
��� Loops

PROCEDURE AddUp�A
 ARRAY OF REAL�
REAL�

��pre
 none

�post
 result � Sum �i�� to HIGH�A��A!i"

��

that is�

result �
HIGH�A�X
i��

A�i��

There is an obvious technique for doing this� we read through the elements of
A with a variable subscript n and add them one by one into an accumulator
S�
Now imagine freezing the computation at the point when we have read
exactly n elements and added them all into S� Diagrammatically� the state of
the computer can be seen in Figure ����

...A

n

S � sum of them

� � n � �

n elements read

HIGH�A�subscripts

Figure ����

This diagram includes quite a lot� Importantly� it says exactly what values
we intend to have in our variables n and S� An enormous number of
programming errors are caused by imprecise ideas of what values variables
are supposed to have� For instance� is A�n� the last element read� or the
next one to be read� Our diagram tells us� It also shows us that n varies
from � �no elements read� at start� to HIGH�A� � � �all the elements read� at
�nish�� Most important of all� there is an easy link from the diagram to the
post�condition� If we can ever get n to be HIGH�A� � �� then S must be the
answer we want and all we need to do is RETURN S�
What the diagram is expressing is a computational objective � we intend

to write the program so that after each iteration of the loop we have achieved
a state as pictured by the diagram� At the same time� we want to push
n up to HIGH�A� � �� We do not have to draw this diagram in a program
comment� we can translate it into logic

� � n � HIGH�A� � � � S �
n��X
i��

A�i�

This is the loop invariant� It also guides our programming

� Initially �no elements read� we want n � � and S � � �
P��

i��A�i�� the
empty sum��

An example ���

� If n � HIGH�A� � �� then S is the result we want and we can just return
it�

� If n � HIGH�A� then we want to read A�n�� add it to S� and increment
n�

Thus the very act of formulating the invariant has subdivided our original
problem into three smaller ones
 initialization� �nalization� and reestablishing
the invariant� This is a very important aspect of the method�

And the variant� A natural number that decreases each time is the number
of elements left to be read
 this is HIGH�A� � �� n�

In e�ect we have now proved that the algorithm works� but we have not
written the program yet� For the sake of our idiot computer� we must
implement the algorithm in Modula��

PROCEDURE AddUp �A
 ARRAY OF REAL�
REAL�

��pre
 none

�post
 result � Sum �i�� to HIGH�A��A!i"

��

VAR n
 CARDINAL�

S
 REAL�

BEGIN

S
�����

n
�����

�� Loop invariant

����n�� HIGH�A��� � S� Sum�i�� to n��� A!i"

�Variant � HIGH�A����n

��

WHILE n�� HIGH�A� DO

S
�S�A!n"�

n
�n��

END�

RETURN S

END AddUp�

This is exactly the quantity of comments you should use in practice
 the
speci�cation and the invariant and variant� Once you have actually written
down the invariant� it is relatively easy � for you or for anyone else who
needs to look at your code � to check the minor details� For instance�

� Is the invariant established initially� Yes� easy�
� Is the post�condition set up at the end� Yes� When the loop has
terminated� we know both that � � n �HIGH�A� � � �from the invariant�
and that n � HIGH�A� �because the loop test failed�� Hence n must be

��	 Loops

exactly HIGH�A� � �� Then the other part of the invariant tells us that
S is the required result� and all we have to do is return it�

� When A�n� is read� is n within range as an array subscript� Yes� We
know at that point that the loop test succeeded� so n � HIGH�A�
 it is
in range�

� Does the loop body reestablish the invariant� Yes� this is fairly easy to
see�

� Does the loop body decrease the variant� Yes� n is increased �by ��� so
HIGH�A� � � � n is decreased�

� Can the loop variant go negative� No� When the loop body is entered�
we know n � HIGH�A�� so the variant is at least �� After that iteration�
it has decreased by exactly �� so it is still at least ��

These are all speci�c questions that can be asked about the correctness of the
program� and for all of them the answer depends on the loop invariant� No
other possible mid�condition in this program plays such a crucial role�

���� Loop invariants as a programming technique

The whole technique comes into operation as soon as you decide to use a
loop structure� First� ask what the computer is supposed to look like at
intermediate stages� Do not think about the dynamics of this �a common
trap for beginners is to try to make a loop invariant by forcing the loop
body into a logical notation�� you must imagine freezing the computation at
a crucial point and giving a static description of the internal state� There is
already a vague picture at the back of your mind� and that is what you must
bring out� Diagrams are absolutely invaluable here�

Also remember that you must understand at that exact point in the
computation what the value of each computer variable signi�es� If you do not
know what values they are supposed to be storing� you will never be able to
use those values correctly�

A critical test of the diagram is that under certain conditions �for example�
n � HIGH�A� � � in the AddUp example� you must be able to use the
information carried by the diagram to arrive at the post�condition� The loop
test should be the negation of these conditions �because you continue looping
WHILE the conditions fail�� At this point it is often easy to see a loop variant
� the loop test is often equivalent to variant � ��

Next� formalize the picture in logic to obtain a loop invariant� Perhaps your
picture is incomplete� you will realize this later because you will �nd you do
not quite understand how the program is supposed to be working� Then you
�ll in more details in the picture and re�ne the invariant� You now have an
incomplete implementation

FOR loops ��

PROCEDURE ����

��pre
 ���

�post
 ���

��

VAR ��� �

BEGIN

Initialize� �� Remains to be written ��

��loop invariant
 ���

�variant �

��

WHILE loop test DO

Loop Body �� Remains to be written ��

END�

Finalize �� Remains to be written ��

END ��� �

There are three pieces of code that remain to be written
 the initialization�
the loop body and the �nalization� �You probably saw fairly clearly how
the �nalization would work when you formulated the invariant�� Hence the
original programming problem has been divided into three� Moreover� because
you have formulated the invariant and variant� each of these three pieces has
a precise job to do� a �subcontract� of the contract �speci�cation� for the
overall procedure� These subcontracts can be speci�ed with �local� pre� and
post�conditions�

Piece of code Local pre�condition Local post�condition
Initialize Overall pre�condition Invariant
Loop body Invariant � Loop test Invariant �variant � variant�
Finalize Invariant ��Loop test Overall post�condition

�We assume as usual that there are no side�e�ects when you evaluate the
Loop test�� If you can implement Initialize� Loop body and Finalize to satisfy
these local speci�cations� then you know they will automatically �t together
in the WHILE loop to implement the overall speci�cation correctly�

���� FOR loops

FOR loops are obviously very similar to WHILE loops� and you may well be
used to seeing our WHILE loop examples coded as FOR loops �for instance this
is quite easy for AddUp�� In fact every FOR loop can be translated into a
WHILE loop �see Exercise ��� and it follows that one way to reason with FOR

loops is to give loop invariants and variants for the corresponding WHILE loops�
However� we are not going to recommend this here� One reason is that�

for the purposes of reasoning� the control variable� for example� the i in FOR

��� Loops

i
� � � � � is often still needed after the last iteration� whereas its value in
the computer has evaporated by then and is no longer accessible from the
program� This has the e�ect that the FOR loops �t uncomfortably with the
loop invariant reasoning� and in this book you will see FOR loops used less
often than you might expect�
Nevertheless� there are some applications where FOR loops are particularly

natural� namely when the di�erent iterations of the body are more or less
independent of each other and could even be done in parallel� You might
think of the WHILE loop as being good for temporal iteration ��this then this
then this� etc��� and the FOR loop as more spatial� less ordered ��do all these���
Here is a typical example

CONST Size � ����

TYPE Matrix � ARRAY !���Size"�!���Size" OF INTEGER�

PROCEDURE ZeroMatrix �VAR A
 Matrix��

��pre
 none

�post
 �A�i�j
CARDINAL� ����i��Size � ���j��Size �� A!i�j"���

��

VAR i�j
 CARDINAL�

BEGIN

FOR i
� � TO Size DO

FOR j
� � TO Size DO

A!i�j"
� �

END

END

END ZeroMatrix�

�Note� The logical variables i and j in the post�condition� bound by the ��
are formally quite di�erent from the computer variables i and j� However�
the structure of the post�condition � Size� checks of zeroness � is so similar
to that of the code � Size� assignments to � � that it seems fussy to insist
on di�erent symbols��
It is possible to translate the FOR loops into WHILE loops and give an
invariant for each� If you try this� you will see how clumsy it is� It is much
simpler to argue as follows� To show that the post�condition holds at the end�
let I and J be natural numbers between � and Size� we must show that at
the end A�I� J � � �� This is so� because

�� there was an iteration of the FOR loops �namely with i � I and j � J�
in which A�I� J � became �� and

�� once that was done� none of the other iterations would ever undo it�

The pattern is quite general� You reason that everything necessary was done�
and then �because the iterations are independent� never undone� Note that
no special argument is needed to show termination� FOR loops are bound to
terminate unless you have a BY part of �� for example�

Summary ���

FOR i
� � TO � BY � DO ��� END
As a general rule of thumb� if the iterations are �xed in number and

independent of each other� then try to �nd a simple argument such as the one
above and use a FOR loop� Otherwise� use a loop invariant and WHILE loop�

���� Summary

� The method of loop invariants is the method of mid�conditions applied
to WHILE loops�

� The invariant is a mid�condition that should always be true immediately
before the loop test is evaluated�

� Do not confuse the loop invariant with the loop test� They are both
logical conditions� but

�� the loop invariant is a mid�condition� used in reasoning� not
evaluated by the computer� and intended to be true right through
to the end�

�� the loop test is a Boolean expression� evaluated by the computer�
and is bound to be false after the last iteration�

� The invariant arises �rst �in your reasoned programming� as a
computational objective� often after drawing a diagram� when the
reasoned program is completed� the invariant is used to give a correctness
proof�

� The invariant is used to divide the overall problem into three

initialization� loop body� and �nalization�

� The loop variant� a number� is like a recursion variant and is used to
prove termination�

� FOR loops are best reserved for simpler problems in which the iterations
are independent of each other�

���	 Exercises

�� The problem is to implement the following speci�cation

PROCEDURE Negs�A
 ARRAY OF INTEGER�
CARDINAL�

��pre
 none

�post
 no� of subscripts for which A!i"��

��

The idea is to inspect the elements starting at A��� and working up to
HIGH�A�

�a� Draw a diagram to illustrate the array when n elements have
been inspected � make it clear what are the subscripts of the

��� Loops

last element to have been inspected and the next element to be
inspected�

�b� What values will n take as the program proceeds�

�c� Write down the implementation �Modula�� code�� including the loop
invariant and variant as comments in the usual way� The invariant
should in e�ect translate the diagram of �a� into mathematical form�

�d� Use the invariant and the failure of the loop test to show that the
post�condition is set up�

�e� Show that whenever an array element is accessed� the subscript is
within bounds�

Note� �c� contains the ingredients that you should write down in
your practical programming�

�� Develop reasoned Modula�� programs along the lines of Exercise � to
solve the following problems about arrays

�a� Find the minimum element in an array of integers�

�b� Find whether an array of integers is in ascending order�

�c� Find the length of an array of CHARs� on the understanding that
if it contains the character NUL �assumed prede�ned as a constant��
then that and any characters after it are not to be counted� �In
other words� NUL is understood as a terminator��

�d� Find the median of an array of reals� that is� the array value closest
to the middle in the sense that as many array elements are smaller
than it as are greater than it� Is the problem any easier if the
array is known to be sorted�

�� Develop the procedure Search

PROCEDURE Search�A
 ARRAY OF INTEGER� x
INTEGER�
CARDINAL�

��pre
 Sorted�A�

�post
 result �� HIGH�A���

��A�i
CARDINAL

��i� result ��A!i"�x�

��result ��i�� HIGH�A���A!i"��x����

Use a �linear� search� inspecting the elements of A one by one starting
at A����

Explain how the post�condition is deduced at the end �this is where
sortedness is needed��

�� Implement the procedure IsIn� using a call of Search �Exercise ��

Exercises ���

PROCEDURE IsIn�x
 INTEGER� A
ARRAY OF INTEGER�
BOOLEAN�

��pre
 Sorted�A�

�post
 result ����E�i
Cardinal �i�� HIGH�A� � A!i"� x�

��

Using the pre� and post�conditions of Search �not the code�� prove that
your implementation of IsIn works correctly� What this means is that
in every place where a result is returned� you must show that it is the
correct result�

�� Give FOR loop implementations of the following

�a� IsIn

�b� Copy

PROCEDURE Copy�A
 ARRAY OF INTEGER�

VAR B
 ARRAY OF INTEGER��

�� Copies A to B

�pre
 HIGH�A� � HIGH�B�

�post
 B�A

��

�� Show how a FOR loop

FOR i
� a TO b BY c DO

S

END
can be translated into a WHILE loop� There are some tricky points

�a� If c is negative the translation is di�erent�

�b� The intention is that b and c should be evaluated only once� at
the beginning� Hence you must be careful if they are expressions
containing variables �actually� Modula�� forbids this for c��

�� Consider the following problem

PROCEDURE Copy �n�Astart�Bstart
 CARDINAL� A
ARRAY OF INTEGER�

VAR B
 ARRAY OF INTEGER��

��copies n elements from A� starting at A!Astart"�to B�

�starting at B!Bstart"�

��

�a� Give a FOR loop implementation of this� including pre� and
post�conditions� Give your reasoning to show that it works�

�b� If the array A is large� you might be tempted to call A as a VAR

parameter� since then a local copy of it would not be made for
use by the Copy procedure� If you did that� what might go wrong
in the case where A and B are the same array� Can you give a
sensible speci�cation that allows for this possibility�

Chapter ��

Binary chop

How do you look up a word� �binary�� say� in a dictionary� What you do not
do is to look through all the words in order� starting at page �� until you
�nd the word you want� If the dictionary had ���� pages� you might have to
check all of them before you found your word �if it was �zymurgy��� Instead�
you open the dictionary about half way through� at �meridian�� and you see
that �binary� must be in one of the pages in your left hand� You divide those
about half way through� at �drongo�� and again you see that �binary� must
come before that� Each time� you halve the number of pages in which your
word might be

Stage
 � � � � � � � � 	
 �� ��
Pages left
���� �	� �
� ��� �� �� �
 �� � � � �

Hence� you have only to check eleven pages before you �nd your word� This
method is called the �binary chop algorithm�� and it relies crucially on the
fact that the entries in the dictionary are in alphabetical order� It is a very
important algorithm in computing contexts� and� what is more� it is a good
example of an algorithm that is very easy to get wrong if you try to write
the code without any preliminary thought�

There is another important lesson in this algorithm� namely that the natural
order of writing a procedure is not necessarily from top to bottom� �This is
similar to the way you write a natural deduction proof�� You know already
that the loop invariant should generally be worked out before the code� here
the most important piece of code to be �xed is the �nalization part�

���� A telephone directory

To explore di�erent possible ways in which the algorithm might be used�
imagine a telephone directory stored on a computer as an array of records�

���

Speci�cation ���

each record comprising a name� an address and a telephone number� The
records are stored in alphabetical order of names� but for di�erent records
under the same name it is perhaps not worth ordering them any more
precisely�

To look up a record� you supply a name and apply the binary chop
algorithm� Although it is possible to use the algorithm simply to tell you
whether the name is present in the directory� clearly in this case you need to
know where it is so that you can then read the telephone number� Also� it is
necessary to remember that there may be more than one record under the
same name� It is most convenient if the algorithm tells you the subscript of
the �rst one� so that you can then inspect the addresses one by one�

Now suppose that there is no record under the name you supplied� You
might think that it is su�cient for the algorithm to tell you that� but consider
the problem of updating the array� Any new record must be inserted in
exactly the right place �after prising open a gap by shifting a lot of records up
one place�� and the binary chop algorithm can tell you where that right place
is� �Note the payo�s here
 lookup is very cheap� but update is expensive��

Thus the algorithm apparently has many di�erent situations to consider� It
is an indication of the power of the algorithm that the cases are actually
handled in a very uniform way�

���� Speci�cation

Purely for the sake of example� let us take A to be an array of integers�
its elements appearing in ascending order
 if i � j� then A�i� � A�j�� �The
method works not just for integers� but for any kind of data with an
understood ordering � for instance� the telephone records described above�
ordered alphabetically by name�� If x is an integer� the problem is to
search for x in A� We can divide A into two blocks� one on the left
where the elements are � x� and one on the right where they are � x�
The answer is to be the subscript of the �rst element on the right

� x � x

� result HIGH�A�

A

subscripts

We can translate this into logic� First� all elements with subscripts between �
and result�� inclusive are � x

�i
 nat �i � result� A�i� � x� ������

��� Binary chop

Second� all elements with subscripts between result and HIGH�A� inclusive are
� x

�i
 nat �result � i � HIGH�A�� A�i� � x� ������

Third� we should say what range the result will lie in� The extremes are
when all the elements of the array are � x� when the result should be �� and
when all the elements are � x� when the result should be HIGH�A� � � �notice
how in this case A�result� is unde�ned�

� � result � HIGH�A� � � ������

These three conditions will form the post�condition�
If x is present at all in the array� then we must have A�result� � x�

�We shall prove that this holds a little later�� If x is absent� then either
A�result�� x or result � HIGH�A� � ��

���� The algorithm

The algorithm uses two natural number variables Left and Right� which
represent your two hands holding the dictionary
 what you know at each
stage is that the answer must be between Left and Right� At each iteration�
you �nd the midpoint between Left and Right �call it Middle�� and use that
as a new Left or Right� Now this intuition is relatively simple� but it is tricky
to say exactly what it means� Some points to be resolved are as follows

� Should the answer be strictly between Left and Right� or not� Or strict
at one end but not at the other� �Four possibilities here�� This is very
important� If your ideas are not consistent throughout the program�
then errors will arise�

� It is tempting to say something like A�Left� � x and A�Right� � x� but
might we ever want Left or Right to be HIGH�A� � �� that is� not a valid
subscript for A�

The key is to notice that result is used twice in the post�condition� once to
show where the elements � x are� and once to show where those � x are�
Left and Right can divide these two tasks between them
 elements before Left
are known to be � x� and elements at or after Right are known to be � x�
In between� we do not know

� x � x

� Left HIGH�A�

A

subscripts
 Right

�

The algorithm ���

�Middle does not appear � it is used only for calculating within the loop
body��

We are trying to eliminate the ��� region� that is� to make Left and
Right equal� Then we have essentially the same diagram as before� and
Left �� Right� is the required result�

Initially� on the other hand� everything is ��� and so we want Left� � and
Right � HIGH�A� � ��

Actually� this idea� that when Left�Right we stop and return Left as result�
is a fundamental design decision that strongly in�uences the rest
 our initial
decision is how to �nalize� � though that should not come as a surprise by
now� So the �rst program fragments we can write down are

��loop invariant
 ��� �formalizes picture�

�variant � Right�Left ��

WHILE Left � Right DO

END�

RETURN Left

END Search�

There are di�erent ideas� for instance �when Right � Left�� return Right��
which we could have chosen but we did not and� as it turns out� the method
we have chosen is simpler�

Next� let us formulate the invariant� We have a picture already� but we
also know that we are choosing ��s or ��s precisely to make the Left and
Right parts of the invariant match parts ���� and ���� of the post�condition�
Therefore� it has to be

Left � Right � HIGH�A� � �
��i
 nat� ��i � Left� A!i" � x� � �Right � i � HIGH�A�� A!i" � x��

Let us also take the opportunity to say that the variant is Right� Left�

We have already dealt with the �nalization� what next� The initialization
is easy � we want Left � � and Right � HIGH�A� � �� All that remains is the
loop body�

The idea is to �nd Middle between Left and Right and update either Left
or Right depending on the value of A!Middle"� How should we do that� Let
us be very careful to use the information precisely�

If A!Middle" � x� then Middle is in the �� x� area of the array� so Left�
which is to be in the ��� area� can safely be set to Middle � �� On the
other hand� if !Middle" � x� then we must set Right to Middle �why not
Middle � ���� We have not said exactly what Middle is� but we have made a
start on the loop body

��	 Binary chop

Middle
� ��

IF A!Middle" � x THEN

Left
� Middle��

ELSE

Right
� Middle

END
It remains to assign a value to Middle� and it is important to see what
precisely are the requirements here � all we know so far is that Middle should
be �about� half way between Left and Right� or at least somewhere between
them� Consider how the invariant Left � Right is reestablished� The new Left
may be Middle � �� so we want Middle � � � Right� that is� Middle � Right�
In the other case� the new Right is Middle� so we want Left � Middle� We
can use a mid�condition to express these requirements as a computational
objective

Middle
� �� �� Left �� Middle � Right ��

It is not di�cult to see that if we can achieve this� then the rest of the loop
body will reestablish the invariant and decrease the variant as well� We shall
see soon that we can assign �Left� Right� DIV �� the rounded�down average
of Left and Right� to Middle� That is probably what you expected anyway�
but more care is needed here than you might think� In Exercise � you will
see a use of essentially the same algorithm in a di�erent context where it is
more natural to require Left � Middle � Right� and there it is necessary to
use ��Left�Right� DIV �� � � � the problem comes when Right � Left� �� so
that Middle � Left�

���� The program

The program appears in Figure ���� Notice the order in which the parts
appear

�� The procedure heading� with speci�cation and the fragments BEGIN and
END Search��

�� The framework for the loop
 WHILE Left � Right DO and END� RETURN

Left� also the slots for the invariant and variant �we have �lled in the
variant�� and the VAR declarations�

�� The invariant� carefully formulated to match �� and the post�condition�
�� The initialization�
�� Pieces of the loop body
 an incompleted assignment statement Middle

� ��� and all of the IF statement�
�� The comment �� Left �� Middle � Right ���
�� The assigned value �Left�Right� DIV ��

At each stage� the choices to be made depended in a natural way on preceding
choices� so the development had a certain logical inevitability�

Some detailed checks ��

PROCEDURE Search� A
 ARRAY OF INTEGER� x
 INTEGER�
 CARDINAL�

��pre
 Sorted�A��

� i�e� �A�i�j
nat� � i��j�� HIGH�A� �� A!i"��A!j" �

�post
 result �� HIGH�A��� � �A�i
nat�

� � � i�result �� A!i"�x � � � result��i��HIGH�A� �� A!i"��x � �

��

VAR Left�Right�Middle
 CARDINAL�

BEGIN

Left
� ��

Right
� HIGH�A����

��Loop invariant
 Left �� Right �� HIGH�A��� � �A�i
nat�

� � � i� Left �� A!i"�x � � � Right��i�� HIGH�A� �� A!i"��x � �

�variant � Right�Left

��

WHILE Left � Right DO

Middle
� �Left�Right� DIV �� �� Left �� Middle � Right ��

IF A!Middle"�x

THEN Left
� Middle��

ELSE Right
� Middle

END

END�

RETURN Left

END Search�

Figure ����

As an experiment� try to write the program code straight down from the
top without thinking of invariants� You will probably �nd �everyone else does�
that it is not easy to get it right�

���� Some detailed checks

We have already covered most of the important aspects of the invariant
 that
it is established correctly initially� that it is reestablished on each iteration�
and that at the end it can be used to deduce the post�condition� The
following are some small remaining questions�

At the end of each iteration� do we still have Left � Right� After the
assignment to Middle� do we indeed have Left � Middle � Right� Because we
are still looping� we know that Left � Right� that is� Left � Right� �� Hence�

Middle � �Left� Right� DIV � � ��� Left� DIV � � Left
Middle � �Left� Right� DIV � � ��� Right� �� DIV � � Right� � � Right

��� Binary chop

Note� the equality �� � Right � �� DIV � � Right � � is correct according
to the de�nition of Modula��� given that Right � � �which we know because
Right � Left�
 the fractional answer �Right� ���� is truncated to Right� �� But
it is possible to imagine an integer division that might round the fractional
answer Right� ��� up to Right� Therefore� if you translate this algorithm to
languages other than Modula��� you should check that their integer divisions
behave as expected� Dijkstra and Feijen ��A Method of Programming�� give
a treatment that does not depend on the rounding method� However� their
program only checks whether x is present in A and some elegance is lost
when the method is extended to return the position � extra checking is
needed to make up for the doubts about the integer division� In truth� the
point of integer arithmetic is that it should be exact� and an inadequately
speci�ed integer division is a blunt instrument�

When A is subscripted� is the subscript within bounds� The only place is in
�IF A!Middle" � � � �� Can we guarantee that Middle � HIGH�A�� Yes� because
�as above� Middle � Right� and� by the invariant� Right � HIGH�A� � ��

Does the variant de�nitely decrease each time round� If Right is replaced
by Middle� then it has de�nitely decreased� if Left is replaced by Middle � ��
then it has de�nitely increased� Either way� the variant has decreased�

���� Checking for the presence of an element

Suppose we only want to check whether x is present in A� If we calculate

r
� Search�A�x��

how can we use A�x and r to perform our check� Just to be sure� let us
write down what we know about r solely from the post�condition for Search

r � HIGH�A� � �
��i
 nat� ��i � r� A!i" � x� � �r � i � HIGH�A�� A!i" � x�� �
�

If A!r" � x� then x must be present� while a quick look at one of the
diagrams above makes it fairly clear that if A!r" � x then x is absent� But
wait� Is A!r" de�ned� Not necessarily� r might be equal to HIGH�A� � �� in
this case� x is absent because all the elements are � x�

Check that array subscripts are in bounds when you write the
program� not when you run it�

The following is the program

Summary ���

PROCEDURE IsIn�x
 INTEGER� A
 ARRAY OF INTEGER�
BOOLEAN�

��pre
 �A�i�j
nat� �i��j�� HIGH�A���A!i" ��A!j"�

�post
 result ����E�i
nat� �i�� HIGH�A� � A!i"� x�

��

VAR r
 CARDINAL�

BEGIN

r
� Search�A�x��

RETURN r�� HIGH�A� AND A!r" � x

END IsIn�

The code above relies on Modula���s short circuit evaluation� That is�
A!r" � x will not be evaluated if r � HIGH�A�� In other languages� such
as Pascal� Boolean expressions are evaluated completely even if the result is
known after the �rst subexpression has been evaluated� The code after the
RETURN would then need to be written as the following

IF r �� HIGH�A�

THEN RETURN A!r" � x

ELSE RETURN FALSE

END
Let us show as rigourously as possible that the code for IsIn satis�es its
speci�cation
 that if the returned Boolean value is TRUE then x is indeed
present in A �that is� �i
 nat� �i � HIGH�A� � A!i" � x��� and that if FALSE
is returned then x is absent �that is� ��i
 nat��i � HIGH�A� � A!i" � x���

!�rst case
"r � HIGH�A�� so FALSE is returned� We know that r is a natural
number and that r � HIGH�A� � �� so r � HIGH�A� � �� Then from
�
���i
 nat��i � HIGH�A�� A!i" � x�� in other words all the elements of
A are � x � so x must be absent� Note that the invalid array access
A!r" is not attempted here because of the way in which Modula��
evaluates AND�

!second case
"r � HIGH�A�� A!r" � x� so TRUE is returned� Certainly x is
present� with subscript r�

!third case
"r � HIGH�A�� A!r" 	� x� so FALSE is returned� Because
r � HIGH�A�� �
� tells us that A!r" � x� so we must have A!r" � x�
Now consider any subscript i � HIGH�A�� If i � r� then �
� tells us
that A!i" � x� while if i � r� then �using orderedness� A!i" � A!r" � x�
Either way� A!i" 	� x� so ��i
 nat� �i � HIGH�A� �A!i" � x��

���� Summary

� Binary chop is an important and e�cient search algorithm if the elements
are arranged in order� You should know it�

� The algorithm has many uses� but to use it e�ectively it is important to
understand exactly what the result represents �that is� to have a clear

��� Binary chop

speci�cation��
� There is a particular train of reasoning that leads to the algorithm
easily� otherwise it is easy to get into a mess�

���	 Exercises

�� What happens if you replace the assignment Left
� Middle�� in
Search by Left
� Middle� �Hint� the invariant is still reestablished��
A common belief is that the problem can be corrected by stopping early�
looping WHILE Left�� � Right� Follow through this idea and see how it
gives more complicated code�

�� The following is another version of intsqrt by the binary search
algorithm

intsqrt

num��num

��pre
 x �� �

��post
 n � entier �sqrt x�

�� i�e� nat�n� � n�� �� x � �n����� � x

�� where n � intsqrt x

intsqrt x � f x � �entier x�

where f x l r � l� if l � r

� �� if m�m �� x

� �� otherwise

where m � �

��m satisfies some conditions

Specify f precisely and in full� and complete the de�nition� �Beware� m
is not �l � r�div �� as you will see if you follow the method properly��

�� Show that the speci�cation of Search speci�es the result uniquely� In
other words� if there are two natural numbers r and r� that are both
valid results� then r � r��
Use this to deduce the following� Suppose that in A there is exactly one
index� i� for which A�i� � x� Then i � Search�A�x��

�� There are other ways of giving the post�condition for Search� Here is
one that translates the informal speci�cation much more directly

post�
 �result �� HIGH�A� � A!result"��x

� �A�i
nat� �i��HIGH�A� � A!i"��x��i��result��

���result�HIGH�A���

� �A�i
nat� �i��HIGH�A���A!i"�x��

Use natural deduction �together with standard properties of arithmetic�
to prove that

pre � �post� post��

Exercises ���

where pre and post are the pre� and post�conditions for Search as
originally speci�ed� and post� is as given above�
Can you think of any other equivalent post�conditions�

�� This question examines how you might use Search to update an ordered
array�
First� a function Search� is intended to work in the same way as
Search� but with a �soft HIGH� called High� to allow for variable length
lists of integers within a �xed length array� �We actually use a soft
version of HIGH�A� � �� This allows us to specify an empty list by
setting High� � ���

PROCEDURE Search��A
 ARRAY OF INTEGER�

High�
 CARDINAL� x
 INTEGER�
CARDINAL�

��pre
 High��� HIGH�A��� � Sorted�A!� to High���"�

�post
 result �� High� � �A�i
nat�

� ��i� result ��A!i"�x�

� � �result ��i� High���A!i"��x��

��

�It is obvious how to implement this
 just initialize Right to High�

instead of HIGH�A� � � in the implementation for Search� Note that this
works even in the case where High� � ���
Implement the following procedures� giving invariants and variants for all
loops� The notation A!i to j" is introduced in Section �����

PROCEDURE OpenUp�VAR A
 ARRAY OF INTEGER� VAR High�
 CARDINAL�

NewGap
 CARDINAL��

��pre
 NewGap �� High��� HIGH�A�

�post
 �E�x
Integer�

� A!� to High���" �

� A��!� to NewGap��"��!x"��A��!NewGap to High�����"

��

PROCEDURE Insert�VAR A
 ARRAY OF INTEGER� VAR High�
 CARDINAL�

x
INTEGER��

��pre
 High��� HIGH�A� � Sorted�A!� to High���"�

� post
 Sorted�A!� to High���"�

� � �E�s�t
!Integer"

� �A��!� to High�����"�s��t

� �A!� to High���"�s��!x"��t�

��

�Hint� implement Insert using Search� and OpenUp��
�� Redo the proof that IsIn satis�es its speci�cation using box proofs�

Chapter ��

Quick sort

���� Quick sort

Donald Knuth� in his book Sorting and Searching� gives an estimate of over
�� per cent for the proportion of computer running time that is spent on
sorting� Whether this estimate is still accurate� we do not know� but his
conclusion is still valid
 whether �i� there are many important applications
of sorting� or �ii� many people sort when they should not� or �iii� ine�cient
sorting algorithms are in common use� or something of all three� sorting is
worthy of serious study as a practical matter�
As a general principle� if a program is used a lot then it is worth making it

run quickly� In this chapter we present quick sort� an e�cient sorting algorithm
due to Tony Hoare� It is a good example of a combination of di�erent kinds
of argument� It is recursive� and the framework of the algorithm is very
conveniently discussed as a Miranda function working on lists� However� when
it is transferred to Modula�� working on arrays� a signi�cant improvement
becomes possible using the �Dutch national �ag� algorithm� and this can be
discussed using loop invariants in fact it is a rather good example of a
loop invariant that is a logical translation of a diagram�

���� Quick sort � functional version

The problem is� given a list� to sort it into order� We start o� in Miranda�
Since in Miranda datatypes have natural orderings� we do not need to say
what our lists are lists of

sort

 !�"��!�"

��pre
 none

��post
 Sorted�sort xs� � Perm�sort xs�xs�

���

Quick sort functional version ���

Idea
 partition

It is so much easier to sort short lists than long ones that it helps to do a
preliminary crude sort� a partition with respect to some key k �Figure ������

elements � k go here elements � k go here

Figure ����

partition

 ���!�"���!�"�!�"�

��pre
 none

��post
 Perm�xs�ys��zs�

�� all elements of ys are ��k

�� all elements of zs are �k

�� where �ys�zs� � �partition k xs�

Note that the speci�cation does not uniquely determine the function� If
�ys� zs� is a possible result� so is �ys��zs�� where ys�� zs� are any permutations
of ys and zs� It is simple to implement partition in Miranda� but we do
not need to � it is the speci�cation that is important� and in the end we
will implement it by a totally imperative method� A pure functional quick
sort is not terribly quick and uses lots of space�

Implementing quick sort

The idea is to do a partition �rst and then sort the two parts separately�
they can be sorted using the same method� recursively� The head of the list
can be the key

qsort

 !�"��!�"

��pre
 none

��post
 Sorted�qsort �xs�� � Perm��qsort �xs���xs�

��recursion variant � $xs

qsort !" � !"

qsort �x
xs� � �qsort ys���!x"���qsort zs�

where �ys�zs� � partition x xs

This is the essence of the recursion in the quick sort algorithm� To prove

