10.2 Mid-conditions in loops

Now think of a real WHILE loop, WHILE test DO body END, and imagine putting
mid-conditions in. There is one point in the program execution that is crucial,
namely (each time round) immediately before the loop test is evaluated. What
makes it special is that there are two ways of reaching this point — when
control comes to the loop from higher up in the code, and when it loops back
from the end of the body — so it ties different execution paths together.

A mid-condition here is called the loop invariant. You should write it
explicitly in a comment before the loop:

(*loop invariant: ... *)
WHILE test DO

body

END

Because there are two ways of reaching the invariant’s point, two things need
to be proved to show that the invariant behaves:

1. that it holds the first time the loop is reached, in other words that the
invariant is established initially;

2. that if it holds at the start of an iteration, and if the loop test succeeds
(so that we continue looping and we know that invariant A test), then
the execution of the body will ensure that the invariant still holds next
time round, in other words that the body reestablishes the invariant.

Termination 145

Because the loop invariant point can be reached by two routes, it is — apart
from the overall specification — far and away the most important place for
mid-conditions. We suggest you take every opportunity to practise the method
in your programming.

For the Coffee Tin, the invariant (green parity = py and beans > 0) is
established trivially — by definition of pg. It is the reestablishment that is
important, showing that whatever move is made (and whatever happens while
the move is being made), the green parity is restored to p, and beans remain
> 0.

At the end, the payoff is that we still know that the invariant holds, but
we also know that the loop test fails (that is why we have finished looping).
It the invariant is a good one, this combination will allow us to deduce the
post-condition (maybe with some final computation). At the end of the Coffee
Tin game, we have both that the green parity is still po and that there is
only one bean left. This combination is strong enough to tell us exactly what
colour the bean is.

10.3 Termination

If we finish looping, then we know the combination ‘invariant A—loop test’
holds. But not all loops do terminate. Some loop for ever, and we want to
rule out this possibility. The Coffee Tin Game must terminate, because each
move decreases by one the total number of beans left, but this can never go
negative. Therefore after finitely many moves, the game must stop.

In general, to reason with WHILE loops we use not only the invariant, a
logical condition as above, but also a loop wvariant. This works the same way
as does a recursion variant. It is a natural number related to the computer
variables such that the loop body must strictly decrease it, but it can never
go negative. Then only finitely many iterations are possible, so the WHILE
loop must eventually terminate.

For the Coffee Tin, the variant is the total number of beans left.

10.4 An example

Apparently, the method of invariants and variants as presented so far is a
reasoning tool: given a WHILE loop, you might be able to find a loop invariant
to prove that it works. But actually, the invariant can appear much earlier
than that, even before you have written any code, as a clarification of how
you think the implementation will work. Let us explore this in a simple
problem to sum the elements of an array of reals:

