
��� Higher�order functions

�a� Prove by induction on xs that this speci�cation speci�es filter

uniquely�

�b� Show that filter is implemented by

filter p xs � fold ���� !" �map f xs�

where f x� !x"� if p x

� !"� otherwise

	� For each of the functions given below


�a� Write down equations to show their values in the cases when

ys � !"

ys � us��vs
ys � !y"

�b� Show �by list induction� that there is at most one function that
satis�es your answers to �a��

�c� Write a similar equation for the case when ys � y
zs� and show
how it is implied by the equations given in �a��

�d� Use �c� to write down a recursive Miranda de�nition of the function�

�e� Prove by induction that your de�nition satis�es the properties in
�a��

�f� Use map and fold to write a non�recursive de�nition of the function�

�g� Use standard properties of map and fold to show that your
de�nition in �f� satis�es the properties given in �a��

Here are the functions


� length
 !�" �� num� length ys is the length of ys�

� prod
 !num" �� num� prod ys is the product of the elements of
ys� �Note� consider carefully what prod !" should be��

� count
 � �� !�" �� num� count x ys is the number of occurrences
of x in ys�

� split
 �� �� bool� �� !�" �� �!�"� !�"�� If split p ys��ys��ys���
then merge�ys�� ys�� ys�� and for every y� if y is an element of ys�
then �p y�� while if y is an element of ys� then � �p y��

� all
 �� �� bool� �� !�" �� bool� �all p ys� i� for every element
y of ys we have 	p y
�

� some
 �� �� bool� �� !�" �� bool� �some p ys� i� for some
element y of ys we have 	p y
�

� sum
 !�" �� num� sum ys is the sum of the elements of ys�



Exercises ���


� Consider fold ��� True 

 !bool" �� bool� �� is associative� and
True is its identity�� Remember that in Miranda it is possible to have
in�nite lists� for instance trues where

trues � True
trues

�all its element are True��

Show that if bs is an in�nite list of type �bool�� then

foldr �$� True �False
bs� � False but
foldl �$� True �False
bs� goes into an in�nite loop�

��� �a� De�ne the polymorphic function reverse using foldr�

�b� De�ne the polymorphic function reverse using foldl�

�c� Which is more e�cient and why�
��� De�ne the higher�order function map without explicit recursion by using
the higher�order function foldr �with a non�associative argument��

��� In a version of the game Mastermind� one player thinks of a four�digit
number� while the other player repeatedly tries to guess it� After each
guess� player � scores the guess by stating the number of bulls and cows�
A bull is a correct digit in the correct place and a cow is a correct digit
in an incorrect place� No digit is scored more than once� For example�
if the secret code is ����� then


���� scores ��
���� scores ��
���� scores ��

Construct a function score which takes a code and a guess and returns
the number of bulls and cows� �Your function score should be written
using higher�order functions��
You may �nd it helpful to use the �� construct� �� is a list subtraction
operator� The value of xs��ys is the list which results when� for each
element y in ys� the �rst occurrence of y is removed from xs� For
example�

!�����������"��!���" � !�������"

�angle����l� ���l� � angel

�� �xyz� is short for !�x���y���z�"

��� �Advanced� This is an exercise in using both polymorphism and
higher�order functions� The question investigates predicates on Miranda
types
 a predicate on type � is understood as a function from � to
bool


pred � �� �� �� bool�



��	 Higher�order functions

Suppose f 

 bool �� bool �� bool� Then f can be extended to a
function on predicates by applying it pointwise


ptwise 

 �bool��bool��bool����pred �����pred �����pred ��

ptwise f p q x � f�p x��q x�

�Experiment
 de�ne this in Miranda� and try ptwise 

� Miranda
realizes that this de�nition can be used much more widely than just
when f 

 bool �� bool �� bool� Also� why does the type of ptwise
seem to give it three arguments� whereas the de�nition gives it four��
If p� q 

 pred �� let us write

p� q i� �x 

 
��p x� � True� �q x� � True�

�a� Translate the following speci�cations into English� and write Miranda
de�nitions for functions to implement them


all 

 �pred �� �� �pred !�"�

��pre
 none

��post
 �all p t��True ���

�� �A�x� ��E�n� In�At�x�t�n����p x��True�

some 

 �pred �� �� �pred !�"�

��pre
 none

��post
 �some p t��True ���

�� �E�x� ��E�n� In�At�x�t�n� � �p x��True�

�b� Prove that for all p� q 
 pred 
�
all�ptwise ���� p q�� ptwise ���� �all p� �some q�
ptwise ��� �all p� �some q� � some �ptwise �$� p q�

Describe in English what these results mean�



Chapter �

Speci�cation for Modula�� programs

We now move on to imperative programming� using the Modula�� language�
�This material also applies to Pascal and Ada programs�� We will not describe
the features of Modula�� here because there are already many books about it�


�� Writing speci�cations for Modula�� procedures

The general idea is the same as for Miranda
 a speci�cation has some typing
information� a pre�condition and a post�condition� These can be conveniently
placed at the header of the procedure as follows


PROCEDURE CardMin�x�y
 CARDINAL�
CARDINAL�

��pre
 none

�post
 �result � x �� result � y� � �result ��x � result ��y�

��

BEGIN

IF x��y THEN RETURN x ELSE RETURN y END

END CardMin�

The principles here are exactly the same as in Miranda� with three minor
points of di�erence� First� the typing information� that is�

PROCEDURE CardMin�x�y
 CARDINAL�
CARDINAL�

is compulsory in Modula��� Second� comments look di�erent
 they are between
�� and ��� instead of being after ��� Third� we are using the word result

in post�conditions to mean the value returned by the procedure� This means
that it would be inadvisable to have a variable called result because of the
confusion that would arise�

result has a special meaning in post�conditions of functions

it means the value returned�

��




��� Speci�cation for Modula�
 programs

Variables changing

What is not apparent from this example is that there is a big di�erence
between Miranda and Modula��
 Modula�� has variables that change their
values� Therefore� our reasoning must be able to cope with symbols that take
di�erent values at di�erent times� In general� because a variable may change
its value many times during the computation� there may be lots of di�erent
times at which we may wish to put our �nger on the value and talk about it�
There is a general technique for doing this� But in a procedure speci�cation�
there are really only two values to talk about� before �on entry to� and after
�on return from� the procedure� and we use a special�purpose notation to
distinguish these�
A pre�condition must only talk about the values before the procedure is
executed� so when a variable is used in a pre�condition it means the value
before� A post�condition will usually want to compare the values before and
after� and this is where the special notation comes in� A variable with a
zero �for example� x� or x �� means the value before� an unadorned variable
�for example� x or x� means the value after� We shall be consistent in using
unadorned variables to denote the value now �in the pre�condition� �now� is
the time of entry� in the post�condition it is the time of return�� and in using
various adornments such as the zero to show the value at some other time�

The following are two examples


PROCEDURE Swap �VAR x�y
 INTEGER��

��pre
 none

�post
 x�y�� � y�x��

��

PROCEDURE Sqrt �VAR x
 REAL��

�� Replaces x by an approximation to its square root�

� epsilon is a global variable�

� pre
 x��� � epsilon��

� post
 x��� � � x���x���� epsilon � epsilon � epsilon��

��

Some variables are not expected to change

To specify that a variable does not change� you say so in the post�condition

for example� epsilon � epsilon � says that epsilon does not change �value
on return � value on entry�� But this could get out of hand� so let us adopt
the following two conventions�
First� if a global variable is not mentioned at all in the speci�cation� then

we assume an implicit speci�cation that it should not change�



Mid�conditions ���

Second� if a parameter is called by value� then� again� we assume an implicit
speci�cation that it should not change� �That is why in CardMin we did not
bother to write x � or y ��� �If you think about it� this assumption will seem
pointless� Apparently� all the changes made to the parameter are local to the
procedure and the caller can never notice them��


�� Mid�conditions

When we implement the speci�cations� there is a very simple technique
for reasoning� It generalizes the idea of pre� and post�conditions by using
logical assertions that are supposed to hold at points in the middle of the
computation� not just at the beginning or end� We call them mid�conditions�
They are written as comments in the middle of the code�
The following is an implementation of Swap� with a complete set of

mid�conditions


PROCEDURE Swap �VAR x�y
 INTEGER��

�� pre
 none

�post
 x�y�� � y�x��

��

VAR z
 INTEGER�

BEGIN ��x�x�� � y�y����

z
�x� ��z�x�� � y�y����

x
�y� ��z�x�� � x�y����

y
�z� ��y�x�� � x�y����

END Swap�

You would not normally put in so many mid�conditions� There are just
certain key positions where they are important � you have already seen two�
namely entry and return �corresponding to pre� and post�conditions�� With
most simple straight�line sections of code such as this it is easy to omit the
intermediate mid�conditions and �ll them in mentally� But we can use the
example to illustrate the reasoning involved�
Each mid�condition is supposed to hold whenever program control passes

through that point � at least� provided that the procedure was called
correctly� with the pre�condition holding� �Note that unadorned variables still
denote the value �now�� that is� at the time when control passes through that
point� zeroed variables denote the value on entry�� Does this work here�
The �rst mid�condition� x � x� � y � y�� holds by de�nition
 we have only

just entered the procedure� so the value of x has to be its value on entry�
which is x� by de�nition�
Now look at the next mid�condition� z � x� � y � y�� To have arrived here�

we must have started at the point where we had x � x� � y � y�� and then
done the assignment z 
� x� It is not di�cult to see that this is bound to



��� Speci�cation for Modula�
 programs

set up the mid�condition we are looking at �though there are formal systems
in which this can be proved � in e�ect they de�ne the meaning of the
assignment statement��

The next mid�condition is similar� and �nally we reach the �nal mid�
condition� which is the post�condition� By this stage we know that by the
time the program returns it must have set up the post�condition�

Note the �stepping stone� nature of the reasoning� To justify a mid�condition
we do not look at all the computation that has gone before� but� rather� at
the preceding program statement and the mid�condition just before that�

Conditionals

Here is an example with an IF statement�

PROCEDURE IntMax �x�y
 INTEGER�
INTEGER�

��pre
 none

�post
 �result � x�� �� result � y��� �

� �result ��x�� � result ��y���

��

BEGIN

IF x��y

THEN ��x��y�� RETURN x �� result � x�� � result ��y����

ELSE ��x�y�� RETURN y �� result � y�� � result �x����

END

END IntMax�

There are two branches of the code� the THEN and ELSE parts� and in each
we can write a mid�condition based on the condition �IF x � y�� For instance�
when we enter the THEN part� that can only be because the condition has
evaluated as TRUE
 so we know at that point that x � y� �This is relying on
the fact that there are no side�e�ects when the condition x � y is evaluated��
After RETURN x� we know that the result is x and also� because we knew
x � y� that result � y� The other branch� the ELSE part� is similar� On
entering it� we know that the condition evaluated as FALSE� so x � y�

Finally� we must show that the post�condition is set up� There are two
return points� each with a di�erent mid�condition� But it is a matter of logic
�and properties of �� to show that

result� x � result� y
� �result � x � result � y� � result � x � result � y

result� y � result� x
� �result � x � result � y� � result � x � result � y



Calling procedures ���


�� Calling procedures

When you specify a procedure� the zero convention is very convenient� and
throughout that procedure you use the zeroed variables for the values on
entry� But when you call the procedure� you must be careful about the zeroes
in its speci�cation
 because you now have two contexts� the called procedure
and the calling context� in which zero has di�erent meanings�
The following is an example of a rather simple sorting algorithm� The �rst

procedure� Order�� sorts two variables� and the second� Order�� uses Order�

to sort three variables�

PROCEDURE Order� �VAR x�y
 INTEGER��

��pre
 none

�post
 ��x�x�� � y�y��� �� �x�y�� � y�x���� � x��y

��

BEGIN ��x�x�� � y�y����

IF x�y

THEN ��x���y���� Swap�x�y�� ��x�y�� � y�x�� � x�y��

�� ELSE x����y���� ��x�x�� � y�y�� � x��y��

END ��either way� x��y��

END Order��

Before giving the de�nition of Order�� let us outline the idea� We are ordering
x� y and z� If we can arrange for z to be the greatest� that is� x � z � y � z�
then the rest is easy
 just order x and y� So this condition becomes a key
objective in our computation strategy� dividing the task into two� It appears
as the second mid�condition� You can probably believe that this objective is
achievable using Order��y�z� and Order��x�z�� and we shall show this more
carefully�
On this analysis� the �rst two mid�conditions are slightly di�erent in

character� The second is a computational objective� used to specify the task
of the �rst part of the code� As a condition it does not express everything
known at that point� but� rather� just something achievable that gives us
what we need to be able to �nish o� the problem� The �rst mid�condition�
on the other hand� is more to help us reason that our code� once written�
really does work


PROCEDURE Order� �VAR x�y�z
 INTEGER��

��pre
 none

�post
 x�y�z are a permutation of x���y���z�� � x��y��z

��

BEGIN

Order��y�z�� ��y��z��

Order��x�z�� ��y��z � x��z��

Order��x�y� ��x��y��z��

END Order��



��� Speci�cation for Modula�
 programs

How do we know that Order� works� �Are you actually convinced at this
stage�� Let us dispose straight away of the speci�cation that x� y and z are a
permutation of x�� y� and z� �that is� the same values� possibly rearranged��
Although it is actually quite di�cult to express this in pure logic� it is quite
clear that each call of Order� just permutes the variables� so that is all the
three consecutive calls can do� The real problem is knowing that the order is
correct in the end�

The �rst call certainly sets up the �rst mid�condition� y � z� but how
do we know that the second call does not spoil this� We must look at
the speci�cation of Order�� which says �after we have substituted the actual
parameter z for the formal parameter y�

��x � x� � z � z�� � �x � z� � z � x��� � x � z

The zero here denotes the value on entry to the �second� call of Order�� but
we are reasoning about Order�� trying to prove it correct
 so for us the zero
could also denote the value on entry to Order�� To avoid the con�ict� you
have to invent some new names
 say x�� y� and z� for the values of x� y and
z between the �rst two Order�s
 At that point we have� by the mid�condition�
y� � z�� and this is eternally true � because y� and z� are unchanging values
not computer variables�

Now what Order� sees as x� and z� are � in our Order� context � x� and
z�� Hence on return from the second Order�� we can use its post�condition to
write

��x � x� � z � z�� � �x � z� � z � x��� � x � z � y � y�

So far� although we have said a lot by way of explanation� all that has
happened has been some notational manipulation and with practice you should
be able to do it automatically� What comes next is real logic� Figure 
��
contains a box proof that shows y � z � x � z�

More compactly� we want to show at this point that y � z� that is� y� � z�
Since y� � z�� it is su�cient to show that z� � z �that is� Order��x� z� cannot
decrease the value of z� you would expect this intuitively� but we can also
prove it�� There are two cases� If �x � x� � z � z��� that is� Order� did not
do a swap� then z� � z� In the other case� we have �x � z� � z � x� � x � z��
so z� � x � z�

We have now proved that the second mid�condition� y � z � x � z� is set up
correctly� For the third mid�condition� the fact that z is greater than both x
and y is una�ected whatever Order��x� y� does� while it also ensures x � y�
Hence� �nally� x � y � z�

You may invent new logical constants as names for intermediate
computed values� This is like Miranda �where � � � � notation�



Recursion ���

� y� � z�

� �x � x� � z � z�� � �x � z� � z � x��

� x � z

� y � y�

� y � z� eqsub in �

� x � x� � z � z�

� z � z� �E
� y � z eqsub in �

�

x � z� � z � x�

x � z� �E
z� � z eqsub in �

y � z trans �
�	 y � z �E���
�� y � z � x � z �I��� ���

Figure 
�� y � z � x � z


�� Recursion

To deal with recursion� you use recursion variants �or induction� just as
in Miranda� Recursively de�ned functions in Miranda translate readily into
recursively de�ned function procedures in Modula� and the reasoning is the
same in both cases� Actually� it is often more convenient to reason with the
Miranda de�nitions� because the notation is much more economical� Consider�
for instance� the Euclidean algorithm implemented recursively in Modula��


PROCEDURE gcd�x�y
 CARDINAL�
CARDINAL�

��pre
 none

�post
 result � x � result � y �

� �A�z
Cardinal� �z � x � z � y�� z � result�

�recursion variant � y

��

BEGIN

IF y�� THEN RETURN x ELSE RETURN gcd�y�x MOD y� END

END gcd�

Proposition 
�� The de�nition of gcd satis�es the speci�cation�

Proof Both speci�cation and de�nition are direct translations of those for
the Miranda function gcd given in Chapter �� �Note that the Miranda
pre�condition nat�x� � nat�y� has been translated into typing information in
Modula��� Unlike Miranda� Modula�� has special types CARDINAL and INTEGER�
with CARDINALs corresponding to nat�� We have already proved that the
Miranda de�nition satis�ed the Miranda speci�cation� �



��� Speci�cation for Modula�
 programs

It is somewhat di�cult at this stage to give sensible examples of recursion
that genuinely use the new imperative features� The following is a rather
arti�cial example


PROCEDURE gcd��VAR x�y
 CARDINAL��

��Replaces x by the gcd of x and y�

�pre
 none

�post
 x � x�� � x � y�� � �A�z
Cardinal� �z � x��� z � y���� z � x�

�recursion variant�y

��

VAR z
 CARDINAL�

BEGIN

IF y $ � THEN

z
�x MOD y�

x
�y�

y
�z� ��x�y�� � y�x�� MOD y����

gcd��x� y�

END

END gcd��

Proposition 
�� The de�nition of gcd� satis�es the speci�cation�

Proof If y � � then x � gcd�x� �� and so nothing has to be done� If y 	� ��
then by the usual reasoning with recursion variants we can assume that the
recursive call gcd��x� y� replaces x by the gcd of y� and x� MOD y�� which� by
the same argument as given in Chapter �� is the gcd of x and y� �


�� Examples

The following procedure swaps the values of two variables without using any
extra variables as storage space� Mid�conditions show very clearly how the
sequence of assignments works


PROCEDURE Swap �VAR x�y
 INTEGER��

�� pre
 none

�post
 x�y�� � y�x��

��

BEGIN ��x�x�� � y�y����

x
�x�y� ��x�x���y�� � y�y����

y
�x�y� ��x�x���y�� � y�x����

x
�y�x ��x�y�� � y�x����

END Swap�



Examples ���

Walkies Square

Imagine a Walkies package with position coordinates X and Y � and
procedures Up and Right for updating these


VAR X�Y
 INTEGER�

PROCEDURE Up�n
 INTEGER��

��pre
 none

�post
 X�X�� � Y�Y���n

��

PROCEDURE Right�n
 INTEGER��

��pre
 none

�post
 X�X���n � Y�Y��

��

We can use mid�conditions to show that the following procedure returns with
X and Y unchanged


PROCEDURE Square�n
 INTEGER��

��pre
 none

�post
 ��� � X�X�� � Y�Y��

��

BEGIN ��X�X�� � Y�Y����

Right�n�� ��X�X���n � Y�Y����

Up�n�� ��X�X���n � Y�Y���n��

Right��n�� ��X�X�� � Y�Y���n��

Up��n� ��X�X�� � Y�Y����

END Square�

It is reasonably clear that these mid�conditions are correct� But to justify
this more formally you need to use the speci�cations of Right and Up� For
instance� consider the call �Right��n��� In the speci�cation for Right� X� and
Y� mean the values of X and Y on entry to Right� and not� as we should
like to use them in the mid�conditions� on entry to Square� But we do know
�from the preceding mid�condition� that on entry to this call of Right X and
Y have the values X� � n and Y�� n�where X� and Y� are values on entry to
Square�� so we can substitute these into the post�condition for Right� Also�
Right is called with actual parameter �n� so we must substitute this for the
formal parameter n in the post�condition� All in all� in X � X� � n $ Y � Y�
substitute

� �n for n�
� X� � n for X��
� Y� � n for Y��

giving X � X� $ Y � Y� � n� This is the next mid�condition�



��	 Speci�cation for Modula�
 programs


�� Calling procedures in general

A typical step of reasoning round a procedure call looks as follows


� � �mid��x� y� z� � � �� P �a� b� c� � � �� mid
�x� y� z� � � ��

Here x� y� z� � � � represent the relevant variables� and a� b� c� � � � � expressions
involving the variables� are the actual parameters in the call of P � We assume
for simplicity that evaluating these actual parameters does not call functions
that cause any side�e�ects� We have reasoned that mid� holds just before
entry to P �imagine freezing the computer and inspecting the variables
 they
should satisfy the logical condition mid�� and we now want to reason that
mid
 will hold on return�� We must do this by using the speci�cation of P �
however� that is written using the formal parameters of P � and the �rst step
is to replace these by the actual parameters a� b� c� � � � to obtain the properties
of x� y� z� � � �

pre
 preP�x�y�z���� �

post
 postP�x�x���y�y���z�z������ �

�But the zeros in postP show values of x� y� and z on entry to P� and we
shall have to allow for this�� Next we must show that mid� entails preP� in
other words that mid� is su�cient to ensure that P works correctly� This is
pure logic�

Next� we must work out what exactly we know on return from P � at
the same time coping with possible notational clashes due to x�� and so
on� having di�erent meanings in di�erent places� Suppose x�� y�� z�� � � �are
convenient names for the values of x� y� z� � � � before the call of P � Then the
post�condition tells us that on return we have postP�x� x�� y� y�� z� z�� � � ��� But
we also know� because x�� and so on� are just names of values� that we have
mid��x�� y�� z�� � � ��� Hence� on return from P we know the following �and no
more�


postP�x� x�� y� y�� z� z�� � � �� �mid��x�� y�� z�� � � ��

Our �nal task is to prove that this entails mid
�x� y� z� � � ��� Again� this is
pure logic�

To summarize� after manipulating the speci�cation of P a little� we have
two tasks in pure logic
 prove �

mid��x� y� z� � � ��� preP�x� y� z� � � ��
postP�x� x�� y� y�� z� z�� � � �� �mid��x�� y�� z�� � � ��� mid
�x� y� z� � � ��

Thus the step between mid� and mid� �via P � really has the two logical
steps� above� and a computational step �P � in the middle� The speci�cation
of P gets us from preP �x� y� z� � � �� to

postP �x� x�� y� y�� z� z�� � � �� �mid��x�� y�� z�� � � ���



Keeping the reasoning simple ��



�� Keeping the reasoning simple

When all the features of imperative programming are taken together� some of
them can be quite complicated to reason about� There is a general useful
principle


Keep the programming simple to keep the reasoning simple�

We have already seen some examples


� It is simpler if you do not assign to �call by value� parameters� even
though Modula�� allows you to �hence our default assumption that they
do not change their values��

� It is simpler if functions� and hence expressions containing them� do
not have side�e�ects� We assumed this when we were discussing IF

statements � it is tricky if the condition has side�e�ects for the actual
parameters�

When we say that these features make the reasoning more di�cult� this
applies even to the most super�cial of reasoning� The e�ects they have are
easy to overlook when you glance over the program� A classic source of error
is careless use of global variables� because they tend to be updated in a
hidden way� as a side�e�ect of a procedure�


�	 Summary

� For Modula�� the essential ideas of pre� and post�conditions �also
recursion variants� are the same as for Miranda� result in a post�condition
means the result of the procedure�

� Variables change their values� so a logical condition must always carry
an idea of �now�� a particular moment in the computation� For pre�
and post�conditions� �now� is� respectively� entry to and return from a
procedure�

� An unadorned variable always denotes its value �now��
� A zero on a variable indicates its value �originally�� that is� on entry
to the procedure it appears in�

� Introduce new constant symbols �for example� variables adorned with �s�
as necessary to indicate values at other times�

� There are implicit post�conditions
 variables not mentioned� and local
variables� are not changed�

� Mid�conditions can be used as computational objectives ��post�conditions
for parts of a procedure body�� and to help reason correctness�

� In an IF statement� the test gives pre�conditions for the THEN and ELSE

parts�



��� Speci�cation for Modula�
 programs

� When reasoning about procedure calls� there are three parts

�� notational manipulation to see what the pre� and post�conditions
say in the calling context�

�� logical deduction to prove the pre�condition�

�� logical deduction to prove the next mid�condition �what you wanted
to achieve by the procedure call��


�
 Exercises

�� You have already seen the following problems for solution in Miranda


� round
 round a real number to the nearest integer�

� solve
 solve the quadratic equation ax� � bx� c � ��

� middle
 �nd the middle one of three numbers�

� newtonsqrt
 calculate a square root by Newton�s method�

Translate the Miranda solutions �speci�cations and de�nitions� directly
into Modula���

�� The following standard procedures are de�ned in Niklaus Wirth�s
Programming in Modula�

 ABS� CAP� CHR� FLOAT� ODD� TRUNC� DEC� INC�
Try to translate the explanations in the report into formal� logical
speci�cations�

�� Implement the middle function �see Exercise �� in Modula�� using the
SWAP procedure instead of recursion� Show that it works correctly�

�� Specify and de�ne Modula�� procedures Order
 and Order� analogous
to Order�� and using the same method� a straight�line sequence of calls
of Order�� Prove that they work correctly� Can you show that you use
the minimum number of calls of Order�� Is there a general argument
that shows that this method works for ordering any given number of
variables�



Chapter �	

Loops

An important di�erence between functional and imperative programming is
the loop constructs �WHILE� UNTIL and FOR�� They are essentially imperative
�that is what DO means�� and to perform analogous computations in Miranda
you must use recursion� The techniques you need to reason about WHILE loops
are really just a use of mid�conditions� but the mid�conditions involved are so
important that they are given a special name of their own � they are loop
invariants� Even in relatively unreasoned programming� experience shows that
there is a particularly crucial point at the top of the loop where it is useful
to put comments� and the method of loop invariants is a logical formalization
of this idea�

���� The co�ee tin game

This game illustrates reasoning with loop invariants� It uses a tin full of two
kinds of co�ee bean� Blue Mountain and Green Valley �Figure ������

Rules�

WHILE at least two beans in tin DO
Take out any two beans�
IF they are the same colour
THEN
throw them both away�
put a Blue Mountain bean back in �"you may need spare blue beans"�

ELSE
throw away the blue one�
put the green one back

END
END�

���



��� Loops

Very best blend


Blue mountain

and

Green valley

Figure ���� Co�ee beans

Question� if you knew the original numbers of blue and green
beans� can you tell the colour of the �nal bean�

The contents of the tin at any given moment are described by the numbers
of blue and green beans� Let us write the state as mB � nG for m blue
beans� n green�

A transition �move� is determined by the colours of the two beans taken
out
 BB� BG or GG �Figure ������

More generally� we have

BB
 mB � nG � �m� ��B� nG
BG
 mB � nG � �m� ��B� nG
GG
 mB � nG � �m� ��B � �n� ��G

The important thing to notice is the way the number of green beans can
change� If it changes at all� it is decreased by �� and this means that the
parity of the number of greens � whether it is odd or even � does not
change� The parity is invariant�

Suppose� then� there is originally an odd number of green beans� Then�
however the game progresses �and there are lots of di�erent possibilities��
there will always be an odd number of greens� This holds true right up to
the end� when there is only one bean left� So what colour is that� It must
be green� Similarly� if there is originally an even number of green beans� then
the �nal bean must be blue� So we have answered our question�



The co�ee tin game ���

BG

GG

�B � �G

BB

�B � �G �B � �G �B � �G

Figure ���� Transition

Notice how the invariant� the parity� does not in itself tell us much about
the numbers of beans� It is only when we reach the end that the parity
combines with that fact to give very precise information about the numbers�

Another small point� How do we know that we ever reach a state with
only one bean� This is obvious� because the total number of beans always
decreases by one at each move� This total number is called a variant because
it varies and it works very like recursion variants�

Co�ee tin game with comments

Here is a version with �mid�conditions� written as comments� We talked before
about an invariant quantity� the green parity �odd or even�� However� what
appears here is an invariant assertion� a logical formula� namely that the
current parity is the same as the original one� Our reasoning said that if this
assertion was true before the move� then it will be true afterwards as well�
hence if it was true at the beginning of the game �which it was� by de�nition�
then it will be true at the end as well�

This conversion of invariant quantity into invariant assertion might look
cumbersome in this case� but it gives a very general way of formulating
invariants� Henceforth� an invariant will always be a logical assertion�

The variant� on the other hand �the total number of beans� which we used
to prove that the game would end�� is always a number




��� Loops

��pre
 green parity p is p�� � no� of beans � �

�post
 � p�� � Even � one blue left�

� �� � p�� � Odd � one green left�

�loop invariant
 green parity p�� � no� of beans � �

�loop variant � total number of beans

��

WHILE at least two beans in tin DO

�� number of greens � n� say ��

Take out any two beans�

CASE two colours OF

BB
 replace by B �� greens � n��

� GG
 replace by B �� greens � n����

� BG�GB
 replace by G �� greens � n��

END

�� green parity � p�� again� variant decreased ��

END�

�� green parity is still p�� � just one bean left ��

���� Mid�conditions in loops

Now think of a real WHILE loop� WHILE test DO body END� and imagine putting
mid�conditions in� There is one point in the program execution that is crucial�
namely �each time round� immediately before the loop test is evaluated� What
makes it special is that there are two ways of reaching this point � when
control comes to the loop from higher up in the code� and when it loops back
from the end of the body � so it ties di�erent execution paths together�

A mid�condition here is called the loop invariant� You should write it
explicitly in a comment before the loop


��loop invariant
 ��� ��

WHILE test DO

body
END

Because there are two ways of reaching the invariant�s point� two things need
to be proved to show that the invariant behaves


�� that it holds the �rst time the loop is reached� in other words that the
invariant is established initially�

�� that if it holds at the start of an iteration� and if the loop test succeeds
�so that we continue looping and we know that invariant � test�� then
the execution of the body will ensure that the invariant still holds next
time round� in other words that the body reestablishes the invariant�



Termination ���

Because the loop invariant point can be reached by two routes� it is � apart
from the overall speci�cation � far and away the most important place for
mid�conditions� We suggest you take every opportunity to practise the method
in your programming�

For the Co�ee Tin� the invariant �green parity � p� and beans � �� is
established trivially � by de�nition of p�� It is the reestablishment that is
important� showing that whatever move is made �and whatever happens while
the move is being made�� the green parity is restored to p� and beans remain
� ��

At the end� the payo� is that we still know that the invariant holds� but
we also know that the loop test fails �that is why we have �nished looping��
If the invariant is a good one� this combination will allow us to deduce the
post�condition �maybe with some �nal computation�� At the end of the Co�ee
Tin game� we have both that the green parity is still p� and that there is
only one bean left� This combination is strong enough to tell us exactly what
colour the bean is�

���� Termination

If we �nish looping� then we know the combination �invariant ��loop test�
holds� But not all loops do terminate� Some loop for ever� and we want to
rule out this possibility� The Co�ee Tin Game must terminate� because each
move decreases by one the total number of beans left� but this can never go
negative� Therefore after �nitely many moves� the game must stop�

In general� to reason with WHILE loops we use not only the invariant� a
logical condition as above� but also a loop variant� This works the same way
as does a recursion variant� It is a natural number related to the computer
variables such that the loop body must strictly decrease it� but it can never
go negative� Then only �nitely many iterations are possible� so the WHILE

loop must eventually terminate�

For the Co�ee Tin� the variant is the total number of beans left�

���� An example

Apparently� the method of invariants and variants as presented so far is a
reasoning tool� given a WHILE loop� you might be able to �nd a loop invariant
to prove that it works� But actually� the invariant can appear much earlier
than that� even before you have written any code� as a clari�cation of how
you think the implementation will work� Let us explore this in a simple
problem to sum the elements of an array of reals



