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PROCEDURE AddUp(A: ARRAY OF REAL):REAL;
(*pre: none

*post: result = Sum (i=0 to HIGH(A))A[i]

*)
that 1is,

HIGH(A)
result = Y Al
i=0

There is an obvious technique for doing this; we read through the elements of
A with a variable subscript n and add them one by one into an accumulator
S.

Now imagine freezing the computation at the point when we have read
exactly n elements and added them all into S. Diagrammatically, the state of
the computer can be seen in Figure 10.3

n elements read S = sum of them

A
Y

A

3 | || | |
Hh S\ f

n—1 o HIGH(A)

subscripts:

Figure 10.3

This diagram includes quite a lot. Importantly, it says exactly what values
we intend to have in our variables n and S. An enormous number of
programming errors are caused by imprecise ideas of what values variables
are supposed to have. For instance, is A[n] the last element read, or the
next one to be read? Our diagram tells us. It also shows us that n varies
from 0 (no elements read, at start) to HIGH(A)+ 1 (all the elements read, at
finish). Most important of all, there is an easy link from the diagram to the
post-condition. If we can ever get n to be HIGH(A)+ 1, then S must be the
answer we want and all we need to do is RETURN S.

What the diagram is expressing is a computational objective — we intend
to write the program so that after each iteration of the loop we have achieved
a state as pictured by the diagram. At the same time, we want to push
n up to HIGH(A)+ 1. We do not have to draw this diagram in a program
comment; we can translate it into logic:

n—1
0<n <HIGH(A)+1AS=> A[]
=0
This is the loop invariant. 1t also guides our programming:

e Initially (no elements read) we want n =0 and S =0 (321, Al], the
empty sum).
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o If n =HIGH(A)+ 1, then S is the result we want and we can just return
it.

o If n <HIGH(A) then we want to read A[n], add it to S5, and increment
n.

Thus the very act of formulating the invariant has subdivided our original
problem into three smaller ones: initialization, finalization, and reestablishing
the invariant. This is a very important aspect of the method.

And the variant? A natural number that decreases each time is the number
of elements left to be read: this is HIGH(A) + 1 — n.

In effect we have now proved that the algorithm works, but we have not
written the program yet! For the sake of our idiot computer, we must
implement the algorithm in Modula-2:

PROCEDURE AddUp (A: ARRAY OF REAL) :REAL;
(*pre: none
*post: result = Sum (i=0 to HIGH(A))A[i]

*)

VAR n: CARDINAL;
S: REAL;

BEGIN
S5:=0.0;
n:=0.0;

(* Loop invariant:
*0<=n<= HIGH(A)+1 & S= Sum(i=0 to n-1) A[i]
*Variant = HIGH(A)+1-n
*)
WHILE n<= HIGH(4A) DO
S:=S+A[n];
n:=n+l
END;
RETURN S
END AddUp;

This is exactly the quantity of comments you should use in practice: the
specification and the invariant and variant. Once you have actually written
down the invariant, it is relatively easy — for you or for anyone else who
needs to look at your code — to check the minor details. For instance,

o Is the invariant established initially? Yes, easy.

o Is the post-condition set up at the end? Yes. When the loop has
terminated, we know both that 0 <n <HIGH(A)+ 1 (from the invariant)
and that n > HIGH(A) (because the loop test failed). Hence n must be
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exactly HIGH(A) + 1. Then the other part of the invariant tells us that
S is the required result, and all we have to do is return it.

e When A[n] is read, is n within range as an array subscript? Yes. We
know at that point that the loop test succeeded, so n <HIGH(A): it is
in range.

e Does the loop body reestablish the invariant? Yes, this is fairly easy to
see.

e Does the loop body decrease the variant? Yes, n is increased (by 1), so
HIGH(A) + 1 —n is decreased.

o Can the loop variant go negative? No. When the loop body is entered,
we know n < HIGH(A), so the variant is at least 1. After that iteration,
it has decreased by exactly 1, so it is still at least 0.

These are all specific questions that can be asked about the correctness of the
program, and for all of them the answer depends on the loop invariant. No
other possible mid-condition in this program plays such a crucial role.

10.5 Loop invariants as a programming technique

The whole technique comes into operation as soon as you decide to use a
loop structure. First, ask what the computer is supposed to look like at
intermediate stages. Do not think about the dynamics of this (a common
trap for beginners is to try to make a loop invariant by forcing the loop
body into a logical notation); you must imagine freezing the computation at
a crucial point and giving a static description of the internal state. There is
already a vague picture at the back of your mind, and that is what you must
bring out. Diagrams are absolutely invaluable here.

Also remember that you must understand at that exact point in the
computation what the value of each computer variable signifies. If you do not
know what values they are supposed to be storing, you will never be able to
use those values correctly.

A critical test of the diagram is that under certain conditions (for example,
n = HIGH(A) + 1 in the AddUp example) you must be able to use the
information carried by the diagram to arrive at the post-condition. The loop
test should be the negation of these conditions (because you continue looping
WHILE the conditions fail). At this point it is often easy to see a loop variant
— the loop test is often equivalent to variant > 0.

Next, formalize the picture in logic to obtain a loop invariant. Perhaps your
picture is incomplete; you will realize this later because you will find you do
not quite understand how the program is supposed to be working. Then you
fill in more details in the picture and refine the invariant. You now have an
incomplete implementation:
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PROCEDURE ...;
(*pre:
*post:
*)
VAR ... ;
BEGIN
Initialize; (* Remains to be written *)
(*loop invariant:
*variant =
*)
WHILE loop test DO
Loop Body (* Remains to be written *)
END;
Finalize (* Remains to be written *)
END ... ;

There are three pieces of code that remain to be written: the initialization,
the loop body and the finalization. (You probably saw fairly clearly how
the finalization would work when you formulated the invariant.) Hence the
original programming problem has been divided into three. Moreover, because
you have formulated the invariant and variant, each of these three pieces has
a precise job to do, a ‘subcontract’ of the contract (specification) for the
overall procedure. These subcontracts can be specified with ‘local’ pre- and
post-conditions.

Piece of code | Local pre-condition Local post-condition

Initialize Overall pre-condition | Invariant

Loop body Invariant A Loop test | Invariant Avariant < variantg
Finalize Invariant A—Loop test | Overall post-condition

(We assume as usual that there are no side-effects when you evaluate the
Loop test.) If you can implement Initialize, Loop body and Finalize to satisfy
these local specifications, then you know they will automatically fit together
in the WHILE loop to implement the overall specification correctly.

10.6 FOR loops

FOR loops are obviously very similar to WHILE loops, and you may well be
used to seeing our WHILE loop examples coded as FOR loops (for instance this
is quite easy for AddUp). In fact every FOR loop can be translated into a
WHILE loop (see Exercise 6), and it follows that one way to reason with FOR
loops is to give loop invariants and variants for the corresponding WHILE loops.

However, we are not going to recommend this here. One reason is that,
for the purposes of reasoning, the control variable, for example, the ¢ in FOR
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i := ..., 1s often still needed after the last iteration, whereas its value in
the computer has evaporated by then and is no longer accessible from the
program. This has the effect that the FOR loops fit uncomfortably with the
loop invariant reasoning, and in this book you will see FOR loops used less
often than you might expect.

Nevertheless, there are some applications where FOR loops are particularly
natural, namely when the different iterations of the body are more or less
independent of each other and could even be done in parallel. You might
think of the WHILE loop as being good for temporal iteration (‘this then this
then this, etc.”) and the FOR loop as more spatial, less ordered (‘do all these’).

Here is a typical example:

CONST Size = ...;
TYPE Matrix = ARRAY [1..Size],[1..Size] OF INTEGER;

PROCEDURE ZeroMatrix (VAR A: Matrix);
(*pre: none
*post: (A)i,j:CARDINAL. (1<=i<=Size & 1<=j<=Size -> A[i,j]=0)
*)
VAR 1,j: CARDINAL;
BEGIN
FOR i := 1 TO Size DO
FOR j := 1 TO Size DO
Ali,j]1 =0

END

END

END ZeroMatrix;
(NOTE: The logical variables ¢ and j in the post-condition, bound by the ¥,
are formally quite different from the computer variables i and j. However,
the structure of the post-condition — Size? checks of zeroness — is so similar
to that of the code — Size? assignments to 0 — that it seems fussy to insist
on different symbols.)

It is possible to translate the FOR loops into WHILE loops and give an
invariant for each. If you try this, you will see how clumsy it is. It is much
simpler to argue as follows. To show that the post-condition holds at the end,
let I and J be natural numbers between 1 and Size; we must show that at

the end A[l,.J] = 0. This is so, because

1. there was an iteration of the FOR loops (namely with ¢ =1 and j =.J)
in which A[l,.J] became 0; and

2. once that was done, none of the other iterations would ever undo it.

The pattern is quite general. You reason that everything necessary was done,
and then (because the iterations are independent) never undone. Note that
no special argument is needed to show termination. FOR loops are bound to
terminate unless you have a BY part of 0, for example,
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FOR i := 1 T0O 2 BY 0 DO ... END

As a general rule of thumb, if the iterations are fixed in number and
independent of each other, then try to find a simple argument such as the one
above and use a FOR loop. Otherwise, use a loop invariant and WHILE loop.

10.7 Summary

e The method of loop invariants is the method of mid-conditions applied
to WHILE loops.

e The invariant is a mid-condition that should always be true immediately
before the loop test is evaluated.

e Do not confuse the loop invariant with the loop test. They are both
logical conditions, but

1. the loop invariant is a mid-condition, used in reasoning, not
evaluated by the computer, and intended to be true right through
to the end;

2. the loop test is a Boolean expression, evaluated by the computer,
and is bound to be false after the last iteration.

e The invariant arises first (in your reasoned programming) as a
computational objective, often after drawing a diagram; when the
reasoned program is completed, the invariant is used to give a correctness
proof.

e The invariant is wused to divide the overall problem into three:
initialization, loop body, and finalization.

e The loop variant, a number, is like a recursion variant and is used to
prove termination.

e FOR loops are best reserved for simpler problems in which the iterations
are independent of each other.

10.8 Exercises

1. The problem is to implement the following specification:

PROCEDURE Negs(A: ARRAY OF INTEGER) :CARDINAL;

(*pre: none

*post: no. of subscripts for which A[i]<0

*)

The idea is to inspect the elements starting at A[0] and working up to

HIGH(A):

(a) Draw a diagram to illustrate the array when n elements have
been inspected — make it clear what are the subscripts of the
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last element to have been inspected and the next element to be
inspected.

What values will n take as the program proceeds?

Write down the implementation (Modula-2 code), including the loop
invariant and variant as comments in the usual way. The invariant
should in effect translate the diagram of (a) into mathematical form.

Use the invariant and the failure of the loop test to show that the
post-condition is set up.

Show that whenever an array element is accessed, the subscript is
within bounds.

NOTE: (c) contains the ingredients that you should write down in
your practical programming.

2. Develop reasoned Modula-2 programs along the lines of Exercise 1 to

solve the following problems about arrays:

(a)
(b)
()

Find the minimum element in an array of integers.
Find whether an array of integers is in ascending order.

Find the length of an array of CHARs, on the understanding that
if it contains the character NUL (assumed predefined as a constant),
then that and any characters after it are not to be counted. (In
other words, NUL is understood as a terminator.)

Find the median of an array of reals, that is, the array value closest
to the middle in the sense that as many array elements are smaller
than it as are greater than it. Is the problem any easier if the
array is known to be sorted?

3. Develop the procedure Search:

PROCEDURE Search(A: ARRAY OF INTEGER; x:INTEGER) :CARDINAL;
(*pre: Sorted(A)

*post: result <= HIGH(A)+1

&(A)1i:CARDINAL

((i< result ->A[i]<x)

&(result <=i<= HIGH(A)->A[il>=x))*)

Use a ‘linear’ search, inspecting the elements of A one by one starting
at AJ0].

Explain how the post-condition is deduced at the end (this is where
sortedness is needed).

4. Implement the procedure IsIn, using a call of Search (Exercise 3):



FEzrercises 153

PROCEDURE IsIn(x: INTEGER; A:ARRAY OF INTEGER) :BOOLEAN;
(*pre: Sorted(A)

*post: result <->(E)i:Cardinal (i<= HIGH(A) & A[il= x)
*)

Using the pre- and post-conditions of Search (not the code), prove that
your implementation of IsIn works correctly. What this means is that
in every place where a result is returned, you must show that it is the
correct result.

. Give FOR loop implementations of the following:

(a) IsIn
(b) Copy
PROCEDURE Copy(A: ARRAY OF INTEGER;
VAR B: ARRAY OF INTEGER);
(* Copies A to B
P
xpre: HIGH(A) = HIGH(B)
*post: B=A
*)

. Show how a FOR loop

FOR 1 := a TO b BY c DO
S

END
can be translated into a WHILE loop. There are some tricky points:

(a) If ¢ is negative the translation is different.

(b) The intention is that b and ¢ should be evaluated only once, at
the beginning. Hence you must be careful if they are expressions
containing variables (actually, Modula-2 forbids this for ¢).

. Consider the following problem:

PROCEDURE Copy (n,Astart,Bstart: CARDINAL; A:ARRAY OF INTEGER;
VAR B: ARRAY OF INTEGER);

(*copies n elements from A, starting at A[Astart],to B,

*starting at B[Bstart].

*)

(a) Give a FOR loop implementation of this, including pre- and
post-conditions. Give your reasoning to show that it works.

(b) If the array A is large, you might be tempted to call A as a VAR
parameter, since then a local copy of it would not be made for
use by the Copy procedure. If you did that, what might go wrong
in the case where A and B are the same array? Can you give a
sensible specification that allows for this possibility?
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Binary chop

How do you look up a word, ‘binary’, say, in a dictionary? What you do not
do is to look through all the words in order, starting at page 1, until you
find the word you want. If the dictionary had 1170 pages, you might have to
check all of them before you found your word (if it was ‘zymurgy’). Instead,
you open the dictionary about half way through, at ‘meridian’, and you see
that ‘binary’ must be in one of the pages in your left hand. You divide those
about half way through, at ‘drongo’, and again you see that ‘binary’ must
come before that. Each time, you halve the number of pages in which your
word might be:

Stage: 0 1 2 3 45 6 7 8 9
Pages left:1170 585 293 147 74 37 19 10 5 3
Hence, you have only to check eleven pages before you find your word. This
method is called the ‘binary chop algorithm’, and it relies crucially on the
fact that the entries in the dictionary are in alphabetical order. It is a very
important algorithm in computing contexts, and, what is more, it is a good
example of an algorithm that is very easy to get wrong if you try to write
the code without any preliminary thought.

There is another important lesson in this algorithm, namely that the natural
order of writing a procedure is not necessarily from top to bottom. (This is
similar to the way you write a natural deduction proof.) You know already
that the loop invariant should generally be worked out before the code; here

the most important piece of code to be fixed is the finalization part.

11.1 A telephone directory

To explore different possible ways in which the algorithm might be used,
imagine a telephone directory stored on a computer as an array of records,

154
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each record comprising a name, an address and a telephone number. The
records are stored in alphabetical order of names, but for different records
under the same name it is perhaps not worth ordering them any more
precisely.

To look up a record, you supply a name and apply the binary chop
algorithm. Although it is possible to use the algorithm simply to tell you
whether the name is present in the directory, clearly in this case you need to
know where it is so that you can then read the telephone number. Also, it is
necessary to remember that there may be more than one record under the
same name. [t is most convenient if the algorithm tells you the subscript of
the first one, so that you can then inspect the addresses one by one.

Now suppose that there is no record under the name you supplied. You
might think that it is sufficient for the algorithm to tell you that, but consider
the problem of updating the array. Any new record must be inserted in
exactly the right place (after prising open a gap by shifting a lot of records up
one place), and the binary chop algorithm can tell you where that right place
is. (Note the payoffs here: lookup is very cheap, but update is expensive.)

Thus the algorithm apparently has many different situations to consider. It
is an indication of the power of the algorithm that the cases are actually
handled in a very uniform way.

11.2  Specification

Purely for the sake of example, let us take A to be an array of integers,
its elements appearing in ascending order: if ¢ < j, then A[;] < A[j]. (The
method works not just for integers, but for any kind of data with an
understood ordering — for instance, the telephone records described above,
ordered alphabetically by name.) If x is an integer, the problem is to
search for = in A. We can divide A into two blocks, one on the left
where the elements are < x, and one on the right where they are > z.
The answer is to be the subscript of the first element on the right:
<z >

— —— oy
- o

s [T 1] ]
! T T

subscripts: () result HIGH(A)

We can translate this into logic. First, all elements with subscripts between 0
and result—1 inclusive are < x:

Vi:nat (i <result — Alil] < ) (11.1)
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Second, all elements with subscripts between result and HIGH(A) inclusive are
>z

Vi:nat (result <i¢ < HIGH(A) — A[{] > x) (11.2)
Third, we should say what range the result will lie in. The extremes are
when all the elements of the array are > x, when the result should be 0, and
when all the elements are < x, when the result should be HIGH(A) + 1 (notice
how in this case A[result] is undefined):

0 < result <HIGH(A) + 1 (11.3)
These three conditions will form the post-condition.
If « is present at all in the array, then we must have Afresult] = z.
(We shall prove that this holds a little later.) If = is absent, then either
Alresult] > « or result = HIGH(A) + 1.

11.3  The algorithm

The algorithm uses two natural number variables Left and Right, which
represent your two hands holding the dictionary: what you know at each
stage is that the answer must be between Left and Right. At each iteration,
you find the midpoint between Left and Right (call it Middle), and use that
as a new Left or Right. Now this intuition is relatively simple, but it is tricky
to say exactly what it means. Some points to be resolved are as follows:

e Should the answer be strictly between Left and Right, or not? Or strict
at one end but not at the other? (Four possibilities here.) This is very
important. If your ideas are not consistent throughout the program,
then errors will arise.

o It is tempting to say something like A[Left] < x and A[Right] > z, but
might we ever want Left or Right to be HIGH(A)+ 1, that is, not a valid
subscript for A?

The key is to notice that result is used twice in the post-condition, once to
show where the elements < z are, and once to show where those > x are.
Left and Right can divide these two tasks between them: elements before Left
are known to be < z, and elements at or after Right are known to be > =.
In between, we do not know:

<z 7 >

- -

N T 1]
! T T T

subscripts: () Left Right HIGH(A)
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(Middle does not appear — it is used only for calculating within the loop
body.)
We are trying to eliminate the ‘7" region, that is, to make Left and

Right equal. Then we have essentially the same diagram as before, and
Left (= Right) is the required result.

Initially, on the other hand, everything is ‘7" and so we want Left=0 and
Right = HIGH(A) + 1.

Actually, this idea, that when Left=Right we stop and return Left as result,
is a fundamental design decision that strongly influences the rest: our initial
decision is how to finalizel — though that should not come as a surprise by
now. So the first program fragments we can write down are

(*loop invariant: 777 (formalizes picture)
*variant = Right-Left *)
WHILE Left < Right DO

END;
RETURN Left
END Search;

There are different ideas, for instance ‘when Right = Left+1 return Right’;
which we could have chosen but we did not and, as it turns out, the method
we have chosen is simpler.

Next, let us formulate the invariant. We have a picture already, but we
also know that we are choosing <’s or <’s precisely to make the Left and
Right parts of the invariant match parts 11.1 and 11.2 of the post-condition.
Therefore, it has to be

Left < Right < HIGH(A) + 1
AVe:nat. ((¢ < Left — Ali]l < o) A (Right <1 <HIGH(A) — Al > x))

Let us also take the opportunity to say that the variant is Right — Left.

We have already dealt with the finalization; what next? The initialization
is easy — we want Left =0 and Right = HIGH(A)+ 1. All that remains is the
loop body.

The idea is to find Middle between Left and Right and update either Left
or Right depending on the value of A[Middle]. How should we do that? Let

us be very careful to use the information precisely.

It A[Middle] < =, then Middle is in the ‘< x’ area of the array; so Left,
which is to be in the ‘77 area, can safely be set to Middle+ 1. On the
other hand, if [Middle]l] > x, then we must set Right to Middle (why not
Middle — 17). We have not said exactly what Middle is, but we have made a
start on the loop body:
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Middle := 7;
IF A[Middle] < x THEN
Left := Middle+1

ELSE
Right := Middle
END
It remains to assign a value to Middle, and it is important to see what
precisely are the requirements here — all we know so far is that Middle should

be (about) half way between Left and Right, or at least somewhere between
them. Consider how the invariant Left < Right is reestablished. The new Left
may be Middle +1, so we want Middle + 1 < Right, that is, Middle < Right.
In the other case, the new Right is Middle, so we want Left < Middle. We
can use a mid-condition to express these requirements as a computational
objective:

Middle := ?7; (* Left <= Middle < Right *)

It is not difficult to see that if we can achieve this, then the rest of the loop
body will reestablish the invariant and decrease the variant as well. We shall
see soon that we can assign (Left+ Right) DIV 2, the rounded-down average
of Left and Right, to Middle. That is probably what you expected anyway,
but more care is needed here than you might think. In FExercise 1 you will
see a use of essentially the same algorithm in a different context where it is
more natural to require Left < Middle < Right, and there it is necessary to
use ((Left+ Right) DIV 2)+ 1 — the problem comes when Right = Left+ 1, so
that Middle = Left.

11.4 The program

The program appears in Figure 11.1 Notice the order in which the parts
appear:

1. The procedure heading, with specification and the fragments BEGIN and
END Search;.

2. The framework for the loop: WHILE Left < Right DO and END; RETURN
Left; also the slots for the invariant and variant (we have filled in the
variant), and the VAR declarations.

3. The invariant, carefully formulated to match 2, and the post-condition.

4. The initialization.

5. Pieces of the loop body: an incompleted assignment statement Middle
:= 7;, and all of the IF statement.

6. The comment (* Left <= Middle < Right *).

7. The assigned value (Left+Right) DIV 2.

At each stage, the choices to be made depended in a natural way on preceding
choices, so the development had a certain logical inevitability.
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PROCEDURE Search( A: ARRAY OF INTEGER; x: INTEGER) : CARDINAL;
(*pre: Sorted(A),

* i.e. (A)i,j:nat. ( i<=j<= HIGH(A) -> A[il<=A[j]1 )
*xpost: result <= HIGH(A)+1 & (A)i:nat.
* ( ( i<result -> A[il<x ) & ( result<=i<=HIGH(A) -> A[il>=x ) )
*)
VAR Left,Right,Middle: CARDINAL;
BEGIN
Left := 0;

Right := HIGH(A)+1;
(*Loop invariant: Left <= Right <= HIGH(A)+1 & (A)i:nat.

* ( (i< Left -> A[il<x ) & ( Right<=i<=HIGH(A) -> A[il>=x) )
*variant = Right-Left
*)

WHILE Left < Right DO
Middle := (Left+Right) DIV 2; (% Left <= Middle < Right *)
IF A[Middle]l<x
THEN Left := Middle+1
ELSE Right := Middle
END
END;
RETURN Left
END Search;

Figure 11.1

As an experiment, try to write the program code straight down from the
top without thinking of invariants. You will probably find (everyone else does)
that it is not easy to get it right.

11.5 Some detailed checks

We have already covered most of the important aspects of the invariant: that
it 1s established correctly initially, that it is reestablished on each iteration,
and that at the end it can be used to deduce the post-condition. The
following are some small remaining questions.

At the end of each iteration, do we still have Left < Right? After the
assignment to Middle, do we indeed have Left < Middle < Right! Because we
are still looping, we know that Left < Right, that is, Left < Right — 1. Hence,

Middle = (Left + Right) DIV 2 > (2 x Left) DIV 2 = Left
Middle = (Left + Right) DIV 2 < (2 x Right — 1) DIV 2 = Right — 1 < Right
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NOTE: the equality (2 x Right — 1) DIV 2 = Right — 1 is correct according
to the definition of Modula-2, given that Right > 1 (which we know because
Right > Left): the fractional answer (Right—0.5) is truncated to Right—1. But
it is possible to imagine an integer division that might round the fractional
answer Right — 0.5 up to Right. Therefore, if you translate this algorithm to
languages other than Modula-2, you should check that their integer divisions
behave as expected. Dijkstra and Feijen (‘A Method of Programming’) give
a treatment that does not depend on the rounding method. However, their
program only checks whether = is present in A and some elegance is lost
when the method is extended to return the position — extra checking is
needed to make up for the doubts about the integer division. In truth, the
point of integer arithmetic is that it should be ezact, and an inadequately
specified integer division is a blunt instrument.

When A is subscripted, is the subscript within bounds? The only place is in
‘IF A[Middle]l ...°. Can we guarantee that Middle < HIGH(A)? Yes, because
(as above) Middle < Right, and, by the invariant, Right <HIGH(A) + 1.

Does the variant definitely decrease each time round? 1If Right is replaced
by Middle, then it has definitely decreased; if Left is replaced by Middle + 1,

then it has definitely increased. Either way, the variant has decreased.

11.6  Checking for the presence of an element

Suppose we only want to check whether x is present in A. If we calculate

r:= Search(A,x);

how can we use A,z and r to perform our check? Just to be sure, let us
write down what we know about r solely from the post-condition for Search:

r < HIGH(A) + 1
AYi:nat. (1 <r— ALl <) A (r <i<HIGH(A) — AL] > 2)) (%)
It Alr] =z, then & must be present; while a quick look at one of the
diagrams above makes it fairly clear that if A[r] > x then z is absent. But
wait! Is A[r] defined? Not necessarily. r might be equal to HIGH(A)+ 1; in
this case, x is absent because all the elements are < .

Check that array subscripts are in bounds when you write the
program, not when you run it.

The following is the program:
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PROCEDURE IsIn(x: INTEGER; A: ARRAY OF INTEGER) :BOOLEAN;
(*pre: (A)i,j:nat. (i<=j<= HIGH(A)->A[i] <=A[;])
*post: result <->(E)i:nat. (i<= HIGH(A) & A[i]= x)
*)
VAR r: CARDINAL;
BEGIN
r:= Search(A,x);
RETURN r<= HIGH(A) AND Alr] = x
END IsIn;

The code above relies on Modula-2’s short circuit evaluation. That is,
Alr] = x will not be evaluated if r > HIGH(A). In other languages, such
as Pascal, Boolean expressions are evaluated completely even if the result is
known after the first subexpression has been evaluated. The code after the
RETURN would then need to be written as the following:

IF r <= HIGH(A)

THEN RETURN A[r] = x

ELSE RETURN FALSE

END

Let us show as rigourously as possible that the code for IsIn satisfies its
specification: that if the returned Boolean value is TRUE then z is indeed
present in A (that is, 3¢ :nat. (¢« <HIGH(A) A Ali] = 2)), and that if FALSE
is returned then x is absent (that is, =3¢ : nat.(¢ < HIGH(A) A ALl = a)).

[first case:]r > HIGH(A), so FALSE is returned. We know that r is a natural
number and that r < HIGH(A)+ 1, so r = HIGH(A)+ 1. Then from
(*),Vi:nat.(: <HIGH(A) — A[] < x), in other words all the elements of
A are <o — so x must be absent. Note that the invalid array access
Alr] is not attempted here because of the way in which Modula-2
evaluates AND.

[second case:]r < HIGH(A), Alr] = 2, so TRUE is returned. Certainly z is
present, with subscript r.

[third case:lr < HIGH(A),Alr] # x, so FALSE is returned. Because
r < HIGH(A), (*) tells us that A[r]l > x, so we must have A[r] > z.
Now consider any subscript ¢ < HIGH(A). If ¢ <r, then (%) tells us
that A[:] < «, while if ¢ > r, then (using orderedness) ALl > A[r] > x.
Either way, ALl # x, so =3¢ : nat. (¢ <HIGH(A) A AL = ).

11.7 Summary

e Binary chop is an important and efficient search algorithm if the elements
are arranged in order. You should know it.

o The algorithm has many uses, but to use it effectively it is important to
understand exactly what the result represents (that is, to have a clear
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specification).
e There i1s a particular train of reasoning that leads to the algorithm
easily; otherwise it is easy to get into a mess.

11.8 Exercises

1. What happens if you replace the assignment Left := Middle+1 in
Search by Left := Middle? (HINT: the invariant is still reestablished.)
A common belief is that the problem can be corrected by stopping early,
looping WHILE Left+1 < Right. Follow through this idea and see how it
gives more complicated code.

2. The following is another version of intsqrt by the binary search
algorithm:

intsqrt: :num->num

| Ipre: x >= 0

| lpost: n = entier (sqrt x)

|| i.e. nat(n) & n°2 <=x & (n+1)"2 > x

Il where n = intsqrt x

intsqrt x = £ x 0 (entier x)

where f x 1 r =1, ifl=r

=7, if m*m <= x

?

s otherwise
wherem = 7
| Im satisfies some conditions

Specify f precisely and in full, and complete the definition. (Beware! m
is not (I +r)div 2, as you will see if you follow the method properly.)
3. Show that the specification of Search specifies the result uniquely. In
other words, if there are two natural numbers r and r’ that are both
valid results, then r =¢’.
Use this to deduce the following. Suppose that in A there is exactly one
index, ¢, for which A[:] = . Then ¢ = Search(A, z).
4. There are other ways of giving the post-condition for Search. Here is
one that translates the informal specification much more directly:

postl: (result <= HIGH(A) & Alresult]>=x
& (A)i:nat. (i<=HIGH(A) & A[i]>=x->i>=result))
\/(result=HIGH(A)+1
& (A)i:nat. (i<=HIGH(A)->A[i]<x))

Use natural deduction (together with standard properties of arithmetic)
to prove that

pre F (post « postl)
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where pre and post are the pre- and post-conditions for Search as
originally specified, and postl is as given above.
Can you think of any other equivalent post-conditions?

5. This question examines how you might use Search to update an ordered
array.
First, a function Searchil is intended to work in the same way as
Search, but with a ‘soft HIGH called Highl to allow for variable length
lists of integers within a fixed length array. (We actually use a soft
version of HIGH(A) 4 1. This allows us to specify an empty list by
setting Highl = 0.)

PROCEDURE Search1(A: ARRAY OF INTEGER;

Highl: CARDINAL; x: INTEGER) : CARDINAL;
(*pre: Highl<= HIGH(A)+1 & Sorted(A[0 to Highl-1])
*post: result <= Highl & (A)i:nat.

* ((i< result ->A[i]<x)
* & (result <=i< High1->A[i]>=x))
*)

(It is obvious how to implement this: just initialize Right to Highl
instead of HIGH(A) + 1 in the implementation for Search. Note that this
works even in the case where Highl = 0.)

Implement the following procedures, giving invariants and variants for all
loops. The notation A[i to j] is introduced in Section 12.3.

PROCEDURE OpenUp(VAR A: ARRAY OF INTEGER; VAR Highl: CARDINAL;
NewGap: CARDINAL);

(*pre: NewGap <= Highi<= HIGH(A)

*xpost: (E)x:Integer.

* A[0 to Highil-1] =

* A_0[0 to NewGap-1]++[x]++A_O[NewGap to Highl_0-1]

*)

PROCEDURE Insert(VAR A: ARRAY OF INTEGER; VAR Highl: CARDINAL;
x:INTEGER) ;

(*pre: Highl<= HIGH(A) & Sorted(A[0 to Highil-1])

* post: Sorted(A[0 to Highl-1])

* & (E)s,t:[Integer]

* (A_O[0 to Highl_ 0-1]=s++t
* &A[O to Highl-1]=s++[x]++t)
*)

(HINT: implement Insert using Searchl and OpenUp.)
6. Redo the proof that IsIn satisfies its specification using box proofs.
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Quick sort

12.1  Quick sort

Donald Knuth, in his book Sorting and Searching, gives an estimate of over
25 per cent for the proportion of computer running time that is spent on
sorting. Whether this estimate is still accurate, we do not know, but his
conclusion is still valid: whether (i) there are many important applications
of sorting, or (ii) many people sort when they should not, or (iii) inefficient
sorting algorithms are in common use, or something of all three, sorting is
worthy of serious study as a practical matter.

As a general principle, if a program is used a lot then it is worth making it
run quickly. In this chapter we present quick sort, an efficient sorting algorithm
due to Tony Hoare. It is a good example of a combination of different kinds
of argument. It is recursive, and the framework of the algorithm is very
conveniently discussed as a Miranda function working on lists. However, when
it is transferred to Modula-2 working on arrays, a significant improvement
becomes possible using the ‘Dutch national flag’ algorithm, and this can be
discussed using loop invariants — in fact it is a rather good example of a
loop invariant that is a logical translation of a diagram.

12.2  Quick sort — functional version

The problem is, given a list, to sort it into order. We start off in Miranda.
Since in Miranda datatypes have natural orderings, we do not need to say
what our lists are lists of:

sort:: [*]->[%]
| |lpre: mnone
| |lpost: Sorted(sort xs) & Perm(sort xs,xs)

164
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Idea: partition

It is so much easier to sort short lists than long ones that it helps to do a
preliminary crude sort, a partition with respect to some key k (Figure 12.1).

elements < k go here elements > k go here

Figure 12.1

partition:: *->[x]->([*], [*])

| |pre: none

| |lpost: Perm(xs,ys++zs)

|| all elements of ys are <=k

|| all elements of zs are >k

|| where (ys,zs) = (partition k xs)

Note that the specification does not uniquely determine the function. If
(ys, zs) is a possible result, so is (ys’,zs") where ys’, zs’ are any permutations
of ys and zs. It is simple to implement partition in Miranda, but we do
not need to — it is the specification that is important, and in the end we
will implement it by a totally imperative method. A pure functional quick
sort is not terribly quick and uses lots of space.

Implementing quick sort

The idea is to do a partition first and then sort the two parts separately;
they can be sorted using the same method, recursively. The head of the list

can be the key:

gsort:: [*]->[x]
| |pre: none
| |lpost: Sorted(gsort (xs)) & Perm((gsort (xs)),xs)
| I[Irecursion variant = #xs
gsort [1 =[]
gsort (x:xs) = (gsort ys)++[x]++(gsort zs)
where (ys,zs) = partition x xs

This is the essence of the recursion in the quick sort algorithm. To prove



